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ABSTRACT

Mathematical reasoning is an increasingly important indicator of large language
model (LLM) capabilities, yet we lack understanding of how LLMs process even
simple mathematical tasks. To address this, we reverse engineer how three mid-
sized LLMs compute addition. We first discover that numbers are represented in
these LLMs as a generalized helix, which is strongly causally implicated for the
tasks of addition and subtraction, and is also causally relevant for integer division,
multiplication, and modular arithmetic. We then propose that LLMs compute
addition by manipulating this generalized helix using the “Clock’ algorithm: to
solve a + b, the helices for a and b are manipulated to produce the a + b answer
helix which is then read out to model logits. We model influential MLP outputs,
attention head outputs, and even individual neuron preactivations with these helices
and verify our understanding with causal interventions. By demonstrating that
LLMs represent numbers on a helix and manipulate this helix to perform addition,
we present the first representation-level explanation of an LLM’s mathematical
capability.

1 INTRODUCTION

Large language models (LLMs) display surprising and significant aptitude for mathematical reasoning
Ahn et al.| (2024)); [Satpute et al.| (2024), which is increasingly seen as a benchmark for LLM
capabilities OpenAl; (Glazer et al.| (2024)). Despite LLMs’ mathematical proficiency, we have limited
understanding of how LL.Ms process even simple mathematical tasks like addition. Understanding
mathematical reasoning is valuable for ensuring LLMs’ reliability, interpretability, and alignment in
high-stakes applications.

In this study, we reverse engineer how GPT-J, Pythia-6.9B, and Llama3.1-8B compute the addition
problem a + b for a, b € [0,99]. Remarkably, we find that LLMs use a form of the “Clock” algorithm
to compute addition, which was previously proposed by Nanda et al.| (2023a)) as a mechanistic
explanation of how one layer transformers compute modular addition (and later named by Zhong
et al.[(2023)).

To compute a+b, all three LLMs represent a and b as a helix on their tokens and construct helix(a+b)
on the last token, which we verify with causal interventions. We then focus on how GPT-J implements
the Clock algorithm by investigating MLPs, attention heads, and even specific neurons. We find that
these components can be understood as either constructing the a + b helix by manipulating the a
and b helices, or using the a + b helix to produce the answer in the model’s logits. We visualize this
procedure in Fig. |1|as rotating the dial of a clock.

Our work is in the spirit of mechanistic interpretability (MI), which attempts to reverse engineer
the functionality of machine learning models. However, most LLM MI research focuses either on
identifying circuits, which are the minimal set of model components required for computations, or
understanding features, which are the representations of concepts in LLMs. A true mechanistic
explanation requires understanding both how an LLM represents a feature and how downstream
components manipulate that feature to complete a task. To our knowledge, we are the first work to
present this type of description of an LLM’s mathematical capability, identifying that LLMs represent
numbers as helices and compute addition by manipulating these helices with the interpretable Clock
algorithm.
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a+b=
Step 1: Embed a and b as a helix using modular circles
(T =1[2,5,10,100]) and a line
Step 2: Create helix(a + b)
Step 3: Translate answer helix to logits
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Figure 1: Illustrating the Clock algorithm. We find that LLMs represent numbers on a helix. When
computing the addition problem a + b, LLMs rotate the a and b helices, as if on a clock, to create the
a + b helix and read out the final answer.

2 RELATED WORK

Circuits. Within mechanistic interpretability, circuits research attempts to understand the key model
components (MLPs and attention heads) that are required for specific functionalities (Olah et al.
(2020); |[Elhage et al.| (2021)). For example, (Olsson et al.| (2022) found that in-context learning is
primarily driven by induction attention heads, and [Wang et al.[(2023) identified a sparse circuit of
attention heads that GPT-2 uses to complete the indirect object of a sentence. Understanding how
multilayer perceptrons (MLPs) affect model computation has been more challenging, with Nanda
et al.| (2023b)) attempting to understand how MLPs are used in factual recall, and |Hanna et al.| (2023)
investigating MLP outputs while studying the greater-than operation in GPT-2.

Features. Another branch of MI focuses on understanding how models represent human-interpretable
concepts, known as features. Most notably, the Linear Representation Hypothesis posits that LLMs
store features as linear directions |Park et al.| (2023)); Elhage et al.|(2022), culminating in the introduc-
tion of sparse autoencoders (SAEs) that decompose model activations into sparse linear combinations
of features Huben et al.| (2024); Bricken et al.| (2023); Templeton et al.| (2024)); |Gao et al.| (2024);
Rajamanoharan et al.| (2024). However, recent work from [Engels et al.| (2024)) found that some
features are represented as non-linear manifolds, for example the days of the week lie on a circle.
Levy & Geval (2024) and [Zhu et al.| (2025) model LLMs’ representations of numbers as a circle in
base 10 and as a line respectively, although with limited causal results. Recent work has bridged
features and circuits research, with|Marks et al.|(2024) constructing circuits from SAE features and
Makelov et al.|(2024) using attention-based SAEs to identify the features used in|Wang et al.[(2023))’s
10T task.

Reverse engineering addition. Liu et al.|(2022) first discovered that one layer transformers generalize
on the task of modular addition when they learn circular representations of numbers. Following this,
Nanda et al.|(2023a)) introduced the “Clock” algorithm as a description of the underlying angular
addition mechanisms these transformers use to generalize. However, [Zhong et al.| (2023) found
the “Pizza” algorithm as a rivaling explanation for some transformers, illustrating the complexity
of decoding even small models. [Stolfo et al.|(2023) identifies the circuit used by LLMs in addition
problems, and |[Nikankin et al.| (2024) claims that LLMs use heuristics implemented by specific
neurons rather than a definite algorithm to compute arithmetic. |Zhou et al.|(2024) analyze a fine-tuned
GPT-2 and found that Fourier components in numerical representations are critical for addition, while
providing preliminary results that larger base LLMs might use similar features.
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3 PROBLEM SETUP

Models As in [Nikankin et al.| (2024), we analyze 3 LLMs: GPT-J (6B parameters) (Wang &
Komatsuzaki, 2021), Pythia-6.9B (Biderman et al., [2023), and Llama3.1-8B (Grattafiori et al.|
2024])). All three models are autoregressive transformers which process tokens x, ..., x,, to produce
probability distributions over the likely next token x,; [Vaswani et al.[|(2017)). The th token is
embedded as L hidden state vectors (also known as the residual stream), where L is the number of
layers in the transformer. Al is the sum of the preceding hidden state (hé_l), the multilayer perceptron
(MLP), and attention (attn) layers.

