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Figure 1: The brain-inspired architecture of the RoboMemory resembles the biological nervous sys-
tem. It maps biological neural components, enabling the agent to interact with diverse environments
(real-world, Habitat, ALFRED) and robotic hardware for long-term planning and lifelong learning.

Abstract

We present RoboMemory, a brain-inspired multi-memory framework for life-
long learning in physical embodied systems, addressing critical challenges in
real-world environments: continuous learning, multi-module memory latency,
task correlation capture, and infinite-loop mitigation in closed-loop planning.
Grounded in cognitive neuroscience, it integrates four core modules: the Infor-
mation Preprocessor (thalamus-like), the Lifelong Embodied Memory System
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(hippocampus-like), the Closed-Loop Planning Module (prefrontal lobe-like), and
the Low-Level Executer (cerebellum-like) to enable long-term planning and cu-
mulative learning. The Lifelong Embodied Memory System, central to the frame-
work, alleviates inference speed issues in complex memory frameworks via par-
allelized updates/retrieval across Spatial, Temporal, Episodic, and Semantic sub-
modules. It incorporates a dynamic Knowledge Graph (KG) and consistent ar-
chitectural design to enhance memory consistency and scalability. Evaluations
on EmbodiedBench show RoboMemory outperforms the open-source baseline
(Qwen2.5-VL-72B-Ins) by 25% in average success rate and surpasses the closed-
source State-of-the-Art (SOTA) (Gemini-1.5-Pro) by 3%, establishing new SOTA.
Ablation studies validate key components (critic, spatial memory, long-term mem-
ory), while real-world deployment confirms its lifelong learning capability with
significantly improved success rates across repeated tasks. RoboMemory allevi-
ates high latency challenges with scalability, serving as a foundational reference
for integrating multi-modal memory systems in physical robots.

1 Introduction

Driven by the rapid advancements in Vision-Language Models (VLMs) [19, 4], VLM-based agents
have been increasingly deployed in embodied tasks, leveraging pre-trained knowledge and multi-
modal understanding capabilities to interact with physical environments [28, 18].

Current research primarily focuses on optimizing performance in single tasks within virtual sim-
ulators or controlled real-world setups [5, 2, 40], or relies on oversimplified memory frameworks.
These frameworks lack mechanisms to model interdependencies between distinct tasks. In prac-
tice, real-world embodied agents must operate over a lifetime, handling sequential tasks where prior
experiences (e.g., learning to “open a fridge” to retrieve an apple) directly shape subsequent per-
formance (e.g., efficiently accessing other objects in similar containers). This demands long-term
memory systems that not only retain experiences but also capture cross-task influences, enabling
cumulative improvement rather than isolated task execution.

Prior efforts to integrate memory systems into embodied frameworks [33, 15, 36, 1, 13] have ad-
vanced long-term planning and lifelong learning. However, most of them concentrate on virtual
environments and fail to generalize to the real world. While the embodied frameworks that are de-
signed for the real world [42, 29] lack critical memory modules. But on the other hand, a complex
memory architecture will suffer from prohibitive latency, which makes it hard to use.

To address these gaps, we propose RoboMemory, a brain-inspired multi-memory framework ex-
plicitly designed for lifelong learning in the real world. This highly parallelized, hierarchical ar-
chitecture enables long-term planning and lifelong learning in real-world environments. Draw-
ing on cognitive neuroscience [25], it comprises four core components (Fig. 1): an Information
Preprocessor (thalamus-like) for multimodal integration; a Lifelong Embodied Memory System
(hippocampus-like), the core part that adopts a three-tier structure (long-term, short-term, working
memory) grounded in cognitive neuroscience to organize experiential data and object spatial rela-
tionships, with a parallelizable memory paradigm unifying information updating and retrieval across
modules to mitigate latency; a Closed-Loop Planning Module (prefrontal lobe-like) for high-level
action sequencing; and a Low-level Executer (cerebellum-like). For robust real-world deployment,
RoboMemory employs a dual-system architecture [42, 29] where the upper layer (embodied agent)
outputs abstract high-level actions, and a Vision-Language-Action (VLA) model with Simultaneous
Localization and Mapping (SLAM) system translates these into low-level commands executable by
robots.

