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Abstract

In this paper, we propose to solve a distributionally robust learning problem in the de-
centralized setting, taking into account data heterogeneity. By adding a Kullback-Liebler
regularization function to the robust min-max optimization problem, the learning problem
can be reduced to a modified robust minimization problem and solved efficiently. Lever-
aging the new formulated optimization problem, we propose a robust version of Decentral-
ized Stochastic Gradient Descent (DSGD), coined Distributionally Robust Decentralized
Stochastic Gradient Descent (DR-DSGD). We theoretically prove that DR-DSGD achieves
a fast convergence rate of O(1/

√
KT ), where K is the number of devices and T is the

number of iterations, under some mild assumptions. Simulation results show that our pro-
posed algorithm can improve the worst distribution test accuracy by up to 10%. Moreover,
DR-DSGD is more communication-efficient than DSGD since it requires fewer communi-
cation rounds (up to 20 times less) to achieve the same worst distribution test accuracy
target. Furthermore, the conducted experiments reveal that DR-DSGD results in a fairer
performance across devices in terms of test accuracy.

1 Introduction

Federated learning (FL) is a learning framework that allows the training of a model across multiple devices
under the orchestration of a parameter server (PS). Unlike the traditional way of training ML models, where
the individual data of the devices are shared with the PS, FL ensures privacy since only models/gradients
are exchanged between the devices and the PS. However, training under the FL setting presents several
challenges that need to be tackled. While most existing FL algorithms are appealing from a communication
point of view, they often fail to address the data heterogeneity issue. In fact, local data distributions might
differ greatly from the average distribution, resulting in a considerable drop in the global model performance
on local data. Another major issue in FL is fairness. In many cases, the resultant learning models are biased
or unfair in the sense that they discriminate against certain device groups (Hardt et al., 2016). Finally, FL
relies on the existence of a PS to collect and distribute model parameters, which is not always feasible or
even accessible to devices that are located far away.

Even though several FL algorithms (Kairouz et al., 2021; Yang et al., 2019; Li et al., 2020a) have been
proposed for the distributed learning problem, federated averaging (FedAvg) (McMahan et al., 2017) remains
the state-of-the-art algorithm. Specifically, FedAvg entails performing one or multiple local iterations at each
device before communicating with the PS, which in turn performs periodic averaging. However, because
FedAvg is based on the empirical risk minimization (ERM) to solve the distributed learning problem, i.e.
FedAvg minimizes the empirical distribution of the local losses, its performance deteriorates when the local
data are distributed non-identically across devices. While the ERM formulation assumes that all local
data come from the same distribution, local data distributions might significantly diverge from the average
distribution. As a result, even though the global model has a good average test accuracy, its performance
locally drops when the local data are heterogeneous. In fact, increasing the diversity of local data distributions
has been shown to reduce the generalization ability of the global model derived by solving the distributed
learning problem using FedAvg (Li et al., 2020d;b; Zhao et al., 2018).
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While there are many definitions of robustness, the focus of our work is on distributionally robustness, that
is, being robust to the heterogeneity of the local data distributions. We consider a distributionally robust
perspective by seeking the best solution for the worst-case distribution. Another key focus of this work is to
investigate the fairness of the performance across the different devices participating in the learning. Fairness
aims to reduce the difference in performance on the local datasets to ensure that the model performance is
uniform across the devices participating in the learning process. In the FL context, achieving fair performance
among devices is a critical challenge. In fact, existing techniques in FL, such as FedAvg (McMahan et al.,
2017) lead to non-uniform performance across the network, especially for large networks, since they favour
or hurt the model performance on certain devices. While the average performance is high, these techniques
do not ensure a uniform performance across devices.

PS-based learning (star topology) incurs a significant bottleneck in terms of communication latency, scal-
ability, bandwidth, and fault tolerance. Decentralized topologies circumvent these limitations and hence
have significantly greater scalability to larger datasets and systems. In fact, while the communication cost
increases with the number of devices in the PS-based topology, it is generally constant (in a ring or torus
topology), or a slowly increasing function in the number of devices since decentralizing learning only requires
on-device computation and local communication with neighboring devices without the need of a PS. Several
works investigated the decentralizing learning problem (Yuan et al., 2016; Zeng & Yin, 2018; Wang et al.,
2019; Wei & Ozdaglar, 2012; Shi et al., 2014; Ben Issaid et al., 2021; Duchi et al., 2011); however, while
interesting none of these works has considered solving the decentralized learning problem in a distributionally
robust manner.

Summary of Contributions. The main contributions of this paper are summarized as follow

• We propose a distributionally robust learning algorithm, dubbed as Distributionally Robust
Decentralized Stochastic Gradient Descent (DR-DSGD), that solves the learning problem in a de-
centralized manner while being robust to data heterogeneity. To the best of our knowledge, our
framework is the first to solve the distributionally robust optimization problem in a decentralized
topology.

• We prove that DR-DSGD achieves a fast convergence rate of O(1/
√

KT ), where K is the number
of devices and T is the number of iterations, under some mild assumptions, as shown in corollary 1.

• We demonstrate the robustness of our approach compared to vanilla decentralized SGD via numer-
ical simulations. It is shown that DR-DSGD leads to an improvement of up to 10% in the worst
distribution test accuracy while achieving a reduction of up to 20 times less in term of communication
rounds.

• Furthermore, we show by simulations that DR-DSGD leads to a fairer performance across the devices
in terms of test accuracy. In fact, our proposed algorithm reduces the variance of test accuracies
across all devices by up to 60% while maintaining the same average accuracy.

Paper Organization. The remainder of this paper is organized as follows. In Section 3, we describe the
problem formulation briefly and show the difference between the ERM and DRO formulation. Then, we
present our proposed framework, DR-DSGD, for solving the decentralized learning problem in a distribu-
tionally robust manner in Section 4. In Section 5, we prove the convergence of DR-DSGD theoretically
under some mild conditions. Section 6 validates the performance of DR-DSGD by simulations and show
the robustness of our proposed approach compared to DSGD. Finally, the paper concludes with some final
remarks in Section 7. The details of the proofs of our results are deferred to the appendices.