GPT-J and Pythia-6.9B use simple MLP implementations, namely MLP(z) = o (xWyp) Waown,
where o(x) is the sigmoid function. Llama3.1-8B uses a gated MLP, MLP(z) = ¢ (Wgate) ©
(2Win) Wout, wWhere o represents the Hadamard product (Liu et al., 2021). GPT-J tokenizes the
numbers [0, 361] (with a space) as a single token, Pythia-6.9B tokenizes [0, 557] as a single token, and
Llama3.1-8B tokenizes [0, 999] as a single token. We focus on the single-token regime for simplicity.

Data To ensure that answers require only a single token for all models, we construct problems a + b
for integers a, b € [0,99]. We evaluate all three models on these 10,000 addition problems, and find
that all models can competently complete the task: GPT-J achieves 80.5% accuracy, Pythia-6.9B
achieves 77.2% accuracy, and Llama3.1-8B achieves 98.0% accuracy. For the prompts used and
each model’s performance heatmap by a and b, see Appendix [Al Despite Llama3.1-8B’s impressive
performance, in the main paper we focus our analysis on GPT-J because its simple MLP allows for
easier neuron interpretation. We report results for Pythia-6.9B and Llama3.1-8B in the Appendix.

4 LLMS REPRESENT NUMBERS AS A HELIX

To generate a ground up understanding of how LLMs compute a + b, we first aim to understand
how LLMs represent numbers. To identify representational trends, we run GPT-J on the single-token
integers a € [0,360]. We do not use a = 361 because 360 has more integer divisors, allowing
for a simpler analysis of periodic structure. We conduct analysis on h3,, which is the residual
stream following layer O with shape [360, model_dim]. We choose to use the output of layer O rather
than directly analyzing the embeddings because prior work has shown that processing in layer 0 is
influential for numerical tasks Nikankin et al.| (2024).
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Figure 2: Number representations are both periodic and linear. Left The residual stream after
layer O in GPT-J is sparse in the Fourier domain when batching the hidden states for a € [0, 360]
together. We take the average magnitude of the Fourier transform of h3, across the model dimension.
Right In addition to this periodicity, the first PCA component is roughly linear in a for a € [0, 99].

4.1 INVESTIGATING NUMERICAL STRUCTURE

Linear structure. To investigate structure in numerical representations, we perform a PCA [F.R.S.
(1901) on hYg, and find that the first principal component (PC1) for a € [0, 360] has a sharp discon-
tinuity at a = 100 (Fig. Appendix [B]), which implies that GPT-J uses a distinct representation
for three-digit integers. Instead, in the bottom of Fig. 2} we plot PC1 for h, and find that it is well
approximated by a line in a. Additionally, when plotting the Euclidean distance between a and a + dn
for a € [0, 9] (Fig. Appendix , we see that the distance is locally linear. The existence of linear
structure is unsurprising as LLMs often represent concepts linearly.

Periodic Structure. We center and apply a Fourier transform to hJg, with respect to the number a
being represented and the model_dim. In Fig. 2| we average the resulting spectra across model_dim
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Figure 3: Helix subspace visualized. For GPT-J’s layer O output, we project each of the numbers
a € [0,99] onto our fitted T' = [2, 5, 10, 100] helix subspace, and visualize it. In the top row, we plot
27

sin(7ra) vs cos(7a) for each T; € T' and plot all a congruent under @ mod 7" in the same color

and annotate their mean. The bottom row contains the linear component subplot.

and observe a sparse Fourier domain with high-frequency components at 7' = [2, 5, 10]. Additionally,
when we compare the residual streams of all pairs of integers a; and as, we see that there is distinct
periodicity in both their Euclidean distance and cosine similarity (Fig. [I0] Appendix [B]). These
Fourier features were also identified by Zhou et al.|(2024), and although initially surprising, are
sensible. The units digit of numbers in base 10 is periodic (7' = 10), and it is reasonable that qualities
like evenness (I' = 2) are useful for tasks.

4.2 PARAMETERIZING THE STRUCTURE AS A HELIX

To account for both the periodic and linear structure in numbers, we propose that numbers can be
modeled helically. Namely, we posit that k!, the residual stream immediately preceding layer [ for
some number a, can be modeled as

hl = helix(a) = CB(a)”,

1
B(a) = [a, cos (;Ta> ,sin (Za) ..., COS (Za) ,sin (Za) ] M

C'is a matrix applied to the basis of functions B(a), where B(a) uses k Fourier features with periods
T = [T1,...Ty]. The k = 1 case represents a regular helix; for k& > 1, the independent Fourier
features share a single linear direction. We refer to this structure as a generalized helix, or simply a
helix for brevity.

We identify four major Fourier features: 7' = [2,5, 10, 100]. We use the periods T' = (2,5, 10]
because they have significant high frequency components in Fig. 2} We are cautious of low frequency
Fourier components, and use 7' = 100 both because of its significant magnitude, and by applying the
inductive bias that our number system is base 10.

4.3 FITTING A HELIX

We fit our helical form to the residual streams on top of the a token for our a + b dataset. In practice,
we first use PCA to project the residual stream at each layer to 100 dimensions. To ensure we do
not overfit with Fourier features, we consider all combinations of & Fourier features, with k € [1, 4].
If we use k Fourier features, the helical fit uses 2k + 1 basis functions (one linear component,
2k periodic components). We then use linear regression to find some coefficient matrix Cpca of
shape 100 x 2k + 1 that best satisfies PCA(h!) = Cpca B(a)”. Finally, we use the inverse PCA
transformation to project C'pca back into the model’s full residual stream dimensionality to find C.

We visualize the quality of our fit for layer O when using all & = 4 Fourier features with T' =
[2,5,10,100] in Fig. |3} To do so, we calculate CTh, where CT is the Moore-Penrose pseudo-inverse
of C. Thus, CTh represents the projection of the residual stream into the helical subspace. When
analyzing the columns of C, we find that the Fourier features increase in magnitude with period and
are mostly orthogonal (Appendix [C.I)).
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Figure 4: Helix causal intervention results. We use activation patching to causally determine if our
fits preserve the information the model uses to compute a + b. We find that our helical and circular
fits are strongly causally implicated, often outperforming the PCA baseline.

