
Published as a conference paper at ICLR 2025

TOWARDS IMPROVING EXPLORATION THROUGH
SIBLING AUGMENTED GFLOWNETS

Kanika Madan1, Alex Lamb2, Emmanuel Bengio3, Glen Berseth1, Yoshua Bengio1

ABSTRACT

Exploration is a key factor for the success of an active learning agent, especially
when dealing with sparse extrinsic terminal rewards and long trajectories. We in-
troduce Sibling Augmented Generative Flow Networks (SA-GFN), a novel frame-
work designed to enhance exploration and training efficiency of Generative Flow
Networks (GFlowNets). SA-GFN uses a decoupled dual network architecture,
comprising of a main Behavior Network and an exploratory Sibling Network, to
enable a diverse exploration of the underlying distribution using intrinsic rewards.
Inspired by the ideas on exploration from reinforcement learning, SA-GFN pro-
vides a general-purpose exploration and learning paradigm that integrates with
multiple GFlowNet training objectives and is especially helpful for exploration
over a wide range of sparse or low reward distributions and task structures. An
extensive set of experiments across a diverse range of tasks, reward structures and
trajectory lengths, along with a thorough set of ablations, demonstrate the superior
performance of SA-GFN in terms of exploration efficacy and convergence speed
as compared to the existing methods. In addition, SA-GFN’s versatility and com-
patibility with different GFlowNet training objectives and intrinsic reward meth-
ods underscores its broad applicability in various problem domains.

1 INTRODUCTION

Exploration is a fundamental aspect of a learning agent that is actively interacting with its environ-
ment and learning from the experience collected. A sufficient amount of exploration also leads to
a better generalization, enabling the agent to learn from a diverse set of experiences collected from
different regions of the underlying state space. In reinforcement learning, this is commonly referred
to as the exploration-exploitation trade-off (Sutton & Barto, 2018). An agent that only exploits and
doesn’t explore can get stuck and is unable to collect novel experiences to further improve its policy.
In the absence of any intermediate reward signals, the learning agent might need to traverse several
low or zero reward regions in order to discover the ones with high-rewards, making exploration a
non-trivial task, especially when faced with a large state space, sparse terminal reward signals and
complex reward distributions.

Manually designing dense rewards has been successful in many areas of robotics and games (Mnih
et al., 2015; Baker et al., 2019; Hafner et al., 2019), but this approach is not easy to design and
scale. Unstructured exploration based methods, such as ϵ-greedy or randomized probability match-
ing, are not able to effectively leverage any structure and hence are not efficient beyond simple
settings. Intrinsic motivation methods have been successfully used (Pathak et al., 2017; Burda
et al., 2018; Badia et al., 2020; Zhang et al., 2021) to guide exploration over a range of problems,
and are based on generating intrinsic rewards, or rewards internal to an agent, to encourage visiting
novel states. Random Network Distillation (RND) (Burda et al., 2018) is a commonly used intrinsic
reward method that is easy to use and scale, and generates intrinsic rewards defined in terms of an
evolving distance metric based on the fixed and learnt representations of a given state.

At the same time, for many scenarios such as biological sequence design (Jain et al., 2023) and
molecule generation (Bengio et al., 2021a), diversity can be an equally important aspect for the learnt
policy. While reinforcement learning (RL) methods are based on learning a reward-maximizing

01 Mila – Québec AI Institute, Université de Montréal, 2 Microsoft Research, 3 Valence Labs.
Corresponding author: madankanika.s@gmail.com

1

Published as a conference paper at ICLR 2025

policy that can sample from the highest mode of the distribution, generating diverse high-reward
solutions might be what we actually care about.

Generative Flow Networks, (GFlowNets; Bengio et al., 2021a), are amortized variational inference
algorithms that learn a stochastic forward policy π(a|s) to generate an object x in proportion to its
(positive) reward R(x). Unlike RL, GFlowNets can generate diverse high-rewarding candidates.
However, similar to RL, the training framework of GFlowNets is based on actively sampling trajec-
tories from the forward policy and learning from the corresponding terminal rewards. Therefore, the
success of a GFlowNet policy also depends on achieving a good exploration-exploitation trade-off
to ensure that the policy has been able to discover high-rewarding modes of the target distribution.

Some previous works, such as Malkin et al. (2022); Deleu et al. (2022); Madan et al. (2023); Pan
et al. (2023) have addressed improving credit assignment in GFlowNets, and Pan et al. (2022);
Rector-Brooks et al. (2023); Lau et al. (2023), have looked into exploration. However, the range
of exploration tasks that have been considered so far are limited to smaller objects to be generated,
relatively easier reward settings, and extremely sparse reward settings.

In this work, we aim to reduce this gap by proposing a general framework dubbed Sibling Aug-
mented Generative Flow Networks or SA-GFN, that can not only explore better, but can also
learn faster over a wide range of tasks that are not just limited to easy reward or extremely sparse
zero-reward settings previously considered. We also expand the set of previous exploration bench-
marks to include non-zero, yet difficult to explore, sparse reward structures, as well as challenging
sequence design problems for both short and long range trajectories. To our knowledge, this is the
first extensive evaluation focused on the exploration aspect of GFlowNets.

The main contributions of our work are the following:

1. We propose a novel general-purpose framework, called Sibling Augmented Genera-
tive Flow Networks or SA-GFN, that achieves much better exploration and training of
GFlowNets using intrinsic rewards and a disentangled dual network architecture.

2. We show the generality of SA-GFN, which is in principle compatible with any GFlowNet
objective and any intrinsic reward method, and hence is simple to work with.

Through an extensive set of experiments and ablations over a wide range of tasks and difficulty
levels, we establish the exploration benefits of SA-GFN compared to the previously introduced
methods.

2 RELATED WORK

2.1 INTRINSIC MOTIVATION BASED EXPLORATION METHODS

Intrinsic motivation based methods encourage exploration by providing additional intrinsic rewards,
i.e. rewards internal to the agent, for visiting unexplored regions of the state space.

Prediction Error based methods: Predictions from a learnt world dynamics model are compared
against the ground truth, and higher prediction errors provide higher intrinsic rewards (Achiam &
Sastry, 2017; Li et al., 2019), encouraging the policy to explore unknown regions of the distribution.

Novelty based methods: The intrinsic reward is defined in terms of an evolving distance metric
between the learnt embedding and a target embedding of the visited states. Count-based methods
are early examples of this class of methods (Bellemare et al., 2016; Ostrovski et al., 2017; Tang
et al., 2016), but these do not scale well. A more scalable variation is Random Network Distillation
or RND (Burda et al., 2018) in which representations from a randomly initialized target network are
distilled into a learnt network, providing an evolving distance metric; several works (Pathak et al.,
2017; Badia et al., 2020; Zhang et al., 2020; 2021) have built on this framework.

2.2 EXPLORATION FOR TRAINING GFLOWNETS

Similar to reinforcement learning, GFlowNets also face the problem of exploration when learning
over long trajectories, high-dimensional spaces, sparse rewards and non-uniform reward settings

2

Published as a conference paper at ICLR 2025

with difficult-to-explore reward structures. Connections between RL and GFlowNets have been
made in ?. Although intrinsic rewards were incorporated into the training objectives of GFlowNets
in Pan et al. (2022), only extremely sparse settings with zero rewards were considered, and we
empirically found it to not be able to explore well to more general, difficult and low (not necessarily
zero) reward settings (see Section 5). Rector-Brooks et al. (2023) used a variation of Thompson
Sampling using an ensemble of K forward policies to estimate uncertainty (Osband et al., 2016;
2018) to guide exploration. However, the size of such ensemble methods is a sensitive parameter
and these methods tend to not scale well. Lau et al. (2023) proposed to use a moving average copy
of the online network to be used as a sampler to stabilize training and improve exploration, but only
considered settings where exploration is not as much of an issue.