2 Related Works

Robust Federated Learning. Recent robust FL algorithms (Mohri et al., 2019; Reisizadeh et al., 2020;
Deng et al., 2020; Hamer et al., 2020) have been proposed for the learning problem in the PS-based topology
to obviate this issue. Instead of minimizing the loss with respect to the average distribution among the
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data distributions from local clients, the authors in (Mohri et al., 2019) proposed agnostic federated learning
(AFL), which optimizes the global model for a target distribution formed by any mixture of the devices’
distributions. Specifically, AFL casts the FL problem into a min-max optimization problem and finds
the worst loss over all possible convex combinations of the devices’ distributions. Reisizadeh et al. (2020)
proposed FedRobust, a variant of local stochastic gradient descent ascent (SGDA), aiming to learn a model for
the worst-case affine shift by assuming that a device’s data distribution is an affine transformation of a global
one. However, FedRobust requires each client to have enough data to estimate the local worst-case shift;
otherwise, the global model performance on the worst distribution deteriorates. The authors in (Deng et al.,
2020) proposed a distributionally robust federated averaging (DRFA) algorithm with reduced communication.
Instead of using the ERM formulation, the authors adopt a distributionally robust optimization (DRO)
objective by formulating a distributed learning problem to minimize a distributionally robust empirical loss,
while periodically averaging the local models as done in FedAvg (McMahan et al., 2017). Using the Bregman
Divergence as the loss function, the authors in (Hamer et al., 2020) proposed FedBoost, a communication-
efficient FL algorithm based on learning the optimal mixture weights on an ensemble of pre-trained models
by communicating only a subset of the models to any device.

Fairness in Federated Learning. Recently, there has been a growing interest in developing FL algorithms
that guarantee fairness across devices (Mohri et al., 2019; Li et al., 2020c; 2021). Inspired by works in fair
resource allocation for wireless networks, the authors in (Li et al., 2020c) proposed q-FFL, an FL algorithm
that addresses fairness issues by minimizing an average reweighted loss parameterized by q. The proposed
algorithm assigns larger weights to devices with higher losses to achieve a uniform performance across devices.
Tilted empirical risk minimization (TERM), proposed in (Li et al., 2021), has a similar goal as q-FFL, i.e.
to achieve fairer accuracy distributions among the devices while ensuring similar average performance.

Decentralized Learning. Decentralized optimization finds applications in various areas including wireless
sensor networks (Mihaylov et al., 2009; Avci et al., 2018; Soret et al., 2021), networked multi-agent systems
(Inalhan et al., 2002; Ren et al., 2007; Johansson, 2008), and smart grid implementations (Kekatos &
Giannakis, 2012). Several popular algorithms based on gradient descent (Yuan et al., 2016; Zeng & Yin,
2018; Wang et al., 2019), alternating direction method of multipliers (ADMM) (Wei & Ozdaglar, 2012; Shi
et al., 2014; Ben Issaid et al., 2021), or dual averaging (Duchi et al., 2011) have been proposed to tackle the
decentralized learning problem.

3 Notations & Problem Formulation

3.1 Notations

Throughout the whole paper, we use bold font for vectors and matrices. The notation ∇f stands for the
gradient of the function f , and E[·] denotes the expectation operator. The symbols ∥ · ∥, and ∥ · ∥F denote
the ℓ2-norm of a vector, and the Frobenius norm of a matrix, respectively. For a positive integer number n,
we write [n] ≜ {1, 2, . . . , n}. The set of vectors of size K with all entries being positive is denoted by RK

+ .
The notations 0 and 1 denote a vector with all entries equal to zero, or one, respectively (its size is to be
understood from the context). Furthermore, we define the matrices: I the identity matrix and J = 1

K 11T .
For a square matrix A, Tr(A) is the trace of A, i.e. the sum of elements on the main diagonal. Finally, for
the limiting behavior of functions, f = O(g) means that f is bounded above up to a constant factor by g
asymptotically.

3.2 Problem Formulation

We consider a connected network consisting of a set V of K devices. Each device i ∈ [K] has its data
distribution Di supported on domain Ξi := (Xi, Yi). The connectivity among devices is represented as an
undirected connected communication graph G having the set E ⊆ V × V of edges, as illustrated in Fig. 1.
The set of neighbors of device n is defined as Ni = {j|(i, j) ∈ E} whose cardinality is |Ni| = di. Note that
(i, j) ∈ E if only if devices i and j are connected by a communication link; in other words these devices can
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Figure 1: Illustration of a graph topology (K = 8) and the interactions between the devices (D1 − D8).

exchange information directly. All devices collaborate to solve the optimization problem given by

min
Θ∈Rd

K∑
i=1

ni

n
fi(Θ) where fi(Θ) = Eξi∼Di

[ℓ(Θ; ξi)], (1)

where ξi := (xi, yi) denotes the set of features xi and labels yi of device i. The function ℓ(Θ, ξi) is the cost of
predicting yi from xi, where Θ denotes the model parameters, e.g., the weights/biases of a neural network.
Here, ni denotes the number of training examples drawn from Di and n =

∑K
i=1 ni is the total number of

examples.

Without loss of generality, we assume in the remainder that all devices have the same number of samples,
and therefore ni/n = 1/K, ∀i ∈ [K]. In this case, problem (1) writes as

min
Θ∈Rd

1
K

K∑
i=1

fi(Θ). (2)

One way to solve (1) in a decentralized way is to use vanilla decentralized SGD (DSGD) (Yuan et al.,
2016). As shown in Algorithm 1, each device in DSGD performs two steps: (i) a local stochastic gradient
update (Line 3) using the learning rate ηt, and (ii) a consensus operation in which it averages its model
with its neighbors’ models (Lines 4-5) using the weights of the connectivity (mixing) matrix of the network
W = [Wij ] ∈ RK×K . The mixing matrix W is often assumed to be a symmetric (W = W T ) and doubly
stochastic (W 1 = 1, 1T W = 1T ) matrix, such that Wij ∈ [0, 1], and if (i, j) /∈ E , then Wij = 0. Assuming
W to be symmetric and doubly stochastic is crucial to ensure that the devices achieve consensus in terms
of converging to the same stationary point.