4.4 EVALUATING THE QUALITY OF THE HELICAL FIT

We want to causally demonstrate that the model actually uses the fitted helix. To do so, we employ
activation patching. Activation patching isolates the contribution of specific model components
towards answer tokens Meng et al.[(2022); Heimersheim & Nanda|(2024). Specifically, to evaluate

the contribution of some residual stream A, on the a token, we first store i, .., when the model is

run on a “clean” prompt a + b. We then run the model on the corrupted prompt a’ + b and store the
model logits for the clean answer of a + b. Finally, we patch in the clean A/ on the corrupted

a,clean
prompt a’ + b and calculate LD}, = logitpatched (@ + b) — logiteorrupted (@ + b), where LD! is the
logit difference for h!,. By averaging over 100 pairs of clean and corrupted prompts, we can evaluate

h!’s ability to restore model behavior to the clean answer a + b. To reduce noise, all patching
experiments only use prompts the model can successfully complete.

To leverage this technique, we follow Engels et al.|(2024) and input our fit for hfz,clean when patching.

This allows us to causally determine if our fit preserves the information the model uses for the
computation. We compare our k Fourier feature helical fit with four baselines: using the actual
ht (layer patch), the first 2k +1 PCA components of h' (PCA), a circular fit with k Fourier

a,clean a,clean

components (circle), and a polynomial fit with basis terms B(a) = [a, a?, ...a?**1] (polynomial).
For each value of k, we choose the combination of Fourier features that maximizes % Y-, LD, as the
best set of Fourier features. In Fig. [i] we see that the helical fit is most performant against baselines,
closely followed by the circular fit. This implies that Fourier features are predominantly used to
compute addition. Surprisingly, the k£ = 4 full helical and circular fits dominate the strong PCA
baseline and approach the effect of layer patching, which suggests that we have identified the correct
“variables” of computation for addition.

In Appendix [C.2] we provide evidence that Llama3.1-8B and Pythia-6.9B also use helical numerical
representations. Additionally, we provide evidence that our fits are not overfitting by using a train-test
split with no meaningful change and by showing that a helix trained on a randomized order of a is
not causally relevant. We also observe continuity when values of a that the helix was not trained on
are projected into the helical subspace. This satisfies the definition of a nonlinear feature manifold
proposed by (Olah & Jermyn| (2024), and provides additional evidence for the argument of |Engels
et al.| (2024) against the strongest form of the Linear Representation Hypothesis.

4.5 Is THE HELIX THE FULL PICTURE?

To identify if the helix sufficiently explains the structure of numbers in LLMs, we test on five
additional tasks described in Appendix For each task, we fit full helices with T = [2, 5, 10, 100]
and compare against baselines. Notably, while the helix outperforms the PCA baseline for the tasks of
addition, subtraction, and modular arithmetic, it underperforms the PCA baseline on integer division,
multiplication, and reworded subtraction. This implies that there is potentially additional structure in
numerical representations that helical fits do not capture. However, we are confident that the helix
is used for addition. When ablating the helix dimensions from the residual stream (i.e. ablating C'f
from h.), performance is affected roughly as much as ablating k!, entirely (Fig. Appendix .
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Thus, we conclude that LLMs use a helical representation of numbers to compute addition, although
it is possible that additional structure is used for other tasks.

5 LLMS USE THE CLOCK ALGORITHM TO COMPUTE ADDITION

5.1 INTRODUCING THE CLOCK ALGORITHM

Taking inspiration from [Nanda et al.|(2023a), we propose that LLMs manipulate helices to compute
addition using the “Clock” algorithm.

To compute a + b =, GPT-J
1. Embeds a and b as helices on their own tokens.

2. A sparse set of attention heads, mostly in layers 9-14, move the a and b helices to the
last token.

3. MLPs 14-18 manipulate these helices to create the helix a + b. A small number of
attention heads help with this operation.

4. MLPs 19-27 and a few attention heads “read” from the a + b helix and output to
model logits.

Since we have already shown that models represent a and b as helices (Appendix [C.2), we provide
evidence for the last three steps in this section. In Fig. [5] we observe that last token hidden states are
well modeled by h-. = helix(a, b, a+b), where helix(z, y) is shorthand to denote helix(z)+helix(y).
Despite only using 9 parameters, at some layers helix(a + b) fits last token hidden states better than a
27 dimensional PCA. This implies that helix(a + b) is at the heart of the computation.
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Figure 5: Investigating hidden states and MLP impacts. Left We use activation patching to show
that hL for GPT-J is well modeled by helices, in particular helix(a + b). Right By using activation
and path patching, we find that MLPs are most implicated in constructing the final answer.

In Appendix@ we show that other LLMs also use helix(a+b). Since the crux of the Clock algorithm
is computing the answer helix for a + b, we take this as compelling evidence that all three models
use the Clock algorithm. However, we would like to understand how specific LLM components
implement the algorithm. To do so, we focus on GPT-J.

In Fig. 5] we use activation patching to determine which last token MLP and attention layers are
most influential for the final result. We also present path patching results, which isolates how much
components directly contribute to logits. For example, MLP18’s total effect (TE, activation patching)
includes both its indirect effect (IE), or how MLP18’s output is used by downstream components like
MLP19, and its direct effect (DE, path patching), or how much MLP18 directly boosts the answer
logitﬂ In Fig. [5| we see that MLPs dominate direct effect. We now investigate model components.

5.2 INVESTIGATING ATTENTION HEADS

In GPT-J, every attention layer is the sum of 16 attention heads whose outputs are concatenated. We
activation and path patch each attention head on the last token and rank them by total effect (TE). To

"For more on path patching, we refer readers to|Goldowsky-Dill et al.{(2023); Wang et al.{(2023)
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determine the minimal set of attention heads required, we activation patch k attention heads at once,
and find the minimum £ such that their combined total effect approximates patching in all attention
heads. In Appendix [D.1] we see that patching k£ = 17 heads achieves 80% of the effect of patching in
all 448 attention heads, and we choose to round up to £ = 20 heads (83.9% of effect).

Since attention heads are not as influential as MLPs in Fig. 5] we hypothesize that they primarily
serve two roles: 1) moving the a, b helices to the last token for downstream processing (a, b heads)
and 2) outputting the a + b helix directly to logits (@ + b heads). Some mixed heads output all three
a, b, and a + b helices. We aim to categorize as few attention heads as mixed as possible.

