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Abstract

Several recent works have been dedicated to the
pure exploration of a single reward-free environ-
ment. Along this line, we address the problem
of learning to explore a class of multiple reward-
free environments with a unique general strategy,
which aims to provide a universal initialization to
subsequent reinforcement learning problems spec-
ified over the same class. Notably, the problem is
inherently multi-objective as we can trade off the
exploration performance between environments
in many ways. In this work, we foster an explo-
ration strategy that is sensitive to the most adverse
cases within the class. Hence, we cast the explo-
ration problem as the maximization of the mean of
a critical percentile of the state visitation entropy
induced by the exploration strategy over the class
of environments. Then, we present a policy gra-
dient algorithm, MEMENTO, to optimize the in-
troduced objective through mediated interactions
with the class. Finally, we empirically demon-
strate the ability of the algorithm in learning to
explore challenging classes of continuous environ-
ments and we show that reinforcement learning
greatly benefits from the pre-trained exploration
strategy when compared to learning from scratch.

1. Introduction
The typical Reinforcement Learning (RL, Sutton & Barto,
2018) setting involves a learning agent interacting with an
environment in order to maximize a reward signal. In prin-
ciple, the reward signal is a given and perfectly encodes the
task. In practice, the reward is usually hand-crafted, and
designing it to make the agent learn a desirable behavior
is often a huge challenge. This poses a serious roadblock
on the way of autonomous learning, as any task requires a
costly and specific formulation, while the synergy between
solving one RL problem and another is very limited. To
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address this crucial limitation, Jin et al. (2020) have formu-
lated the reward-free RL problem. In this setting, the agent
is tasked with mastering an environment without rewards, so
that the knowledge it acquires can be eventually deployed
to solve any RL problem one could specify in this same
environment. Mastering the environment has been formu-
lated in (i) learning to model its transition dynamics (Jin
et al., 2020; Tarbouriech et al., 2020b;a; Zhang et al., 2020b),
or (ii) learning to explore it with a general, task-agnostic,
strategy (Hazan et al., 2019). Although they overcome the
reliance on a reward function, previous solutions to reward-
free RL are still severely environment-specific.

In this work, we aim to push the generality of reward-free
learning even further by addressing the problem of learning
to explore multiple environments with a single exploration
strategy. Especially, the agent faces a class of reward-free
environments that belong to the same domain but differ
in their transition dynamics. At each turn of the learning
process, the agent is drawn into an environment within the
class, where it can interact for a finite number of steps before
facing another turn. The process carries on sequentially for
a finite number of turns. The ultimate goal of the agent
is to learn an exploration strategy that helps to solve any
subsequent RL task specified over the class.

Our contribution to the problem is three-fold: (c1) We frame
it into a tractable formulation (Section 3), (c2) we propose
a methodology to address it (Section 4), for which (c3) we
provide a thorough empirical evaluation (Section 5). First,
we extend a reward-free objective meant for environment-
specific exploration, which is the Maximum State Visitation
Entropy (MSVE, Hazan et al., 2019). The underlying in-
tuition is that a general exploration strategy has to visit
with high probability any state where the agent might be
rewarded in a subsequent RL task. When dealing with mul-
tiple environments, this becomes a multi-objective problem,
as one could establish any combination of preferences over
the environments. In this work, instead of naı̈vely optimiz-
ing the mean of the state visitation entropy across the class,
we consider its Conditional Value-at-Risk (CVaR, Rock-
afellar et al., 2000) to prioritize performance in particularly
rare or adverse environments. We propose a policy gradient
algorithm (Deisenroth et al., 2013), Multiple Environments
Maximum ENTropy Optimization (MEMENTO), to optimize
the learning objective via mere interactions with the class of
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environments. As in recent works (Mutti et al., 2021; Liu &
Abbeel, 2021a; Seo et al., 2021), the algorithm employs non-
parametric methods to deal with state entropy estimation in
continuous and high-dimensional environments. Then, it
leverages these estimated values to optimize the CVaR of the
entropy by following its policy gradient (Tamar et al., 2015).
Finally, we provide an experimental analysis of the proposed
method in a two-stage setting. First, we show that it is effec-
tive in training general exploration strategies over classes
of continuous and high-dimensional environments without
rewards. Second, we test the obtained exploration strategies
as initialization for a number of RL tasks defined over the
same class. Notably, the trained exploration strategy allows
us to solve sparse-rewards tasks that are impractical to learn
from scratch, while being robust to the most unfavorable
environment thanks to the CVaR objective. A preliminary
theoretical analysis is in Section 6, Related works are in
Appendix A, the proofs of the theorems are in Appendix B.

2. Preliminaries
In this section we report background and notation. A vector
v is in bold, and vi is its i-th entry.

Probability and Percentiles Let X be a random variable
distributed according to a cumulative density function (cdf)
FX(x) = Pr(X ≤ x). We denote with E[X], Var[X]
the expected value and the variance of X respectively. Let
α ∈ (0, 1) be a confidence level, we call the α-percentile
(shortened to α%) of the variableX its Value-at-Risk (VaR),
which is defined as

VaRα(X) = inf
{
x | FX(x) ≥ α

}
.

Analogously, we call the mean of this same α-percentile the
Conditional Value-at-Risk (CVaR) of X ,

CVaRα(X) = E
[
X | X ≤ VaRα(X)

]
.

Markov Decision Processes A Controlled Markov
Process (CMP) is a tuple M := (S,A, P,D), where S
is the state space, A is the action space, the transition
model P (s′|a, s) denotes the conditional probability of
reaching state s′ ∈ S when selecting action a ∈ A in
state s ∈ S, and D is the initial state distribution. The
behavior of an agent is described by a policy π(a|s), which
defines the probability of taking acion a ∈ A in s ∈ S.
Let Π be the set of all the stationary policies. Executing
a policy π ∈ Π in a CMP over a time horizon T gener-
ates a trajectory τ = (s0,τ , a0,τ , . . . , aT−2,τ , sT−1,τ )
with probability pπ,M(τ) =

D(s0,τ )
∏T−1
t=0 π(at,τ |st,τ )P (st+1,τ |st,τ , at,τ ). We

denote the state-visitation frequencies induced by τ
with dτ (s) = 1

T

∑T−1
t=0 1(st,τ = s), and we call

dMπ = Eτ∼pπ,M [dτ ] the marginal state distribution.
We define the differential entropy (Shannon, 1948)
of dτ as H(dτ ) = −

∫
S dτ (s) log dτ (s) ds. For sim-

plicity, we will write H(dτ ) as a random variable
Hτ ∼ δ(h−H(dτ ))pπ,M(τ), where δ(h) is a Dirac delta.

By coupling a CMPM with a reward function R we obtain
a Markov Decision Process (MDP, Puterman, 2014)MR :=
M∪R. LetR(s, a) be the expected immediate reward when
taking a ∈ A in s ∈ S and let R(τ) =

∑T−1
t=0 R(st,τ ), the

performance of a policy π over the MDPMR is defined as

JMR(π) = E
τ∼pπ,M

[
R(τ)

]
. (1)

The goal of reinforcement learning (Sutton & Barto, 2018)
is to find an optimal policy π∗J ∈ arg maxJMR(π) through
sampled interactions with an unknown MDPMR.

3. Learning to Explore Multiple
Environments

Let M = {M1, . . . ,MI} be a class of unknown CMPs,
in which every elementMi = (S,A, Pi, D) has a specific
transition model Pi, while S,A, D are homogeneous across
the class. At each turn, the agent is able to interact with a
single environmentM∈M. The selection of the environ-
ment to interact with is mediated by a distribution pM over
M, outside the control of the agent. The aim of the agent is
to learn an exploration strategy that is general across all the
MDPsMR one can build upon M. In a single-environment
setting, this problem has been assimilated to learning a pol-
icy that maximizes the entropy of the induced state visitation
frequencies (Hazan et al., 2019; Lee et al., 2019; Mutti et al.,
2021). One can straightforwardly extend the objective to
multiple environments by considering the expectation over
the class of CMPs, EM(π) = EM∼pM

τ∼pπ,M

[
Hτ

]
, where the

usual entropy objective over the single environmentMi can
be easily recovered by setting pMi = 1. However, this ob-
jective function does not account for the tail behavior of Hτ ,
i.e., for the exploration performance in environments of M
that are rare or particularly unfavorable. This is decidedly
undesirable as the agent may be tasked with an MDP built
upon one of these adverse environments in the subsequent
RL phase, where even an optimal strategy w.r.t. EM(π) may
fail to provide sufficient exploration. To overcome this lim-
itation, we look for a more nuanced exploration objective
that balances the expected performance with the sensitivity
to the tail behavior. By taking inspiration from the risk-
averse optimization literature (Rockafellar et al., 2000), we
consider the CVaR of the state visitation entropy induced by
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Figure 1. Illustration of the two-phase learning problem. On the left, we highlight the process of learning to explore multiple environments.
The obtained exploration policy π∗E conveys a pre-trained initialization to the subsequent RL process (right), which outputs a reward
maximizing policy π∗J for any MDPMR.

π over M,

EαM(π) = CVaRα(Hτ )

= E
M∼pM
τ∼pπ,M

[
Hτ | Hτ ≤ VaRα(Hτ )

]
, (2)

where α is a confidence level and E1
M(π) := EM(π). The

lower we set the value of α, the more we hedge against
the possibility of a bad exploration outcome in someM∈
M. In the following sections, we propose a method to
effectively learn a policy π∗E ∈ arg max EαM(π) through
mere interactions with M, and we show how this serves as
a pre-training for RL (Figure 1).