While formulating problem (2), we assume that the target distribution is given by

D = 1
K

K∑
i=1

Di. (3)

Algorithm 1 Vanilla Decentralized SGD (DSGD)
1: for t in 0, . . . , T − 1 do in parallel for all devices i ∈ [K]
2: Sample ξt

i , compute gradient gi(θt
i) := ∇ℓ(θt

i , ξt
i)

3: θ
t+ 1

2
i := θt

i − ηgi(θt
i)

4: Send θ
t+ 1

2
i to neighbors

5: θt+1
i :=

∑K
j=1 Wijθ

t+ 1
2

j

6: end for
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Algorithm 2 Distributionally Robust Decentralized SGD (DR-DSGD)
1: for t in 0, . . . , T − 1 do in parallel for all devices i ∈ [K]
2: Sample ξt

i , compute gradient gi(θt
i) := ∇ℓ(θt

i , ξt
i)

3: θ
t+ 1

2
i := θt

i − η × exp
(

ℓ(θt
i ,ξt

i )/µ
)

µ × gi(θt
i)

4: Send θ
t+ 1

2
i to neighbors

5: θt+1
i :=

∑K
j=1 Wijθ

t+ 1
2

j

6: end for

However, the heterogeneity of local data owned by the devices involved in the learning presents a significant
challenge in the FL setting. In fact, models resulting from solving (2) lack robustness to distribution shifts
and are vulnerable to adversarial attacks (Bhagoji et al., 2019). This is mainly due to the fact that the
target distribution may be significantly different from D in practice.

4 Proposed Solution

Our aim is to learn a global model Θ from the heterogeneous data coming from these possibly non-identical
data distributions of the devices in a decentralized manner. To account for heterogeneous data distribution
across devices, the authors in (Mohri et al., 2019) proposed agnostic FL, where the target distribution is
given by

Dλ =
K∑

i=1
λiDi, (4)

where the weighting vector λ belongs to the K-dimensional simplex, ∆ = {λ = (λ1, . . . , λK)T ∈ RK
+ :∑K

i=1 λi = 1}. Note that this target distribution is more general than D and it reduces to D when λi =
1/K, ∀i ∈ [K].

Unlike D which gives equal weight to all distributions {Di}K
i=1 during the training, Dλ is rather a mixture

of the devices’ distributions, where the unknown mixture weight λ is learned during the training and not
assigned a priori. In this case, the distributionally robust empirical loss problem is given by the following
min-max optimization problem

min
Θ∈Rd

max
λ∈∆

K∑
i=1

λifi(Θ). (5)

Although several distributed algorithms (Mohri et al., 2019; Reisizadeh et al., 2020; Deng et al., 2020;
Hamer et al., 2020) have been proposed for (5), solving this formulation in a decentralized fashion (in the
abscence of a PS) is a challenging task. Interesingly, when introducing a regularization term in (5) and by
appropriately choosing the regularization function, the min-max optimization problem can be reduced to a
robust minimization problem that can be solved in a decentralized manner, as shown later on. Specifically,
the regularized version of problem (5) can be written as follows

min
Θ∈Rd

max
λ∈∆

K∑
i=1

λifi(Θ) − µϕ(λ, 1/K), (6)

where µ > 0 is a regularization parameter, and ϕ(λ, 1/K) is a divergence measure between {λi}K
i=1 and the

uniform probability that assigns the same weight 1/K to every device’s distribution. The function ϕ can be
seen as a penalty that ensures that the weight λi is not far away from 1/K.

Although different choices of ϕ-divergence can be considered in (6), the robust optimization community
has been particularly interested in the Kullback–Leibler (KL) divergence owing to a simplified formulation
(Esfahani & Kuhn, 2018). In fact, when we consider the KL divergence, i.e. ϕ(λ, 1/K) =

∑K
i=1 λi log(λiK),
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then by exactly maximizing over λ ∈ ∆, the min-max problem, given in (6), is shown to be equivalent to
(Huang et al., 2021, Lemma 1)

min
Θ∈Rd

µ log
(

1
K

K∑
i=1

exp (fi(Θ)/µ)
)

. (7)

Since log(·) is a monotonically increasing function, then instead of solving (7), we simply solve the following
problem

min
Θ∈Rd

F (Θ) ≜ 1
K

K∑
i=1

Fi(Θ), (8)

where Fi(Θ) = exp
(
fi(Θ)/µ

)
, ∀i ∈ [K]. Although any decentralized learning algorithm can be used to solve

(8), the focus of this paper is to propose a distributionally robust implementation of DSGD. Our framework,
coined Distributionally Robust Decentralized SGD (DR-DSGD), follows similar steps as DSGD with the
main difference in the local update step

θt+1
i =

K∑
i=1

Wij

(
θt

i − η

µ
exp

(
ℓ(θt

i , ξt
i)/µ

)
gi(θt

i)
)

. (9)

Introducing the term exp
(
ℓ(θt

i , ξt
i)/µ

)
/µ in line 3 of Algorithm 2 makes the algorithm more robust to the

heterogeneous setting and ensures fairness across the devices, as will be shown in the numerical simulations
section.

5 Convergence Analysis

This section provides a theoretical analysis for the convergence rate of the DR-DSGD algorithm. Before
stating the main results of the paper, we make the following assumptions.
Assumption 1. (Smoothness) There exist constants LF , L1, and L2, such that ∀θ1, θ2 ∈ Rd, and
∀y1, y2 ∈ Y, we have

∥∇F (θ1) − ∇F (θ2)∥ ≤ LF ∥θ1 − θ2∥, (10)
∥gi(θ1) − gi(θ2)∥ ≤ L1∥θ1 − θ2∥, (11)
| exp (y1)−exp (y2) | ≤ L2|y1 − y2|, (12)

where Y ≜ {y = ℓ(θ, ξi)/µ such that θ ∈ Rd} is the range of functions {ℓ(θ, ξi)/µ}. In the remainder of the
assumptions, we use the explicit expression of an element of Y whenever it is needed.
Assumption 2. (Gradient Boundedness) The gradients of fi(·) and the function exp(ℓi(·, ξi)/µ) are
bounded, i.e. there exits G1 and G2 such that ∀θ ∈ Rd, we have

∥∇fi(θ)∥ ≤ G1, (13)
| exp(ℓ(θ, ξi)/µ)| ≤ G2. (14)

Assumption 3. (Variance Boundedness) The variances of stochastic gradient gi(·) and the function
li(·, ξ) and exp(li(·, ξ)/µ) are bounded, i.e. there exits positive scalars σ1, σ2 and σ3 such that ∀θ ∈ Rd, we
have

E
[
∥ℓ(θ, ξi) − fi(θ)∥2] ≤ σ2

1 , (15)
E
[
∥gi(θ) − ∇fi(θ)∥2] ≤ σ2

2 , (16)
E
[
| exp(ℓ(θ, ξi)/µ) − exp(fi(θ)/µ)|2

]
≤ σ2

3 . (17)

Assumption 4. (Function Boundedness) The function F (·) is lower bounded, i.e. Finf = inf
θ∈Rd

F (θ).