To categorize attention heads, we turn to two metrics. ¢, is the confidence that a certain head is

an a, b head, which we quantify with ¢, = (1 — %)%. The first term represents the

fractional indirect effect of the attention head, and the second term represents the head’s total effect
recoverable by just using the a, b helices instead of helix(a, b, a + b). Similarly, we calculate ¢, as

DE helix(a+b)

the confidence the head is an a + b head, using cq4 s = 75 Telix(a,b.a+0)"

We sort the k = 20 heads by ¢ = max(cq p, Ca+b)- If a head is an a + b head, we model its output
using the a + b helix and allow it only to output to logits (no impact on downstream components).
If a head is an a, b head, we restrict it to outputting helix(a, b). For m = [1, 20], we allow m heads
with the lowest c to be mixed heads, and categorize the rest as a, b or a + b heads. We find that
categorizing m = 4 heads as mixed is sufficient to achieve almost 80% of the effect of using the
actual outputs of all £ = 20 heads. Thus, most important attention heads obey our categorization. We
list some properties of each head type below.

* a, b heads (11/20): In layers 9-14 (but two heads in [ = 16, 18), attend to the a, b tokens,
and output a, b helices which are used mostly by downstream MLPs.

* a + b heads (5/20): In layers 24-26 (but one head in layer 19), attend to the last token, take
their input from preceding MLPs, and output the a + b helix to logits.

* Mixed heads (4/20): In layers 15-18, attend to the a, b, and a + b tokens, receive input from
a, b attention heads and MLPs, and output the a, b, and a + b helices to downstream MLPs.

For evidence of these properties refer to Appendix Notably, only mixed heads are potentially
involved in creating the a + b helix, which is the crux of the computation, justifying our conclusion
from Fig. [5|that MLPs drive addition.

5.3 LOOKING AT MLPs

GPT-J seems to predominantly rely on last token MLPs to compute a + b. To identify which MLPs
are most important, we first sort MLPs by total effect, and patch in k = [1, L = 28] MLPs to find the
smallest £ such that we achieve 95% of the effect of patching in all L MLPs. We use a sharper 95%
threshold because MLPs dominate computation and because there are so few of them. Thus, we use
k = 11 MLPs in our circuit, specifically MLPs 14-27, with the exception of MLPs 15, 24, and 25.

We hypothesize that MLPs serve two functions: 1) reading from the a, b helices to create the a + b
helix and 2) reading from the a + b helix to output the answer in model logits. We make this distinction
using two metrics: helix(a + b)/TE, or the total effect of the MLP recoverable from modeling its
output with helix(a + b), and DE/TE ratio. In Fig. [7| we see that the outputs of MLPs 14-18 are
progressively better modeled using helix(a + b). Most of their effect is indirect and thus their output
is predominantly used by downstream components. At layer 19, helix(a + b) becomes a worse fit
and more MLP output affects answer logits directly. We interpret this as MLPs 14-18 “building” the
a + b helix, which MLPs 19-27 translate to the answer token a + b.

However, our MLP analysis has focused solely on MLP outputs. To demonstrate the Clock algorithm
conclusively, we must look at MLP inputs. Recall that GPT-J uses a simple MLP: MLP(z) =
o (xWyp) Waown. « is a vector of size (4096, ) representing the residual stream, and Wy, is a
(4096, 16384) projection matrix. The input to the MLP is thus the 16384 dimensional zW,,,. We
denote the nth dimension of the MLP input as the nth neuron preactivation, and move to analyze
these preactivations.
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Figure 6: Neuron preactivations and fits. We visualize the preactivations N/ (a, b) for four top
neurons. We model the clear periodicity with a helix inspired functional form.

5.4 ZOOMING IN ON NEURONS

Activation patching the 27 * 16384 neurons in GPT-J is prohibitively expensive, so we instead use
the technique of attribution patching to approximate the total effect of each neuron using its gradient
(see Kramar et al.[(2024)). We find that using just 1% of the neurons in GPT-J and mean ablating the
rest allows for the successful completion of 80% of prompts (see Appendix[D.2). Thus, we focus our
analysis on this sparse set of & = 4587 neurons.

5.4.1 MODELING NEURON PREACTIVATIONS

For a prompt a + b, we denote the preactivation of the nth neuron in layer [ as N! (a,b). When we
plot a heatmap of N/, (a, b) for top neurons in Fig. El we see that their preactivations are periodic in
a, b, and a + b. When we Fourier decompose the preactivations as a function of a 4 b, we find that
the most common periods are 7' = [2, 5, 10, 100], matching those used in our helix parameterization
(Appendix @) This is sensible, as the nth neuron in a layer applies W, of shape (4096, ) to the
residual stream, which we have effectively modeled as a helix(a, b, a + b). Subsequently, we model
the preactivation of each top neuron as

2
N!(a,b) = Z ot + Z ¢t CoS (;(t - th)> 2)

t=a,b,a+b T=[2,5,10,100]

For each neuron preactivation, we fit the parameters ¢ and d in Eq. 2] using gradient descent (see
Appendix [D.2]for details). In Fig.[6] we show the top fit component for a selection of neurons.

We evaluate our fit of the top k neurons by patching them into the model, mean ablating all other
neurons, and measuring the resulting accuracy of the model. In Fig. [7] we see that our neuron fits
provide roughly 75% of the performance of using the actual neuron preactivations. Thus, these
neurons are well modeled as reading from the helix.
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Figure 7: MLP and Neuron Dynamics. Left MLPs 14-18’s outputs are well modeled by helix(a+b),
suggesting that they build this helical representation, while MLPs 19-27 higher DE/TE ratio implies
they output the answer to model logits. Middle Patching in our fitted preactivations for the top k
neurons is roughly as effective as patching in their actual preactivations and ablating all other neurons.
Right Neurons in MLPs 14-18 primarily read from the a, b helices, while MLPs 19-27 primarily read
from the a + b helix and write to logits.
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5.4.2 UNDERSTANDING MLP INPUTS

We use our understanding of neuron preactivations to draw conclusions about MLP inputs. To do
so, we first path patch each of the top &k neurons to find their direct effect and calculate their DE/TE
ratio. For each neuron, we calculate the fraction of their fit that helix(a + b) explains, which we
approximate by dividing the magnitude of cr . terms by the total magnitude of ¢z, terms in Eq.
[2] For each circuit MLP, we calculate the mean of both of these quantities across top neurons, and
visualize them in Fig.