4. A Policy Gradient Approach
In this section, we present an algorithm, called Multiple En-
vironments Maximum ENTropy Optimization (MEMENTO),
to optimize the exploration objective in (2) through medi-
ated interactions with a class of continuous environments.

MEMENTO operates as a typical policy gradient approach
(Deisenroth et al., 2013). It directly searches for an optimal
policy by navigating a set of parametric differentiable poli-
cies ΠΘ := {πθ : θ ∈ Θ ⊆ Rn}. It does so by repeatedly
updating the policy parameters θ in the gradient direction,
until a stationary point is reached. This update has the form

θ′ = θ + β∇θEαM(πθ),

where β is a learning rate, and ∇θEαM(πθ) is the gradient
of (2) w.r.t. θ. The following proposition provides the for-
mula of ∇θEαM(πθ). The derivation follows closely the
one in (Tamar et al., 2015, Proposition 1), which we have
adapted to our objective function of interest (2).

Proposition 4.1. The policy gradient of the exploration
objective EαM(πθ) w.r.t. θ is given by

∇θEαM(πθ) = E
M∼pM
τ∼pπθ ,M

[( T−1∑
t=0

∇θ log πθ(at,τ |st,τ )

)

×
(
Hτ −VaRα(Hτ )

)∣∣∣∣Hτ ≤ VaRα(Hτ )

]
. (3)

Algorithm 1 MEMENTO
Input: percentile α, learning rate β
Output: policy πθ

1: initialize θ
2: for epoch = 0, 1, . . ., until convergence do
3: for i = 1, 2, . . . , N do
4: sample an environmentMi ∼ pM
5: sample a trajectory τi ∼ pπθ,Mi

6: estimate Hτi with (4)
7: end for
8: estimate VaRα(Hτ ) with (5)
9: estimate ∇θEαM(πθ) with (6)

10: update parameters θ ← θ + β∇̂θEαM(πθ)
11: end for

However, in this work we do not assume full knowledge
of the class of CMPs M, and the expected value in Propo-
sition 4.1 cannot be computed without having access to
pM and pπθ,M. Instead, MEMENTO computes the pol-
icy update via a Monte Carlo estimation of ∇θEαM from
the sampled interactions {(Mi, τi)}Ni=1 with the class of
environments M. The policy gradient estimate itself re-
lies on a Monte Carlo estimate of each entropy value Hτi

from τi, and a Monte Carlo estimate of VaRα(Hτ ) given
the estimated {Hτi}Ni=1. The following paragraphs describe
how these estimates are carried out, while Algorithm 1 pro-
vides the pseudocode of MEMENTO. Additional details
and implementation choices can be found in Appendix C.

Entropy Estimation We would like to compute the en-
tropyHτi of the state visitation frequencies dτi from a single
realization {st,τi}T−1

t=0 ⊂ τi. This estimation is notoriously
challenging when the state space is continuous and high-
dimensional S ⊆ Rp. Taking inspiration from recent works
pursuing the MSVE objective (Mutti et al., 2021; Liu &
Abbeel, 2021a; Seo et al., 2021), we employ a principled
k-Nearest Neighbors (k-NN) entropy estimator (Singh et al.,
2003) of the form

Ĥτi ∝ −
1

T

T−1∑
t=0

log
k Γ(p2 + 1)

T
∥∥st,τi − sk-NN

t,τi

∥∥p π p2 , (4)
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where Γ is the Gamma function, ‖ · ‖ is the Euclidean dis-
tance, and sk-NN

t,τi ∈ τi is the k-nearest neighbor of st,τi . The
intuition behind the estimator in (4) is straightforward: We
can suppose the state visitation frequencies dτi to have a
high entropy as long as the average distance between any en-
countered state and its k-NN is large. Despite its simplicity,
a Euclidean metric suffices to get reliable entropy estimates
in continuous control domains (Mutti et al., 2021).

VaR Estimation and Baseline The last missing piece to
get a Monte Carlo estimate of the policy gradient ∇θEαM
is the value of VaRα(Hτ ). Being H[1], . . . ,H[N ] the or-
der statistics out of the estimated values {Ĥτi}Ni=1, we can
naı̈vely estimate the VaR as

V̂aRα(Hτ ) = H[dαNe]. (5)

Albeit asymptotically unbiased, the VaR estimator in (5)
is known to suffer from a large variance in finite sample
regimes (Kolla et al., 2019), which is aggravated by the
error in the upstream entropy estimates, which provide the
order statistics. This variance is mostly harmless when we
use the estimate to filter out entropy values beyond the α%,
i.e., the condition Hτ ≤ VaRα(Hτ ) in Proposition 4.1.
Instead, its impact is significant when we subtract it from
the values within the α%, i.e., the term Hτ − VaRα(Hτ )
in Proposition 4.1. To mitigate this issue, we consider a
convenient baseline b = −VaRα(Hτ ) to be subtracted
from the latter, which gives the Monte Carlo policy gradient
estimator

∇̂θEαM(πθ) =

N∑
i=1

fτi Ĥτi 1(Ĥτi ≤ V̂aRα(Hτ )), (6)

where fτi =
∑T−1
t=0 ∇θ log πθ(at,τi |st,τi). Notably, the

baseline b trades off a lower estimation error for a slight
additional bias in the estimation (6). We found that this base-
line leads to empirically good results and we provide some
theoretical corroboration over its benefits in Appendix C.1.

5. Empirical Evaluation
In this section, we provide an extensive empirical evaluation
of the proposed methodology over the two-phase learning
process described in Figure 1, which is organized as follows:

5.1 We show the ability of our method in learning to ex-
plore a class of illustrative continuous gridworlds, em-
phasizing the importance of the percentile sensitivity;

5.2 We discuss how the choice of the percentile of interest
affects the exploration strategy;

5.3 We highlight the benefit that the exploration strategy
provides to RL on the same class;

5.4 We verify the ability of our method to scale with the
size of the class of environments, by considering a
class of 10 continuous gridworlds;

5.5 We verify the ability of our method to scale with the
dimensionality of the environments in the class, by
considering a class of 29D continuous control Ant
domains;

5.6 We verify the ability of our method to scale with
visual inputs, by considering a class of 147D Mini-
Grid (Chevalier-Boisvert et al., 2018) domains;

5.7 We show that the exploration strategy learned with our
approach is superior for RL w.r.t. a policy meta-trained
with MAML (Finn et al., 2017; Gupta et al., 2018a) on
the same class.

A thorough description of the experimental setting is pro-
vided in Appendix D.

5.1. Learning to Explore Multiple Environments with
Percentile Sensitivity

In this section, we consider a class M composed of two
different configurations of a continuous gridworld domain
with 2D states and 2D actions, which we call the Grid-
World with Slope. In each configuration, the agent navi-
gates through four rooms connected by narrow hallways,
by choosing a (bounded) increment along the coordinate
directions. A visual representation of the setting can be
found in Figure 2a, where the shaded areas denote the initial
state distribution and the arrows render a slope that favors
or contrasts the agent’s movement. The configuration on
the left has a south-facing slope, and thus it is called Grid-
World with South slope (GWS). Instead, the one on the
right is called GridWorld with North slope (GWN) as it has
a north-facing slope. This class of environments is unbal-
anced (and thus interesting to our purpose) for two reasons:
First, the GWN configuration is more challenging from a
pure exploration standpoint, since the slope prevents the
agent from easily reaching the two bottom rooms; secondly,
the distribution over the class is also unbalanced, as it is
pM = [Pr(GWS), P r(GWN)] = [0.8, 0.2]. In this setting,
we compare MEMENTO against Neutral, which is a sim-
plified version of MEMENTO with α = 1,1 to highlight
the importance of percentile sensitivity w.r.t. a naı̈ve ap-
proach to the multiple environments scenario. The methods
are evaluated in terms of the state visitation entropy E1

M
induced by the exploration strategies they learn.

In Figure 2, we compare the performance of the opti-
mal exploration strategy obtained by running MEMENTO
(α = 0.35) and Neutral (α = 1) for 150 epochs on the Grid-
World with Slope class (pM = [0.8, 0.2]). We show that the

1The pseudocode is identical to Algorithm 1 except that all
trajectories affect the gradient estimate in (6).
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Figure 2. Exploration performance E1M obtained by MEMENTO (α = 0.35) and Neutral (α = 1) in the GridWorld with Slope domain
(a). The polices are trained on (b) and tested on (b, c, d). The dashed lines in (c, d) represent the optimal performance. The empirical
distribution having mean in (b) is reported in (e). The behaviour of MEMENTO with different α is reported in (f, g), where (f) reports the
exploration performance and (g) the share of GWN trajectories in the α%. For every plot, we provide 95% c.i. over 4 runs.

two methods achieve a very similar expected performance
over the class (Figure 2b). However, this expected perfor-
mance is the result of a (weighted) average of very different
contributions. As anticipated, Neutral has a strong perfor-
mance in GWS (pM = [1, 0], Figure 2c), which is close
to the configuration-specific optimum (dashed line), but it
displays a bad showing in the adverse GWN (pM = [0, 1],
Figure 2d). Conversely, MEMENTO learns a strategy that
is much more robust to the configuration, showing a similar
performance in GWS and GWN, as the percentile sensitivity
prioritizes the worst case during training. To confirm this
conclusion, we look at the actual distribution that is gener-
ating the expected performance in Figure 2b. In Figure 2e,
we provide the empirical distribution of the trajectory-wise
performance (Hτ ), considering a batch of 200 trajectories
with pM = [0.8, 0.2]. It clearly shows that Neutral is heavy-
tailed towards lower outcomes, whereas MEMENTO con-
centrates around the mean. This suggests that with a con-
servative choice of α we can induce a good exploration
outcome for every trajectory (and any configuration), while
without percentile sensitivity we cannot hedge against the
risk of particularly bad outcomes. However, let us point out
that not all classes of environments would expose such an is-
sue for a naı̈ve, risk-neutral approach (see Appendix D.4 for
a counterexample), but it is fair to assume that this would ar-
guably generalize to any setting where there is an imbalance
(either in the hardness of the configurations, or in their sam-
pling probability) in the class. These are the settings we care
about, as they require nuanced solutions (e.g., MEMENTO)
for scenarios with multiple environments.

