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Abstract

Controllable spherical panoramic image generation holds
substantial applicative potential across a variety of domains.
However, it remains a challenging task due to the inherent
spherical distortion and geometry characteristics, resulting in
low-quality content generation. In this paper, we introduce a
novel framework of SphereDiffusion to address these unique
challenges, for better generating high-quality and precisely
controllable spherical panoramic images. For the spherical
distortion characteristic, we embed the semantics of the dis-
torted object with text encoding, then explicitly construct
the relationship with text-object correspondence to better use
the pre-trained knowledge of the planar images. Meanwhile,
we employ a deformable technique to mitigate the seman-
tic deviation in latent space caused by spherical distortion.
For the spherical geometry characteristic, in virtue of spher-
ical rotation invariance, we improve the data diversity and
optimization objectives in the training process, enabling the
model to better learn the spherical geometry characteristic.
Furthermore, we enhance the denoising process of the diffu-
sion model, enabling it to effectively use the learned geomet-
ric characteristic to ensure the boundary continuity of the gen-
erated images. With these specific techniques, experiments on
Structured3D dataset show that SphereDiffusion significantly
improves the quality of controllable spherical image genera-
tion and relatively reduces around 35% FID on average.

Introduction
Spherical panoramic images, also known as 360◦ panoramic
images or omnidirectional panoramic images, are used in
various domains such as autonomous driving (de La Garan-
derie, Abarghouei, and Breckon 2018; Ma et al. 2021), vir-
tual reality (Xu, Zhang, and Gao 2021; Ai et al. 2022),
etc. Numerous studies (Yan et al. 2022; Hara, Mukuta, and
Harada 2021; Akimoto, Matsuo, and Aoki 2022) have been
proposed for the synthesis of spherical panoramic images,
with a primary focus on reconstructing scenes from narrow
field of view (NFOV) images. However, these generation
methods often produce images of inferior quality and lack
controllability, which are crucial in real applications.
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Figure 1: The characteristics of spherical panoramic images
and the impact of these characteristics on existing control-
lable generation methods.

In contrast, extensive works (Zhang, Rao, and Agrawala
2023; Mou et al. 2023) have greatly succeeded in control-
lable high-quality planar image generation. Most of the ex-
isting works resort to fine-tuning the pre-trained large-scale
diffusion models to adapt to different application scenar-
ios. However, such a paradigm falls short of expectations
for generating the spherical panoramic images, since simply
fine-tuning cannot capture the unique characteristics of the
spherical panoramic images.

Two characteristics of spherical panoramic images are es-
sentially different from the planar images: spherical distor-
tion and spherical geometry. As shown in Figure 1, on the
one hand, spherical distortion mainly refers to the deforma-
tion of objects. Existing controllable generation models are
primarily designed and pre-trained based on planar images.
Thus, the text-object correspondence knowledge stored in
these pre-trained weights cannot be effectively utilized for
spherical panoramic images due to the significant deforma-
tion of distorted objects. At the same time, spherical distor-
tion makes it difficult to extract effective features of spheri-
cal panoramic images, resulting in semantic deviation when
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depicting image content. Accordingly, text prompts often
fail to correctly guide the generation process, leading to the
mismatch between text guidance and generated visual con-
tent. On the other hand, spherical geometry means that the
visual content of a spherical panoramic image is a projection
of the 3D world on a sphere. Such sphere structure shares
3D geometric attributes such as spherical rotation invariance
and non-boundary property. Current controllable planar gen-
erative models lack geometry-aware training design, result-
ing in the difficulty of effectively incorporating the spherical
geometry characteristic. As a consequence, improving the
quality of the generated content using spherical geometry
becomes a challenge. Practically, preventing the model from
generating spherical images from a global perspective leads
to issues like boundary discontinuity. Considering the above
issues, one question naturally arises: How can we enable the
model to learn and utilize the characteristics of spherical
images, then enhance the quality of controllable spherical
panoramic image generation?