3 BACKGROUND

3.1 GFLOWNETS

Consider a directed acyclic graph (DAG), G = (S,A), such that S represents the set of nodes and A
represents the set of edges (s→ s′) ∈ A. Given an edge (s→ s′), s is called the parent of s′ and s′

is called the child of s. The DAG is called pointed because it has a unique root node with no parents,
also called source node or initial state s0. Terminal states do not have any children and belong to
the set X of objects that the GFlowNet policy could constructively sample through a sequence of
actions. A trajectory τ = (sm, sm+1, . . . , sn−1, sn) is formed by a sequence of actions (si → si+1)
and is called complete if sm = s0 and sn is a terminal state.

GFlowNets learn a stochastic forward policy π, that can take a sequence of actions to sequentially
generate an object x in proportion to its reward R(x). Each such action taken by the GFlowNet
modifies the state, for example by adding an element to the partially constructed object generated so
far, until the policy decides to stop and a terminal object x is generated, after which a corresponding
reward R(x) is provided by the environment. We emphasize that there are only terminal rewards
provided at the end of the trajectory.

3.2 GFLOWNETS TRAINING

Many training objectives have been defined for GFlowNets, such as Flow Matching objective (Ben-
gio et al., 2021a), Detailed Balance objective (Bengio et al., 2021b), Trajectory Balance objective
(Malkin et al., 2022) and SubTB(λ) objective (Madan et al., 2023), and these operate on the level of
the state, edge, full length (complete) trajectories and sub-trajectories of any lengths, respectively.
These training objectives are obtained by setting up a set of flow-matching constraints with the
property that when all these constraints are satisfied, the GFlowNet sampling policy has the desired
property that generates terminal states with probability proportional to the given reward function.
Each constraint can be turned into a loss, typically by taking the square of the logarithm of the ratio
of the right-hand side to the left-hand side of the equality constraint. Each loss term thus corresponds
to an amount of constraint violation. Training consists in sampling trajectories and measuring these
constraint violations (the loss) and its gradient on the parameters of interest. Furthermore, they all
enable off-policy training, i.e., these training trajectories can be sampled from any full-support dis-
tribution. However, some distributions will yield faster convergence because they focus on areas
where the rewards are higher and where the current policy has not yet explored.

The Flow Matching (FM) (Bengio et al., 2021a) objective parameterizes GFlowNets through edge
flows F (s→ s′; θ) on states s. The Detailed Balance (DB) (Bengio et al., 2021b) and the SubTB(λ)
(Madan et al., 2023) objectives paramaterize the state flow F (s; θ), forward policy PF (s

′|s; θ), and
backward policy PB(s|s′; θ) on actions s→ s′ to define a GFlowNet. The Trajectory Balance (TB)
(Malkin et al., 2022) objective works with complete trajectories, and parameterizes the GFlowNet
through an initial state flow Zθ, and forward and backward policies PF (s|s; θ), PB(s|s′; θ) respec-
tively. The flow-matching constraints represented by these parameterized quantities are converted
into a loss function by equating the left and right hand sides of the constraint equations as a squared
loss. The flow matching equation for the Trajectory Balance loss is shown in Eq. 1.

3

Published as a conference paper at ICLR 2025

Zθ

n−1∏
i=0

PFθ
(si+1|si) = R(sn)

n−1∏
i=0

PBθ
(si|si+1). (1)

4 SIBLING AUGMENTED GENERATIVE FLOW NETWORKS (SA-GFN)

Figure 1: Sibling Augmented Generative Flow
Networks (SA-GFN) has a decoupled architec-
ture, consisting of (a) a main Behavior Network
with policy πBN and (b) an exploratory Sibling
Network with policy πSN . Exploratory trajecto-
ries, τSN , sampled using intrinsic rewards from
policy πSN are (a) used to update the Sibling Net-
work and (b) relabeled with true rewards, τBN

SN

and combined with τSN to update the Behavior
Network.

We propose a flexible GFlowNet learning
framework, dubbed Sibling Augmented Gen-
erative Flow Networks or SA-GFN, that in-
corporates intrinsic rewards in a simple manner
and leverages the off-policy learning capabil-
ities of GFlowNets to learn from exploratory
data and better match the underlying energy
function. Specifically, SA-GFN uses Ran-
dom Network Distillation (RND) (Burda et al.,
2018) as intrinsic rewards, and has a disen-
tangled dual network architecture in which an
exploratory sibling policy provides exploratory
data to train the main behavior policy. By dis-
entangling exploration from learning, SA-GFN
enables simultaneous efficient exploration and
effective learning.

RND-based intrinsic rewards are defined such
that states with higher novelty reap larger in-
trinsic rewards. However, directly incorporat-
ing a continuously evolving reward into the
training objective of GFlowNets makes the tar-
get reward distribution a moving target; this
can negatively impact learning. We empiri-
cally show that by disentangling the exploration
network (trained using the RND based intrin-
sic rewards) from the main behavior network
(trained using rewards from the true distribu-
tion), the proposed SA-GFN achieves a better
exploration and learning of the underlying dis-
tribution.

4.1 SA-GFN ARCHITECTURE

Sibling Augmented Generative Flow Networks
(SA-GFN) adopts a decoupled architecture
consisting of two separate networks: a Sibling
Network and a Behavior Network. The Behav-
ior Network is the main GFlowNet that aims to
learn the true target reward distribution, while
the Sibling Network is an exploratory policy
network that uses intrinsic rewards to explore
the space. The exploratory data collected by the
Sibling Network is relabeled with the true re-
wards (Andrychowicz et al., 2017), and is com-
bined with the on-policy data collected by the Behavior Network to train its forward policy. The
off-policy learning capabilities of GFlowNets and relabeling of trajectories frees the Behavior Net-
work from the task of modeling the continuously evolving intrinsic rewards, enabling SA-GFN to
achieve an efficient exploration.

The main components of the proposed SA-GFN architecture are as follows.

4

Published as a conference paper at ICLR 2025

Intrinsic Reward Network: This module generates intrinsic rewards for a given set of sampled
trajectories. In SA-GFN, we use Random Network Distillation (RND) (Burda et al., 2018) to com-
pute these intrinsic rewards in which a randomly generated target network is distilled into a learnt
predictor network. As a consequence, novel states, or those that are difficult to predict, tend to reap
higher intrinsic rewards. In principle, any other intrinsic reward as well as extensions of RND can
be used and we provide the evidence for this in Section 10.3.

Sibling Network: The Sibling Network uses intrinsic reward based exploration to sample tra-
jectories τSN according to the reward rSN

τ defined in Eq. 2, where βeSN
, βi and βSN are the

hyperparameters for the reward exponents, and rit, r
e
t represent the intrinsic and extrinsic rewards,

respectively, at time t. Any of the GFlowNet training objectives discussed in Section 3.2 can be used
to train the Sibling Network using (τSN , rSN

τ). We use the TB loss in our experiments, and provide
extension to the other GFlowNet objectives in Section 10.4.

rSN
τ = ((ret)

βeSN + (
∑
t

rit)
βi)βSN . (2)

Algorithm 1: Sibling Augmented Generative
Flow Networks (SA-GFN)
Require: Sibling Network or SN:

PSN
F (s′|s), PSN

B (s|s′), ZSN ; Behavior
Network or BN:
PBN
F (s′|s), PBN

B (s|s′), ZBN ; random target
network: ϕ̄; predictor network: ϕ;

1: Input
2: βeBN

, βeSN
: reward exponents for extrinsic

rewards, ret , for Behavior Network and
Sibling Network ;

3: βi: reward exponent for intrinsic rewards rit;
4: βSN , βBN : reward exponents for final

rewards of Sibling Network and Behavior
Network;

5: for each training iteration do
6: Collect trajectories τSN using the forward

policy PSN
F (s′|s) of the Sibling Network

7: Compute reward rSN
τ for Sibling Network

using Eq. 2.
8: // Update the Sibling Network

Compute LSN (τSN , rSN
τ) using Eq. 1 and

update the Sibling Network
PSN
F (s′|s), PSN

B (s|s′), ZSN .
9: Collect trajectories τBN & extrinsic

rewards rBN
τ using the forward policy

PBN
F (s′|s) of the Behavior Network.

