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ABSTRACT

Low-Rank Adaptation (LoRA) has emerged as a prominent technique for fine-
tuning large foundation models, facilitating a reduction in trainable parameters
through the utilization of low-rank matrices to represent weight changes A and
B (i.e., ∆W = BA). Although LoRA has demonstrated considerable success,
its expressiveness is inherently limited by the constrained capacity of its low-
rank structure. To ameliorate this limitation, we introduce Fourier-based Flexi-
ble Rank Adaptation (FoRA), which harnesses the robust expressiveness of the
Fourier basis to re-parameterize A and B from a sparse spectral subspace. Uti-
lizing FoRA, adaptation matrices can overcome conventional rank limitations,
achieving up to a 15x reduction in the parameter budget. We illustrate that
FoRA achieves an optimal balance of efficiency and performance across var-
ious tasks, including natural language understanding, mathematical reasoning,
commonsense reasoning, and image classification. Our codes are available at
https://anonymous.4open.science/r/FoRA-0E9C.

1 INTRODUCTION

In recent years, Large Foundation Models (LFMs), have showcased exceptional generalization capa-
bilities, greatly improving performance in a wide array of tasks across natural language processing
(NLP) (Brown et al., 2020; Touvron et al., 2023a), computer vision (CV) (Radford et al., 2021; Kir-
illov et al., 2023), and other fields (Azad et al., 2023). Typically, adapting these general models for
specific downstream tasks requires full fine-tuning, which involves retraining all model parameters
and can pose significant challenges, particularly in resource-limited environments. To address this
issue, Parameter-efficient fine-tuning (PEFT) techniques (Mangrulkar et al., 2022), have been devel-
oped, offering more feasible alternatives. Among these, Low-Rank Adaptation (LoRA) (Hu et al.,
2021), which decomposes the weight changes into the product of two low-rank matrices A and B,
has stood out for its effectiveness and simplicity.

Despite its success, LoRA’s reliance on low-rank structures can limit its expressive potential. The-
oretically, the expressive capacity of LoRA is constrained by the ranks of A and B (Zeng & Lee,
2023). Therefore, more complex downstream tasks inherently necessitate higher ranks (Hu et al.,
2023; Biderman et al., 2024; Gao et al., 2024). To elucidate the significance of rank configurations
in practical applications, we delve into their effect on LoRA’s performance across various tasks
and present the corresponding observations in Figure 1. As depicted, while different tasks exhibit
varying sensitivities to rank, most demonstrate improved performance as the rank increases, with
performance peaking at higher ranks (i.e., no less than 26). This pattern aligns with the behavior
of LoRA when applied to the LLaMA family, where high ranks yield clear improvements (Bider-
man et al., 2024). However, adapting LoRA to higher ranks inevitably engenders larger trainable
parameter sizes, thereby imposing considerable overhead. Hence, a question is naturally raised:

How can we unleash the rank-bounded potential of LoRA
while still residing in the low-parameter jail?

This question aligns closely with the principles of sparse learning (Han et al., 2015a), which aim
to preserve expressive information while necessitating fewer learnable parameters. Despite the suc-
cess of its predominant pruning techniques (Han et al., 2015b; Frankle & Carbin, 2018), determining
which modules to prune often requires complex strategies (Zhang et al., 2022). In contrast, classical
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Figure 1: LoRA applied to RoBERTaBASE and ViTBASE under varying rank configurations. All exper-
iments followed a comprehensive hyperparameter search. The reported relative accuracy, averaged
over five distinct random seeds, reflects performance compared to the best results of each task. No-
tably, performance peaks at higher rank configurations across all tasks.

data compression techniques, such as linear projection (Dony & Haykin, 1995), fractal compres-
sion (Cochran et al., 1996), and spectral transformations (Reddy & Murthy, 1986), can be applied
directly to weight matrices, providing a simpler yet effective alternative. Among these, the Fourier
basis, which enables high-quality data recovery from sparse spectral information (Rudelson & Ver-
shynin, 2006; Duarte & Baraniuk, 2013; Vlaardingerbroek & Boer, 2013), stands out as a promising
tool for sparse learning. We refer our readers to Section 4.5 for a more in-depth empirical analysis.

To this end, we propose Fourier-based Flexible Rank Adaptation (FoRA), which leverages Fourier
bases to re-parameterize adaptation matrices A and B as the spatial equivalents of sparse spectral
components. Specifically, FoRA learns only n spectral components at the predefined spectral lo-
cations, which are shared among all adaptation matrices. Then, inverse Fast Fourier Transform is
applied to derive these adaptation matrices in the spatial space. It is important to note that the use of
a fixed quantity of spectral components enables FoRA to facilitate the adjustment of A and B from
lower to potentially unbounded ranks at fixed parameter cost, thus ensuring significant expressive-
ness within a constrained parameter scope. In summary, our contributions are as follows:

• Given the rank-dependent performance of LoRA, we introduce FoRA, a novel PEFT
method that enhances LoRA with Fourier-based compression, maximizing its potential
while minimizing the parameter overhead.

• FoRA consistently yields comparable or better performance with up to 15x fewer train-
able parameters than LoRA on various tasks, from language to vision domains and across
backbones in different scales, including RoBERTa, ViT and LLaMA.