In this work, we propose the SphereDiffusion framework,
which targets to generate high-quality and precisely control-
lable spherical panoramic images from single NFOV seg-
mentation maps and text prompts. To solve the above issues,
we impose the two characteristics of spherical panoramic
images into the model design, as well as the training and
inference process. Concretely, for spherical distortion char-
acteristic, we introduce Distortion-Resilient Semantic En-
coding (DRSE) to enhance the utilization of pre-trained
knowledge. It embeds the text semantics into distorted ob-
jects, aligning text-object correspondence knowledge of pre-
trained planar image generation models and the objects in
the spherical panoramic image. Meanwhile, we also intro-
duce a Deformable Distortion-aware Block (DDaB) con-
structed based on deformable convolution to relieve seman-
tic deviation. The deformability of DDaB helps the model
extract effective features from distorted objects with differ-
ent deviations in spherical panoramic images.

For spherical geometry characteristic, we aim to let the
model adequately learn and use it, then improve both the
training process and generation process. On the one hand,
we propose Spherical Geometry-aware (SGA) Training, en-
abling the model to better learn the spherical geometry char-
acteristic. It contains two modules: Spherical Reprojection
and Spherical SimSiam Contrastive Learning. Spherical Re-
projection applies spherical rotation invariance to the train-
ing data, enabling the model to better learn spherical geom-
etry through data diversity. Spherical SimSiam Contrastive
Learning ensures spherical rotation invariance in the latent
space, increasing the spherical robustness of models at the
optimization objective. On the other hand, we introduce
SGA Generation, which allows the model to better use the
spherical geometry characteristic to improve the generation
process. By incorporating spherical rotation invariance into
the generation process, we iteratively rotate the intermediate
results from the previous denoising step to connect the con-
tent located at the two ends of the intermediate results. In
this way, the boundary connectivity of the generated image
is improved. Our contributions are summarized as follows:
• We proposea novel framework for controllable spherical

panoramic image generation, which takes both spherical
geometry and image distortion into consideration.

• We propose DRSE and DDaB to deal with spherical dis-
tortion, enabling the model to better use the pre-trained
knowledge and reduce the semantic deviation in latent
space caused by spherical distortion.

• We introduce SGA Training to make models learn spher-
ical geometry from both data diversity and optimization
objectives. We also propose SGA Generation to improve
the denoising process of the diffusion model.

Experimental results on the Structured3D dataset (Zheng
et al. 2020) demonstrate that our method can significantly
improve the quality of controllable spherical image genera-
tion and relatively reduces around 35% FID on average com-
pared to previous methods.

Related Work
Conditional Diffusion Probabilistic Model
Diffusion model (Sohl-Dickstein et al. 2015; Dhariwal and
Nichol 2021) is a generative probability model, which has
attracted many researchers’ attention because of its high-
quality generative results. Diffusion models can success-
fully perform conditional image generation when trained
with guidance such as semantic layout or class labels (Zheng
et al. 2022; Ramesh et al. 2021; Saharia et al. 2022b; Ho
and Salimans 2022; Zheng et al. 2023; Xue et al. 2023).
A notable example of conditional diffusion models is re-
cent text-to-image diffusion models, which have showcased
unprecedented synthetic capabilities (Nichol et al. 2021;
Saharia et al. 2022a; Sheynin et al. 2022). Recently, many
methods have been observed to enhance user controllabil-
ity. Existing methodologies can be broadly bifurcated into
two primary strategies: (i) Approaches that integrate explicit
control by incorporating additional guiding signals into the
model (Avrahami et al. 2022; Rombach et al. 2022; Brooks,
Holynski, and Efros 2023). However, these studies require
costly training on meticulously curated datasets. (ii) Many
methods have been proposed to implicitly control the con-
tent generated by manipulating the generation process of a
pre-trained model (Mokady et al. 2023; Kong et al. 2023)
or by conducting lightweight model fine-tuning (Ruiz et al.
2023; Kawar et al. 2023; Zhang, Rao, and Agrawala 2023).
Most of these methods only require minimal training over-
head and produce high-quality generated content, making
them the mainstream approach for controllable generation.