5.2. On the Value of the Percentile

In this section, we consider repeatedly training MEMENTO
with different values of α in the GridWorld with Slope
domain, and we compare the resulting exploration perfor-
mance E1

M as before. In Figure 2f, we can see that the
lower α we choose, the more we prioritize GWN (right bar
for every α) at the expense of GWS (left bar). Note that
this trend carries on with increasing α, ending in the values
of Figures 2c, 2d. The reason for this behavior is quite
straightforward, the smaller is α, the larger is the share of
trajectories from the adverse configuration (GWN) ending
up in the percentile at first (Figure 2g), and thus the more
GWN affects the policy update (see the gradient in (6)).

5.3. RL with a General Exploration Strategy

To assess the benefit of the pre-trained strategy, we design a
family of MDPsMR, whereM ∈ {GWS,GWN}, and R
is any sparse reward function that gives 1 when the agent
reaches the area nearby a random goal location and 0 other-
wise. On this family, we compare the performance achieved
by TRPO (Schulman et al., 2015) with different initializa-
tions: The exploration strategies learned (as in Section 5.1)
by MEMENTO (α = 0.35) and Neutral (α = 1), or a ran-
domly initialized policy (Random). These three variations
are evaluated in terms of their average return JMR , which
is defined in (1), over 50 randomly generated goal locations
(Figure 3b). As expected, the performance of TRPO with
Neutral is competitive in the GWS configuration (Figure 3),
but it falls sharply in the GWN configuration, where it is
not significantly better than TRPO with Random. Instead,
the performance of TRPO with MEMENTO is strong on
both GWS and GWN. Despite the simplicity of the domain,
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Figure 4. Exploration performance E1M (95% c.i. over 4 runs) achieved by MEMENTO (α = 0.1 (a), α = 0.2 (b)) and Neutral (α = 1)
in the in the MultiGrid (a) and Ant (b) domains. Average return JMR (95% c.i. over 50 tasks (a), 8 tasks (b), 13 tasks (d)) obtained
by TRPO with corresponding initialization (MEMENTO, Neutral, Random), in the MultiGrid (a), Ant (b), and MiniGrid (d) domains.
MiniGrid domains are illustrated in (c).

solving an RL problem in GWN with an adverse goal lo-
cation is far-fetched for both a random initialization and a
naı̈ve solution to the reward-free exploration over multiple
environments.

5.4. Scaling to Larger Classes of Environments

In this section, we consider a class M composed of ten dif-
ferent configurations of the continuous gridworlds presented
in Section 5.1 (including the GWN as the worst-case con-
figuration) which we call the MultiGrid domain. As before,
we compare MEMENTO (α = 0.1) and Neutral (α = 1) on
the exploration performance E1

M achieved by the optimal
strategy, in this case considering a uniformly distributed
pM. While the average performance of Neutral is slightly
higher across the class (Figure 4a left, left bar), MEMENTO
still has a decisive advantage in the worst-case configura-
tion (Figure 4a left, right bar). Just as in Section 5.3, this
advantage transfer to RL, where we compare the average

return JMR achieved by TRPO with MEMENTO, Neutral,
and Random initializations over 50 random goal locations
in the GWN configuration (Figure 4a right).

5.5. Scaling to Increasing Dimensions

In this section, we consider a class M consisting of two
Ant environments, with 29D states and 8D actions. In the
first, sampled with probability pM1

= 0.8, the Ant faces
a wide descending staircase (Ant Stairs Down). In the sec-
ond, the Ant faces a narrow ascending staircase (Ant Stairs
Up, sampled with probability pM2

= 0.2), which is sig-
nificantly harder to explore than the former. In the mold
of the gridworlds in Section 5.1, these two configurations
are specifically designed to create an imbalance in the class.
As in Section 5.1, we compare MEMENTO (α = 0.2)
against Neutral (α = 1) on the exploration performance
E1
M achieved after 500 epochs. MEMENTO fares slightly

better than Neutral both in the worst-case configuration (Fig-
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ure 4b left, right bar) and, surprisingly, in the easier one
(Figure 4b left, left bar).2 Then, we design a set of incre-
mentally challenging sparse-rewards RL tasks in the Ant
Stairs Up, which give reward 1 upon reaching a certain step
of the staircase. Also in this setting, TRPO with Memento
initialization outperforms TRPO with Neutral and Random
in terms of the average return JMR (Figure 4b right). Note
that these sparse-reward continuous control tasks are par-
ticularly arduous: TRPO with Neutral and Random barely
learns anything, while even TRPO with MEMENTO does
not handily reach the optimal average return (1) within 100
epochs.

5.6. Scaling to Visual Inputs

In this section, we consider a class M of two partially-
observable MiniGrid (Chevalier-Boisvert et al., 2018) envi-
ronments, in which the observation is a 147D image of the
agent’s field of view. In Figure 4c, we provide a visualiza-
tion of the domain: The easier configuration (EasyG, left) is
sampled with probability pM1 = 0.8, the adverse configura-
tion (AdvG, right) is sampled with probability pM2 = 0.2.
Two factors make the AdvG more challenging to explore,
which are the presence of a door at the top-left of the grid,
and reversing the effect of agent’s movements (e.g., the
agent goes backward when it tries to go forward). Whereas
in all the previous experiments we estimated the entropy on
the raw input features, visual inputs require a wiser choice
of a metric. As proposed in (Seo et al., 2021), we process the
observations through a random encoder before computing
the entropy estimate in (4), while keeping everything else
as in Algorithm 1. We run this slightly modified version of
MEMENTO (α = 0.3) and Neutral (α = 1) for 300 epochs.
Then, we compare TRPO with the learned initializations (as
well as Random) on a series of sparse-reward tasks defined
upon the class. As in previous settings, TRPO with ME-
MENTO results slightly worse than TRPO with Neutral in
the easier configuration (Figure 4d, left), but significantly
better in the worst-case (Figure 4d, right). Notably, TRPO
from scratch struggles to learn the tasks, especially in the
AdvG (Figure 4d, right).

5.7. Comparison with Meta-RL

In this section, we compare our approach against meta-
training a policy with MAML (Finn et al., 2017) on the
same GridWorld with Slope (pM = [0.8, 0.2]) and Multi-
Grid (uniformly distributed pM) domains that we have
previously presented. Especially, we consider two rele-
vant baselines. The first is MAML+R, to which we pro-

2Note that this would not happen in general, as we expect
MEMENTO to be better in the worst-case but worse on average.
Apparently, the percentile objective positively biases the average
performance in this setting.

vide full access to the tasks (i.e., rewards) during meta-
training. Note that this gives MAML+R an edge over ME-
MENTO, which operates reward-free training. The second
is MAML+DIAYN (Gupta et al., 2018a), which operates
unsupervised meta-training through an intrinsic reward func-
tion learned with DIAYN (Eysenbach et al., 2018). As in
previous sections, we consider the average return JMR

achieved by TRPO initialized with the exploration strat-
egy learned by MEMENTO or the meta-policy learned by
MAML+R and MAML+DIAYN. TRPO with MEMENTO
fares clearly better than TRPO with the meta-policies in
all the configurations (Figures 5a, 5b). Even if it works
fine in fast adaptation (see Appendix D.5), MAML strug-
gles to encode the diversity of task distribution into a single
meta-policy and to deal with the most adverse tasks in the
long run. Moreover, DIAYN does not specifically handle
multiple environments, and it fails to cope with the larger
MultiGrid class.

6. Preliminary Theoretical Analysis of the
Problem

In this section, we aim to theoretically analyze the problem
in (2), and especially, what makes a class of multiple CMPs
hard to explore with a unique strategy. This has to be in-
tended as a preliminary discussion on the problem, which
could serve as a starting point for future works, rather than
a thorough theoretical characterization. First, it is worth
introducing some additional notation.

Lipschitz Continuity Let X,Y be two metric sets with
metric functions dX , dY . We say a function f : X → Y is
Lf -Lipschitz continuous if it holds for some constant Lf
dY (f(x′), f(x)) ≤ LfdX(x′, x),∀(x′, x) ∈ X2, where
the smallest Lf is the Lipschitz constant and the Lipschitz
semi-norm is ‖f‖L = supx′,x∈X

{dY (f(x′),f(x))
dX(x′,x) : x′ 6=

x
}

. When dealing with probability distributions we need to
introduce a proper metric. Let p, q be two probability mea-
sures, we will either consider the Wasserstein metric (Vil-
lani, 2008), defined as dW1

(p, q) = supf
{∣∣ ∫

X
f d(p−q)

∣∣ :

‖f‖L ≤ 1
}
, or the Total Variation (TV) metric, defined as

dTV (p, q) = 1
2

∫
X

∣∣d(p− q)
∣∣.