• A thorough analysis is conducted to further substantiate FoRA as a parameter-efficient
alternative that replicates LoRA’s potential across different configurations.

2 RELATED WORKS

2.1 PARAMETER-EFFICIENT FINE-TUNING

Fine-tuning large pre-trained language models is crucial for improving NLP tasks. However, up-
dating all model parameters is computationally intensive and storage-demanding for models like
GPT-3 (Brown et al., 2020) and LLaMA (Touvron et al., 2023a). Parameter-efficient fine-tuning
(PEFT) methods address these issues by updating fewer parameters or adding lightweight modules.

One prominent approach in PEFT is the use of adapters — small bottleneck layers inserted within
each layer of a pre-trained model (Houlsby et al., 2019; Pfeiffer et al., 2020; Karimi Mahabadi et al.,
2021; He et al., 2021). Houlsby et al. (2019) introduced adapters that enable task-specific adaptation
while keeping the original model weights fixed. Building upon this, Pfeiffer et al. (2020) proposed
a modular adapter framework that facilitates multi-task transfer. To further optimize parameter ef-
ficiency, Karimi Mahabadi et al. (2021) reduced the number of parameters by employing parameter
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sharing and low-rank approximations within adapters. Another line of research involves prompt
tuning, which modifies the input embeddings to guide the model toward specific tasks (Lester et al.,
2021; Liu et al., 2021; Li & Liang, 2021; Chen et al., 2023a). Lester et al. (2021) optimized con-
tinuous prompt embeddings while keeping the language model’s parameters fixed, demonstrating
the effectiveness of prompt tuning for task adaptation. Similarly, Prefix-Tuning (Li & Liang, 2021)
prepends trainable vectors to the input of each transformer layer without altering the model archi-
tecture, effectively steering the model toward desired behaviors with minimal parameter updates.

While these methods exhibit high efficiency and preserve the originality of the pre-trained model,
they inevitably introduce higher inference costs due to additional modules or modifications required
during deployment. In contrast, LoRA (Hu et al., 2021) and its variants (Zhang et al., 2023a; Bałazy
et al., 2024; Li et al., 2024; Liu et al., 2024; Nikdan et al., 2024; Gao et al., 2024) inject trainable
low-rank matrix decomposition into transformer layers. This approach not only reduces the number
of trainable parameters but also allows for merging these decompositions with the original model
weights, thereby avoiding increased inference burdens. However, the expressiveness of low-rank
adaptation methods like LoRA is often bounded by the chosen rank (Zeng & Lee, 2023). To ad-
dress this limitation, Kopiczko et al. (2023) and Jiang et al. (2024) explored high-rank adaptations
through projection matrices, aiming to enhance expressive capacity without significantly increasing
parameter counts. Despite these advances, our empirical experiments indicate that while LoRA’s
performance may peak at certain high-rank configurations, increasing the rank beyond this point
does not necessarily lead to better results.

2.2 SPARSE LEARNING

Sparse neural networks exploit the fact that many weights in over-parameterized models can be
pruned with minimal impact on performance (Han et al., 2015b; Lee et al., 2018; Frankle & Carbin,
2018; Wang et al., 2020; Liu et al., 2022; Frantar & Alistarh, 2023). Techniques such as magnitude
pruning (Han et al., 2015a) remove weights with small magnitudes, effectively reducing model size.
Dynamic sparsity methods (Mocanu et al., 2018; Zhang et al., 2022; Chen et al., 2023b) adjust the
sparsity patterns during training, allowing the network to discover efficient architectures on the fly.

Another innovative approach is learning in transformed domains like the sparse Fourier space. By
representing weight matrices in the frequency domain using Fourier transforms, neural networks can
exploit the sparsity inherent in the frequency representation of the data (Yang & Xie, 2016; Chen
et al., 2016). This allows for efficient compression by retaining only the significant frequency com-
ponents and discarding the less important ones. Learning in the sparse Fourier space facilitates the
development of compact models that effectively capture essential patterns with fewer parameters.

3 METHODOLOGY

3.1 BACKGROUND

Low-Rank Adaptation (LoRA) LoRA (Hu et al., 2021) proposes to use the product of two low-
rank matrices to update the pre-trained weights incrementally. Let W′ ∈ Rd1×d2 deotes the fine-
tuned weight, W0 ∈ Rd1×d2 the pre-trained weight, and ∆W ∈ Rd1×d2 the change in weight.
LoRA models this change ∆W through a low-rank decomposition:

W′ = W0 +∆W = W0 +BA, (1)

where W0 is kept unchanged during fine-tuing. The matrices A ∈ Rr×d2 and B ∈ Rd1×r represents
the learnable low-rank matrices with the rank r ≪ {d1, d2}. Typically, A adopts Kaiming uniform
initialization (He et al., 2015) while B is initialized to zero at the start of the training process.

In the following parts, we present Fourier-based Flexible Rank Adaptation (FoRA), which re-
parameterizes adaptation matrices of LoRA by applying inverse Fast Fourier Transform on sparse
spectral coefficients. The overall framework is presented in Figure 2.

3.2 FOURIER-BASED FLEXIBLE RANK ADAPTATION

As stated previously, our goal is to re-parameterize A and B with fewer parameters while maintain-
ing strong expressiveness, which aligns closely with the foundational principle of sparse learning.