Assumption 5. (Spectral Norm) The spectral norm defined as ρ = ∥E
[
W T W

]
− J∥ is assumed to be

less than 1.
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Assumptions 1-5 are key assumptions that are often used in the context of distributed and compositional
optimization (Wang et al., 2017; 2016; Li et al., 2020d; Huang et al., 2021). First, we start by introducing
the following matrices

θt =
[
θt

1, . . . , θt
K

]
, (18)

∇F t =
[
∇F1(θt

1), . . . , ∇FK(θt
K)
]

, (19)

U t = 1
µ

[
exp

((
ℓ(θt

1, ξt
1)/µ

)
g1(θt

1)
)

, . . . , exp
((

ℓ(θt
K , ξt

K)/µ
))

gK(θt
K)
]

. (20)

Remark 1. The convergence analysis is more challenging than in the case of DSGD. In fact, due to the
compositional nature of the local loss functions, the stochastic gradients are biased, i.e.

E
[
exp

(
ℓ(θt

i , ξt
i)/µ

)
gi(θt

i)
]

̸= exp
(
fi(θt

i)/µ
)
∇fi(θt

i). (21)

To proceed with the analysis, we start by writing the matrix form of the update rule (9) as

θt+1 =
(
θt − ηU t

)
W . (22)

Multiplying both sides of the update rule (22) by 1/K, we get

θ̄t+1 = θ̄t − η

K
U t1, (23)

where θ̄t is the averaged iterate across devices defined as θ̄t = 1
K

∑K
i=1 θt

i . Now, we are in position to
introduce our first Lemma.
Lemma 1. For any matrix A ∈ Rd×K , we have

E
[
∥A (W n − J) ∥2

F

]
≤ ρn∥A∥2

F . (24)

Proof. The details of the proof can be found in Appendix A.2.

To prove the convergence of the proposed algorithm, we start by stating a key lemma that gives an upper
bound on the discrepancies among the local models.
Lemma 2. Let η satisfies ηL <

µ(1−√
ρ)

4G
√

ρ . Provided that all local models are initiated at the same point, the
discrepancies among the local models E

[
∥θt(I−J)∥2

F

]
can be upper bounded by

1
KT

T∑
t=1

E
[
∥θt(I − J)∥2

F

]
≤ γ(8σ2 + G2)

8L2(1 − γ) , (25)

where γ = 16η2ρL2G2

µ2(1−√
ρ)2 .

Proof. The proof is deferred to Appendix A.3. In a nutshell, the proof uses the update rule of DR-DSGD,
given in (22), the special property of the mixing matrix, and Lemma 1.

Next, we present the main theorem that states the convergence of our proposed algorithm.
Theorem 1. Let η satisfies ηL < min{ µ(1−√

ρ)
8G

√
ρ , 1} and provided that all local models are initiated at the

same point, then the averaged gradient norm is upper bounded as follows

1
T

T∑
t=1

E
[
∥∇F (θ̄t)∥2] ≤ 2(F (θ̄1) − Finf )

ηT
+ 56G2σ2 + G4(1 + 48L2)

6µ2 . (26)

Proof. The proof of Theorem 1 is detailed in Appendix A.4.
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Remark 2. Our analysis is still valid in the case where the mixing matrix changes at every iteration. Similar
theoretical guarantees hold provided that the matrices {W t}T

t=1 are independent and identically distributed
and their spectral norm ρt < 1.

Furthermore, if the learning rate η and the regularization parameter µ are chosen properly, we obtain the
following corollary.

Corollary 1. If we further choose η =
√

K
T and µ =

( 1
KT

) 1
4 , then we have

1
T

T∑
t=1

E
[
∥∇F (θ̄t)∥2] = O

(
1√
KT

)
. (27)

Remark 3. Note that while higher values of µ lead to better fairness among the devices and increases the
robustness against data heterogeneity, it may slow the convergence speed compared to smaller values of µ.

6 Experiments

In this section, we validate our theoretical results and show the communication-efficiency, robustness and
fairness of our proposed apporach, DR-DSGD, compared to its non-robust counterpart DSGD.

6.1 Simulation Settings

For our experiments, we consider the image classification task using two main datasets: Fashion MNIST
(Xiao et al., 2017) and CIFAR10 (Krizhevsky et al., 2009). We implement DR-DSGD and DSGD algorithms
using PyTorch. For Fashion MNIST, we use an MLP model with ReLU activations having two hidden
layers with 128 and 64 neurons, respectively. For the CIFAR10 dataset, we use a CNN model composed of
three convolutional layers followed by two fully connected layers, each having 500 neurons. For each dataset,
we distribute the data across the K devices in a pathological non-IID way, as in (McMahan et al., 2017), to
mimic an actual decentralized learning setup.

For the graph generation, we generate randomly a network consisting of K devices with a connectivity ratio
p using the networkx package (Hagberg et al., 2008). The parameter p measures the sparsity of the graph.
While smaller values of p lead to a sparser graph, the generated graph becomes denser as p approaches 1.
We use the Metropolis weights to construct the mixing matrix W as follow