Once again, we see a split at layer 19, where earlier neurons’ preactivation fits rely on a, b terms,
while later neurons use a + b terms and write to logits. Since the neuron preactivations represent
what each MLP is “reading” from, we combine this result with our evidence from Section [5.3]to
summarize the role of MLPs in addition.

* MLPs 14-18 primarily read from the a, b helices to create the a + b helix for downstream
processing.

* MLPs 19-27 primarily read from the a + b helix to write the answer to model logits.

Thus, we conclude our case that LLMs use the Clock algorithm to do addition, with a deep investiga-
tion into how GPT-J implements this algorithm.

5.5 LIMITATIONS OF OUR UNDERSTANDING

There are several aspects of LLM addition we still do not understand. Most notably, while we provide
compelling evidence that key components create helix(a + b) from helix(a, b), we do not know the
exact mechanism they use to do so. We hypothesize that LLMs use trigonometric identities like
cos(a+b) = cos(a) cos(b) — sin(a) sin(b) to create helix(a + b). However, like the originator of the
Clock algorithm [Nanda et al.| (2023a)), we are unable to isolate this computation in the model. This is
unsurprising, as there is a large solution space for how models choose to implement low-level details
of algorithms. For example, |Yip et al.|(2024) finds that in|[Zhong et al.|(2023)’s “Pizza” algorithm for
modular addition, MLPs in one layer transformers implement numerical integration techniques to
transform cos(% (a + b)) to cos(k(a + b)).

The mere existence of the Pizza algorithm demonstrates that even one layer transformers have
a complex solution space. Thus, even if the Clock algorithm is used by LLMs, it could be one
method of an ensemble. We see evidence of this in Appendix in that helix(a 4 b) is less causally
implicated for Llama3.1-8B than other models, which we hypothesize is due to its use of gated
MLPs. Additionally, other models must necessarily use modified algorithms for addition because of
different tokenization schemes. For example, Gemma-2-9B [Riviere et al.|(2024) tokenizes each digit
of a number separately and must use additional algorithms to collate digit tokens. Additionally, at
different scales LLMs potentially learn different algorithms, providing another reason to be skeptical
that the Clock algorithm is the one and only explanation for LLM addition.

6 CONCLUSION

We find that three mid-sized LLMs represent numbers as generalized helices and manipulate them
using the interpretable Clock algorithm to compute addition. While LLMs could do addition linearly,
we conjecture that LLMs use the Clock algorithm to improve accuracy, analogous to humans using
decimal digits (which are a generalized helix with 7" = [10, 100, . . .]) for addition rather than slide
rules. In Appendix [E] we present preliminary results that GPT-J would be considerably less accurate
on “linear addition” due to noise in its linear representations. Future work could analyze if LLMs
have internal error-correcting codes for addition like the grid cells presented in Zlokapa et al.| (2024).

The use of the Clock algorithm provides striking evidence that LLMs trained on general text naturally
learn to implement complex mathematical algorithms. Understanding LLM algorithms is important
for safe Al and can also provide valuable insight into model errors, as shown in Appendix [F} We hope
that this work inspires additional investigations into LLM mathematical capabilities, especially as
addition is implicit to many reasoning problems.
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Model Performance on a+b= for a,b € [0,99]
Blue is correct
gpt-j-6B pythia-6.9b Llama-3.1-8B
77.2% Accuracy 98.0% Accuracy

Figure 8: All models are able to competently perform the task a + b, with Llama3.1-8B performing
best.

Table 1: The prompts used and accuracy of each model on the addition task a + b.

Model Name Prompt Accuracy
GPT-J Output ONLY a number. {a}+{b}= 80.5%
Pythia-6.9B Output ONLY a number. {a}+{b}= 77.2%

Llama3.1-8B  The following is a correct addition problem.\n{a}+{b}= 98.0%

A PERFORMANCE OF ALL MODELS ON a + b =

We test three models, GPT-J, Pythia-6.9B, and Llama3.1-8B on the task a + b =. At first, we
attempted to prompt each model with just a + b =, but we achieved significantly better results by
including additional instructions in the prompt. After non-exhaustive testing, we used the prompts
listed in Table |1|to test each model for all 10000 addition prompts (for a,b € [0,99]). We plot a
heatmap of the accuracy of the model by a and b in Fig. [8] All three models are able to competently
complete the task, with Llama3.1-8B achieving an impressive 98% accuracy. However, in the main
paper we focus on analyzing GPT-J because it employs simple MLPs that are easier to interpret. We
note that all three models struggle with problems with larger values of a and b.

B ADDITIONAL RESULTS ON THE STRUCTURE OF NUMBERS

Our Fourier decomposition results in Section[d.1] are sensitive to the number of a values analyzed.
In particular, we find that the 7' = 2 Fourier component is not identified when analyzing h3,, but
is identified when analyzing hy, (Fig. E[) While we consider this sensitivity to sample size to be
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Figure 9: The T = 2 Fourier feature is prominent when analyzing 73, but not when analyzing h3; .
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a limitation of our Fourier analysis, we note that the Fourier analysis is itself preliminary. We find
that the 7' = 2 Fourier feature is causally relevant when fitting the residual stream in Section [4.4]
Additionally, in later sections we find that neurons often read from the helix using the 7' = 2 Fourier
feature, indicating its use downstream (Fig. [31)). Thus, we identify 7" = 2 as an important Fourier
feature.

We compare the residual stream of GPT-J after layer O on the inputted integers a1, as € [0,99]
using Euclidean distance and cosine similarity in Fig. [I0] We visually note periodicity in the
representations, with a striking period of 10. To analyze the similarity between representations
further, we calculate the Euclidean distance between a and a + dn for all values of dn. In Fig.
we see that representations continue to get more distant from each other for a € [0, 99] as dn grows,
albeit sublinearly. This provides evidence that LLMs represent numbers with more than just periodic
features. When « is restricted to a € [0, 9], we observe a linear relationship in o7, implying some
local linearity. The first principal component of the numbers a € [0, 360] (shown in Fig. is also
linear with a discontinuity at a = 100. Thus, our focus on two digit addition is justified, as three-digit
integers seem to be represented in a different space.
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Layer O in gpt-j-6B Layer O in gpt-j-6B
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Figure 10: We see clear periodicity in GPT-J’s layer O representations of the numbers from 0 — 99.
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Figure 11: For GPT-J layer 0, the Euclidean distance between a and a + én is approximately linear
for a € [0, 9], and sublinear for a € [0, 99]. This provides additional evidence that GPT-J uses more
than periodic features to represent numbers.
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Figure 12: The first principal component of GPT-J layer O for numbers a € [0,360] shows a
discontinuity for three-digit a, implying that three-digit numbers are represented in a different space.