3
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Figure 2: An overview of the schematic comparison between LoRA and our proposed FoRA. While
LoRA necessitates training all elements in the low-rank matrices A and B, FoRA re-parameterizes
these matrices from a sparse spectral subspace (highlighted in green). Our approach enables flexible
rank adjustment while training fixed and sparse components. In both cases, low-rank matrices can
be merged into the original weights matrix W0, ensuring no additional latency is introduced.

Upon revisiting prior successes, we resort to the Fourier basis, known for its robust expressive-
ness (Candès et al., 2006; Baraniuk, 2007).

Essentially, our approach centers on re-parameterizing the adaptation matrices, termed Ã ∈ Rr×d2

and B̃ ∈ Rd1×r, as the spatial recovery of sparse spectral coefficients, while retaining LoRA’s
update schema:

W′ = W0 +∆W = W0 + B̃Ã. (2)

To accomplish this, we start by randomly initializing a 2D index matrix L ∈ R2×n to specify spectral
locations for all low-rank matrices. To derive Ã, we then define n learnable spectral coefficient
s ∈ Rn. Using these indices and coefficients, we construct the sparse spectral matrix F ∈ Rr1×d

and compute its spatial counterpart S ∈ Rr1×d via the inverse Fast Fourier Transform:

Sp,q =
1

rd2

r−1∑
j=0

d2−1∑
k=0

Fj,ke
i2π( j

r p+
k
d2

q), (3)

where i denotes the imaginary unit. In particular, Fj,k = sp if (j, k) = L:,p and Fj,k = 0 otherwise.
The Fourier-based re-parameterized matrix Ã is then defined as the real part of the complex matrix
S as

Ã = Re[S]. (4)

The adaptation matrix B̃ is obtained by applying the identical procedure as above.

In this setup, FoRA can be easily integrated as a plug-in by replacing the LoRA linear module
with the FoRA linear module in a single line of code, requiring no additional modifications, as
outlined in Algorithm 1 in the Appendix. Moreover, despite learning only a fixed number of spectral
components, the high expressiveness of the Fourier basis allows FoRA to represent informative
matrices with ranks that range from low to very high values. This flexibility enables FoRA to
replicate LoRA’s potential, even within a constrained parameter space.

3.3 DISCUSSION

Initialization strategies. Matrix initialization with consistent variance (Glorot & Bengio, 2010)
is crucial for maintaining numerical stability and accelerating convergence. However, unlike LoRA,
directly initializing the spectral space in FoRA can lead to suboptimal variance in spatial space due
to the involvement of the Fourier transform. To facilitate efficient training, for matrix Ã, we first
employ Xavier (Glorot & Bengio, 2010) or Kaiming initialization (He et al., 2015) to its spectral
coefficients s and a spatial auxiliary matrix A′ ∈ Rr×d2 . Next, we scale s by Var(A′)/Var(Ã) to
approximate consistent variance. In contrast, matrix B̃ is initialized to zeros following the standard
practice of LoRA (Hu et al., 2021). We employ Kaiming initialization by default unless specially
stated.

4
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Comparison to LoRA’s variants. Recent parameter-efficient variants of LoRA (Kopiczko et al.,
2023; Renduchintala et al., 2023; Li et al., 2024) have demonstrated competitive performance by
adapting at higher ranks through the use of simple linear projections. However, their strategies for
sparse learning, which essentially involve a collection of learnable scaling transformations, suffer
from limited expressiveness. To remedy this issue, FoRA leverages the more efficient and expressive
Fourier transform for matrix re-parameterization, striking a balance between performance and effi-
ciency. Compared with them, FoRA consistently provides enhanced representational expressiveness
while allowing flexible rank adaptation with fixed cost. Further details of the empirical analysis are
provided in Section 4.5.

4 EXPERIMENTS

In this section, we present a series of experiments to demonstrate the effectiveness of FoRA across
diverse tasks, including language and image domains. We begin by evaluating FoRA through fine-
tuning RoBERTa on the GLUE benchmark. Next, we focus on instruction tuning within the LLaMA
family. Following this, we assess FoRA’s performance by fine-tuning Vision Transformers for image
classification. Finally, we provide an in-depth analysis of FoRA’s capabilities.

Baselines. We evaluate FoRA against three groups of baselines. The first group follows the
classical fine-tuning paradigm, which includes Full Fine-tuning (FF) and BitFit (Zaken et al.,
2021) where only bias vectors are fine-tuned. The second group is adapter-tuning, covering
AdptH (Houlsby et al., 2019), AdptP (Pfeiffer et al., 2020), AdptR (He et al., 2021). The third
group is the most prevalent low-rank adaptation and its variants, including LoRA (Hu et al., 2021),
VeRA (Kopiczko et al., 2023), FourierFT (Gao et al., 2024), DoRA (Liu et al., 2024).

4.1 GLUE BENCHMARK

We evaluate FoRA on the General Language Understanding Evaluation (GLUE) benchmark (Wang,
2018), a sequence classification benchmark for natural language understanding (NLU) which covers
domains such as sentiment classification and natural language inference. We employ the pre-trained
RoBERTaBASE and RoBERTaLARGE (Liu, 2019) as the foundation models for fine-tuning.