Spherical Panoramic Image Generation
Current spherical panoramic image generation techniques
can be divided into two categories: GAN-based generative
models and diffusion-based generative models. Kimura et
al. (Kimura and Rekimoto 2018) presented a peripheral im-
age generation technique based on pix2pix (Isola et al.
2017). However, the FOV used to generate image was con-
strained. Sumantri et al. (Sumantri and Park 2020) advanced
a spherical image generation technique based on pix2pixHD
(Wang et al. 2018), which required a collection of images
taken from various directions as input. Hara et al. (Hara,
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Mukuta, and Harada 2021) present a novel method to gener-
ate spherical images from a single NFOV image by control-
ling the degree of freedom of generated regions using scene
symmetry. Along with the development of the diffusion
model, some panoramic image generation methods based
on the diffusion model have emerged. Bar-Tal et al. (Bar-
Tal et al. 2023) define a new generation process to gener-
ate panoramas, which is composed of several reference dif-
fusion generation processes bound together with a set of
shared parameters or constraints and without further train-
ing or fine-tuning. Zhang et al. (Zhang et al. 2023) propose
a combinatorial diffusion model that can take advantage of
a trained diffusion model based on factor graph representa-
tions to generate spherical panoramic images. Li et al. (Li
and Bansal 2023) use recursive overpainting on generated
images to create consistent spherical panoramic views by
conditioning text descriptions.

Preliminaries
Latent Diffusion Models
Diffusion models are probabilistic models designed to learn
a data distribution p(x) by gradually denoising a normally
distributed variable and can be interpreted as a sequence of
denoising autoencoders ϵθ (xt, t). They are trained to predict
denoised versions of their inputs xt, where xt is a noisy vari-
ant of the input x. Latent diffusion models (LDMs) (Rom-
bach et al. 2022) employ a two-stage approach to train diffu-
sion models directly in high-resolution pixel space with ac-
ceptable computational cost. First, a learnable autoencoder
(consisting of an encoder E and a decoder D) is trained to
compress the image into a smaller latent space representa-
tion. Then, a diffusion model of representations z = E(x) is
trained instead of a diffusion model of images x. Moreover,
in the forward process, LDM incrementally adds noise to z
to get zt and performs denoising to predict z in the reverse
process. New images can be generated by sampling a repre-
sentation z̃ from the diffusion model and subsequently de-
coding it into an image using the learned decoder x̃ = D(z̃).
During training, the loss is defined as follows:

LLDM = Ez0,ϵ∼N (0,1),t

[
|ϵ− ϵθ (zt, t)|22

]
. (1)

Controllabel Image Synthesis Diffusion Models
Controllable image synthesis diffusion models allow the cre-
ation of diverse images based on text instructions or guid-
ance from a reference image. ControlNet, a trainable adap-
tor, is specifically designed to function in tandem with Stable
Diffusion, which is a representative work of this field. A sim-
ple network Fhint is first used to downsample the input con-
trol image c to the same size as the input vector z in the latent
space of Stable Diffusion, yielding Clatent. Subsequently,
Controlnet uses its control branch Fc to process Clatent, re-
sulting in multi-scale features Fc = [F 1

c , F
2
c , ..., F

n
c ]. These

features are then added to the features of the same resolu-
tion at the corresponding positions in the middle block and
the decoder block of the U-Net structure in Stable Diffu-
sion. This process effectively controls the generation of Sta-
ble Diffusion. During training, the main training constraint

is defined as follows:

LC = Ez0,t,ct,c,ϵ∼N (0,1)

[
|ϵ− ϵθ (zt, t, ct, c)|22

]
. (2)

In this paper, we adopt ControlNet as our baseline.

Method
In this section, we present the fundamental idea and detailed
design of SphereDiffusion. First, we provide an overview of
controllable spherical panoramic image generation. Second,
we describe our solution to spherical distortion. Finally, we
introduce our strategy to allow the model to learn and utilize
the characteristic of spherical geometry better.

Overview
SphereDiffusion generates high-quality controllable spheri-
cal panoramic images x which simultaneously conform to
a corresponding text prompt Ctext and an NFOV segmen-
tation map Cmask. The foundational ControlNet serves as
the baseline for this process. In order to improve the qual-
ity of controllable spherical panoramic image generation,
SphereDiffusion needs to deal with two main characteris-
tics, spherical distortion and spherical geometry.

Spherical distortion causes a certain category of objects
in different positions in the spherical panoramic image to
show significant and different shape changes compared with
the planar image. This poses challenges to the model to ef-
fectively utilize the text-object correspondence knowledge
stored in pre-trained weights and extract effective features of
distorted objects. First, to better use the pre-trained knowl-
edge of planar images, we propose our Distortion-Resilient
Semantic Encoding (DRSE), to align the input condition
to the pre-trained text-object correspondence knowledge. In
addition, to deal with the different shape changes of objects
at different locations of a spherical panoramic image, we
propose our Deformable Distortion-aware Block (DDaB).