10: Relabel: (τBN
SN , rSN

τ)← (τSN , ret)
11: Update: τBN ← {τBN ∪ τBN

SN }
12: Update: rBN

τ ← {rBN
τ ∪ rSN

τ }
13: // Update the Behavior Network

Compute LBN (τBN , rBN
τ) using Eq. 1

and update the Behavior Network
PBN
F (s′|s), PBN

B (s|s′), ZBN

14: // Update the Intrinsic Reward Network
Update the intrinsic reward network ϕ
using RND loss ||ϕ̄(s)− ϕ(s)||2

15: end for

Behavior Network: The Behavior Net-
work is the main GFlowNet that learns to
sample according to a given extrinsic re-
ward function. The Behavior GFlowNet
learns from two sets of trajectories: (a) on-
policy trajectories and corresponding re-
wards (τBN , rBN

τ) generated by the for-
ward policy of the Behavior Network,
and (b) exploratory trajectories generated
by the Sibling Network with relabeled
rewards, denoted by (τBN

SN , ret). Since
GFlowNets can be trained off-policy, the
two sets of trajectories are combined
({τBN∪τBN

SN }, {rBN
τ

⋃
ret }) and are used

together to train the Behavior Network.

By decoupling the training of the main
Behavior Network from that of the ex-
ploratory Sibling Network, any optimiza-
tion instabilities arising from a continu-
ously changing intrinsic rewards do not
have a negative impact on the training
of the main Behavior Network. Instead,
learning from the exploratory data gen-
erated by the Sibling Network allows a
very efficient exploration of the target dis-
tribution, and an extensive set of exper-
iments over a diverse set of reward set-
tings corroborate this in Section 5. More-
over, this decoupling makes the SA-GFN
framework general enough that any of
the GFlowNet training objectives and any
of the variants of intrinsic rewards can
be seamlessly incorporated, as empirically
shown in Sections 10.4 and 10.3.

4.2 SA-GFN TRAINING OBJECTIVES

Any of the GFlowNet training objectives
from Section 3.2 can be used to train the
Behavior and Sibling networks of the SA-
GFN architecture. Trajectories generated

5

Published as a conference paper at ICLR 2025

10000 20000

10 4

10 3

10 2

L1
 e

rro
r

8 × 8

10000 20000
10 6

10 5

10 4

10 3

L1
 e

rro
r

32 × 32

10000 20000
10 7

10 6

10 5

10 4

L1
 e

rro
r

64 × 64

10000 20000

10 4

4 × 10 5

6 × 10 5L1
 e

rro
r

128 × 128
SA-GFN
GAFN
RND
GFN

Figure 2: For a Sparse HyperGrid with zero-rewards, SA-GFN outperforms all other baselines, high-
lighting faster convergence, efficient exploration, and better learning of the true reward distribution.

by the Sibling Network are relabeled with true extrinsic rewards (Andrychowicz et al., 2017) to train
the Behavior Network using off-policy learning. To encourage visiting novel states, the Intrinsic
Reward Network is based on, but not limited to (as shown in 10.3), RND (Burda et al., 2018). Full
algorithm is laid out in Algo 1 and Figure 1.

4.3 HYPOTHESIZED BENEFITS OF SA-GFN

In addition to improving exploration, we hypothesize the following other benefits of SA-GFN.

Better Training Learning only from a terminal rewards can severely limit the training efficiency
of an agent. Having intermediate rewards, such as intrinsic rewards, can induce a more efficient
exploration. However, since GFlowNets learn to match a fixed target reward distribution, using non-
stationary rewards during training creates moving targets, leading to inefficiencies during training.
The proposed SA-GFN decouples exploration from training by using a separate Sibling Network
to generate exploratory trajectories that are relabeled and used to train the main Behavior Network.
The target reward distribution of the Behavior Network thus stays unchanged, while experience from
unexplored regions of the distribution is being constantly fed, allowing SAGFN to explore better as
compared to the single network variants, as evident through results shown in Section 5.

Flexible & Expandable Architecture SA-GFN allows using any of the GFlowNet training
objectives and architectures to train the models, shown in 10.4. Moreover, other intrinsic reward
methods, including extensions of RND, can be used for the Intrinsic Reward Module of the Sibling
Network, as shown in 10.3. SA-GFN also allows us to use other techniques to improve training,
such as a replay buffer, multiple heads or ensemble (Rector-Brooks et al., 2023), other exploration
focused variants of GFlowNets, reward exponents and tempered policies (Kim et al., 2024).

5 EXPERIMENTS

To evaluate SA-GFN against other baselines, we address the following research questions:

1. Number of discovered modes: We track the number of modes learnt by each method over
a diverse range of task structures and reward settings; Section 5.1 and 5.2.

2. Learning of the true reward distribution: We measure the L1 error between the true
reward distribution and the learnt empirical distribution for each method, Section 5.1. We
also visualize the learnt empirical distributions at the end of the training to compare against
the true reward; Section 10.7.

3. Efficient exploration under a variety of tasks and reward structures: We extend the range
of tasks to cover a wide range of difficult exploration settings and difficult to explore reward
structures; Section 5.1, 5.2 and 5.3.

4. Robustness to trajectory length and size of the action space: We test all methods over
a large range of trajectory lengths and varying dimensionalities of the action space for
multiple domains and task structures; Section 5.1, 5.2.

To evaluate on a wide range of exploration tasks, we conducted experiments on the following four
domains, which to our knowledge covers the widest range of exploration settings considered so far:
(a) Sparse Zero-Reward HyperGrid: Hypergrid with zero-reward regions; (Section 5.1.1), (b) Sparse

6

Published as a conference paper at ICLR 2025

0 2 4 6

0

1

2

3

4

5

6

7

0 2 4 6

0

1

2

3

4

5

6

7

Figure 3: Sparse Rewards: [Left] zero rewards [Right] very low non-zero rewards, and high-reward
corners.

100 102 104
10 3

10 2

L1
 e

rro
r

8 × 8

100 102 104

2 × 10 3

3 × 10 3
4 × 10 3

6 × 10 3

L1
 e

rro
r

16 × 16

100 102 104

10 4

10 3

L1
 e

rro
r

32 × 32

100 102 104

10 4

10 3

L1
 e

rro
r

48 × 48

100 102 104

10 4

L1
 e

rro
r

64 × 64

100 102 104
10 5

10 4

L1
 e

rro
r

80 × 80

100 102 104

10 4

L1
 e

rro
r

96 × 96

100 102 104

10 5

10 4

L1
 e

rro
r

112 × 112

100 102 104

10 5

10 4

L1
 e

rro
r

128 × 128

100 102 104

10 5

10 4

L1
 e

rro
r

136 × 136

100 102 104

10 5

10 4

L1
 e

rro
r

144 × 144

100 102 104

10 5

L1
 e

rro
r

152 × 152

SA-GFN
GAFN
RND
GFN

100 102 104

2 × 10 4

3 × 10 4

4 × 10 4

L1
 e

rro
r

8 × 8 × 8 × 8

100 102 104

10 5

L1
 e

rro
r

16 × 16 × 16 × 16

100 102 104

10 6

6 × 10 7

2 × 10 6

L1
 e

rro
r

32 × 32 × 32 × 32

100 102 104

10 7

1.05 × 10 7

1.1 × 10 7

1.15 × 10 7

1.2 × 10 7

L1
 e

rro
r

64 × 64 × 64 × 64

SA-GFN
GAFN
RND
GFN

Figure 4: For the Sparse HyperGrid with a low-reward, yet difficult to explore, setting, SA-GFN
outperforms all other baselines methods, highlighting its benefits in terms of faster convergence,
efficient exploration, and a better learning of the underlying true reward distribution.