Our experimental setup closely follows (Hu et al., 2021), involving fine-tuning only the query
and value weights in each transformer block and fully fine-tuning the classification head. For our
method, we randomly sample n = {250, 500} trainable spectral coefficients per low-rank matrix,
which we denote as FoRA† and FoRA, respectively. We adopt the baseline hyperparameters from
their original papers. For our approaches, we apply random search (Bergstra et al., 2013) to opti-
mize the learning rates and matrix rank. For comprehensiveness, we report the median performance
across 5 random seed trials, selecting the best epoch for each run. Additionally, we report the num-
ber of trainable parameters in the fine-tuned layers, excluding the classification head, as suggested
by (Hu et al., 2021; Kopiczko et al., 2023). Further specifics are provided in Table 6 in the Appendix.

Results. As highlighted in Table 1, FoRA generally delivers better or on-par performance com-
pared with baseline methods, while adapting at higher ranks with extremely lower budget. Notably,
under the same parameter constraints, FoRA demonstrates improved performance over FourierFT.
The performance gains are more pronounced with the RoBERTaLARGE model. Specifically, FoRA†

not only surpasses adapter tuning by a clear margin but also matches the performance of LoRA,
despite requiring 30 times fewer trainable parameters. These results demonstrate that FoRA strikes
an effective balance between unleashing LoRA’s rank-bounded potential and parameter efficiency.

4.2 MATHEMATICAL REASONING

Instruction tuning involves fine-tuning a language model on a collection of paired prompts and
responses (Ouyang et al., 2022). To evaluate the effectiveness of FoRA, we first apply it to
LLaMA27B/13B (Touvron et al., 2023b) and LLaMA38B (Dubey et al., 2024) for mathematical rea-
soning tasks.

This evaluation uses two challenging benchmarks: GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2020). Both datasets consist of multi-step problems that require chain-
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Table 1: Fine-tuning performance of the pre-trained RoBERTaBASE and RoBERTaLARGE models with
different methods on the GLUE benchmark. We report Matthew’s correlation coefficient for CoLA,
Pearson correlation coefficient for STS-B, and accuracy for all the remaining tasks. The best results
for each dataset are highlighted in bold. FoRA†: the lightweight version of FoRA.

Methods # Trainable
Parameters

SST-2 MRPC CoLA QNLI RTE STS-B Avg.

B
A

S
E

FF 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.2
BitFit 0.1M 93.7 92.7 62.0 91.8 81.5 90.8 85.4
LoRA 0.3M 95.1±0.2 89.7±0.7 63.4±1.2 93.3±0.3 78.8±0.5 91.5±0.2 85.3
VeRA 0.043M 94.6±0.1 89.5±0.5 65.6±0.8 91.8±0.2 78.7±0.7 90.7±0.2 85.2
FourierFT 0.024M 94.2±0.3 90.0±0.8 63.8±1.6 92.2±0.1 79.1±0.5 90.8±0.2 85.0

FoRA† 0.012M 94.3±0.3 89.7±0.2 62.6±1.6 92.4±0.4 78.7±2.6 90.0±0.3 84.6
FoRA 0.024M 94.7±0.3 90.4±0.5 64.6±1.0 92.3±0.1 79.4±1.9 90.7±0.2 85.4

L
A

R
G

E

AdptP 0.8M 96.6±0.2 89.7±1.2 67.8±2.5 94.8±0.3 80.1±2.9 91.9±0.4 86.8
AdptH 0.8M 96.3±0.5 87.7±1.7 66.3±2.0 94.7±0.2 72.9±2.9 91.5±0.5 84.9
LoRA 0.8M 96.2±0.5 90.2±1.0 68.2±1.9 94.8±0.3 85.2±1.1 92.3±0.5 87.8
VeRA 0.061M 96.1±0.1 90.9±0.7 68.0±0.8 94.4±0.2 85.9±0.7 91.7±0.8 87.8
FourierFT 0.048M 96.0±0.2 90.9±0.3 67.1±1.4 94.4±0.4 87.4±1.6 91.9±0.4 88.0

FoRA† 0.024M 96.1±0.2 91.2±1.0 66.5±0.9 94.2±0.5 86.6±1.1 91.4±0.2 87.7
FoRA 0.048M 96.3±0.1 91.4±1.0 68.0±2.0 94.4±0.3 87.0±2.0 91.9±0.4 88.2

of-thought reasoning (Wei et al., 2022) to reach the final answer, and they are framed as question-
answering tasks using the same prompt template as in (Zhang et al., 2023b). Each method is fine-
tuned on the respective training sets and evaluated on the testing sets, where we only evaluate the
correctness of the final numeric answer.

In addition, FoRA only re-parameterizes the adaptation matrix with Fourier transform, thus allow-
ing it to be adapted to other LoRA variants. To test the adaptability, we select DoRA, where the
directional component of the decomposed weight is learnable, and apply FoRA to the directional
update, resulting in a combination called DFoRA. We use n = 30000 learnable spectral coefficients
for LLaMA213B and n = 20000 for the rest. To ensure a fair comparison, we fine-tuned the models
following the setup suggested in (Hu et al., 2023; Liu et al., 2024), keeping the baseline models
at a fixed rank of r = 32 while experimenting with different learning rates. In contrast, for our
approaches, we optimize both the learning rates and matrix ranks. For comprehensiveness, we con-
sider two scenarios: (1) a standard single training pass and (2) extended training over three epochs,
reporting the best results for each (Nikdan et al., 2024). A more detailed setup is provided in Table 7
in the Appendix.