Spherical geometry has several unique properties, such as
spherical rotation invariance and non-boundary property. To
enable the model to learn and use spherical geometry, we in-
troduce SGA Training and SGA Generation during the train-
ing and generation processes, respectively. SGA Training
enhances data diversity and optimization objectives during
the training process by employing Spherical Reprojection
and Spherical SimSiam Contrastive Learning, respectively.
This approach enables the model to learn the spherical ge-
ometry characteristic better. Furthermore, SGA Generation
uses learned geometric characteristics to enhance the bound-
ary connectivity of spherical panoramic images to make the
generated content continuous.

Spherical Distortion Properties Solution
As mentioned above, the impact of spherical distortion has
two main aspects. First, to utilize the text-object correspon-
dence knowledge stored in pre-trained weights, we replace
the original RGB segmentation map with a segmentation
map rich in semantic information. Moreover, to reduce the
semantic deviation in latent space, models should be spe-
cially designed to extract effective features of different loca-
tions of a spherical panoramic image differently and adap-
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Figure 2: Overall review of SphereDiffusion. (Upper left) Distortion-Resilient Semantic Encoding introduces category infor-
mation into the representation of segmentation maps to alleviate the issue of text-image mismatch. (Upper right) Spherical
SimSiam Contrastive Learning is a part of SGA Training, which constructs contrastive learning in the latent space, equipping
SphereDiffusion with spherical geometry at the objective function level. (Lower left) Spherical Reprojection is a part of SGA
Training at the data level, and Spherical Rotation serves as the foundation for SGA Training. (Lower middle) DDaB with de-
formable convolution enhances the model’s perceptual ability of spherical distortion.

tively. Inspired by Trans4PASS (Zhang et al. 2022), we im-
prove the Fhint by deformable technique through our De-
formable Distortion-aware Block.

Distortion-Resilient Semantic Encoding Distortion-
Resilient Semantic Encoding starts from the perspective
of input data, upgrading the connection between color
information in the segmentation map and the generated
objects to the connection between class semantic informa-
tion in the segmentation map and the generated objects.
This allows the model to better utilize the text-object
correspondence knowledge stored in pre-trained weights.
Specifically, as shown in the upper left of Figure 2, given
one NFOV segmentation map Cmask, we first set the
segmentation maps for the remaining positions in a newly
introduced category, ”Unknown”. This results in our final
input segmentation map, C ′

mask. Then, we downsample
the segmentation map to the same resolution as the input
vector z ∈ RC×H×W in the latent space of Stable Diffu-
sion. According to the categories of the labels, we divide
the entire image into K two-dimensional binary masks
M =

{
mi | mi ∈ [0, 1]H×W

}K

i=1
, where K represents

the total number of categories, including the newly added
’Unknown’ category. Subsequently, we construct the label
texts using the prompt template ‘a photo of a {label}’ for
all categories L = {l1, l2, ..., lK}. These label texts are
then encoded using the text encoder of CLIP (Radford
et al. 2021), resulting in label embeddings Elabel ∈ RCE×K .
Finally, we multiply the binary masks M with the label

embeddings Elabel, resulting in a per-pixel embedding
Epixel ∈ RCE×H×W . We use Epixel as the guiding input for
the final model (FCLIP is the text encoder of the CLIP
model, ⊗ is the matrix cross product):

C ′
mask → M =

{
mi | mi ∈ [0, 1]H×W

}K

i=1
, (3)

Elabel = FCLIP (L), (4)
Epixel = Elabel ⊗M. (5)

Deformable Distortion-aware Block The Deformable
Distortion-aware Block starts from the perspective of the
model structure, introducing a deformable convolution into
the model. This allows the model to better adapt and ex-
tract effective features from spherical images. After obtain-
ing Epixel , to align with the original design of ControlNet, we
use a learnable block to transform Epixel into an embedding
with the same dimensions as z. To deal with the different
shape changes of objects at different locations of a spheri-
cal panoramic image, we introduce deformable convolution
within this block. In detail, for each image, the offsets ∆(i,j)

of the ith row jth column pixel are defined as:

∆(i,j) =

[
min(max(-kD ·H, g(f)(i,j)), kD ·H)
min(max(-kD ·W, g(f)(i,j)), kD ·W )

]
, (6)

where g(·) is the offset prediction function. The hyperpa-
rameter kD puts an upper bound on the learnable offsets ∆.
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Figure 3: The processing of Spherical Geometry-aware Generation. During the generation process, we uniformly select K steps
to rotate an angle αr to enhance the boundary connectivity of the generated image.