Intuitively, learning to explore a class M with a policy π
is challenging when the state distributions induced by π
in differentM ∈M are diverse. The more diverse they
are, the more their entropy can vary, and the harder is to
get a π with a large entropy across the class. To measure
this diversity, we are interested in the supremum over the
distances between the state distributions (dM1

π , . . . , dMI
π )

that a single policy π ∈ Π realizes over the class M. We
call this measure the diameter DM of the class M. Since
we have infinitely many policies in Π, computing DM is
particularly arduous. However, we are able to provide an
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(a) GridWorld with Slope: GWS (left) and GWN (right)
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Figure 5. Average return JMR achieved by TRPO initialized with MEMENTO (α = 0.35 (a), α = 0.1 (b)), a MAML+R meta-policy,
and a MAML+DIAYN meta-policy, when dealing with a set of RL tasks in the GridWorld with Slope (a) and the MultiGrid (b) domains.
We provide 95% c.i. over 50 tasks. Note that the learning curves of MAML+R and MAML+DIAYN are almost overlapping in (a).

upper bound to DM defined through a Wasserstein metric.

Assumption 1. Let dS be a metric on S. The class M is
LPπ -Lipschitz continuous,

dW1
(Pπ(·|s′), Pπ(·|s)) ≤ LPπdS(s′, s), ∀(s′, s) ∈ S2,

where Pπ(s|s) =
∫
A π(a|s)P (s|s, a) da for P ∈M, π ∈

Π, LPπ is a constant LPπ < 1.

Theorem 6.1. Let M be a class of CMPs satisfying Ass. 1.
Let dMπ be the marginal state distribution over T steps
induced by the policy π inM∈M. We can upper bound
the diameter DM as

DM := sup
π∈Π,M′,M∈M

dW1
(dM

′
π , dMπ )

≤ sup
P ′,P∈M

1− LTPπ
1− LPπ

sup
s∈S,a∈A

dW1
(P ′(·|s, a), P (·|s, a)).

Theorem 6.1 provides a measure to quantify the hardness
of the exploration problem in a specific class of CMPs, and
to possibly compare one class with another. However, the
value of DM might result, due to the supremum over Π,
from a policy that is far away from the policies we actually
deploy while learning, say (π0, . . . , π

∗
E). To get a finer as-

sessment of the hardness of M we face in practice, it is
worth considering a policy-specific measure to track dur-
ing the optimization. We call this measure the π-diameter
DM(π) of the class M. Theorem 6.2 provides an upper
bound to DM(π) defined through a convenient TV metric.

Theorem 6.2. Let M be a class of CMPs, let π ∈ Π be a
policy, and let dMπ be the marginal state distribution over T
steps induced by π inM ∈M. We can upper bound the
π-diameter DM(π) as

DM(π) := sup
M′,M∈M

dTV (dM
′

π , dMπ )

≤ sup
P ′,P∈M

T E
s∼dMπ
a∼π(·|s)

dTV (P ′(·|s, a), P (·|s, a)).

The last missing piece we aim to derive is a result to relate
the π-diameter DM(π) of the class M (Theorem 6.2) with
the actual exploration objective, i.e., the entropy of the state
visitations induced by the policy π over the environments
in the class. In the following theorem, we provide an upper
bound to the entropy gap induced by the policy π within the
class M.

Theorem 6.3. Let M be a class of CMPs, let π ∈ Π
be a policy and DM(π) the corresponding π-diameter of
M. Let dMπ be the marginal state distribution over T
steps induced by π in M ∈ M, and let σM ≤ σM :=
infs∈S dMπ (s),∀M ∈M. We can upper bound the entropy
gap of the policy π within the model class M as

sup
M′,M∈M

∣∣H(dM
′

π )−H(dMπ )
∣∣

≤
(
DM(π)

)2/
σM +DM(π) log(1/σM)

7. Conclusions
In this paper, we addressed the problem of learning to ex-
plore a class of multiple reward-free environments with a
unique general strategy. First, we formulated the problem
within a tractable MSVE objective with percentile sensi-
tivity. Then, we presented a policy gradient algorithm to
optimize this objective. Finally, we provided an extensive
experimental analysis to show its ability in learning to ex-
plore and the benefits it brings to subsequent RL problems.
We believe that this paper motivates the importance of de-
signing specific solutions to the relevant reward-free explo-
ration problem over multiple environments.

As a final note, it is worth mentioning an alternative prob-
lem formulation in which MEMENTO can be employed
with benefit. Especially, we could replace the class of envi-
ronments of our setting with a single CMP specified under
uncertainty (Satia & Lave Jr, 1973), and deal with the robust
reward-free exploration problem with little or no modifica-
tions to MEMENTO.
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A. Related Work
Our work lies at the intersection of reward-free exploration, robust and risk-averse RL, and meta-RL.

Figure 6. Where our work (star) stands in the literature.

The literature that relates the most with our work is
the one pursuing a MSVE objective in reward-free set-
tings. Some methods (Hazan et al., 2019; Lee et al.,
2019) focus on learning a mixture of policies that is
collectively MSVE optimal, while other (Tarbouriech &
Lazaric, 2019; Mutti & Restelli, 2020) casts the MSVE
as a dual (or surrogate) linear program in tabular set-
tings. Successive works tackle MSVE at scale with non-
parametric entropy estimation (Mutti et al., 2021; Liu &
Abbeel, 2021a;b; Yarats et al., 2021; Seo et al., 2021),
or introduce variations to the entropy objective, such as
geometry-awareness (Guo et al., 2021) and Rényi gener-
alization (Zhang et al., 2020a). To the best of our knowl-
edge, all existing solutions are environment-specific and
do not directly address multiple environments.

Previous work considered CVaR optimization in RL, either to learn a policy that is averse to the risk induced by the volatility
of returns (Tamar et al., 2015; Chow & Ghavamzadeh, 2014) or by changes in the environment dynamics (e.g., Rajeswaran
et al., 2016). Here we account for a different source of risk, which is the one of running into a particularly unfavorable
environment for the trained exploration strategy.

Finally, the two-stage learning setting we address has clear connections with the meta-RL problem setting (Finn et al., 2017),
in which we would call meta-training the reward-free phase, and meta-testing the subsequent RL tasks. While some methods
target exploration in meta-RL (e.g., Xu et al., 2018; Gupta et al., 2018b; Zintgraf et al., 2019), they usually assume access to
rewards during meta-training, with the notable exception of (Gupta et al., 2018a). To the best of our knowledge, none of the
existing works combine reward-free meta-training with a multiple-environments setting.

B. Proofs
Proposition 4.1. The policy gradient of the exploration objective EαM(πθ) w.r.t. θ is given by

∇θEαM(πθ) = E
M∼pM
τ∼pπθ ,M

[( T−1∑
t=0

∇θ log πθ(at,τ |st,τ )

)

×
(
Hτ −VaRα(Hτ )

)∣∣∣∣Hτ ≤ VaRα(Hτ )

]
. (3)

Proof. Let us start from expanding the exploration objective (2) to write

EαM(π) = CVaRα(Hτ )

= E
M∼pM
τ∼pπ,M

[
Hτ | Hτ ≤ VaRα(Hτ )

]
=

1

α

∫ VaRα(Hτ )

−∞
pπθ,M(h)hdh, (7)

where pπθ,M is the probability density function (pdf) of the random variable Hτ when the policy πθ is deployed on the class
of environments M, and the last equality comes from the definition of CVaR (Rockafellar et al., 2000). Before computing
the gradient of (7), we derive a preliminary result for later use, i.e.,

∇θ

∫ VaRα(Hτ )

−∞
pπθ,M(h) dh

=

∫ VaRα(Hτ )

−∞
∇θpπθ,M(h) dh+∇θ VaRα(Hτ )pπθ,M(VaRα(Hτ )) = 0, (8)
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which follows directly from the Leibniz integral rule, noting that VaRα(Hτ ) depends on θ through the pdf of Hτ . We now
take the gradient of (7) to get

∇θEαM(π)

= ∇θ
1

α

∫ VaRα(Hτ )

−∞
pπθ,M(h)hdh

=
1

α

∫ VaRα(Hτ )

−∞
∇θpπθ,M(h)hdh+

1

α
∇θ VaRα(Hτ ) VaRα(Hτ )pπθ,M(VaRα(Hτ )) (9)

=
1

α

∫ VaRα(Hτ )

−∞
∇θpπθ,M(h)

(
h−VaRα(Hτ )

)
dh, (10)

where (9) follows from the Leibniz integral rule, and (10) is obtained from (9) through (8), which we can rearrange to write
pπθ,M(VaRα(Hτ )) = 1

∇θ VaRα(Hτ )

∫ VaRα(Hτ )

−∞ ∇θpπθ,M(h) dh. All of the steps above are straightforward replications
of the derivations by Tamar et al. (Tamar et al., 2015), Proposition 1. To conclude the proof we just have to compute the
term ∇θpπθ,M(h), which is specific to our setting. Especially, we note that

∇θpπθ,M(h)

=

∫
M
pM(M)

∫
T
∇θpπθ,M(τ)δ(h−Hτ ) dτ dM (11)

=

∫
M
pM(M)

∫
T
pπθ,M(τ)∇θ log pπθ,M(τ)δ(h−Hτ ) dτ dM

=

∫
M
pM(M)

∫
T
pπθ,M(τ)

( T−1∑
t=0

∇θ log πθ(at,τ |st,τ )

)
δ(h−Hτ ) dτ dM, (12)

where (11) and (12) are straightforward from the definitions in Section 2, and T is the set of feasible trajectories of length T .
Finally, the result follows by plugging (12) into (10), which gives

∇θEαM(π) =
1

α

∫
M
pM(M)

∫
T
pπθ,M(τ)

×
∫ VaRα(Hτ )

−∞
δ(h−Hτ )

( T−1∑
t=0

∇θ log πθ(at,τ |st,τ )

)(
h−VaRα(Hτ )

)
dhdτ dM.