Table 2: Comparison of LLaMA27B, LLaMA213B and LLaMA38B fine-tuned on mathematical
benchmark datasets. Avg. denotes the average accuracy. The best results for each dataset are
highlighted in bold.

GSM8K MATH Avg. GSM8K MATH Avg.

Methods # Parameters 1 Epoch Extended

LLaMA27B

LoRA 16.8M 27.07 4.35 15.71 38.53 5.70 22.12
DoRA 17.0M 28.20 4.55 16.38 38.06 6.05 22.06

FoRA 2.56M 26.99 4.15 15.57 37.63 5.70 21.67
DFoRA 2.82M 27.77 4.30 16.04 37.76 5.90 21.83

LLaMA213B

LoRA 26.2M 38.51 5.30 21.90 49.20 8.45 28.83
DoRA 26.6M 38.82 5.85 22.34 50.34 9.00 29.67

FoRA 4.80M 37.54 6.20 21.87 48.98 8.65 28.81
DFoRA 5.21M 39.58 5.55 22.56 50.49 8.90 29.70

LLaMA38B

LoRA 13.6M 53.16 18.95 36.06 62.45 21.25 41.85
DoRA 13.8M 54.28 20.55 37.42 62.55 22.20 42.38

FoRA 2.56M 54.13 19.55 36.84 63.00 21.35 42.18
DFoRA 2.72M 55.65 19.40 37.53 62.77 22.45 42.61
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Results. The results in Table 2 show that FoRA and DFoRA achieve accuracy that closely matches
or slightly surpasses baseline methods, even with over 5 times fewer trainable parameters, in both
single-pass and extended training scenarios. Notably, DFoRA shows significant improvements over
FoRA, highlighting the flexible adaptability of the FoRA framework. Our approaches are particu-
larly effective with the more advanced LLaMA38B model, indicating that FoRA is especially well-
suited to the sophisticated post-training techniques used in the latest LLaMA family. Overall, these
empirical observations underscore the effectiveness and strong compatibility of FoRA.

4.3 COMMONSENSE REASONING

For a comprehensive evaluation of instruction tuning, we further compare our methods with LoRA
and DoRA on LLaMA7B/13B (Touvron et al., 2023a), LLaMA27B (Touvron et al., 2023b), and
LLaMA38B (Dubey et al., 2024) for commonsense reasoning tasks.

These commonsense reasoning tasks are framed as multiple-choice questions across eight distinct
datasets, including BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019),
HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-e, ARC-c (Clark et al.,
2018), and OBQA (Mihaylov et al., 2018). Consistent with the approach in (Hu et al., 2023), we use
the Commonsense170K dataset for training, which integrates the training sets of all eight datasets,
while evaluations are conducted on the test sets of the individual datasets.

In our experiments, we set rank r = 32 for all models as suggested by (Liu et al., 2024). Given
the complexity of the tasks, we use n = 40000 learnable spectral coefficients for LLaMA13B and
n = 30000 for the rest. A detailed configuration setup is provided in Table 8 in the Appendix.

Table 3: Comparison of LLaMA7B, LLaMA13B, LLaMA27B and LLaMA38B against various meth-
ods on eight commonsense datasets. Results of all baseline methods are taken from (Liu et al.,
2024). The best and runner-up models for each dataset are highlighted in bold and underline.

Methods # Parameters BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.

ChatGPT — — 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA7B

AdptH 132M 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8
AdptR 239M 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.2
LoRA 55.7M 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
DoRA 56.5M 68.0 80.6 77.9 83.9 80.8 81.4 63.4 77.6 76.7
FoRA 9.60M 67.8 80.1 77.5 76.6 79.8 80.3 62.8 75.2 75.0
DFoRA 10.5M 68.8 81.2 78.0 81.3 79.2 78.9 63.1 79.6 76.3

LLaMA13B

AdptH 206M 71.8 83.0 79.2 88.1 82.4 82.5 67.3 81.8 79.5
AdptR 377M 72.5 84.8 79.8 92.1 84.7 84.1 71.2 82.2 81.5
LoRA 87.2M 72.1 83.5 80.5 90.5 83.7 82.8 68.3 82.4 80.5
DoRA 88.6M 72.4 84.9 81.5 92.4 84.2 84.2 69.6 82.8 81.5
FoRA 16.0M 72.0 84.5 80.0 91.5 83.8 83.6 70.8 82.0 81.0
DFoRA 17.4M 71.8 84.4 81.0 91.8 84.5 84.4 70.1 81.8 81.2

LLaMA27B

LoRA 55.7M 69.8 79.9 79.5 83.6 82.5 79.8 64.7 81.0 77.6
DoRA 56.6M 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7
FoRA 9.60M 71.6 81.5 80.0 90.5 81.9 83.6 68.0 80.0 79.6
DFoRA 10.5M 71.5 82.4 79.5 88.2 82.6 83.5 68.5 81.0 79.7

LLaMA38B

LoRA 56.2M 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
DoRA 57.0M 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2