For implementation, as shown in the lower middle of Fig-
ure 2, in block Fhint, which consists of four convolutional
layers and one zero convolution layer, we replace the fourth
convolutional layer with a deformable convolutional layer.

Spherical Geometry-aware Diffusion Model
We made improvements to both the training and inference
process. SGA Training fuses spherical geometry in data di-
versity and optimization objective. We adopt random rota-
tions in 3D space to enhance data diversity. In terms of op-
timization objective, we propose Spherical SimSiam Con-
trastive Learning to make the extracted features equipped
with spherical rotation invariance. we introduce SGA Gen-
eration, which allows the model to better use the spherical
geometry characteristic to improve the generation process.

Spherical Geometry-aware (SGA) Training Traditional
training strategies treat the input as a planar image. It re-
sults in the model overfitting to images of a single projection
way, thereby inhibiting the model’s ability to learn the spher-
ical geometry characteristic. Therefore, we introduce SGA
training with the aim of enhancing the ability of the model’s
control branch to learn the spherical rotation invariance of
spherical images. First, we introduce the spherical rotation.
As shown in the lower left of Figure 2, let T denote the
forward transformation of the Equirectangular Projection
(ERP), which entails the conversion of spherical coordinates
to planar coordinates. T−1 signify the inverse one. Given an
input panoramic image processed through ERP, we initially
convert the image I to spherical coordinates by applying the
inverse ERP transformation. Subsequently, benefiting from
(Li et al. 2023), we employ a three-dimensional rotation
matrix within the spherical coordinate system to execute a
three-dimensional rotation. For a generic rotation in three-
dimensional space, the angles of yaw, pitch, and roll are rep-
resented by αuse, βuse, and γuse, respectively. The associ-
ated rotation matrix is denoted by R(αuse, βuse, γuse). By
multiplying R with the data in the spherical coordinate sys-
tem, we acquire the rotated data within the same coordinate

system. Ultimately, we apply the ERP forward transforma-
tion to convert the rotated spherical coordinate system image
into a panoramic image, thereby obtaining a specific rotated
image of the real input of the model. The corresponding
point in the input image of a pixel in the rotated image may
not possess integer coordinates; thus, we choose the near-
est pixel as its corresponding pixel. In summary, the rotation
process of a spherical image I can be defined as follows:
O3D(I, αuse, βuse, γuse) = T (R(αuse, βuse, γuse)·T−1(I)).
During training, two methods help the model learn the geo-
metric property, including spherical rotation invariance.

Spherical Reprojection: Given a data pair (x, Cmask,
Ctext), we can rotate both x and C ′

mask by a random ro-
tation angle chosen randomly within the maximum rotation
angle (αd, βd, γd) to obtain xr and crmask, thereby generat-
ing more data (xr, Cr

mask, Ctext). This method allows the
model to learn geometric properties directly.

Spherical SimSiam Contrastive Learning: Benefiting
from SimSiam (Chen and He 2021), we use Clatent rep-
resenting the input of the control branch Fc in Con-
trolNet. As shown in the upper right part of Figure 2,
we randomly rotate Clatent using a random rotation
(αuse, βuse, γuse) chosen randomly within the maximum
rotation angle (αc, βc, γc) to obtain a new view Cr

latent =
O3D(Clatent, αuse, βuse, γuse). The encoders Fc of the two
branches share the same weights. A prediction MLP head
h transforms the output of one view and matches it to the
other view. We maximize the cosine similarity between the
two branches as follows:

D (p1, z2) = − p1
∥p1∥2

· z2
∥z2∥2

, (7)

where ∥ · ∥2 is ℓ2-norm, p1 = h(Fc(Clatent)), z2 =
O3D(Fc(C

r
latent), αuse, βuse, γuse). Then we define a sym-

metrized loss as follows:

Lsiam =
1

2
D (p1, stop (z2)) +

1

2
D (p2, stop (z1)) (8)

where stop represents the stop-gradient operation and pre-
vents a degenerate solution due to model collapse. We set
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our total loss as (λ is a hyperparameter):
Lall = Lc + λ · Lsiam. (9)