Theorem 6.1. Let M be a class of CMPs satisfying Ass. 1. Let dMπ be the marginal state distribution over T steps induced
by the policy π inM∈M. We can upper bound the diameter DM as

DM := sup
π∈Π,M′,M∈M

dW1(dM
′

π , dMπ )

≤ sup
P ′,P∈M

1− LTPπ
1− LPπ

sup
s∈S,a∈A

dW1
(P ′(·|s, a), P (·|s, a)).

Proof. The proof follows techniques from (Pirotta et al., 2015). Let us report a preliminary result which states that the
function hf (s) =

∫
A π(a|s)

∫
S P (s|s, a) dsda has a Lipschitz constant equal to LPπ (Pirotta et al., 2015, Lemma 3):∣∣hf (s′)− hf (s)
∣∣ =

∣∣∣∣ ∫
S
f(s)

∫
A
π(a|s′)P (s|s′, a) dads−

∫
S
f(s)

∫
A
π(a|s)P (s|s, a) dads

∣∣∣∣
=

∣∣∣∣ ∫
S
f(s)

(
Pπ(s|s′)− Pπ(s|s)

)
ds

∣∣∣∣ ≤ LPπdS(s′, s), (13)

where dS is a metric over S and Pπ(s|s) =
∫
A π(a|s)P (s|s, a) da. Then, we note that the marginal state distribution over

T steps dMπ can be written as a sum of the contributions dMπ,t related to any time step t ∈ [T ], which is

dMπ (s) =
1

T

T−1∑
t=0

dMπ,t(s). (14)
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Hence, we can look at the Wasserstein distance of the state distributions for some t ∈ [T ] andM′,M∈M. We obtain

dW1
(dM

′
π,t , d

M
π,t)

= sup
f

{∣∣∣∣ ∫
S

(
dM

′
π,t (s)− dMπ,t(s)

)
f(s) ds

∣∣∣∣ : ‖f‖L ≤ 1

}
(15)

= sup
f

{∣∣∣∣ ∫
S

∫
A

∫
S

(
dM

′
π,t−1(s)π(a|s)P ′(s|s, a)− dMπ,t−1(s)π(a|s)P (s|s, a)

)
f(s) dsdads

∣∣∣∣ : ‖f‖L ≤ 1

}
= sup

f

{∣∣∣∣ ∫
S
dM

′
π,t−1(s)

∫
A

∫
S
π(a|s)

(
P ′(s|s, a)− P (s|s, a)

)
f(s) dsda ds (16)

+

∫
S

(
dM

′
π,t−1(s)− dMπ,t−1(s)

)∫
A

∫
S
π(a|s)P (s|s, a)f(s) dsda ds

∣∣∣∣ : ‖f‖L ≤ 1

}
(17)

≤ sup
f

{∣∣∣∣ ∫
S
dM

′
π,t−1(s)

∫
A

∫
S
π(a|s)

(
P ′(s|s, a)− P (s|s, a)

)
f(s) dsda ds

∣∣∣∣ : ‖f‖L ≤ 1

}
+ sup

f

{∣∣∣∣ ∫
S

(
dM

′
π,t−1(s)− dMπ,t−1(s)

)∫
A

∫
S
π(a|s)P (s|s, a)f(s) dsda ds

∣∣∣∣ : ‖f‖L ≤ 1

}
≤ sup

f

{∫
S
dM

′
π,t−1(s)

∫
A
π(a|s) da ds sup

s∈S,a∈A

{∣∣∣∣ ∫
S

(
P ′(s|s, a)− P (s|s, a)

)
f(s) ds

∣∣∣∣} : ‖f‖L ≤ 1

}
+ LPπ sup

f

{∣∣∣∣ ∫
S

(
dM

′
π,t−1(s)− dMπ,t−1(s)

)
hf (s)

LPπ
ds

∣∣∣∣ : ‖f‖L ≤ 1

}
(18)

= sup
s∈S,a∈A

dW1
(P ′(·|s, a), P (·|s, a)) + LPπdW1

(dM
′

π,t−1, d
M
π,t−1), (19)

where we plugged the common temporal relation dMπ,t(s
′) =

∫
S
∫
A d
M
π,t−1(s)π(a|s)P (s′|s, a) dsda into (15), we sum and

subtract
∫
S
∫
A
∫
S d
M′
π,t−1(s)π(a|s)P (s|s, a) dsda ds to get (16), (17), and we apply the inequality in (13) to obtain (18)

and then (19). To get rid of the dependence to the state distributions dM
′

π,t−1 and dMπ,t−1, we repeatedly unroll (19) to get

dW1(dM
′

π,t , d
M
π,t) ≤

( t∑
j=0

LjPπ

)
sup

s∈S,a∈A
dW1(P ′(·|s, a), P (·|s, a)) + LtPπdW1(D′, D) (20)

=

(
1− LtPπ
1− LPπ

)
sup

s∈S,a∈A
dW1

(P ′(·|s, a), P (·|s, a)) + LtPπdW1
(D′, D), (21)

where we note that dW1(dM
′

π,0 , d
M
π,0) = dW1(D′, D) to derive (20), and we assume LPπ < 1 (Assumption 1) to get (21)

from (20). As a side note, when the state and action spaces are discrete, a natural choice of a metric is dS(s′, s) = 1(s′ 6= s)
and dA = 1(a′ 6= a), which results in the Wasserstein distance being equivalent to the total variation, the constant LPπ = 1,
and

∑t
j=0 L

j
Pπ = t. More details over the Lipschitz constant LPπ can be found in (Pirotta et al., 2015). Finally, we can

exploit the result in (21) to write

dW1
(dM

′
π , dMπ ) = sup

f

{∣∣∣∣ ∫
S

(
1

T

T−1∑
t=0

dM
′

π,t (s)− 1

T

T−1∑
t=0

dMπ,t(s)

)
f(s) ds

∣∣∣∣ : ‖f‖L ≤ 1

}
(22)

≤ 1

T

T−1∑
t=0

sup
f

{∣∣∣∣ ∫
S

(
dM

′
π,t (s)− dMπ,t(s)

)
f(s) ds

∣∣∣∣ : ‖f‖L ≤ 1

}

≤ 1

T

T−1∑
t=0

1− LtPπ
1− LPπ

sup
s∈S,a∈A

dW1
(P ′(·|s, a), P (·|s, a)) + LtPπdW1

(D′, D)

≤ 1− LTPπ
1− LPπ

sup
s∈S,a∈A

dW1(P ′(·|s, a), P (·|s, a)) + LTPπdW1(D′, D), (23)

in which we use (14) to get (22). The result follows from (23) by assuming the initial state distribution D to be shared
across all the CMPs in M, and taking the supremum over P ′, P ∈M.
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Theorem 6.2. Let M be a class of CMPs, let π ∈ Π be a policy, and let dMπ be the marginal state distribution over T steps
induced by π inM∈M. We can upper bound the π-diameter DM(π) as

DM(π) := sup
M′,M∈M

dTV (dM
′

π , dMπ )

≤ sup
P ′,P∈M

T E
s∼dMπ
a∼π(·|s)

dTV (P ′(·|s, a), P (·|s, a)).

Proof. The proof follows techniques from (Metelli et al., 2018a), especially Proposition 3.1. Without loss of generality,
we takeM′,M∈M. With some overloading of notation, we will alternatively identify a CMP with the tupleM or its
transition model P . Let us start considering the TV between the marginal state distributions induced by π overM′,M, we
can write

dTV (dM
′

π , dMπ )

=
1

2

∫
S

∣∣dM′π (s)− dMπ (s)
∣∣ ds =

1

2

∫
S

∣∣∣∣ 1

T

T−1∑
t=0

dM
′

π,t (s)− 1

T

T−1∑
t=0

dMπ,t(s)

∣∣∣∣ds (24)

≤ 1

2T

T−1∑
t=0

∫
S

∣∣dM′π,t (s)− dMπ,t(s)
∣∣ ds =

1

T

T−1∑
t=0

dTV (dM
′

π,t , d
M
π,t), (25)

where we use (14) to get (24). Then, we provide an upper bound to each term of the final sum in (25), i.e.,

dTV (dM
′

π,t , d
M
π,t)

=
1

2

∫
S

∣∣dM′π,t (s)− dMπ,t(s)
∣∣ds

=
1

2

∫
S

∣∣∣∣ ∫
A

∫
S
dM

′
π,t−1(s)π(a|s)P ′(s|s, a)− dMπ,t−1(s)π(a|s)P (s|s, a)

∣∣∣∣dsda ds (26)

≤ 1

2

∫
S

∣∣dM′π,t−1(s)− dMπ,t−1(s)
∣∣ ∫
A

∫
S
π(a|s)P ′(s|s, a) dsdads (27)

+
1

2

∫
S

∫
A
dMπ,t−1(s)π(a|s)

∫
S

∣∣P ′(s|s, a)− P (s|s, a)
∣∣dsda ds (28)

= dTV (dM
′

π,t−1, d
M
π,t−1) + E

s∼dMπ,t−1

a∼π(·|s)

[
dTV (P ′(·|s, a), P (·|s, a))

]
(29)

=

t−1∑
j=1

E
s∼dMπ,j
a∼π(·|s)

[
dTV (P ′(·|s, a), P (·|s, a))