FoRA 9.60M 74.0 88.7 80.0 95.2 86.2 90.4 77.8 85.0 84.7
DFoRA 10.4M 74.5 89.1 80.4 95.1 85.8 90.6 79.7 86.8 85.3

Results. Table 3 presents an overview of general performance across different backbone models.
Our findings indicate that FoRA consistently outperforms LoRA at the same rank while requiring
less than 1/5 parameter count. Furthermore, despite the greater complexity of generalized reasoning
tasks, DFoRA either closely matches or even exceeds the performance of DoRA on more advanced
LLaMA models, mirroring trends observed in mathematical reasoning. Overall, there is significant
variability in the results for commonsense reasoning, with no single method emerging as a definitive
leader across all datasets.
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4.4 IMAGE CLASSIFICATION

This section concentrates on image classification to evaluate whether FoRA can remain competi-
tive. We adopt Vision Transformer (ViT) (Dosovitskiy et al., 2020), which is pre-trained on the vast
ImageNet-21K dataset (Ridnik et al., 2021), as the foundation model. Specifically, we fine-tune
ViTBASE and ViTLARGE on a variety of datasets, including OxfordPets (Parkhi et al., 2012), Stanford-
Cars (Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), FGVC (Maji
et al., 2013), and RESISC45 (Cheng et al., 2017). Notably, RESISC45 and EuroSAT offer rich
labeled data, while the other datasets serve as few-shot adaptations with sparse training samples.

We follow the same fine-tuning protocols as in the GLUE benchmark, reporting the number of
trainable parameters excluding the classification head. For LoRA, we set the rank to r = 16. To
maintain the same parameter constraints, we use n = 16000 learnable spectral entries for FourierFT
and n = 8000 for FoRA. Learning rates are tuned over a maximum of 10 training epochs, and we
report average results across 5 random trials. Detailed hyperparameters are provided in Table 9 in
the Appendix.

Table 4: Fine-tuning results with ViTBASE and ViTLARGE models on different image classification
datasets. Linear Probing (LP) represents fine-tuning only the classification head. Results are aver-
aged across 5 runs with different random seeds. The best performance is shown in bold.

Methods # Trainable
Parameters

OxfordPets StanfordCars DTD EuroSAT FGVC RESISC45 Avg.

B
A

S
E

LP - 90.28±0.43 25.76±0.28 69.77±0.67 88.72±0.13 17.44±0.43 74.22±0.10 61.03
FF 85.8M 92.82±0.54 85.10±0.21 80.11±0.56 99.11±0.07 61.60±1.00 96.00±0.23 85.79
LoRA 0.59M 93.76±0.44 78.04±0.33 78.56±0.62 98.84±0.08 56.64±0.55 94.66±0.17 83.42
FourierFT 0.384M 93.37±0.30 81.22±0.48 78.90±0.75 98.92±0.09 58.82±0.37 94.91±0.24 84.36

FoRA 0.384M 94.05±0.37 81.46±0.78 80.34±1.03 98.85±0.10 58.67±0.37 94.89±0.15 84.71

L
A

R
G

E

LP - 91.11±0.30 37.91±0.27 73.33±0.26 92.64±0.08 24.62±0.24 82.02±0.11 66.94
FF 303M 94.30±0.31 88.15±0.50 80.18±0.66 99.06±0.10 67.38±1.06 96.08±0.20 87.53
LoRA 1.57M 94.62±0.47 86.11±0.42 80.09±0.42 98.99±0.03 63.64±0.83 95.94±0.21 86.56
FourierFT 0.768M 94.91±0.33 85.93±0.58 81.17±0.71 99.04±0.07 62.48±0.45 95.59±0.23 86.52

FoRA 0.768M 94.90±0.20 86.23±0.29 81.91±0.82 99.06±0.09 65.61±0.72 95.81±0.13 87.25

Results. Table 4 presents a comprehensive overview across 6 distinct image classification datasets
using ViTBASE and ViTLARGE. FoRA consistently outperforms LoRA by a significant margin while
using only half the number of trainable parameters. Additionally, FoRA demonstrates superior
performance compared to FourierFT under the same parameter constraints. Notably, FoRA even
achieves results on par with full fine-tuning, despite utilizing substantially fewer parameters. These
findings, along with the insights from Figure 3, highlight the importance of enabling flexible rank
adaptation with reduced overhead to enhance representational power.

4.5 ANALYSIS

Sparse Learning Strategy. To explore the impact of various sparse learning strategies applied
to LoRA, we compare FoRA with two prominent strategies, random masking (Masking) and linear
projection (VeRA) (Kopiczko et al., 2023), assessing their performance compared to LoRA across
different tasks and ranks. We fine-tune RoBERTaBASE and ViTBASE on three representative datasets
respectively, following the setup in Section 4.1 and 4.4. To ensure fairness, the number of retained
parameters for random masking matches the learnable coefficients in FoRA.