Spherical Geometry-aware (SGA) Generation During
the generation process with diffusion models, the output is
not produced in a single step; rather, it involves multiple iter-
ations. Therefore, inspired by the non-boundary property of
the spherical panoramic image, we have also improved the
generation process. As shown in Figure 3, assuming that we
need N steps {t1, t2..., tN} to complete the generation of the
diffusion model, we will uniformly select K steps through-
out the process S = {s1, s2..., sK}, Sd = N

K+1 steps be-
tween each step. When the current iteration step is t ∈ S, we
simultaneously rotate the latent space vector and the guided
segmentation map at an angle of αr = 360◦

K . Such an ap-
proach can enhance the boundary connectivity of the spher-
ical image during the generation process.

Experiments
Datasets, Protocols, and Evaluation Metrics
We evaluated our model on the Structured3D dataset (Zheng
et al. 2020), which provides 196k spherical panoramic
images of 21,835 rooms in 3,500 scenes. We use
scene 00000 to scene 03249 for training, and scene 03250
to scene 03499 for testing. Our experiments are conducted
with a server with eight NVIDIA A100 GPUs, and train-
ing epochs are 20. The base model is Stable Diffusion
1.5, and text prompts are annotated with BLIP (Li et al.
2022). Following the settings in (Hara, Mukuta, and Harada
2021), during the training process, we extract an NFOV
image from a spherical image with a field of view rang-
ing from 30◦ to 120◦ and an aspect ratio of 2 : 1. Subse-
quently, the viewpoint direction was arbitrarily established
on the sphere and projected onto the equirectangular im-
age. We set (αc, βc, γc) = (360◦, 3◦, 3◦) and (αd, βd, γd) =
(360◦, 10◦, 10◦). λ / N / K are set to 0.1 / 50 / 4, re-
spectively. We choose widely used metrics to evaluate im-
age generation quality, including Fréchet Inception Dis-
tance (FID) (Heusel et al. 2017), spatial Fréchet Inception
Distance (sFID) (Nash et al. 2021), and Inception Score
(IS) (Salimans et al. 2016).

Performance Comparison
In this section, we compare the image generation quality
with the latest work, and Table 1 shows the performance
comparison between our method and other approaches. To
ensure a fair comparison, we use the official implementation
of ControlNet with the same hyperparameters and training
iterations on the Structured3D dataset. We select four FOV
sizes, 30, 60, 90, and 120 degrees for comparison. As can
be seen, our method outperforms other methods in all met-
rics. Among them, in the test of four different FOV sizes, the
most widely used FID score, our method improved signifi-
cantly by 14.312 on average compared to ControlNet.

Furthermore, the visualization of the generated images
also intuitively shows that our generation quality is more
consistent with the textual descriptions and semantic seg-
mentation maps compared to ControlNet. As shown in Fig-
ure 4, when we want to generate a bedroom with white walls

Method FOV FID↓ sFID↓ IS↑
ControlNet

30◦
44.801 174.841 3.006

Ours 29.156 121.607 3.323

ControlNet
60◦

41.917 158.873 2.957
Ours 26.262 111.318 3.325

ControlNet
90◦

39.450 142.747 2.954
Ours 25.042 105.165 3.234

ControlNet
120◦

35.690 123.075 2.853
Ours 24.147 92.039 3.246

Table 1: Comparison with the existing methods on Strcu-
ture3D dataset. We use the same hyperparameter settings
and number of training epochs for a fair comparison.

DRSE DDaB SR SSCL SGAG FID↓
✗ ✗ ✗ ✗ ✗ 39.450
✓ ✗ ✗ ✗ ✗ 38.805
✓ ✓ ✗ ✗ ✗ 35.076
✓ ✓ ✓ ✗ ✗ 32.468
✓ ✓ ✓ ✓ ✗ 25.763
✓ ✓ ✓ ✓ ✓ 25.043

Table 2: Effect of each module of SphereDiffusion. ‘DRSE’
/ ‘DDaB’ / ‘SR’ / ‘SSCL’ / ‘SGAG’ represent our Distortion-
Resilient Semantic Encoding / Deformable Distortion-aware
Block / Spherical Reprojection / Spherical SimSiam Con-
trastive Learning / Spherical Geometry-aware Generation.