Low-Reward HyperGrid: HyperGrid with regions of very low, non-zero, difficult to explore rewards
(Section 5.1.2), (c) Bit Sequence Task: from Malkin et al. (2022) involving auto-regressive gener-
ation of sequences of varying lengths and vocabulary sizes (Section 5.2), and (d) Small Molecule
Generation: from (Bengio et al., 2021a), involving generation of sEH protein binders (Section 5.3).

5.1 HYPERGRID

The HyperGrid environment is a d-dimensional grid of size H ×H × · · · ×H with an initial state
s0: (0, 0, . . . , 0). To ensure a DAG structure, each action increments one of the d coordinates by
one without leaving the grid, with an additional stop action to end the trajectory.

7

Published as a conference paper at ICLR 2025

0 100

0

50

100

SA-GFN

0 100

0

50

100

GAFN

0 100

0

50

100

RND

0 100

0

50

100

GFN TB

0 100

0

50

100

PPO

Figure 5: SA-GFN learns all the four modes of the distribution while other methods cannot, showing
their poor exploration properties in a Sparse HyperGrid with difficult to explore rewards setting.

In order to evaluate over a broad spectrum of hard exploration problems, we control exploration
difficulty through the following:

Grid size: Larger grids necessitate traversing longer trajectories through very low reward or sparse
reward spaces in order to find high rewarding modes. Thus, larger the grid, harder the exploration.

Grid Dimensionality: A HyperGrid spanning multiple dimensions can be difficult to explore,
even for shorter trajectories. For example, a 2-dimensional grid with H = 100 and a 4-dimensional
grid with H = 10 have the same number of terminal states, but pose different exploration challenges.

Reward Density: Extremely spare reward structures, where the reward is zero unless a mode is
reached, pose an important exploration problem. At the same time, low-reward non-zero sparse
reward structures can also be very difficult to explore and are more common to find.

5.1.1 SPARSE HYPERGRID WITH ZERO REWARDS

We first consider the Sparse HyperGrid setting from (Pan et al., 2022), Figure 3[Left], where the
reward is +1 only at the three corners and 0 otherwise. Exploration difficulty is controlled through
the length of horizon: larger values of H make discovering the modes harder. We compare SA-
GFN with a number of strong baselines such as GAFN (Pan et al., 2022), GFN with Trajectory
Balance (Malkin et al., 2022), and RND with a single GFN architecture (Burda et al., 2018). We
find that across all grid sizes, SA-GFN substantially outperforms all baseline methods in terms of
faster convergence, efficient exploration, and an overall better learning of the underlying reward
distribution as measured by the L1 error between the empirical distribution and the true distribution,
see Figure 2.

5.1.2 SPARSE HYPERGRID WITH HARD TO EXPLORE REWARDS

We now consider a low-reward sparse HyperGrid with a difficult to explore reward structure. In this
HyperGrid, high-rewarding modes are placed at the 2d corners of a d-dimensional grid and relatively
low (but non-zero) reward regions are located through the rest of the grid, see Figure 3[Right]. These
low reward regions separating the high reward modes make mode discovery challenging.

The structure of the reward is the similar to the experiments in Malkin et al. (2022), and we consider
the following two hard to explore reward settings: (R0 = 10−4, R1 = 1.0, R2 = 3.0) and (R0 =
10−5, R1 = 1.0, R2 = 3.0). The difficulty of exploration is controlled via reward density, grid size
and action-space dimensionality. Compared to the strong baselines of GAFN (Pan et al., 2022), GFN
with Trajectory Balance (Malkin et al., 2022), and RND policy with a single network architecture
(Burda et al., 2018), we find that SA-GFN performs a much better exploration and a better matching
of the underlying distribution, see Figure 4 and Section 10.2. Additional results are in Section 10.5.

We further visualize the distributions learnt by SA-GFN and other methods, and find that across all
grid lengths, SA-GFN discovers all four modes of the distribution, while other methods are able to
discover only a subset of the modes, corroborating the benefits provided by SA-GFN, Figure 5.

Additional Experiments on higher-dimensional HyperGrids (d = 6, 8) are detailed in 10.1 and
Figure 9, and for rewards setting (R0 = 10−5, R1 = 1.0, R2 = 3.0) in 10.2. Moreover, visualiza-

8

Published as a conference paper at ICLR 2025

tions of the learnt distributions corresponding to Figure 4 are provided in Figure 18 and Figure 19,
with a further discussion in Section 10.7, to highlight the better exploration properties of SA-GFN.

5.2 BIT SEQUENCE GENERATION

Taken from Malkin et al. (2022), this is a auto-regressive sequence generation problem. At each time
step, the policy adds a k-bit token to the end of the partial sequence generated so far, and the final
fixed length (n = 120) sequence (X ∈ {0, 1}n) is auto-regressively generated from left to right.
For a fixed sequence length, by varying the values of k, the actual length of the trajectory (nk) and
the size of the action space or vocabulary (|V | = 2k) can be efficiently controlled without changing
the domain. The form of the reward function is defined in terms of a pre-defined fixed set of modes
M ∈ X and is completely unknown to the learning agent until it visits a terminal state and obtains
the value of the reward function at that terminal state. For a given sequence x ∈ X , the reward is
defined in terms of the edit distance d as: R(x) = exp(−miny∈M d(x, y)).

2 4 6 8 10
Number of Bits in Action Space

20

30

40

50

Nu
mb

er
of

M
od

es
fou

nd SA-GFN
GAFN
TB GFN

0 10000 20000 30000 40000 50000
Training Steps

0
10
20
30
40

Nu
mb

er
of

M
od

es SA-GFN
GAFN
TB GFN
FM GFN
A2C - Entropy
Soft Actor-Critic
MCMC

2 4 6 8 10
Number of Bits in Action Space

0.2

0.4

0.6

Sp
ea

rm
an

 C
orr

ela
tio

n (
p,

r)

SA-GFN
TB GFN
FM GFN
A2C - Entropy
Soft Actor-Critic
MCMC

Figure 6: [Top] For all values of k ∈
{1, 2, 4, 6, 8, 10}, SA-GFN finds the highest num-
ber of modes, [Center] discovers more modes
faster (shown for k = 1), [Bottom] has the high-
est Spearman correlation between the reward on a
test set and the sampling probability for all k.

We evaluate the following three metrics to
test the effectiveness of exploration: (a) num-
ber of modes discovered for all values of
k = {1, 2, 4, 6, 8, 10}, Figure 6[Top], (b)
speed of mode discovery for k = 1 hav-
ing the longest trajectories, Figure 6[Center],
and (c) the Spearman correlation between the
probability of generating a sequence p(x) =
F (x)/Z and its reward R(x) on a uniformly
sampled test set, Figure 6[Bottom]. SA-GFN
is compared with the baseline methods of
GFlowNets with FM (Bengio et al., 2021a) and
TB (Malkin et al., 2022), A2C reinforcement
learning with Entropy Regularization (Williams
& Peng, 1991; Mnih & Gregor, 2014) , Soft
Actor-Critic (Christodoulou, 2019; Haarnoja
et al., 2017), and MARS (Xie et al., 2021), an
MCMC method. For all of these three metrics,
we find that SA-GFN (a) discovers more modes
for all values of k, (b) maintains a high corre-
lation between the probability of generating a
sequence x and its reward R(x), and (c) discov-
ers more modes much faster when compared to
other strong methods, see Figure 6, proving its
robustness to the size of the action space and its
effectiveness to do a better exploration.