]
+ dTV (D′, D), (30)

where we use the temporal relation dMπ,t(s
′) =

∫
S
∫
A d
M
π,t−1(s)π(a|s)P (s′|s, a) dsda to get (26), in which we sum and

subtract
∫
S
∫
A
∫
S d
M
π,t−1(s)π(a|s)P (s|s, a) dsdads to obtain (27) and (28), and we repeatedly unroll (29) to write (30),
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noting that dTV (dM
′

π,0 , d
M
π,0) = dTV (D′, D). Finally, we can plug (30) in (25) to get

dTV (dM
′

π , dMπ )

≤ 1

T

T−1∑
t=0

dTV (dM
′

π,t , d
M
π,t)

≤ 1

T

T−1∑
t=0

t−1∑
j=1

E
s∼dMπ,j
a∼π(·|s)

[
dTV (P ′(·|s, a), P (·|s, a))

]
+ dTV (D′, D)

≤
T−1∑
t=0

∫
S

1

T

T−1∑
j=0

dMπ,j(s) E
a∼π(·|s)

[
dTV (P ′(·|s, a), P (·|s, a))

]
ds+ dTV (D′, D) (31)

=

T−1∑
t=0

E
s∼dMπ
a∼π(·|s)

[
dTV (P ′(·|s, a), P (·|s, a))

]
+ dTV (D′, D) (32)

= T E
s∼dMπ
a∼π(·|s)

[
dTV (P ′(·|s, a), P (·|s, a))

]
+ dTV (D′, D), (33)

in which we have used (14) to obtain (32) from (31). The final result is straightforward from (32) by assuming the initial
state distribution D to be shared across all the CMPs in M, and taking the supremum over P ′, P ∈M.

Theorem 6.3. Let M be a class of CMPs, let π ∈ Π be a policy and DM(π) the corresponding π-diameter of M. Let dMπ
be the marginal state distribution over T steps induced by π inM∈M, and let σM ≤ σM := infs∈S dMπ (s),∀M ∈M.
We can upper bound the entropy gap of the policy π within the model class M as

sup
M′,M∈M

∣∣H(dM
′

π )−H(dMπ )
∣∣

≤
(
DM(π)

)2/
σM +DM(π) log(1/σM)

Proof. Let us expand the entropy gap of the policy π as

sup
M′,M∈M

∣∣H(dM
′

π )−H(dMπ )
∣∣

= sup
M′,M∈M

{∣∣∣∣− ∫
S
dM

′
π (s) log dM

′
π (s) ds+

∫
S
dMπ (s) log dMπ (s) ds

∣∣∣∣} (34)

≤ sup
M′,M∈M

{∣∣∣∣ ∫
S

(
dMπ (s)− dM′π (s)

)
log dMπ (s) ds

∣∣∣∣+

∣∣∣∣ ∫
S
dM

′
π (s)

(
log dM

′
π (s)− log dMπ (s)

)
ds

∣∣∣∣} (35)

≤ sup
M′,M∈M

{
− log σM

∫
S

∣∣∣dM′π (s)− dM′π (s)
∣∣∣ds+DKL

(
dM

′
π ||dMπ

)}
(36)

≤ sup
M′,M∈M

{
− log σMDTV (dM

′
π , dMπ ) +

(
DTV (dM

′
π , dMπ )

)2/
σM

}
(37)

≤
(
DM(π)

)2/
σM −DM(π) log σM (38)

in which we sum and subtract
∫
S d
M′
π (s) log dMπ (s) ds to obtain (35) from (34), log dMπ (s) is upper bounded with log σM

to get (36), and we use the reverse Pinsker’s inequality DKL(p||q) ≤ (DTV (p, q))2/ infx∈X q(x) (Csiszár & Talata, 2006,
p. 1012 and Lemma 6.3) to obtain (11). Finally, we get the result by upper bounding DTV (dM

′
π , dMπ ) with the π-diameter

DM(π) and σM with σM in (37).

C. Algorithm
In this section, we provide additional details about the proposed method (MEMENTO). A full implementation of the
algorithm can be found in the supplementary material.
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C.1. The Benefits of the Baseline

In this section, we provide theoretical and empirical motivations to corroborate the use of the baseline b = −VaRα(Hτ )
into the Monte Carlo policy gradient estimator (Section 4, Equation 6). Thus, we compare the properties of two alternatives
policy gradient estimator, with and without a baseline, i.e.,

∇̂θEαM(πθ) =
1

αN

N∑
i=1

fτi
(
Ĥτi − V̂aRα(Hτi)

)
1(Ĥτi ≤ V̂aRα(Hτ )),

∇̂bθEαM(πθ) =
1

αN

N∑
i=1

fτi
(
Ĥτi −VaRα(Hτi)− b

)
1(Ĥτi ≤ V̂aRα(Hτ )).

where fτi =
∑T−1
t=0 ∇θ log πθ(at,τi |st,τi). The former (∇̂θEαM) is known to be asymptotically unbiased (Tamar et al.,

2015), but it is hampered by the estimation error of the VaR term to be subtracted to each Ĥτi in finite sample regimes (Kolla
et al., 2019). The latter (∇̂bθEαM) introduces some bias in the estimate, but it crucially avoids the estimation error of the
VaR term to be subtracted, as it cancels out with the baseline b. The following proposition, along with related lemmas,
assesses the critical number of samples (n∗) for which an upper bound to the bias of ∇̂bθEαM is lower to the estimation error
of ∇̂θEαM.

Lemma C.1. The expected bias of the policy gradient estimate ∇̂bθEαM(πθ) can be upper bounded as

E
M∼M
τi∼pπθ ,M

[
bias

]
= E
Mi∼M
τi∼pπθ ,Mi

[
∇θEαM(πθ)− ∇̂bθEαM(πθ)

]
≤ Uαb,

where U is a constant such that fτi ≤ U for all τi.

Proof. This Lemma can be easily derived by means of

E
Mi∼M
τi∼pπθ ,Mi

[
bias

]
= E
Mi∼M
τi∼pπθ ,Mi

[
∇θEαM(πθ)− ∇̂bθEαM(πθ)

]

= ∇θEαM(πθ)− E
Mi∼M
τi∼pπθ ,Mi

[
1

αN

N∑
i=1

fτi
(
Ĥτi −VaRα(Hτi)− b

)
1(Ĥτi ≤ V̂aRα(Hτ ))

]

= ∇θEαM(πθ)− E
M∼M
τ∼pπθ ,M

[
fτ
(
Ĥτ −VaRα(Hτ )− b

)
1(Ĥτ ≤ V̂aRα(Hτ ))

]
(39)

= ∇θEαM(πθ)−∇θEαM(πθ) + E
M∼M
τ∼pπθ ,M

[
fτ b 1(Ĥτ ≤ V̂aRα(Hτ ))

]
(40)

= E
M∼M
τ∼pπθ ,M

[
fτ b 1(Ĥτ ≤ V̂aRα(Hτ ))

]
≤ Uαb, (41)

where (40) follows from (39) by noting that the estimator without the baseline term is unbiased (Tamar et al., 2015), and
(41) is obtained by upper bounding fτ with U and noting that E M∼M

τ∼pπθ ,M

[
1(Ĥτ ≤ V̂aRα(Hτ ))

]
= α.

Lemma C.2 (VaR concentration bound from (L.A. et al., 2020)). Let X be a continuous random variable with a pdf fX for
which there exist η,∆ > 0 such that fX(x) > η for all x ∈

[
VaRα(X) − ∆

2 ,VaRα(X) + ∆
2

]
. Then, for any ε > 0 we

have
Pr
[
| V̂aRα(X)α −VaRα(X)| ≥ ε

]
≤ 2 exp

(
− 2nη2 min(ε2,∆2)

)
,

where n ∈ N is the number of samples employed to estimate V̂aRα(X).
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Proposition C.3. Let ∇̂θEαM(πθ) and ∇̂bθEαM(πθ) be policy gradient estimates with and without a baseline. Let fH be the
pdf of Hτ , for which there exist η,∆ > 0 such that fH(Hτ ) > η for all Hτ ∈

[
VaRα(Hτ )− ∆

2 ,VaRα(Hτ ) + ∆
2

]
. The

number of samples n∗ for which the estimation error ε of ∇̂θEαM(πθ) is lower than the bias of ∇̂bθEαM(πθ) with at least
probability δ ∈ (0, 1) is given by

n∗ =
log 2/δ

2η2 min(U2α2b2,∆2)
.

Proof. The proof is straightforward by considering the estimation error ε of ∇̂θEαM(πθ) equal to the upper bound of the bias
of ∇̂bθEαM(πθ) from Lemma C.1, i.e., ε = Uαb. Then, we set δ = 2 exp

(
− 2n∗η2 min(U2α2b2,∆2)

)
from Lemma C.2,

which gives the result through simple calculations.

The Proposition C.3 proves that there is little incentive to choose the policy gradient estimator ∇̂θEαM when the number of
trajectories is lower than n∗, as its estimation error would exceed the bias introduced by the alternative estimator ∇̂bθEαM.
Unfortunately, it is not easy to compute n∗ in our setting, as we do not assume to know the distribution of Hτ , but the
requirement is arguably seldom matched in practice.

Moreover, we can empirically show that the baseline b = −VaRα(Hτ ) might benefit the variance of the policy gradient
estimation, at the expense of the additional bias which is anyway lower than the estimation error of ∇̂θEαM. In Figure 7
(left), we can see that the exploration performance EαM obtained by MEMENTO with and without the baseline is essentially
the same in the illustrative GridWorld with Slope domain. Whereas Figure 7 (right) suggests a slightly inferior variance for
the policy gradient estimate employed by MEMENTO with the baseline.