Wij =


1/ (1 + max{di, dj}) , if (j, i) ∈ E ,
0, if (j, i) /∈ E and j ̸= i,
1 −

∑
l∈Ni

Wil, if j = i,

6.2 Robustness & Communication-Efficiency

In this section, we consider K = 10 devices. For Fashion MNIST, we consider a value of p = 0.3 while
we take p = 0.5 for CIFAR10. For each experiment, we report both the average test accuracy, the worst
distribution test accuracy, and their corresponding one standard error shaded area based on five runs. The
worst distribution test accuracy is defined as the worst of all test accuracies. The performance comparison
between DR-DSGD and DSGD for Fashion MNIST and CIFAR10 dataset is reported in Figs. 2 and 3,
respectively. From both experiments, we can see that DR-DSGD outperforms DSGD in terms of the average
test accuracy as well as the worst distribution test accuracy. For the gap between both algorithms, the
average test accuracy is around 3% for both datasets, and it is more noticeable in terms of worst distribution
test accuracy, where the improvement is of the order of 7% (Fashion MNIST) and 10% (CIFAR10). Not
only our proposed algorithm achieves better performance than DSGD, but it is also more communication-
efficient. In fact, for the same metric requirement, DR-DSGD requires fewer communication rounds than
DSGD. Since our approach exponentially increases the weight of high training losses devices, it converges
much faster than DSGD. For instance, in the experiment using the Fashion MNIST dataset, to achieve 80%
average test accuracy, DSGD requires around 90 iterations compared to only 20 iterations for DR-DSGD.
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(a) (b) (c)

Figure 2: Performance comparison between DR-DSGD and DSGD in terms of: (a) average test accuracy,
(b) worst test accuracy, and (c) STDEV of test accuracy for Fashion MNIST dataset.

(a) (b) (c)

Figure 3: Performance comparison between DR-DSGD and DSGD in terms of: (a) average test accuracy,
(b) worst test accuracy, and (c) STDEV of test accuracy for CIFAR10 dataset.

These gains are more considerable in the worst distribution test accuracy: DR-DSGD requires 10× fewer
iterations than DSGD to achieve 70% worst distribution test accuracy. Finally, in each experiment, we plot
the standard deviation (STDEV) of the different devices’ test accuracies for both algorithms. We can see
from both Figs. 2(c) and 3(c) that DR-DSGD has a smaller STDEV compared to DSGD, which reflects that
DR-DSGD promotes more fairness among the devices.

6.3 Fairness

From this section on, we consider K = 25. To investigate the fairness of the performance across the devices,
we run the experiments on Fashion MNIST and CIFAR10 datasets reporting the final test accuracy on
each device. In Figs. 4(a) and 4(b), we plot the worst test accuracy distribution across devices. We note
that DR-DSGD results in a more concentrated distribution in both experiments, hence a fairer test accuracy
distribution with lower variance. For instance, DR-DSGD reduces the variance of accuracies across all devices
by 60% on average for the Fashion MNIST experiment while keeping almost the same average accuracy.

6.4 Tradeoff Between Fairness & Average Test Accuracy

Although the best parameter µ can be fine-tuned from a candidate set on the validation dataset, we show,
in this section, how µ controls the trade-off between fairness and average test accuracy. To this end, we
report, in Table 1, the average, and worst 10% test accuracy, as well as the STDEV based on five runs for
T = 300 and for different values of µ for both datasets. As expected, higher values of µ give more weight
to the regularization term; hence driving the values of λi closer to the average weight 1/K. Therefore, as µ
increases, the average test accuracy increases but the worst (10%) test accuracy decreases. Conversely, the
worst test accuracy increases as the value of µ decreases at the cost of a drop in the average test accuracy.
Furthermore, the STDEV decreases for smaller values of µ ensuring a fairer performance across devices.
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(a) (b)

Figure 4: Performance comparison between DR-DSGD and DSGD in terms of worst test accuracy distribu-
tion for: (a) Fashion MNIST and (b) CIFAR10 datasets.

Table 1: Statistics of the test accuracy distribution for different values of µ.

Dataset µ
Average Worst 10% STDEV

(%) (%)

FMNIST
µ = 2 71.5 ± 1.3 49.1 ± 2.4 11.4 ± 0.3
µ = 3 72.3 ± 1.1 48.8 ± 3 11.8 ± 1.5
µ = 5 73.4 ± 2.4 44.5 ± 4.4 13.4 ± 2.1

CIFAR10
µ = 2 57.2 ± 2.4 50.9 ± 1.5 10.3 ± 0.6
µ = 3 59.83 ± 1.6 48.9 ± 1.8 10.9 ± 0.4
µ = 5 61 ± 1.4 44.9 ± 1.9 11.2 ± 1.3

6.5 Impact of Graph Sparsity

In this section, we inspect the effect of the graph sparsity on the performance of DR-DSGD and DSGD in
terms of the worst distribution test accuracy by considering different connectivity ratios p ∈ {0.3, 0.45, 0.6}.
The results are reported in Fig 5 for both datasets. We can see that as the graph becomes denser, i.e. as p
increases, the performance of both algorithms improves in terms of the worst test distribution. Nonetheless,
it is clear that DR-DSGD outperforms DSGD for three diffrent values of p for both datasets.

7 Conclusion

This paper proposes a distributionally robust decentralized algorithm, DR-DSGD, that builds upon the
decentralized stochastic gradient descent (DSGD) algorithm. The proposed framework is the first to solve
the distributionally robust learning problem over graphs. Simulation results indicate that our proposed
algorithm is more robust across heterogeneous data distributions while being more communication-efficient
than its non-robust counterpart, DSGD. Furthermore, the proposed approach ensures fairer performance
across all devices compared to DSGD.
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A Appendix

A.1 Basic identities and inequalities

We start by summarizing the main identities and inequalities used in the proof. Let {as}S
s=1 be a sequence

of vectors in Rd, b1 and b2 two scalars, C1 and C2 two matrices, and ϵ > 0, then we have∥∥∥∥∥
S∑

s=1
as

∥∥∥∥∥
2

≤ S

S∑
s=1

∥as∥2. (28)

2⟨a1, a2⟩ = ∥a1∥2 + ∥a2∥2 − ∥a1 − a2∥2. (29)

2b1b2 ≤ b2
1
ϵ

+ ϵb2
2, ∀ϵ > 0. (30)

(Cauchy-Schwarz) |Tr{C1C2}| ≤ ∥C1∥F ∥C2∥F . (31)

A.2 Proof of Lemma 1

Let aT
i denote the ith row vector of matrix A and ei the ith vector of the canonical basis of RK , then we

can write

E
[
∥A (W n − J) ∥2

F

]
=

K∑
i=1

∥∥∥∥aT
i

(
W nei − 1

K

)∥∥∥∥2

≤
K∑

i=1
∥aT

i ∥2
∥∥∥∥W nei − 1

K

∥∥∥∥2
. (32)

From (Lian et al., 2017, Lemma 5), we have∥∥∥∥W nei − 1
K

∥∥∥∥2
≤ ρn. (33)