5.3 SMALL MOLECULE GENERATION

We further consider a more practical task
of Molecule Generation from (Bengio et al.,
2021a) that involves generation of binders of
sEH protein (soluble epoxide hydrolase), and
has a large state space of the order of 1016

and between 100 and 2000 actions depending
on the state. We compare SA-GFN, with five
other strong baselines: (a) GAFN (Pan et al.,
2022), (b) GFN: GFlowNets trained with FM
objective (Bengio et al., 2021a), (c) PPO-RND: PPO with RND rewards (Burda et al., 2018),
(d) PPO (Schulman et al., 2017) and (e) MARS (Xie et al., 2021). We evaluate the (a) aver-
age reward generated by the top-10 unique molecules, (b) average Tanimoto similarity for top-
10 samples, see Figure 7[Left] and Figure 7[Center], and find that SA-GFN, achieves the highest
reward and has the lowest Tanimoto similarity, emphasizing high quality diverse generated can-
didates. We also include results for Tanimoto similarity for top-k generated molecules, where

9

Published as a conference paper at ICLR 2025

MARS PPO PPO-RND GFN GAFN SA-GFN0

2

4

6

8

Av
g R

ew
ard

 (t
op

 10
)

MARS PPO PPO-RND GFN GAFN SA-GFN0.0
0.1
0.2
0.3
0.4
0.5

Ta
nim

oto
 Si

mi
lar

itie
s (

top
 10

)

20 40 60 80 100
Top K

0.275
0.300
0.325
0.350
0.375

Ta
nim

oto
 Si

mi
lar

itie
s GFN

GAFN
SA-GFN

Figure 7: We find that SAGFN [Left] generates the highest reward, [Center] achieves the highest
diversity in terms of Tanimoto Similarity (lower is better) of the generated molecules, and [Right]
generates most diverse top-k molecules for k = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

k = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] and find that SA-GFN consistently generates molecules
with higher diversity, showing its better exploration properties, Figure 7[Right].

6 ABLATION STUDIES

5000 10000 15000 20000
Update

10 6

10 5

10 4

10 3

L1
 e

rro
r

SA-GFN
GAFN
edge_aug
state_aug

200 400 600 800 1000
Update

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f M
od

es

SA-GFN
GAFN
edge_aug
state_aug

5000 10000 15000 20000
Update

10 6

10 5

10 4

10 3

L1
 e

rro
r

SA-GFN
GAFN
GFN tempered (TB)

Figure 8: [Left] SA-GFN explores more efficiently & [Center] discovers modes faster as compared
to state-only and egde-only intrinsic reward based single network architectures. [Right] Simple
exploration methods, such as tempered policy logits, are not sufficient to ensure a good exploration.

SA-GFN vs state and edge based augmentations: We evaluated SA-GFN against a single-
network variant with state & edge-level intrinsic reward augmentations for sparse reward setting
and found the SA-GFN’s decoupled architecture allows faster exploration and better learning of the
distribution, Figure 8[Left] and Figure 8 [Center].

SA-GFN vs simpler exploration: Simple exploration, such as tempering logits, and entropy
based methods such as SAC (Haarnoja et al., 2017), do not explore well, Figure 8[Right], 10.6 and
10.5.

7 DISCUSSION & CONCLUSION

We introduce Sibling Augmented Generative Flow Networks, or SA-GFN, that adopts a dual net-
work architecture to disentangle exploration from learning, and leverages off-policy learning and
trajectory relabeling to learn a behavior policy from exploratory data. SA-GFN provides an effi-
cient exploration strategy and an easy integration of intrinsic rewards with the existing GFlowNet
objectives, outperforming all other strong baselines over a wide range of exploration tasks.

Limitations and Future Work: SA-GFN maintains two separate networks, and future works could
explore a single network variant by using two-headed architecture, for example. Multiple sibling
networks (or heads) could also be incorporated to further improve exploration.

10

Published as a conference paper at ICLR 2025

REFERENCES

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement
learning. CoRR, abs/1703.01732, 2017.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. CoRR,
abs/1707.01495, 2017.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Zhaohan Daniel Guo, Bilal
Piot, Steven Kapturowski, Olivier Tieleman, Martı́n Arjovsky, Alexander Pritzel, Andrew Bolt,
and Charles Blundell. Never give up: Learning directed exploration strategies. CoRR,
abs/2002.06038, 2020.

Bowen Baker, Ingmar Kanitscheider, Todor M. Markov, Yi Wu, Glenn Powell, Bob McGrew, and
Igor Mordatch. Emergent tool use from multi-agent autocurricula. CoRR, abs/1909.07528, 2019.

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi
Munos. Unifying count-based exploration and intrinsic motivation. CoRR, abs/1606.01868, 2016.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. CoRR,
abs/2106.04399, 2021a.

Yoshua Bengio, Tristan Deleu, Edward J. Hu, Salem Lahlou, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. CoRR, abs/2111.09266, 2021b.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random network
distillation. CoRR, abs/1810.12894, 2018.

Petros Christodoulou. Soft actor-critic for discrete action settings. CoRR, abs/1910.07207, 2019.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks, 2022. URL
https://arxiv.org/abs/2202.13903.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. CoRR, abs/1702.08165, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018.

Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learn-
ing behaviors by latent imagination. CoRR, abs/1912.01603, 2019.

Moksh Jain, Emmanuel Bengio, Alex-Hernandez Garcia, Jarrid Rector-Brooks, Bonaventure F. P.
Dossou, Chanakya Ekbote, Jie Fu, Tianyu Zhang, Micheal Kilgour, Dinghuai Zhang, Lena
Simine, Payel Das, and Yoshua Bengio. Biological sequence design with gflownets, 2023. URL
https://arxiv.org/abs/2203.04115.

Minsu Kim, Joohwan Ko, Taeyoung Yun, Dinghuai Zhang, Ling Pan, Woochang Kim, Jinkyoo Park,
Emmanuel Bengio, and Yoshua Bengio. Learning to scale logits for temperature-conditional
gflownets, 2024. URL https://arxiv.org/abs/2310.02823.

Elaine Lau, Nikhil Vemgal, Doina Precup, and Emmanuel Bengio. DGFN: double generative flow
networks. CoRR, abs/2310.19685, 2023.

Boyao Li, Tao Lu, Jiayi Li, Ning Lu, Yinghao Cai, and Shuo Wang. Curiosity-driven exploration for
off-policy reinforcement learning methods. In 2019 IEEE International Conference on Robotics
and Biomimetics, ROBIO 2019, Dali, China, December 6-8, 2019, pp. 1109–1114. IEEE, 2019.

11

https://arxiv.org/abs/2202.13903
https://arxiv.org/abs/2203.04115
https://arxiv.org/abs/2310.02823

Published as a conference paper at ICLR 2025

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-
drei Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from partial
episodes for improved convergence and stability, 2023. URL https://arxiv.org/abs/
2209.12782.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. CoRR, abs/2201.13259, 2022.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks, 2014.
URL https://arxiv.org/abs/1402.0030.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518:529–533, 2015.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. CoRR, abs/1602.04621, 2016.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning, 2018. URL https://arxiv.org/abs/1806.03335.

Georg Ostrovski, Marc G. Bellemare, Aäron van den Oord, and Rémi Munos. Count-based explo-
ration with neural density models. CoRR, abs/1703.01310, 2017.

Ling Pan, Dinghuai Zhang, Aaron C. Courville, Longbo Huang, and Yoshua Bengio. Generative
augmented flow networks. CoRR, abs/2210.03308, 2022.

Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of gflownets with
local credit and incomplete trajectories. In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. CoRR, abs/1705.05363, 2017.

Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath
Chandar, Nikolay Malkin, and Yoshua Bengio. Thompson sampling for improved exploration in
gflownets, 2023. URL https://arxiv.org/abs/2306.17693.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. #exploration: A study of count-based exploration for deep
reinforcement learning. CoRR, abs/1611.04717, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

Ronald Williams and Jing Peng. Function optimization using connectionist reinforcement learning
algorithms. Connection Science, 3:241–, 09 1991. doi: 10.1080/09540099108946587.

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. MARS:
Markov molecular sampling for multi-objective drug discovery. International Conference on
Learning Representations (ICLR), 2021.

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E. Gonzalez, and
Yuandong Tian. Bebold: Exploration beyond the boundary of explored regions. CoRR,
abs/2012.08621, 2020.

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gonzalez, and Yuan-
dong Tian. Noveld: A simple yet effective exploration criterion. Curran Associates, Inc., 2021.

12

https://arxiv.org/abs/2209.12782
https://arxiv.org/abs/2209.12782
https://arxiv.org/abs/1402.0030
https://arxiv.org/abs/1806.03335
https://arxiv.org/abs/2306.17693
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

Published as a conference paper at ICLR 2025

8 APPENDIX

9 EXPERIMENTAL DETAILS

9.1 EXPERIMENTAL DETAILS: SPARSE REWARD HYPERGRID WITH ZERO REWARDS

The Sparse reward HyperGrid setting consists of reward of +1 at the three corners of the grid (except
the starting corner), and a reward of 0 everywhere else, as visualized in Figure 3[Left]. We use
increasing grid sizes with H ∈ {8, 32, 64, 128}. The reward function parameters and architecture
choices are based on the published codebase of Malkin et al. (2022) and Pan et al. (2022). For
both Sibling Network and Behavior Network, a shared network architecture with multiple heads to
parameterize the GFlowNet parameters PF , PB , F is used.

All models are trained with Adam optimizer with a batch size of 16 for a total of 20000 up-
dates and 3 seeds. The learning rate is chosen from {0.001, 0.005, 0.01, 0.03} for the forward
and backward policies PF and PB with the trajectory balance objective (Malkin et al., 2022),
and the learning rate of the Zθ is 10× learning rates of PF and PB . Reward temperatures
values of {βeBN

= 1.0, βeSN
= 0.25, βSN = 1.0, βBN = 1.0, βi = 1.0} are used. For

intrinsic rewards, we choose RND rewards with the intrinsic reward coefficient chosen from
{0.00005, 0.00001, 0.0005, 0.0001, 0.005, 0.001, 0.05, 0.01}

9.2 EXPERIMENTAL DETAILS: SPARSE HYPERGRID WITH DIFFICULT TO EXPLORE REWARDS

This version of the Sparse HyperGrid has a reward distribution as shown in Figure 3[Right],
such that high reward ”regions” are located at the 2d corners of a d-dimensional grid, with
low-reward regions everywhere else. We run all experiments on horizon sizes from H ∈
{8, 16, 32, 48, 64, 80, 96, 112, 128, 136, 144, 152}. The reward structure is defined as in Malkin et al.
(2022) and reward function parameters of {R0 = 1e−4, R1 = 1.0, R2 = 3.0}. For both Sibling
Network and Behavior Network, a shared network architecture with multiple heads to parameterize
the GFlowNet parameters PF , PB , F is used, and is based on the published codebase of (Malkin
et al., 2022).

All models are trained with Adam optimizer with a batch size of 16 for a total of 106 trajec-
tories (62500 batches) and 3 seeds. The learning rate is chosen from {0.001, 0.005, 0.01, 0.03}
for the forward and backward policies PF and PB with the trajectory balance objective (Malkin
et al., 2022), and the learning rate of the Zθ is 10× learning rates of PF and PB . Reward tem-
peratures values of {βeBN

= 1.0, βeSN
= 0.25, βSN = 1.0, βBN = 1.0, βi = 1.0} are used.

For intrinsic rewards, we choose RND rewards with the intrinsic reward coefficient chosen from
{0.00005, 0.00001, 0.0005, 0.0001, 0.005, 0.001, 0.05, 0.01}.

9.3 EXPERIMENTAL DETAILS: BIT SEQUENCES

For this task, a maximum sequence length of 120 is considered for k ∈ {1, 2, 4, 6, 8, 10} and the
respective vocabulary size of 2k. All methods use a Transformer based architecture (Vaswani et al.,
2017), with 3 layers, 64 dimension, and 8 attention heads and the definition of modesM, set of test
sequences, distance metric are the same as in (Malkin et al., 2022). Reward temperatures values of
{βeBN

= 1.0, βeSN
= 1.0, βSN = 3.0, βBN = 3.0, βi = 1.0} are used. Adam optimizer is used for

all methods with a batch size of 16 and 50000 iterations over 3 seeds. The learning rate is chosen
from {0.001, 0.005, 0.01, 0.03} for all model parameters (except for Zθ), and the learning rate for
Zθ is chosen to be 10× the learning rate of all other parameters.

9.4 EXPERIMENTAL DETAILS: SMALL MOLECULE

All the experiments expand on the published code of Bengio et al. (2021a) and Malkin et al. (2022).
All models are trained for a maximum of 50000 batches of 4 trajectories each. The proxy model
giving the reward, the held-out set of molecules used to compute the correlation metric, and the
GFlowNet model architecture and its hyperparameters are taken from Bengio et al. (2021a) and
Malkin et al. (2022).

13

Published as a conference paper at ICLR 2025

100 102 104

4 × 10 6

5 × 10 6

6 × 10 6

7 × 10 6

L1
 e

rro
r

8 × 8 × 8 × 8 × 8 × 8

100 102 104

10 7

8 × 10 8

9 × 10 8L1
 e

rro
r

8 × 8 × 8 × 8 × 8 × 8 × 8 × 8

100 102 104

10 7

7 × 10 8

8 × 10 8

9 × 10 8

L1
 e

rro
r

16 × 16 × 16 × 16 × 16 × 16

SA-GFN
GAFN
RND
GFN

Figure 9: SA-GFN performs a better exploration and learns the underlying distribution much faster
when compared to other methods even in high-dimensional HyperGrids (d = 6, 8) with high-
dimension action spaces.

10 ADDITIONAL EXPERIMENTS

10.1 HYPERGRIDS SPANNING HIGHER DIMENSIONS

In order to test exploration capabilities of SA-GFN in the case of high-dimensional action spaces and
multi-dimensional HyperGrids, we conducted experiments on the Sparse HyperGrid from Section
5.1.2 and use the same baselines as reported in Sections 5.1.1 and 5.1.2.

We found that SA-GFN outperforms all other methods even when the HyerGrid is extended to
multiple dimensions and the dimensionality of the action space is increased, Figure 9. We can see
that SA-GFN explores and matches the underlying distribution much better than the other baselines.

10.2 ADDITIONAL REWARD SETTINGS (HYPERGRID)

100 101 102 103 104
10 3

10 2

L1
 e

rro
r

8 × 8

100 101 102 103 104

10 4

10 3

L1
 e

rro
r

32 × 32

100 101 102 103 104

10 4

L1
 e

rro
r

64 × 64

100 101 102 103 104

10 4

L1
 e

rro
r

96 × 96

100 101 102 103 104

10 5

10 4

L1
 e

rro
r

128 × 128

100 101 102 103 104

10 5

10 4

L1
 e

rro
r

152 × 152

SA-GFN
GAFN
RND
GFN

Figure 10: Harder-to-Explore HyperGrid Setting: For an even harder to explore grid configu-
ration {R0 = 1e − 5, R1 = 1.0, R2 = 3.0}, the proposed method, SA-GFN, outperforms all other
strong baselines, highlighting its efficient exploration properties over a wide range of hard-to-explore
tasks and reward structures.