Magnitude of Helix Components in gpt-j-6B Layer 0
for task a+b= (a,b € [0,99])
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Figure 13: We plot the magnitude of each column of C, the coefficient matrix for the helical basis, to
calculate the importance of each Fourier feature. Feature magnitude roughly increases with period,
with the notable omission of the 7' = 2 sin component. We do not plot the linear component’s
magnitude because its output is a different scale.

C ADDITIONAL HELIX FITTING RESULTS

C.1 HELIX PROPERTIES

For the input of layer O of GPT-J, we plot the magnitude of the helical fit’s Fourier features. We do so
by taking the magnitude of columns of C' in Eq. [T} We find that these features roughly increase in
magnitude as period increases, which matches the ordering in the Fourier decomposition presented in
Fig.[2

Additionally, we visualize the cosine similarity matrix between columns of C', which represents the
similarity between helix components. In Fig. [[4] we observe that components are mostly orthogonal,

as expected. A notable exception is the similarity between the 7" = 100 sin component and the linear
component.

To ensure that the helix represents a true feature manifold, we design a continuity experiment inspired
by [Olah & Jermyn| (2024). We first fit all @ that do not end with 3 with a 7' = [100] helix. Then,
we project @ = 3,13, ..., 93 into that helical space in Fig.[T5] We find that each point is projected
roughly where we expect it to be. For example, 93 is projected between 89 and 95. We take this as
evidence that our helices represent a true nonlinear manifold.

C.2 ADDITIONAL CAUSAL EXPERIMENTS FOR HELIX FITS

We first replicate our helix fitting activation patching results on Pythia-6.9B and Llama3.1-8B in Fig.

To ensure the helix fits are not overfitting, we use a train-test split. We train the helix with 80% of
a values and patch using the other 20% of a values (left of Fig. [T7). We observe that the helix and
circular fits still outperform the PCA baseline. We also randomize the order of a and find that the
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Cosine Similarity of Helix Components in gpt-j-6B Layer 0
for task a+b= (a,b € [0,99])
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Figure 14: We plot the cosine similarity between columns of C, the coefficient matrix for the helical
basis. Features are roughly orthogonal, which we expect for a helix, with the exception of the
T = 100 sin component and the linear component a. We ignore the 7' = 2 sin component because
of its negligible magnitude.
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Figure 15: We fit all a € [0, 99] that do not end with 3 using a helix with 7' = [100], and project the
residual stream for a = 3,13, ...,93 onto the space. We find that there is continuity in the manifold,
which we take as evidence that numbers are represented as a nonlinear feature manifold.
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Figure 16: We replicate our patching results on Pythia-6.9B and Llama3.1-8B. The helical and
circular fits outperform baselines at most numbers of parameters.

Patching Experiments on gpt-j-68 w/ Traintest Split Randomized Helix Experiments on gpt-j-6B Patching Experiments on gpt-j-68
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Figure 17: Left When training the helix with 80% of a values and activation patching with the other
20% of a values, we see that the helix and circular fits still outperform the PCA baseline. Middle We
randomize a while fitting the helix and see that the randomized helix is not causally relevant. Right
We show that our results for fitting the a token can be extended to fitting the b token on the prompt
a + b with helix(b).

randomized helix is not causally relevant (middle of Fig. [T7), suggesting that the helix functional
form is not naturally over expressive. Finally, we demonstrate that our results hold when fitting the b
token on a + b with helix(b) (right of Fig. [I7). Note that when activation patching fits on the b token,

we use clean/corrupted prompt pairs of the form (a + b, a + b), in contrast to the (a’ + b, a + b) pairs
we used for the a token.

We perform an ablation experiment by ablating the columns of C from each h!,. In Fig. we see
that ablating the helix dimensions from the residual stream like this affects performance about as
much as ablating the entire layer, providing additional causal evidence that the helix is necessary for
addition. However, when we attempt to fit a with helix(a) for other tasks in Fig. we find that
while the fit is effective, it sometimes underperforms PCA baselines. This suggests that while the
helix is sufficient for addition, additional structure is required to capture the entirety of numerical

representations. For a description of the prompts used and accuracy of GPT-J on these other tasks,
see Table

Table 2: GPT-J’s task performance with corresponding domains, prompts, and accuracies.

Task Domain Prompt Accuracy
a— 23 a € [23,99] | Output ONLY a number. a-23= 89.61%
a//5 a € 0,99 Output ONLY a number. a//5= 97.78%
ax*x1.b a € |0,98 Output ONLY a number. a*1.5= 80.00%
a mod 2 a € 10,99 Output ONLY a number. a modulo 2= | 95.56%
r—a=0,z=|a€|0,99 Output ONLY a number. x-a=0, x= 95.56%
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Ablation Results for a+b= for a,b € [0,99]
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Figure 18: We find that ablating the helix dimensions from the residual stream is roughly as destructive
as ablating the entire layer, providing additional evidence that GPT-J uses a numerical helix to do
addition.
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Figure 19: When testing our helical fit on other numerical tasks, we find that it performs competently,
but does not always outperform the PCA baseline. This implies that additional structure may be
present in numerical representations.
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Figure 20: We present helical fits on the last token for Pythia-6.9B and Llama3.1-8B. The fits are
weaker for Llama3.1-8B, potentially indicating the use of non-Clock algorithms.

D ADDITIONAL CLOCK ALGORITHM EVIDENCE

We show that helix(a + b) fits last token hidden states for Pythia-6.9B and Llama3.1 8B in Fig.
[20 Notably, the results for Llama3.1-8B are less significant than those for GPT-J and Pythia-6.9B.
This is surprising, since the helical fit on the a token is causal for Llama3.1-8B in Fig. [I6] and is
a sign that Llama3.1-8B potentially uses additional algorithms to compute a + b. We hypothesize
that this might be due to Llama3.1-8B using gated MLPs, which could lead to the emergence of
algorithms not present in GPT-J and Pythia-6.9B, which use simple MLPs. [Nikankin et al.[(2024))’s
analysis of Llama3-8B’s top neurons in addition problems identifies neurons with activation patterns
unlike those we identified in GPT-J. Due to this evidence, along with the importance of MLPs in the
addition circuit, we consider it likely that Llama3.1-8B implements modified algorithms, but we do
not investigate further.