and a pink bed, we can see that ControlNet erroneously gen-
erates a room with pink walls, and the area originally la-
beled ‘curtain’ in the semantic segmentation does not cor-
rectly generate the specified object. In contrast, since our
method achieves a better object understanding of spherical
panoramic images, our method accurately generates white
walls and a pink bed, with the corresponding ‘curtain’ area
correctly generating the specified object, resulting in a more
reasonable overall output. When we try to generate a kitchen
with gray walls and white cabinets, ControlNet mistakenly
generates gray cabinets. In contrast, our method correctly
generates gray cabinets and gray walls. Furthermore, the
boundary connectivity of our generated images is signifi-
cantly better than that generated by ControlNet.

Ablation Study
Effect of Four Modules in Training Process
As shown in Table 2, we validate Distortion-Resilient
Semantic Encoding, Deformable Distortion-aware Block,
Spherical SimSiam Contrastive Learning, and Spherical Re-
projection, respectively. We selected a FOV size of 90◦

for the ablation experiment. The baseline FID score is
39.450. The FID score improves to 38.805, only including
Distortion-Resilient Semantic Encoding, indicating the pos-
itive impact of incorporating semantic representation in the
model. Adding our Deformable Distortion-aware Block to
the model with Distortion-Resilient Semantic Encoding fur-
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Segmentation Map ControlNet OursText Prompt

A bedroom with
white walls and

a pink bed

A kitchen with 
gray walls and
white cabinets

BoundaryOverview Overviewdoorcurtainwall Boundary

Figure 4: Visualization comparison of comparing SphereDiffusion with ControlNet. The images generated by our SphereDif-
fusion are more closely aligned with the guidance provided by the segmentation maps and text prompts (highlighted by red line
boxes and green dotted boxes). ‘Overview’ is generated image, and ‘Boundary’ displays the boundary of the generated image.

Without
SGA Generation

With
SGA Generation

Overall Image Rotated Image Detail Image

Figure 5: Visualization of generated image results with or without the Spherical Geometry-aware Generation. We use the same
SphereDiffusion model, employing consistent text prompts, segmentation maps, and random seeds for generation. The first
row shows images generated without incorporating SGA Generation, while the second row presents images generated with the
inclusion of SGA Generation. ‘Rotated Image’ is obtained by rotating the generated ‘Overview Image’ by α = 180◦.

ther enhances the performance, achieving an improvement
in the FID score of 3.7. The combination of Distortion-
Resilient Semantic Encoding, Deformable Distortion-aware
Block, and Spherical Reprojection results in an improve-
ment, with the FID score dropping to 32.468. This demon-
strates the effectiveness of incorporating Spherical Repro-
jection in the model. When we add all our components, the
FID score further improves to 25.763, highlighting the im-
portance of Spherical SimSiam Contrastive Learning in sig-
nificantly enhancing the model’s performance.

Effect of Spherical Geometry-aware Generation
We evaluate our SGA Generation through Table 2 and Fig-
ure 3. As shown in Table 2, without retraining the model
and only incorporating SGA Generation during the testing
process, the FID score improves by almost 0.7. Visualiza-
tions are shown in Figure 3. Without SGA Generation, the
generated images exhibit discontinuity at the boundary, with
a clear demarcation line. However, once using SGA Gener-
ation, the generated images exhibit better connectivity. This
demonstrates that SGA Generation can use the spherical ge-

ometric characteristic to enhance the boundary connectivity
of generated spherical panoramic images.

Conclusion
Generating spherical panoramic images is a challenging
task, as it requires considering spherical distortion and
geometric characteristics. We propose SphereDiffusion, a
framework that accounts for these characteristics, generat-
ing high-quality, controllable spherical panoramic images
from single NFOV segmentation maps and text prompts. For
spherical distortion characteristic, we introduce Distortion-
Resilient Semantic Encoding and Deformable Distortion-
aware Block. For spherical geometry characteristic, we
leverage the spherical rotation invariance of spherical
panoramic images and propose SGA Training, which in-
cludes Spherical Reprojection and Spherical SimSiam Con-
trastive Learning. Additionally, we introduce SGA Gener-
ation to improve the generation process. Through experi-
ments, we verified that our method can significantly improve
the quality of the generated images.
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