To evaluate exploration over a wide range of reward structures, we include an additional HyperGrid
reward setting with {R0 = 1e−5, R1 = 1.0, R2 = 3.0} that presents a more challenging exploration
problem. We find that the proposed method, SA-GFN, again outperforms all other strong baselines,
see 10.2, and achieves a much better match to the underlying true distribution.

10.3 EASY ADAPTABILITY TO OTHER INTRINSIC REWARDS

In order to highlight the versatility and ease of adaptability of the proposed method over intrinsic
rewards other than regular RND (Burda et al., 2018), we add Noveld (Zhang et al., 2021) as an

14

Published as a conference paper at ICLR 2025

intrinsic bonus to encourage exploration in the Sibling Network. The proposed method SA-GFN
outperforms all other baseline methods, for both non-zero sparse reward setting, see Figure 11 and
zero sparse reward settings, see Figure 12, showcasing its inclusiveness in terms of different types
of intrinsic rewards.

100 102 104
10 3

10 2

L1
 e

rro
r

8 × 8

100 102 104

2 × 10 3

3 × 10 3
4 × 10 3

6 × 10 3

L1
 e

rro
r

16 × 16

100 102 104

10 4

10 3

L1
 e

rro
r

32 × 32

100 102 104

10 4

10 3

L1
 e

rro
r

48 × 48

100 102 104

10 4

L1
 e

rro
r

64 × 64

100 102 104
10 5

10 4

L1
 e

rro
r

80 × 80

100 102 104

10 4

L1
 e

rro
r

96 × 96

100 102 104

10 5

10 4

L1
 e

rro
r

112 × 112

100 102 104

10 5

10 4

L1
 e

rro
r

128 × 128

100 102 104

10 5

10 4

L1
 e

rro
r

136 × 136

100 102 104

10 5

10 4
L1

 e
rro

r
144 × 144

100 102 104

10 5

L1
 e

rro
r

152 × 152

SA-GFN
SA-GFN(IR)
GAFN
RND
GFN

Figure 11: Adaptability to Different Intrinsic Rewards: (non-zero sparse reward) The proposed
method, SA-GFN, is adaptable to a wide variety of intrinsic rewards. For example, SA-GFN when
used with Noveld, labeled as SA-GFN(IR), outperforms all other baseline methods, achieving a
much better exploration of the underlying spare non-zero reward distribution.

10000 20000

10 4

10 3

10 2

L1
 e

rro
r

8 × 8

10000 20000

10 6

10 4

L1
 e

rro
r

32 × 32

10000 20000
10 7

10 6

10 5

10 4

L1
 e

rro
r

64 × 64

10000 20000

10 5

10 4

L1
 e

rro
r

128 × 128
SA-GFN
SA-GFN(IR)
GAFN
RND
GFN

Figure 12: Adaptability to Different Intrinsic Rewards: (zero sparse reward) The proposed
method, SA-GFN, is adaptable to a wide variety of intrinsic rewards. For example, SA-GFN when
used with Noveld, labeled as SA-GFN(IR), outperforms all other baseline methods, achieving a
much better exploration of the underlying sparse zero-reward distribution.

10.4 EXTENSION TO OTHER GFLOWNET TRAINING OBJECTIVES

The proposed method, SA-GFN can be used with any of the training objectives introduced in Section
3.2. Results using Trajectory Balance (Malkin et al., 2022) are provided in Section 5.1 and Section
5.2, while Flow Matching objective (Bengio et al., 2021a) is used in Section 5.3. Here, we include
results from the Detailed Balance objective (Bengio et al., 2021b) for completeness, see Figure 13.

15

Published as a conference paper at ICLR 2025

100 102 104

10 4

10 3

L1
 e

rro
r

32 × 32

100 102 104

10 4

L1
 e

rro
r

64 × 64

100 102 104

10 4

L1
 e

rro
r

96 × 96

100 102 104

10 5

10 4

L1
 e

rro
r

128 × 128

100 102 104

10 5

L1
 e

rro
r

152 × 152

SA-GFN(TB)
SA-GFN(DB)
GAFN
RND
GFN

Figure 13: Extension to other GFlowNet Training Objectives: The proposed method, SA-GFN,
can be trained using any of the GFlowNet training objectives. Here we include the Detailed Balance
objective for sparse non-zero reward setting for completeness.

10.5 COMPARISON WITH SAC (HYPERGRID)

We add the SAC (Haarnoja et al., 2018) baseline for HyperGrid from Section 5.1 for completeness,
see Figure 14 and Figure 15. We find that without adding a large replay buffer, SAC is not able
to explore over difficult and sparse reward settings, while the proposed method SA-GFN performs
stronger than any of the previous baselines across all reward configurations of the HyperGrid.

100 102 104
10 3

10 2

L1
 e

rro
r

8 × 8

100 102 104

2 × 10 3

3 × 10 3
4 × 10 3

6 × 10 3

L1
 e

rro
r

16 × 16

100 102 104

10 4

10 3

L1
 e

rro
r

32 × 32

100 102 104

10 4

10 3

L1
 e

rro
r

48 × 48

100 102 104

10 4

L1
 e

rro
r

64 × 64

100 102 104
10 5

10 4

L1
 e

rro
r

80 × 80

100 102 104

10 4

L1
 e

rro
r

96 × 96

100 102 104

10 5

10 4
L1

 e
rro

r

112 × 112

100 102 104

10 5

10 4

L1
 e

rro
r

128 × 128

100 102 104

10 5

10 4

L1
 e

rro
r

136 × 136

100 102 104

10 5

10 4

L1
 e

rro
r

144 × 144

100 102 104

10 5

L1
 e

rro
r

152 × 152

SA-GFN
GAFN
RND
GFN
SAC

Figure 14: Soft Actor Critic (SAC) method is not able to explore well in difficult sparse non-zero
reward settings, while the proposed method SA-GFN explores much better as compared to all other
baseline methods.

10000 20000

10 4

10 3

10 2

L1
 e

rro
r

8 × 8

10000 20000
10 6

10 5

10 4

10 3

L1
 e

rro
r

32 × 32

10000 20000
10 7

10 6

10 5

10 4

L1
 e

rro
r

64 × 64

10000 20000

10 4

4 × 10 5

6 × 10 5L1
 e

rro
r

128 × 128
SA-GFN
GAFN
RND
GFN
SAC

Figure 15: Soft Actor Critic (SAC) method is not able to explore well in difficult sparse zero-
reward settings, while the proposed method SA-GFN explores much better as compared to all other
baseline methods.

16

Published as a conference paper at ICLR 2025

10.6 EXPLORATION USING TEMPERED LOGITS

We expand on our ablation study fom Section 6 and provide additional results to show that just using
tempered logits for exploration is not sufficient for sparse and difficult to explore reward settings, see
Figure 16 for sparse reward structures and Figure 17 for low-reward structures. Better exploration
strategies, such as that in the proposed method, SA-GFN, become essential to ensure an efficient
exploration of complex spaces and reward structures.