D.1 ATTENTION HEADS

In Fig. we use activation patching to show that a sparse set of attention heads are influential for
addition. In Fig. we find that patching in £ = 20 heads at once is sufficient to restore more than
80% of the total effect of patching all k& = 448 heads. In Fig. we also find that all attention heads
in GPT-J are well modeled using helix(a, b, a + b). We judge this by the fraction of a head’s total
effect recoverable when patching in a helical fit.

We categorize heads as a, b, a + b, and mixed heads using a confidence score (detailed in Section
[5.2). To make our categorization useful, we aim to categorize as few heads as mixed as possible. We
find that using m = 4 mixed heads is sufficient to achieve almost 80% of the effect of patching the
actual outputs of the k = 20 heads (Fig. [24), although using m = 0 mixed heads still achieves 70%
of the effect. In Fig. 25] we analyze the properties of each head type. a + b heads tend to attend to
the last token and occur in layers 19 onwards. a, b heads primarily attend to the a and b tokens and
occur prior to layer 18. Mixed heads attend to the a, b, and last tokens, and occur in layers 15-18.

To understand what each head type reads and writes to, we use a modification of the path patching
technique we have discussed so far. Specifically, we view mixed and a, b heads as “sender”” nodes,
and view the total effect of each downstream component if only the direct path between the sender
node and the component is patched in (not mediated by any other attention heads or MLPs). In Fig.
we find that both a, b and mixed heads generally impact downstream MLPs most. Similarly, we
consider mixed and a + b heads as “receiver” nodes, and patch in the path between all upstream
components and the receiver node to determine what components each head relies on to achieve its
causal effect. We find that a + b heads rely predominantly on upstream MLPs, while mixed heads use
both a, b heads and upstream MLPs. This indicates that mixed heads may have some role in creating
helix(a + b).

D.2 MLPS AND NEURONS

In Fig. we see that patching k¥ = 11 MLPs achieves 95% of the effect of patching all MLPs. We
consider these MLPs to be circuit MLPs. Zooming in at the neuron level, we find that roughly 1%
of neurons are required to achieve an 80% success rate on prompts while mean ablating all other
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Figure 21: A sparse set of attention heads have causal effects on the output when patched (total effect
visualized).
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Figure 22: Patching k£ = 20 heads at once restores more than 80% of model behavior of patching all
k = 448 heads.
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Figure 23: Attention head outputs are well modeled with helix(a, b, a + b). Total effect shown.
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Figure 24: m = 4 mixed heads are sufficient to achieve 80% of effect of patching in all k¥ = 20 heads
normally. Even using m = 0 mixed heads achieves 70% of the effect.
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Figure 25: Left a + b heads generally occur late in the network, while a, b heads occur earlier. Mixed
heads occur in middle layers. Middle a + b heads attend more to the last token. Right a,b heads
attend mostly to tokens a and b.

22



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Receiver Layer

Sender Layer

Figure 26: We present path patching results for top attention heads. In the top row, we view one a, b
head (L14H13) and one mixed head (L18H10) as senders. We plot the total effect of each downstream
component when only the path between the sender head and that component is patched into the model.
We find that both a, b and mixed heads write primarily to MLPs. Similarly, when viewing an a + b
head (L24H10) and mixed head (L18H10) as receivers, we see that that the a + b head is primarily
dependent on the output from preceding MLPs. While that is true for the mixed head as well, we see
that the mixed head also takes input from other a, b heads, implying that it could have some role in
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Figure 27: k = 11 MLPs are required to achieve 95% of the effect of patching in all MLPs.
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Figure 28: Top We see that using around 1% of top neurons and mean ablating the rest can restore the
model to 80% accuracy. Bottom When measuring logit difference, we find that mean ablating some
neurons on average increases the logit for the correct answer, but does not improve accuracy. We
choose not to investigate this further.

neurons (Fig. 28). Note the use of accuracy over logit difference as a metric in this case. Fig.
shows that ablating some neurons actually helps performance as measured by logit difference, while
hurting accuracy. To account for this seemingly contradictory result, we hypothesize that ablating
some neurons asymmetrically boosts the answer token across prompts, such that some prompts are
boosted significantly while other prompts are not affected. We do not investigate this further as it is
not a major part of our argument and instead use an accuracy threshold.

When plotting the distribution of top neurons across layers in Fig. we find that almost 75% of top
neurons are located in the £ = 11 circuit MLPs we have identified. We then path patch each of these
neurons to calculate their direct effect. In Fig. [30] we see that roughly 700 neurons are required to
achieve 80% of the direct effect of patching in all k& = 4587 top neurons. 84% of the top DE neurons
occur after layer 18, which corresponds with our claim that MLPs 19-27 primarily write the correct
answer to logits.

When we Fourier decompose the & = 4587 top neurons’ preactivations with respect to the value of
a + b in Fig. we see spikes at periods T' = [2, 5, 10, 100]. These are the exact periods of our
helix parameterization. To leverage this intuition, we fit the neuron preactivation patterns using the
helix inspired functional form detailed in Eq. |1 We use a stochastic gradient descent optimizer with
Ir = le — 1, epochs = 2500 and a cosine annealing learning rate scheduler to minimize the mean
squared error of the fit. In Fig. 32] we see that more important neurons with larger total effect are fit
better with this functional form, as measured by normalized root mean square error (NRMSE).
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Distribution of Top 1.0% Neurons Across Layers
Highlighting Circuit vs Non-Circuit MLPs
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Figure 29: When we analyze approximately 1% of last token neurons most causally implicated in
addition for GPT-J, we find that nearly 75% of them are in circuit MLPs, which is expected.