0 50 100 150

−2

−1

0

1

epoch

E0.35
M

0 50 100 150

−0.5

0

0.5

epoch

m
ea

n
gr

ad
ie

nt

with baseline without baseline

Figure 7. Comparison of the exploration performance E0.35M (left) and sampled gradients of the policy mean (right) achieved by MEMENTO
(α = 0.35) with and without the baseline b = −VaRα(Hτ ) in the policy gradient estimation (6). We provide 95% c.i. over 4 runs.

C.2. Importance Weighted Entropy Estimation

As done in (Mutti et al., 2021), we build on the estimator in (4) to consider the case in which the target policy πθ′ differs
from the sampling policy πθ. The idea is to combine two successful policy-search methods. The first one is POIS (Metelli
et al., 2018b), to perform the optimization offline via importance sampling, allowing for an efficient exploitation of the
samples collected with previous policies. We thus adopt an Importance-Weighted (IW) entropy estimator (Ajgl & Šimandl,
2011) of the form

Ĥ IW
τi = −

T−1∑
t=0

∑
j∈Nkt wj

k
ln

Γ(p2 + 1)
∑
j∈Nkt wj∥∥st,τi − sk-NN

t,τi

∥∥p π p2 + ln k −Ψ(k), (42)

where ln k −Ψ(k) is a bias correction term in which Ψ is the Digamma function, N k
i is the set of indices of the k-NN of

st,τi , and wj are the normalized importance weights of samples sj,τi . To compute these importance weights we consider a
dataset D = {st,τi}T−1

t=0 by looking each state encountered in a trajectory as an unweighted particle. Then, we expand it as
Dτi = {(τi,t, st)}T−1

t=0 , where τi,t = (s0,τi , . . . , st,τi) is the portion of the trajectory that leads to state st,τi . This allows to
associate each particle st,τi to its importance weight ŵt and normalized importance weight wt for any pair of target (πθ′)
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Algorithm 2 MEMENTO
Input: initial policy πθ0 , exploration horizon T , number of trajectories N , batch-size B, percentile α, learning rate β,
trust-region threshold δ, sampling distribution pM
Output: exploration policy πθh

1: for epoch = 0, 1, . . ., until convergence do
2: for i = 1, 2, . . . , N do
3: sample an environmentMi ∼ pM
4: for j = 1, 2, . . . , B do
5: sample a trajectory τj ∼ pπθ,Mi of length T
6: end for
7: end for
8: initialize dataset D = ∅, off-policy step h = 0 and θh = θ
9: while D̂KL(πθ0

||πθh) ≤ δ do
10: for j = 1, 2, . . . , B do
11: estimate Hτj with (42)
12: append Ĥτj to D
13: end for
14: sort D and split it in Dα and D1−α
15: compute a gradient step θh+1 = θh + β∇̂θhEαM(πθh)
16: h← h+ 1
17: end while
18: θ ← θh
19: end for

and sampling (πθ) policies:

ŵt =
p(τi,t|πθ′)
p(τi,t|πθ)

=

t∏
z=0

πθ′(az,τi |sz,τi)
πθ(az,τi |sz,τi)

, wt =
ŵt∑T−1
n=0 ŵn

.

The estimator in (42) is then optimized via gradient ascent. The second policy-search method used during the optimization
is TRPO (Schulman et al., 2015), to perform subsequent optimizations within a trust-region around the current policy. The
trust-region constraint is obtained by imposing

D̂KL(πθ′ ||πθ) =
1

T

T−1∑
t=0

ln
k/T∑
j∈Nkt wj

≤ δ,

where D̂KL(πθ′ ||πθ) is a non-parametric IW k-NN estimate of the Kullback-Leibler (KL) divergence (Ajgl & Šimandl,
2011). Its value is computed as in (Mutti et al., 2021), by considering the entire batch of trajectories collected to execute the
off-policy optimization steps as a single trajectory.

C.3. Algorithmic Details of MEMENTO

In this section, we provide an extended pseudocode (Algorithm 2) of MEMENTO, along with some additional comments.

Given a probability distribution pM, the algorithm operates by iteratively sampling an environmentMi ∈ M drawn
according to pM and then samplingB trajectories of length T from it using πθ , whereB is the dimension of each mini-batch.
Then, the estimate of the entropy of each mini-batch Ĥτj is computed by means of the estimator in (42) and appended to
the dataset D. Once obtained the final dataset D, we can straightforwardly derive a risk-sensitive policy update by just
subsampling from it, so that to keep only the realizations below the α-percentile. This can be easily done by sorting D in
ascending order and considering only the αN first mini-batches. Then, we can compute the gradient as follows:

∇̂θEαM(πθ) =
1

αN

N∑
i=1

fτi Ĥτi 1(Ĥτi ≤ V̂aRα(Hτ )).
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The operations carried out once all the trajectories have been sampled are executed in a fully off-policy manner, in which
we repeat the same steps until the trust-region boundary is reached or until the number of off-policy iterations exceeds a
specified limit. The reason why we introduce an additional parameter B, instead of considering one trajectory at a time, is
due to the fact that a significant amount of samples (see the parameters in Table 1) is needed to obtain a reliable estimate of
the entropy, noting that the entropy estimator is only asymptotically unbiased.

D. Experiments
In this section, we report an extensive description of the conducted experiments, with the corresponding hyperparameter
values and some additional plots and experiments.

D.1. Environments

We use three different environments in our experiments. The first one is a custom implementation of a gridworld, coded
from scratch. The second one is an adapted version of the rllab Ant-Maze environment (Duan et al., 2016).

D.1.1. GRIDWORLD WITH SLOPE

In GridWorld with Slope (2D states, 2D actions), the agent can move inside a map composed of four rooms connected
by four narrow hallways, by choosing at each step how much to move on the x and y axes. The side of the environment
measures 2 units and the maximum viable space of the agent at each step is 0.2. Thus, the agent needs around 10 steps to go
from one side to the other on a straight line. When the agent collides with the external borders or with the internal walls, it is
re-positioned according to a custom function. This is done not only to make the interaction more realistic, but also to limit
the possibility to have a negative infinite entropy resulting from the k-NN computation, which can occur when the samples
are too close and the value of the parameter k is not high enough. This precaution is particularly useful in our scenario, due
to the presence of a slope, and especially in the adversarial configuration GWN, because of the initial position of the agent,
which is sampled in a small square in the top-right corner. It is easy to see that in the first epochs in the GWN environment,
the agent would repeatedly collide with the top-border, leading in general to a much more lower entropy w.r.t. to GWS.

The slope is applied only in the upper half of the environment, since we found this to be a good trade-off between the
intention of maintaining a difference in terms of risk among the two configurations and the overall complexity of the
exploration. Indeed, we noted that by applying the slope to the whole GridWorld, the advantage in terms of exploration
entailed by the risk-averse approach is even higher, but it struggles to explore the bottom states of the environment with a
reasonable number of samples. The slope is computed as s ∼ N (∆max

2 , ∆max

20 ), where ∆max = 0.2 is the maximum step
that the agent can perform.

D.1.2. MULTIGRID

In MultiGrid, everything works as in GridWorld with Slope, but we indeed have 10 configurations. These environments differ
for both the shape and the type of slope to which they are subject to. The adversarial configuration is still GWN, but the slope
is computed as s ∼ N (∆max

2.6 , ∆max

20 ), where ∆max = 0.2. The other 9 gridworlds have instead a different arrangement
of the walls (see the heatmaps in Figure 10) and the slope, computed as s ∼ N (∆max

3.2 , ∆max

20 ) with ∆max = 0.2, is
applied over the entire environment. Two configurations are subject to south-facing slope, three to east-facing slope, one to
south-east-facing slope and three to no slope at all.

D.1.3. ANT STAIRS

We adopt the Ant-Maze environment (29D states, 8D actions) of rllab (Duan et al., 2016) and we exploit its malleability to
build two custom configurations which could fit our purposes. The adverse configuration consists of a narrow ascending
staircase (Ant Stairs Up) made up of an initial square (the initial position of the Ant), followed by three blocks of increasing
height. The simpler configuration consists of a wide descending staircase (Ant Stairs Down), made up of 3 × 3 blocks
of decreasing height and a final 1 × 3 flat area. Each block has a side length slightly greater than the Ant size. A visual
representation of such settings is provided in Figure 11. During the learning to explore phase, EαM is maximized over the
x,y spatial coordinates of the ant’s torso.
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D.1.4. MINIGRID

We use the MiniGrid suite (Chevalier-Boisvert et al., 2018), which consists of a set of fast and light-weighted gridworld
environments. The environments are partially observable, with the dimension of the agent’s field of view having size
7× 7× 3. Both the observation space S and the action space A are discrete, and in each tile of the environment there can be
only one object at the same time. The set of objects is O = {wall, f loor, lava, door, key, ball, box, goal}. The agent can
move inside the grid and interact with these objects according to their properties. In particular, the actions comprise turning
left, turning right, moving forward, picking up an object, dropping an object and toggling, i.e., interacting with the objects
(e.g., to open a door). We exploit the suite’s malleability to build two custom environments. The simpler one has a size
of 18× 18, and it simply contains some sparse walls. The adverse configuration is smaller, 10× 10, and is characterized
by the presence of a door at the top of a narrow hallway. The door is closed but not locked, meaning that the agent can
open it without using a key. Moreover, we modify the movement of the agent so that the direction is given by the bottom of
the triangle instead of the top. The intuition is that by doing this we are essentially changing the shape of the agent, hence
causing the policy to struggle in the exploration.