The average accuracies across different ranks are depicted in Figure 3, with the corresponding pa-
rameter counts detailed in Table 10 in the Appendix. FoRA demonstrates a performance pattern akin
to LoRA, closely matching its results across various ranks, particularly at higher ranks, while main-
taining a more flexible and reduced parameter count that can be adjusted based on task complexity.
In contrast, random masking shows degraded performance compared to FoRA in the GLUE, likely
due to the limited expressiveness of trivial masking with extremely sparse parameters. Surprisingly,
despite the decent performance in GLUE, VeRA shows a notable drop in more challenging image
classification tasks, even when using high-rank matrices. This drop may stem from its inflexible
parameter count constrained by the size of the adaptation matrices. Overall, these findings suggest
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Figure 3: Performance comparison of LoRA variants with different parameter-reduction strate-
gies applied to RoBERTaBASE and ViTBASE across various rank configurations. FoRA consistently
matches LoRA’s performance, while other variants show varying levels of degradation.

that the stronger expressive power of the Fourier basis, combined with the flexible adjustment of
trainable parameters, positions FoRA as a promising and parameter-efficient alternative to LoRA.

Table 5: Comparison of GPU memory and training time.

r = 32 r = 256

Dataset Methods Memory Time Memory Time

MATH LoRA 34.9 GB 37 min 37.3 GB 38 min
FoRA 34.4 GB 37.5 min 35.3 GB 38.5 min

Common LoRA 42.4 GB 442 min 45.3 GB 466 min
FoRA 41.9 GB 454 min 43.4 GB 485 min

Efficiency Comparison. To assess
the computational efficiency, we
compare the training time and GPU
overhead of FoRA against LoRA
for fine-tuning LLaMA27B on MATH
and Comonsense170K, adhering to
the setup in Section 4.2 and 4.3. Our
evaluation covers both low-rank (r =
32) and high-rank (r = 256) scenar-
ios to ensure a comprehensive com-
parison. As shown in Table 5, despite
the additional operations introduced by the Fourier transform in FoRA’s forward pass, the impact on
training time remains modest, with an increase of up to only 4%, even when fine-tuning high-rank,
large-scale datasets. Moreover, FoRA demonstrates improved GPU memory efficiency, particularly
in high-rank scenarios, reducing memory usage by up to 5.3%. These findings highlight that FoRA
also strikes a great balance between memory efficiency and training time

5 CONCLUSION

In this work, we aim to unlock the rank-bounded potential of LoRA while minimizing and control-
ling parameter overhead. We present FoRA, a fine-tuning method that re-parameterizes adaptation
matrices from spectral subspace and is compatible with LoRA and its variants. With Fourier ba-
sis, FoRA allows for the representation of informative adaptation matrices from lower to potentially
unbounded ranks at fixed parameter cost. Empirically, FoRA consistently matches or surpasses
LoRA’s performance across various fine-tuning tasks and backbone models, requiring up to 15x
fewer trainable parameters. Moreover, a comprehensive analysis further substantiates FoRA as a
parameter-efficient alternative to LoRA. Our work demonstrates the potential for efficiently repli-
cating LoRA’s capabilities, with opportunities for further exploration in future research.
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A ADDITIONAL EXPERIMENTAL DETAILS

A.1 COMPUTATIONAL HARDWARE

All our experiments were carried out on Linux servers equipped with an AMD EPYC 7763 64-Core
CPU processor, 512GB RAM, and NVIDIA RTX 6000 ADA 48G / A800 80G GPU.

A.2 HYPERPARAMETERS

Table 6: Hyperparameter configurations for GLUE benchmark.

Model Hyperparameter SST-2 MRPC CoLA QNLI RTE STS-B

Optimizer AdamW
LR Scheduler Linear
Warmup Ratio 0.06
Max Seq. Len. 512
Spectral Coefficients n {250,500}

B
A

S
E

Rank r 32 64 64 8 32 256
Epochs 50 30 100 40 100 90
Batch Size 128 32 128 32 32 32
LR (Head) 6E-4 6E-4 3E-4 6E-5 3E-4 2E-4
LR (FoRA) 2E-2 4E-2 4E-2 7E-2 3E-2 2E-2

L
A

R
G

E

Rank r 32 32 32 32 32 32
Epochs 20 50 100 30 70 40
Batch Size 128 32 128 8 32 32
LR (Head) 1E-4 2E-4 4E-4 4E-4 3E-4 7E-5
LR (FoRA) 3E-2 5E-2 4E-2 2E-2 2E-2 3E-2

Table 7: Hyperparameter configurations for mathematical reasoning.

LLaMA27B LLaMA213B LLaMA38B

Hyperparameter GSM8k MATH GSM8k MATH GSM8k MATH

Optimizer AdamW
LR Scheduler Cosine
Batch Size 16
Warmup Ratio 0.05
Dropout 0.05
Epochs 3
Where Q,V
Spectral Coefficients n 20000 30000 20000
Rank r (FoRA) 256 128 256 128 256 128
Rank r (DFoRA) 256 128 256 128 128 128
LR (LoRA) 5E-4 5E-4 5E-4 6E-4 5E-4 5E-4
LR (DoRA) 4E-4 5E-4 4E-4 6E-4 6E-4 2E-4
LR (FoRA) 6E-3 5E-3 5E-3 5E-3 1E-3 9E-4
LR (DFoRA) 5E-3 3E-3 6E-3 6E-3 1E-3 9E-4
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Table 8: Hyperparameter configurations for commonsense reasoning.