Replacing equation 33 in equation 32, we get

E
[
∥A (W n − J) ∥2

F

]
≤ ρn∥A∥2

F . (34)

Hence, the proof is completed.
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A.3 Proof of Lemma 2

Using the update rule (22) and the identity W J = JW = J , we can write

θt(I − J) =
(
θt−1 − ηU t−1)W (I − J) = θt−1(I − J)W − ηU t−1W (I − J). (35)

Writing (35) recursively, we get

θt(I − J) = θ0(I − J)W t − η

t−1∑
τ=0

U τ
(
W t−τ − J

)
= −η

t−1∑
τ=0

U τ
(
W t−τ − J

)
, (36)

where we used the fact that all local models are initiated at the same point, i.e. θ0(I − J)W t = 0.
Thus, we can write

1
KT

T∑
t=1

E
[
∥θt(I − J)∥2

F

]
= η2

KT

T∑
t=1

E

∥∥∥∥∥
t−1∑
τ=0

U τ
(
W t−τ − J

)∥∥∥∥∥
2

F


= η2

KT

T∑
t=1

E

∥∥∥∥∥
t−1∑
τ=0

(U τ − ∇F τ + ∇F τ )
(
W t−τ − J

)∥∥∥∥∥
2

F


≤ 2η2

KT

T∑
t=1

E

∥∥∥∥∥
t−1∑
τ=0

(U τ − ∇F τ )
(
W t−τ − J

)∥∥∥∥∥
2

F

+ 2η2

KT

T∑
t=1

E

∥∥∥∥∥
t−1∑
τ=0

∇F τ
(
W t−τ − J

)∥∥∥∥∥
2

F

 , (37)

where we used (28) (for S = 2) in the last inequality. Let Bτ,t = W t−τ − J . We start by examining the
first term of (37) by writing

E

∥∥∥∥∥
t−1∑
τ=0

(U τ − ∇F τ ) Bτ,t

∥∥∥∥∥
2

F


=

t−1∑
τ=0

E
[
∥(U τ − ∇F τ ) Bτ,t∥2

F

]
+

t−1∑
τ=0

t−1∑
τ ′=0,
τ ′ ̸=τ

E
[
Tr{BT

τ,t(U τ − ∇F τ )T (U τ ′
− ∇F τ ′

)Bτ ′,t}
]

≤
t−1∑
τ=0

E
[
∥U τ − ∇F τ ∥2

F ∥Bτ,t∥2
F

]
+

t−1∑
τ=0

t−1∑
τ ′=0,
τ ′ ̸=τ

E
[
∥(U τ − ∇F τ ) Bτ,t∥F ∥(U τ ′

− ∇F τ ′
)Bτ ′,t∥F

]

≤
t−1∑
τ=0

ρt−τE
[
∥U τ − ∇F τ ∥2

F

]
+

t−1∑
τ=0

t−1∑
τ ′=0,
τ ′ ̸=τ

ρt−τ

2ϵ
E
[
∥U τ − ∇F τ ∥2

F

]
+ ϵρt−τ ′

2 E
[∥∥∥U τ ′

− ∇F τ ′
∥∥∥2

F

]
, (38)
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where we have used Lemma 1 and inequalities (30) and (31). Setting ϵ = ρ
τ′−τ

2 , we can further write (38) as

E

∥∥∥∥∥
t−1∑
τ=0

(U τ − ∇F τ ) Bτ,t

∥∥∥∥∥
2

F


≤

t−1∑
τ=0

ρt−τE
[
∥U τ − ∇F τ ∥2

F

]
+

t−1∑
τ=0

t−1∑
τ ′=0,
τ ′ ̸=τ

ρt− τ+τ′
2

2

(
E
[
∥U τ − ∇F τ ∥2

F +
∥∥∥U τ ′

− ∇F τ ′
∥∥∥2

F

])

≤
t−1∑
τ=0

ρt−τE
[
∥U τ − ∇F τ ∥2

F

]
+

t−1∑
τ=0

t−1∑
τ ′=0,
τ ′ ̸=τ

ρt− τ+τ′
2 E

[
∥U τ − ∇F τ ∥2

F

]

≤
t−1∑
τ=0

ρt−τE
[
∥U τ − ∇F τ ∥2

F

]
+

t−1∑
τ=0

ρ
t−τ

2 E
[
∥U τ − ∇F τ ∥2

F

] t−1∑
τ ′=0,
τ ′ ̸=τ

ρ
t−τ′

2

≤
t−1∑
τ=0

ρt−τE
[
∥U τ − ∇F τ ∥2

F

]
+

t−1∑
τ=0

ρ
t−τ

2 E
[
∥U τ − ∇F τ ∥2

F

]( t−1∑
τ ′=0

ρ
t−τ′

2 − ρ
t−τ

2

)

≤
t−1∑
τ=0

ρ
t−τ

2 E
[
∥U τ − ∇F τ ∥2

F

] t−1∑
τ ′=0

ρ
t−τ′

2

≤
√

ρ

1 − √
ρ

t−1∑
τ=0

ρ
t−τ

2 E
[
∥U τ − ∇F τ ∥2

F

]
, (39)

where in the last inequality, we used
∑t−1

τ=0 ρ
t−τ

2 = √
ρt + √

ρt−1 + · · · + √
ρ ≤

√
ρ

1−√
ρ . Now, let’s focus on

finding an upper bound for the term E
[
∥U τ −∇F τ ∥2

F

]
. To this end, we start by writing

∥U τ − ∇F τ ∥2
F = 1

µ2

K∑
i=1

∥∥∥∥exp
(

ℓ(θτ
i , ξτ

i )
µ

)
gi(θτ

i ) − exp
(

fi(θτ
i )

µ

)
∇fi(θτ

i )
∥∥∥∥2

. (40)

Next, we can write the following

exp
(

ℓ(θτ
i , ξτ

i )
µ

)
gi(θτ

i ) − exp
(

fi(θτ
i )

µ

)
∇fi(θτ

i )

= exp
(

ℓ(θτ
i , ξτ

i )
µ

)
gi(θτ

i ) − exp
(

ℓ(θτ
i , ξτ

i )
µ

)
gi(θ̄τ ) + exp

(
ℓ(θτ

i , ξτ
i )

µ

)
gi(θ̄τ ) − exp

(
ℓ(θτ

i , ξτ
i )

µ

)
∇fi(θ̄τ )

+ exp
(

ℓ(θτ
i , ξτ

i )
µ

)
∇fi(θ̄τ ) − exp

(
fi(θτ

i )
µ

)
∇fi(θ̄τ ) + exp

(
fi(θτ

i )
µ

)
∇fi(θ̄τ ) − exp

(
fi(θτ

i )
µ

)
∇fi(θτ

i ).