As regards the training procedure, everything remains the same, except for two differences. The first difference is that the
k-NN computation is performed on the representation space generated by a fixed random encoder. Note that this random
encoder is not part of the policy. It is randomly initialized and not updated during the training in order to produce a more
stable entropy estimate. In addition, before computing the distances, we apply to its output a random Gaussian noise
ε ∼ N (0.001, 0.001) truncated in [0, 0.001]. We do this to avoid the aliasing problem, which occurs when we have many
samples (more than k) in the same position, thus having zero distance and producing a negative infinite entropy estimate. The
homogeneity of the MiniGrid environments in terms of features make this problem more frequent. The second difference is
the addition of a bootstrapping procedure for the easy configuration, meaning that we use only a subset of the mini-batches
of the easy configuration to update the policy. Especially, we randomly sample a number of mini-batches that is equal to
the dimension of the Dα dataset so that Neutral uses the same number of samples of MEMENTO. The reason why we
avail this method is to avoid a clear advantage for Neutral in learning effective representations, since it usually access more
samples than MEMENTO. Note that it is not a stretch, since we are essentially balancing the information available to the
two algorithms.

D.2. Class of Policies

In all the experiments but one the policy is a Gaussian distribution with diagonal covariance matrix. It takes as input the
environment state features and outputs an action vector a ∼ N (µ, σ2). The mean µ is state-dependent and is the downstream
output of a densely connected neural network. The standard deviation is state-independent and it is represented by a
separated trainable vector. The dimension of µ, σ, and a vectors is equal to the action-space dimension of the environment.
The only experiment with a different policy is the MiniGrid one, for which we adopt the architecture recently proposed
by (Seo et al., 2021). Thus, we use a random encoder made up of 3 convolutional layers with kernel 2, stride 1, and padding
0, each activated by a ReLU function, and with 16, 32 and 64 filters respectively. The first ReLU is followed by a 2D max
pooling layer with kernel 2. The output of the encoder is a 64 dimensional tensor, which is then fed to a feed-forward neural
network with two fully-connected layers with hidden dimension 64 and a Tanh activation function.

D.3. Hyperparameter Values

D.3.1. LEARNING TO EXPLORE

In Table 1, we report the parameters of MEMENTO and Neutral that are used in the experiments described in Section 5.1,
Section 5.2, Section 5.4 and Section 5.5.
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Table 1. MEMENTO and Neutral Parameters

GRIDWORLD WITH SLOPE MULTIGRID ANT MINIGRID

NUMBER OF EPOCHS 150 50 400 300
HORIZON (T ) 400 400 400 150
NUMBER OF TRAJ. (N ) 200 500 150 100
MINI-BATCH DIMENSION (B) 5 5 5 5
α-PERCENTILE 0.35 0.1 0.2 0.3
SAMPLING DIST. (pM) [0.8,0.2] [0.1,. . .,0.1] [0.8,0.2] [0.8,0.2]
KL THRESHOLD (δ) 15 15 15 15
LEARNING RATE (β) 10−5 10−5 10−5 10−5

NUMBER OF NEIGHBORS (k) 30 30 500 50
POLICY HIDDEN LAYER SIZES (300,300) (300,300) (400,300) *
POLICY HIDDEN LAYER ACT. FUNCT. RELU RELU RELU *
NUMBER OF SEEDS 4 4 4 4
* See Section D.2 for full details on the architecture.

D.3.2. REINFORCEMENT LEARNING

In Table 2, we report the TRPO parameters that are used in the experiments described in Section 5.3, Section 5.4, Section 5.5
and Section 5.7.

Table 2. TRPO Parameters for Goal-Based RL

GRIDWORLD WITH SLOPE MULTIGRID ANT MINIGRID

NUMBER OF ITER. 100 100 100 200
HORIZON 400 400 400 150
SIM. STEPS PER ITER. 1.2× 104 1.2× 104 4× 105 7.5× 103

δKL 10−4 10−4 10−2 10−4

DISCOUNT (γ) 0.99 0.99 0.99 0.99
NUMBER OF SEEDS 50 50 8 13
NUMBER OF GOALS 50 50 8 13

D.3.3. META-RL

In Table 3 and Table 4, we report the MAML and DIAYN parameters that are used in the experiments described in
Section 5.7, in order to meta-train a policy on the GridWorld with Slope and MultiGrid domains. For MAML, we adopted
the codebase at https://github.com/tristandeleu/pytorch-maml-rl, while for DIAYN, we used the original implementation.

Table 3. MAML Parameters

GRIDWORLD WITH SLOPE MULTIGRID

NUMBER OF BATCHES 200 200
META BATCH SIZE 20 20
FAST BATCH SIZE 30 30
NUM. OF GRAD. STEP 1 1
HORIZON 400 400
FAST LEARNING RATE 0.1 0.1
POLICY HIDDEN LAYER SIZES (300,300) (300,300)
POLICY HIDDEN LAYER ACT. FUNCTION RELU RELU
NUMBER OF SEEDS 4 4

https://github.com/tristandeleu/pytorch-maml-rl
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Table 4. DIAYN Parameters

GRIDWORLD WITH SLOPE MULTIGRID

NUMBER OF EPOCHS 1000 1000
HORIZON 400 400
NUMBER OF SKILLS 20 20
LEARNING RATE 3× 10−4 3× 10−4

DISCOUNT (γ) 0.99 0.99
POLICY HIDDEN LAYER SIZES (300,300) (300,300)
POLICY HIDDEN LAYER ACT. FUNCTION RELU RELU
NUMBER OF SEEDS 4 4

D.4. Counterexample: When Percentile Sensitivity Does Not Matter
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Figure 8. Comparison of the exploration performance E1M obtained by MEMENTO (α = 0.35) and Neutral (α = 1) in the GridWorld
Counterexample domain. The polices are trained (50 epochs, 8× 104 samples per epoch) on the configuration (a) and tested on (a, b, c).
We provide 95% c.i. over 4 runs.

In this section, we provide a convenient example to confirm the fact that there are classes of environments in which we would
not need any particularly smart solution for the multiple environments problem, beyond a naı̈ve, risk-neutral approach. We
consider two GridWorld environments that differ for the shape of the traversable area, sampled according to pM = [0.8, 0.2],
and we run MEMENTO with α = 0.35 and Neutral (α = 1), obtaining the two corresponding exploration policies. In
Figure 8 we show the performance (measured by E1

M) obtained by executing those policies on each setting. Clearly,
regardless of what configuration we consider, there is no advantage deriving from the use of a risk-averse approach as
MEMENTO, meaning that the class of environments M is balanced in terms of hardness of exploration.

D.5. Further Details on Meta-RL Experiments
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Figure 9. We illustrate the fast-adapting behavior of MAML in the GridWorld with Slope (a), and the skills discriminability of DIAYN as
a function of learning epochs (b). We provide 95% c.i. over 4 runs.

In this section, we provide additional details on the experiments of Section 5.7. Especially, we show that MAML does
perform well on its own objective, which is to learn a fast-adapting policy during meta-training (Figure 9a). Instead, in
Figure 9b we highlight the performance measure of DIAYN (Eysenbach et al., 2018). In particular, the more log qφ(s|z)
grows with the learning epochs, the better is the intrinsic reward we feed to MAML+DIAYN. Clearly, DIAYN struggles to
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deal with the larger MultiGrid class of environments, which explains the inferior performance of MAML+DIAYN in this
domain.

D.6. Additional Visualizations

In this section, we provide some additional visualizations, which are useful to better understand some of the domains used in
the experiments of Section 5. In Figure 10 we report the state-visitation frequencies achieved by MEMENTO (Figure 10a)
and Neutral (Figure 10b) in each configuration of the MultiGrid domain. Clearly, MEMENTO manages to obtain a better
exploration in the adversarial configuration w.r.t. Neutral, especially in the bottom part of the environment, which is indeed
the most difficult part to visit. On the other environments, the performance is overall comparable. In Figure 11 we show a
render of the Ant Stairs domain, illustrating both the environments used in the experiments of Section 5.5. Note that the
front walls are hidden to allow for a better visualization.

E. Future Directions
First, it is worth mentioning an alternative setting in which MEMENTO can be employed with benefit (with little or no
modifications). This is the the robust reward-free exploration problem, in which we just have to replace the class of
environments with a single CMP specified under uncertainty (Satia & Lave Jr, 1973). Secondly, in this work we focused on
a specific solution for an essentially multi-objective problem, by establishing a preference over the environments through the
CVaR objective. Instead, a future direction could pursue learning a direct approximation of the Pareto frontier (Parisi et al.,
2016) of the exploration strategies over multiple environments. Another promising direction is to assume some control over
the class distribution during the learning to explore process, either by an external supervisor or by the agent itself (Metelli
et al., 2018a). Lastly, future work may establish regret guarantees for the reward-free exploration problem over multiple
environments, in a similar flavor to the reward-free RL problem in a single environment (Jin et al., 2020).
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(a) MEMENTO

(b) Neutral

Figure 10. Heatmaps of the state visitations (200 trajectories) induced by the exploration policies trained with MEMENTO (α = 0.1) (a)
and Neutral (α = 1) (b) in the MultiGrid domain.

(a) Ant Stairs Down (b) Ant Stairs Up

Figure 11. Illustration of the Ant Stairs domain. We show a render of the Ant Stairs Down environment (a) and of the adverse Ant Stairs
Up environment (b).