LLaMA7B LLaMA13B LLaMA27B LLaMA38B

Hyperparameter FoRA DFoRA FoRA DFoRA FoRA DFoRA FoRA DFoRA

Optimizer AdamW
LR Scheduler Linear
Batch Size 16
Warmup Steps 100
Dropout 0.05
Epochs 3
Rank r 32
Alpha α 64
Where Q,K,V,Up,Down
Spectral Coefficients n 30000 40000 30000 30000
LR 1E-3 1.4E-3 9E-4 9E-4 8E-4 8E-4 5E-4 5E-4

Table 9: Hyperparameter configurations for finetuning ViT on the image classification datasets.

Model Hyperparameter OxfordPets StanfordCars DTD EuroSAT FGVC RESISC

Optimizer AdamW
Epochs 10
Batch Size 64
Rank r (LoRA) 16
Spectral Coefficients n 8000

B
A

S
E

Rank r (FoRA) 32 128 64 64 256 32
LR (Head) 8E-3 1E-2 1E-2 1E-4 1E-2 1E-2
LR (FoRA) 4E-3 5E-2 5E-3 2E-2 5E-2 2E-2
Weight Decay 4E-2 1E-5 2E-4 4E-3 2E-2 9E-2

L
A

R
G

E Rank r (FoRA) 64 128 128 64 256 32
LR (Head) 6E-3 5E-3 1E-2 1E-3 1E-2 1E-2
LR (FoRA) 5E-3 3E-2 4E-3 3E-2 8E-2 1E-2
Weight Decay 3E-4 2E-5 3E-5 3E-3 1E-2 1E-3
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A.3 PARAMETER COUNT OF SPARSE LEARNING STRATEGIES

As the rank increases, the number of learnable parameters in LoRA grows linearly, leading to a
significant parameter overhead. While VeRA exhibits a minimal increase in parameters, its strong
dependence on the size of its adaptation matrices limits its flexibility in adapting to more complex
tasks. In contrast, both FoRA and random masking maintain a fixed number of learnable parameters
across different ranks, providing greater flexibility by allowing parameter adjustments based on task
complexity.

Table 10: Comparison of learnable parameters across different compression strategies.

Rank r

Methods 23 24 25 26 27 28

RoBERTaBASE

LoRA 6,144 12,288 24,576 49,152 98,304 196,608
VeRA 776 784 800 832 896 1024
FoRA/Mask 500 500 500 500 500 500

ViTBASE

LoRA 6,144 12,288 24,576 49,152 98,304 196,608
VeRA 776 784 800 832 896 1024
FoRA/Mask 6,144 8000 8000 8000 8000 8000

B IMPLEMETATION

Algorithm 1 presents the PyTorch implementation of FoRA. Our approach allows for a straight-
forward plug-in, with the only modification needed being the replacement of the PyTorch linear
module with the FoRA linear module. Additionally, we create a cached empty spectral matrix that
matches the size of the adaptation matrix. This caching strategy not only accelerates GPU compu-
tations but also minimizes GPU overhead, as only the sparse spectral coefficients require backward
propagation.

Algorithm 1 FoRA PyTorch Implementation

class PEFT(nn.Module):
def __init__(self, ...):

if LoRA:
A, B = torch.nn.Linear(d1, r), torch.nn.Linear(r, d2)

elif FoRA:
A, B = FoRALinear(n, d1, r), FoRALinear(n, r, d2)

class FoRALinear(nn.Module):
def __init__(self, n, din, dout):

self.n = n # number of spectral coefficients
self.din = din # input dimension
self.dout = dout # output dimension
# spectral location
self.L = torch.randperm(din * dout)[:n]
self.L = torch.stack([self.L // din, self.L % dout], dim=0)
# spectral coefficients
self.s = nn.Parameter(torch.zeros(n))
# cached spectral matrix
self.cached_F = torch.zeros(self.din, self.dout)

def weight(self):
# spectral assignment
F = self.cached_F.clone()
F[self.L[0], self.L[1]] = self.s
# spatial conversion
W = torch.fft.ifft2(F).real()
return W
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C GENERATION EXAMPLES

Instruction Tuning (MATH)

How many inches are in the circumference of a great circle of a sphere which has a surface area of 196π
sq in? Express your answer in terms of π.
Note: To measure the circumference, take the largest circle on the surface of the sphere.
Answer the above question. First think step by step and then answer the final number.

Response

Model Response
LLaMA27B (FoRA) The surface area of a sphere is πr2, where r is the radius.

So, the radius is r =
√
196π = 12

√
3.

The circumference of the sphere is 2πr = 24π .
The final answer is: 24π.

LLaMA38B (FoRA) The surface area of a sphere is 4πr2, so r2 = 49 and r = 7.
The circumference of the great circle is 2πr = 14π .
The final answer is: 14π.

Instruction Tuning (HellaS.)

Please choose the correct ending to complete the given sentence: Roof shingle removal: A man is sitting
on a roof. he
Ending1: is using wrap to wrap a pair of skis. Ending2: is ripping level tiles off. Ending3: is holding a
rubik’s cube. Ending4: starts pulling up roofing on a roof.
Answer format: ending1/ending2/ending3/ending4

Response

Model Response
LLaMA27B (FoRA) the correct answer is ending2

LLaMA38B (FoRA) the correct answer is ending4
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