(41)
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Using the decomposition (41) in (40) and taking the expected value while using the inequality (28) (for
S = 4), we get

E
[
∥U τ − ∇F τ ∥2

F

]
≤ 4

µ2

K∑
i=1

E

[∥∥∥∥exp
(

ℓ(θτ
i , ξτ

i )
µ

)(
gi(θτ

i ) − gi(θ̄τ )
)∥∥∥∥2
]

+ 4
µ2

K∑
i=1

E

[∥∥∥∥exp
(

ℓ(θτ
i , ξτ

i )
µ

)(
gi(θ̄τ ) − ∇fi(θ̄i)

)∥∥∥∥2
]

+ 4
µ2

K∑
i=1

E

[∥∥∥∥∇fi(θ̄τ )
(

exp
(

ℓ(θτ
i , ξτ

i )
µ

)
− exp

(
fi(θτ

i )
µ

))∥∥∥∥2
]

+ 4
µ2

K∑
i=1

E

[∥∥∥∥exp
(

fi(θτ
i )

µ

)(
∇fi(θ̄τ ) − ∇fi(θτ

i )
)∥∥∥∥2
]

≤ 4G2
2

µ2

K∑
i=1

E
[
∥gi(θτ

i ) − gi(θ̄τ )∥2]+ 4G2
2

µ2

K∑
i=1

E
[
∥gi(θ̄τ ) − ∇fi(θ̄τ )∥2]

+ 4G2
1

µ2

K∑
i=1

E

[∣∣∣∣exp
(

ℓ(θτ
i , ξτ

i )
µ

)
− exp

(
fi(θτ

i )
µ

)∣∣∣∣2
]

+ 4G2
2

µ2

K∑
i=1

E
[
∥∇fi(θ̄τ ) − ∇fi(θτ

i )∥2]
≤ 8G2L2

µ2

K∑
i=1

E
[
∥θ̄τ − θτ

i ∥2]+ 8G2σ2K

µ2 = 8G2L2

µ2 E
[
∥θτ (I − J)∥2

F

]
+ 8G2σ2K

µ2 , (42)

where we used assumptions 1-3 and we defined the following quantities σ = max{σ1, σ2, σ3}, G =
max{G1, G2} and L = max{LF , L1, L2}. Going back to (39), and using (42), we can write

1
KT

T∑
t=1

E

∥∥∥∥∥
t−1∑
τ=0

(U τ − ∇F τ ) Bτ,t

∥∥∥∥∥
2

F


≤

8√
ρG2L2

µ2(1 − √
ρ)

1
KT

T∑
t=1

t−1∑
τ=0

ρ
t−τ

2 E
[
∥θτ (I − J)∥2

F

]
+

8√
ρG2σ2

µ2(1 − √
ρ)T

T∑
t=1

t−1∑
τ=0

ρ
t−τ

2

≤
8√

ρG2L2

µ2(1 − √
ρ)

1
KT

T∑
t=1

E
[
∥θt(I − J)∥2

F

] T −t∑
τ=0

ρ
τ
2 +

8√
ρG2σ2

µ2(1 − √
ρ)T

T∑
t=1

T −t∑
τ=0

ρ
τ
2

≤ 8ρG2L2

µ2(1 − √
ρ)2

1
KT

T∑
t=1

E
[
∥θt(I − J)∥2

F

]
+ 8ρG2σ2

µ2(1 − √
ρ)2 . (43)

Now, we focus on the second term of (37). Following similar steps as when bounding the first term of (37),
we get

E

∥∥∥∥∥
t−1∑
τ=0

∇F τ Bτ,t

∥∥∥∥∥
2

F

 ≤
√

ρ

1 − √
ρ

t−1∑
τ=0

ρ
t−τ

2 E
[
∥∇F τ ∥2

F

]
. (44)
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Next, we look for an upper bound for the term E
[
∥∇F τ ∥2

F

]
. To this end, we start by writing

E
[
∥∇F τ ∥2

F

]
= 1

µ2

K∑
i=1

E

[∥∥∥∥exp
(

fi(θτ
i )

µ

)
∇fi(θτ

i )
∥∥∥∥2
]

≤ G2
2

µ2 E
[
∥∇fi(θτ

i )∥2
]

≤ G12G2
2K

µ2

≤ G4K

µ2 . (45)

Therefore, we get

1
KT

T∑
t=1

E

∥∥∥∥∥
t−1∑
τ=0

∇F τ Bτ,t

∥∥∥∥∥
2

F

 ≤ G4ρ

µ2(1 − √
ρ)2 . (46)

Next, using (37), (43), and (46), we can write

1
KT

T∑
t=1

E
[
∥θt(I − J)∥2

F

]
≤ 16η2ρL2G2

µ2(1 − √
ρ)2

1
KT

T∑
t=1

E
[
∥θt(I − J)∥2

F

]
+ 2η2ρG2(8σ2 + G2)

µ2(1 − √
ρ)2 . (47)

Let γ = 16η2ρL2G2

µ2(1−√
ρ)2 , then we obtain

1
KT

T∑
t=1

E
[
∥θt(I − J)∥2

F

]
≤ γ(8σ2 + G2)

8L2(1 − γ) . (48)

which concludes the proof of Lemma 2.