10000 20000

10 4

10 3

10 2

L1
 e

rro
r

8 × 8

10000 20000
10 6

10 5

10 4

10 3

L1
 e

rro
r

32 × 32

10000 20000
10 7

10 6

10 5

10 4

L1
 e

rro
r

64 × 64

10000 20000

10 4

4 × 10 5

6 × 10 5L1
 e

rro
r

128 × 128
SA-GFN
GAFN
RND
GFN
GFN-temp

Figure 16: Tempered logits are not sufficient to effectively explore difficult zero-reward structures

100 102 104
10 3

10 2

L1
 e

rro
r

8 × 8

100 102 104

2 × 10 3

3 × 10 3
4 × 10 3

6 × 10 3

L1
 e

rro
r

16 × 16

100 102 104

10 4

10 3

L1
 e

rro
r

32 × 32

100 102 104

10 4

10 3

L1
 e

rro
r

48 × 48

100 102 104

10 4

L1
 e

rro
r

64 × 64

100 102 104
10 5

10 4

L1
 e

rro
r

80 × 80

100 102 104

10 4

L1
 e

rro
r

96 × 96

100 102 104

10 5

10 4

L1
 e

rro
r

112 × 112

100 102 104

10 5

10 4

L1
 e

rro
r

128 × 128

100 102 104

10 5

10 4

L1
 e

rro
r

136 × 136

100 102 104

10 5

10 4

L1
 e

rro
r

144 × 144

100 102 104

10 5

L1
 e

rro
r

152 × 152

SA-GFN
GAFN
RND
GFN
GFN-temp

Figure 17: Tempered logits are not sufficient to effectively explore difficult to explore non-zero
reward structures

10.7 VISUALIZING LEARNT DISTRIBUTIONS FOR HYPERGRID

In Figure 18 and Figure 19, we further visualize the learnt empirical distributions by SA-GFN and
all other baseline methods presented in Section 5.1.2 and Figure 4.

We find that SA-GFN discovers all the four modes of the distribution for all HyperGrid sizes, includ-
ing very large grid sizes, while other baseline methods suffer and are able to discover only a limited
number modes as grid size increases and the exploration problem gets harder. Moreover, these vi-
sualizations confirm that SA-GFN not only discovers all the modes, but also learns and matches the
true distribution well.

17

Published as a conference paper at ICLR 2025

0 2 4 6

0

2

4

6

8 × 8 : (SA-GFN)

0 2 4 6

0

2

4

6

8 × 8 : (GAFN)

0 2 4 6

0

2

4

6

8 × 8 : (RND)

0 2 4 6

0

2

4

6

8 × 8 : (GFN TB)

0 2 4 6

0

2

4

6

8 × 8 : (PPO)

0 5 10 15

0.0

2.5

5.0

7.5

10.0

12.5

15.0

16 × 16 : (SA-GFN)

0 5 10 15

0.0

2.5

5.0

7.5

10.0

12.5

15.0

16 × 16 : (GAFN)

0 5 10 15

0.0

2.5

5.0

7.5

10.0

12.5

15.0

16 × 16 : (RND)

0 5 10 15

0.0

2.5

5.0

7.5

10.0

12.5

15.0

16 × 16 : (GFN TB)

0 5 10 15

0.0

2.5

5.0

7.5

10.0

12.5

15.0

16 × 16 : (PPO)

0 10 20 30

0

5

10

15

20

25

30

32 × 32 : (SA-GFN)

0 10 20 30

0

5

10

15

20

25

30

32 × 32 : (GAFN)

0 10 20 30

0

5

10

15

20

25

30

32 × 32 : (RND)

0 10 20 30

0

5

10

15

20

25

30

32 × 32 : (GFN TB)

0 10 20 30

0

5

10

15

20

25

30

32 × 32 : (PPO)

0 20 40

0

10

20

30

40

48 × 48 : (SA-GFN)

0 20 40

0

10

20

30

40

48 × 48 : (GAFN)

0 20 40

0

10

20

30

40

48 × 48 : (RND)

0 20 40

0

10

20

30

40

48 × 48 : (GFN TB)

0 20 40

0

10

20

30

40

48 × 48 : (PPO)

0 20 40 60

0

10

20

30

40

50

60

64 × 64 : (SA-GFN)

0 20 40 60

0

10

20

30

40

50

60

64 × 64 : (GAFN)

0 20 40 60

0

10

20

30

40

50

60

64 × 64 : (RND)

0 20 40 60

0

10

20

30

40

50

60

64 × 64 : (GFN TB)

0 20 40 60

0

10

20

30

40

50

60

64 × 64 : (PPO)

Figure 18: Visualization of the learnt empirical distributions for SA-GFN and all other methods
corresponding to Figure 4. We can see that as the size of the HyperGrid increases, SA-GFN is able
to discover all the four modes and learns the underlying distribution well, while other methods tend
to suffer, especially as the exploration problem gets harder with increasing grid sizes.

18

Published as a conference paper at ICLR 2025

0 20 40 60

0

20

40

60

80 × 80 : (SA-GFN)

0 20 40 60

0

20

40

60

80 × 80 : (GAFN)

0 20 40 60

0

20

40

60

80 × 80 : (RND)

0 20 40 60

0

20

40

60

80 × 80 : (GFN TB)

0 20 40 60

0

20

40

60

80 × 80 : (PPO)

0 25 50 75

0

20

40

60

80

96 × 96 : (SA-GFN)

0 25 50 75

0

20

40

60

80

96 × 96 : (GAFN)

0 25 50 75

0

20

40

60

80

96 × 96 : (RND)

0 25 50 75

0

20

40

60

80

96 × 96 : (GFN TB)

0 25 50 75

0

20

40

60

80

96 × 96 : (PPO)

0 50 100

0

20

40

60

80

100

112 × 112 : (SA-GFN)

0 50 100

0

20

40

60

80

100

112 × 112 : (GAFN)

0 50 100

0

20

40

60

80

100

112 × 112 : (RND)

0 50 100

0

20

40

60

80

100

112 × 112 : (GFN TB)

0 50 100

0

20

40

60

80

100

112 × 112 : (PPO)

0 50 100

0

25

50

75

100

125

128 × 128 : (SA-GFN)

0 50 100

0

25

50

75

100

125

128 × 128 : (GAFN)

0 50 100

0

25

50

75

100

125

128 × 128 : (RND)

0 50 100

0

25

50

75

100

125

128 × 128 : (GFN TB)

0 50 100

0

25

50

75

100

125

128 × 128 : (PPO)

0 50 100 150

0

50

100

150

152 × 152 : (SA-GFN)

0 50 100 150

0

50

100

150

152 × 152 : (GAFN)

0 50 100 150

0

50

100

150

152 × 152 : (RND)

0 50 100 150

0

50

100

150

152 × 152 : (GFN TB)

0 50 100 150

0

50

100

150

152 × 152 : (PPO)

Figure 19: Visualization of the learnt empirical distributions for SA-GFN and all other methods
corresponding to Figure 4. We can see that as the size of the HyperGrid increases, SA-GFN is able
to discover all the four modes and learns the underlying distribution well, while other methods tend
to suffer, especially as the exploration problem gets harder with increasing grid sizes.

19

	Introduction
	Related Work
	Intrinsic Motivation Based Exploration Methods
	Exploration for Training GFlowNets

	Background
	GFlowNets
	GFlowNets Training

	Sibling Augmented Generative Flow Networks (SA-GFN)
	SA-GFN Architecture
	SA-GFN Training Objectives
	Hypothesized Benefits of SA-GFN

	Experiments
	HyperGrid
	Sparse HyperGrid with zero rewards
	Sparse HyperGrid with hard to explore rewards

	Bit Sequence Generation
	Small Molecule Generation

	Ablation Studies
	Discussion & Conclusion
	Appendix
	Experimental Details
	Experimental Details: Sparse Reward HyperGrid with Zero Rewards
	Experimental Details: Sparse HyperGrid with difficult to explore rewards
	Experimental Details: Bit Sequences
	Experimental Details: Small Molecule

	Additional Experiments
	HyperGrids spanning higher dimensions
	Additional Reward Settings (HyperGrid)
	Easy adaptability to other Intrinsic Rewards
	Extension to other GFlowNet Training Objectives
	Comparison with SAC (HyperGrid)
	Exploration using Tempered Logits
	Visualizing learnt distributions for HyperGrid