Cumulative Distribution of Path Patching Effects

T T TS
o 8 212 151§
g g8 S
£ 74 313 R
o’ glg o Distribution of Top 1% Neurons Across Layers
g 88 1T
S 6 - .
= < I: o 500 s 10P_Act Patch Neurons
= 5 \': I\': I\’: I\v: 61.3% in layers 19+
& :?: :°o :?: :?) 400 — Path Patch Neurons for 80.0% DE
% 4 - IE Ig Ig Ig 84.0% in layers 19+
o
< 5 [ g 300
= 11 1 8
® 24 | 200
3 11 I 1
E 1 b 100 o
O 11 [
0 -
T L1 T o T T T 0 T T
[ 1000 2000 3000 4000 [¢] 5 10 15 20 25
Number of Neurons Layer

Figure 30: Top We find that roughly 700 neurons achieve 80% of the direct effect of patching in all
k = 4587 high impact neurons. Bottom More than 80% of these high direct effect neurons are in
layers 19 onwards, which we have identified as being responsible for translating the a + b helix to
answer logits.
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Figure 31: Top neurons’ preactivations are periodic in a + b with top periods of T' = [2, 5, 10, 100].
Percentages shown for Fourier periods within 5% of T
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Helix Fit Quality vs Neuron Logit Difference
Top 1% Most Important Addition Neurons, gpt-j-6B
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Figure 32: When calculating the NRMSE of the helix inspired fit for neuron preactivations, we find
that more impactful neurons (with higher total effect) are typically fit better.
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Figure 33: We find that using a line with R? = 0.997 leads to addition that performs considerably
worse than GPT-J. We attribute this to the representational precision required to do addition along a
line, indicating a possible reason LLMs choose to use helical representations.

E WHY USE THE CLOCK ALGORITHM AT ALL?

We conjecture that LLMs use the Clock algorithm as a form of robust, error correcting code. If LLMs
used a linear representation of numbers to do addition, that representation would have to be extremely
precise to be effective.

To preliminarily test this conjecture, we take the first 50 PCA dimensions of the number representa-
tions for a € [0,99] in GPT-J after layer 0 and fit a line ¢ to it. The resulting line has an R? of 0.997,
indicating a very good fit. We consider all problems a; + as. We do addition on this line by taking
l(ar) + £(az). If £(a1) 4 £(az) is closest to £(a1 + az), we consider the addition problem successful.

We then take the percentage of successful addition problems where the answer a; + a9 is less
than some threshold «, and compare the accuracy as a function of a for GPT-J and linear addition.
Surprisingly, we find that for & = 100, linear addition has an accuracy of less than 20%, while GPT-J
has an accuracy of more than 80% (Fig. [33).

Thus, even with very precise linear representations, doing linear addition leads to errors. We interpret
LLMs use of modular circles for addition as a built-in redundancy to avoid errors from their imperfect
representations.

F INVESTIGATING MODEL ERRORS

Given that GPT-J implements an algorithm to compute addition rather than relying on memorization,
why does it still make mistakes? For problems where GPT-J answers incorrectly with a number, we
see that it is most often off by —10 (45.7%) and 10 (27.9%), cumulatively making up over 70% of
incorrect numeric answers (Fig[34). We offer two hypotheses for the source of these errors: 1) GPT-J
is failing to “carry” correctly when creating the a + b helix or 2) reading from the a + b helix to
answer logits is flawed.
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Figure 34: When GPT-J incorrectly answers an addition prompt (19.5% of the time), it answers with
a number more than half the time. That number is usually off by 10 or —10 from the correct answer.
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Figure 35: If GPT-J was struggling to “carry” when creating the a + b helix, we would expect the
ones digit of a and b to sum up to greater than 10 when the model is off by —10. However, we see
that this is not significantly more likely for when the error is —10 than when it is not —10.

We test the first hypothesis by analyzing the distribution of GPT-J errors. If carrying was the problem,
we would expect that when the model is off by —10, the units digits of a and b add up to 10 or more.
Using a Chi-squared test with a threshold of o = 0.05, we see that the units digit of ¢ and b summing
to more than 10 is not more likely for when the model’s error is —10 than otherwise (Fig. 33)). This
falsifies our first hypothesis. Thus, we turn to understanding how the a + b helix is translated to
model logits.

Since MLPs most contribute to direct effect, we begin investigating at the neuron level. We sort
neurons by their direct effect, and take the £ = 693 highest DE neurons required to achieve 80% of the
total direct effect (Fig[30). Then, we use the technique of LogitLens to understand how each neuron’s
contribution boosts and suppresses certain answers (see nostalgebraist (2020) for additional details).
For the tokens [0, 198] (the answer space to a + b), we see that each top DE neuron typically boosts
and suppresses tokens periodically (Fig. [36). Moreover, when we Fourier decompose the LogitLens
of the max activating a + b example for each neuron, we find that a neuron whose preactivation fit’s
largest term is cr, 445 in Eq. |Z|0ften has LogitLens with dominant period of 7} as well (Fig. . We
interpret this as neurons boosting and suppressing tokens with a similar periodicity that they read
from the residual stream helix with.

Despite being periodic, the neuron LogitLens are complex and not well modeled by simple trigono-
metric functions. Instead, we turn to more broadly looking at the model’s final logits for each problem
a+ b over the possible answer tokens [0, 198]. We note a similar distinct periodicity in Fig. When
we Fourier decompose the logits for all problems a + b, we find that the most common top period is
10 (Fig. . Thus, it is sensible that the most common error is 10, since a + b — 10, a + b+ 10 are
also strongly promoted by the model. To explain why —10 is a more common error than 10, we fit
a line of best fit through the model logits for all a + b, and note that the best fit line almost always
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Figure 36: Using the LogitLens technique, we analyze the contributions of the top neurons presented
in Fig. |§|for each neuron’s maximally activating a + b example.
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Figure 37: For all neurons with top a + b fit component with 7' = [2, 5,10, 100], we plot the
distribution of the top Fourier period in their LogitLens taken over the tokens [0, 198]. We see that a
neuron with top fitted period of 7; often has a LogitLens with top Fourier period T;. Surprisingly,
200 is a common Fourier period, possibly used to differentiate numbers in [0, 99] from [100, 198].
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Figure 38: We plot the final model logits over the token space [0, 198] for some randomly selected
examples. We see clear periodicity with a sharp period of 10, in addition to a general downward trend
indicating a preference for smaller answers.
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Figure 39: Top When we plot the slope of the best fit line over all logits, we see that the slope is often
negative, implying a bias towards smaller answers. Botfom When applying a Fourier decomposition
on the logits for all examples a + b over the token space [0, 198], we see that 10 is the most common
period. Note that we subtract out the fitted linear component first before applying the Fourier
transform.

has negative slope (Fig. [39), indicating a preference for smaller answers. This bias towards smaller
answers explains why GPT-J usually makes mistakes with larger a and b values (Fig. [8] Appendix [A).

G ToOOLING AND COMPUTE

We used the Python library nnsight to perform intervention experiments on language models
Kaufman et al.| (2024). All experiments were run on a single NVIDIA RTX A6000 GPU with 48GB
of VRAM. With this configuration, all experiments can be reproduced in two days.
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