A.4 Proof of Theorem 1

Since the objective function F (·) is Lipschitz smooth, we can write

F (θ̄t+1) − F (θ̄t) ≤ ⟨∇F (θ̄t), θ̄t+1 − θ̄t⟩ + L

2 ∥θ̄t+1 − θ̄t∥2. (49)

Plugging the update rule θ̄t+1 = θ̄t − ηU t1/K, we have

F (θ̄t+1) − F (θ̄t) ≤ −η⟨∇F (θ̄t), U t1
K

⟩ + η2L

2

∥∥∥∥U t1
K

∥∥∥∥2

. (50)

Using the identity (29), we can write the first term of the left hand-side of (50) as

⟨∇F (θ̄t), U t1
K

⟩ = 1
2

[
∥∇F (θ̄t)∥2 +

∥∥∥∥U t1
K

∥∥∥∥2

−
∥∥∥∥F (θ̄t) − U t1

K

∥∥∥∥2
]

. (51)
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Next, we look for an upper bound for the third term of (51). To this end, we start by writing

∇F (θ̄t) − U t1
K

= 1
µK

K∑
i=1

exp
(

fi(θ̄t)
µ

)
∇fi(θ̄t) − exp

(
ℓ(θt

i , ξt
i)

µ

)
gi(θt

i)

= 1
µK

K∑
i=1

exp
(

fi(θ̄t)
µ

)
∇fi(θ̄t) − exp

(
ℓ(θ̄t, ξt

i)
µ

)
∇fi(θ̄t)

+ 1
µK

K∑
i=1

exp
(

ℓ(θ̄t, ξt
i)

µ

)
∇fi(θ̄t) − exp

(
ℓ(θt

i , ξt
i)

µ

)
∇fi(θ̄t)

+ 1
µK

K∑
i=1

exp
(

ℓ(θt
i , ξt

i)
µ

)
∇fi(θ̄t) − exp

(
ℓ(θt

i , ξt
i)

µ

)
gi(θ̄t)

+ 1
µK

K∑
i=1

exp
(

ℓ(θt
i , ξt

i)
µ

)
gi(θ̄t) − exp

(
ℓ(θt

i , ξt
i)

µ

)
gi(θt

i). (52)

Using the inequality (28), we get∥∥∥∥∇F (θ̄t) − U t1
K

∥∥∥∥2

≤ 4
µ2K

K∑
i=1

∥∥∥∥(exp
(

fi(θ̄t)
µ

)
− exp

(
ℓ(θ̄t, ξt

i)
µ

))
∇fi(θ̄t)

∥∥∥∥2

+ 4
µ2K

K∑
i=1

∥∥∥∥(exp
(

ℓ(θ̄t, ξt
i)

µ

)
− exp

(
ℓ(θt

i , ξt
i)

µ

))
∇fi(θ̄t)

∥∥∥∥2

+ 4
µ2K

K∑
i=1

∥∥∥∥exp
(

ℓ(θt
i , ξt

i)
µ

)(
∇fi(θ̄t) − gi(θ̄t)

)∥∥∥∥2

+ 4
µ2K

K∑
i=1

∥∥∥∥exp
(

ℓ(θt
i , ξt

i)
µ

)(
gi(θ̄t) − gi(θt

i)
)∥∥∥∥2

. (53)

Using assumption 2, we can write∥∥∥∥∇F (θ̄t) − U t1
K

∥∥∥∥2

≤ 4G2
1

µ2K

K∑
i=1

∣∣∣∣exp
(

fi(θ̄t)
µ

)
− exp

(
ℓ(θ̄t, ξt

i)
µ

)∣∣∣∣2 + 4G2
1

µ2K

K∑
i=1

∣∣∣∣exp
(

ℓ(θ̄t, ξt
i)

µ

)
− exp

(
ℓ(θt

i , ξt
i)

µ

)∣∣∣∣2

+ 4G2
2

µ2K

K∑
i=1

∥∥∇fi(θ̄t) − gi(θ̄t)
∥∥2 + 4G2

2
µ2K

K∑
i=1

∥∥gi(θ̄t) − gi(θt
i)
∥∥2

. (54)

Next, taking the expected value from both sides and using assumptions 1-3, we get

E

[∥∥∥∥∇F (θ̄t) − U t1
K

∥∥∥∥2
]

≤ 8G2σ2

µ2 + 8G4L2

µ2 + 4G2L2

µ2K

K∑
i=1

E
[
∥θ̄t − θt

i∥2] . (55)

Replacing (55) in (51), we obtain

E
[
⟨∇F (θ̄t), U t1

K
⟩
]

≥ 1
2E
[
∥∇F (θ̄t)∥2]+ 1

2E
[∥∥∥∥U t1

K

∥∥∥∥2
]

− 4G2σ2

µ2 − 4G4L2

µ2 − 2G2L2

µ2K
E
[
∥θt(I − J)∥2

F

]
.

(56)
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Going back to (50), we can write

E
[
F (θ̄t+1) − F (θ̄t)

]
≤ −η

2E
[
∥∇F (θ̄t)∥2]+ η

2 (ηL − 1)E
[∥∥∥∥U t1

K

∥∥∥∥2
]

+ 4G2σ2η

µ2 + 4G4L2η

µ2 + 2G2L2η

µ2K
E
[
∥θt(I − J)∥2

F

]
. (57)

Setting the learning rate η such that ηL ≤ 1, and taking the average over t ∈ [1, T ], we get

E
[
F (θ̄T ) − F (θ̄1)

]
T

≤ − η

2T

T∑
t=1

E
[
∥∇F (θ̄t)∥2]+ 4G2σ2η

µ2 + 4G4L2η

µ2 + 2G2L2η

µ2KT

T∑
t=1

E
[
∥θt(I−J)∥2

F

]
.

(58)

Re-arranging the terms and using assumption 5, we can write

1
T

T∑
t=1

E
[
∥∇F (θ̄t)∥2] ≤ 2(F (θ̄1) − Finf )

ηT
+ 8G2σ2

µ2 + 8G4L2

µ2 + 4G2L2

µ2KT

T∑
t=1

E
[
∥θt(I − J)∥2

F

]
. (59)

Using Lemma 2 in (59), we get

1
T

T∑
t=1

E
[
∥∇F (θ̄t)∥2] ≤ 2(F (θ̄1) − Finf )

ηT
+ 8G2(σ2 + G2L2)

µ2 + γG2(8σ2 + G2)
2µ2(1 − γ) . (60)

Furthermore, if choosing η such that ηL <
µ(1−√

ρ)
8G

√
ρ ensures that γ < 1

4 , then we can write

1
T

T∑
t=1

E
[
∥∇F (θ̄t)∥2] ≤ 2(F (θ̄1) − Finf )

ηT
+ 56G2σ2 + G4(1 + 48L2)

6µ2 , (61)

which finalizes the proof.
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