We validated RoboMemory (excluding the executor) in EmbodiedBench, a long-horizon planning
benchmark environment [38]. Results demonstrate substantial improvements: with Qwen2.5-VL-
72b as the backbone, RoboMemory increases average success rates by 25% over the base model and
5% over the closed-source state-of-the-art (SOTA) Gemini-1.5-Pro. Moreover, we test RoboMemory
in a real-world environment, where RoboMemory executed 15 diverse tasks twice (one for learning
and one for testing). By validating the RoboMemory’s performance between two executions, we
verify that the RoboMemory has basic lifelong learning ability in the real world. In addition, we
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do ablation studies to quantify component-level contributions, and a comprehensive error analysis
contextualizes limitations. In conclusion, our contributions fall into three aspects:

• Inspired by the brain’s unified memory mechanisms, we design a lifelong embodied mem-
ory system with four parallel modules (Spatial, Temporal, Episodic, and Semantic) under
a unified framework. This framework supports parallelized update and retrieval across
modules, mitigating latency accumulation in complex systems while facilitating coherent
knowledge integration for lifelong learning.

• We propose a retrieval-based incremental Knowledge Graph (KG) update algorithm for
dynamic spatial memory evolution. It enables efficient, consistent updates by retrieving
relevant subgraphs, detecting local conflicts, and merging new information, alleviating scal-
ability bottlenecks of traditional incremental strategies in dynamic environments.

• RoboMemory enables lifelong learning in real-world physical robots: it executes sequen-
tial diverse tasks without memory reset, with experience accumulation driving steady per-
formance improvements. This demonstrates practical long-term autonomous learning in
physical scenarios, with reduced reliance on simulated pre-training.

2 Related Work

2.1 VLM/LLM-based Agentic Frameworks in Embodied Tasks

The rapid advancement of VLMs/LLMs has led to diverse agent frameworks in embodied envi-
ronments [41, 31, 22]. Embodied tasks involve partial observability and long-horizon planning,
requiring memory systems to retain context. Some use time-ordered context buffers for short-term
memory (due to VLMs/LLMs’ limited long-context processing) [41, 27]; others adopt experience
buffers as long-term semantic memory [13, 30]. For long-duration tasks, skill libraries serve as pro-
cedural memory, with agents accumulating skills via interaction [36, 33]. Recent efforts integrate
diverse memories [43, 33, 1] but focus on virtual/GUI environments, leaving real-world multi-modal
memory support for long-term planning under-explored.

2.2 Vision Language Action Model

Current work on VLA models uses imitation learning to output low-level controls from language
and visuals [7, 45, 6, 20] but is limited to tabletop tasks and single actions, restricting long-horizon
planning. VLAs lack long-term execution abilities, while high-level agents excel at planning. Recent
works combine high-level frameworks with VLA executors, some augmented with simple memory
[29, 32, 42, 39] for longer tasks. However, real-world robots need more sophisticated memory to
handle continuous multi-task operations over extended periods.

2.3 Memory Frameworks

Many previous works improve long-term planning via memory systems: Voyager [36] uses a skill
library in Minecraft but lacks diverse memory types; CoELA [43] includes procedural, semantic, and
episodic memory with a task-specific 2D map; MSI-Agent [13] utilizes insight as long-term memory
for in-task learning. Hippo Retrieval Augmented Generation (RAG) [16] mimics the hippocampus
and introduces KGs as long-term memory indices [8, 9], enhancing retrieval. However, the previous
approach is mainly focused on constructing a KG with static long context, such as a book, but it
is hard to update the graph. We need to update the information in KG for the embodied task. Our
approach builds a more general LLM-based memory system using a dynamic KG like Hippo RAG,
which is designed for embodied tasks.

3 RoboMemory

As illustrated in Fig. 2, the key design of RoboMemory is a unified memory paradigm. This
paradigm aims to streamline memory operations: during updates, only memory items relevant to
new information are targeted, while retrieval leverages rule-based information gathering to enhance
efficiency. In the following sections, we detail the specific design of each component and how they
integrate within this framework to enable real-world lifelong learning.

3



Figure 2: RoboMemory architecture with working pipeline and memory mechanisms. (a) Left:
The agent’s pipeline. Parallel Step Summarizer and Query Generator in Information Processor (1)
generate updates/queries for Lifelong Embodied Memory (2). These memories enable Closed-Loop
Planning (3) for tasks like “slice and pick up the apple”—the Planner generates plans, while the
Critic and memories adjust decisions via feedback from visual inputs/results (4). (b) Right: Spatial
and Semantic memories operate in parallel with isomorphic updates. Internally, Spatial memory
maintains a relevance/similarity-updated KG, and Semantic memory manages a Vector DB with
analogous logic.

3.1 Information Preprocessor

For each time-step i, RoboMemory receives a visual observation Oi—a single RGB frame in simu-
lation or a short video snippet from the onboard camera on the real robot—capturing what the agent
sees while acting. An Information Preprocessor constitutes the system’s perceptual front-end, con-
verting this multimodal input into text that can be indexed and searched. To keep latency low, the
preprocessor runs two lightweight modules in parallel:

1. Step summarizer S: TransformsOi into a concise textual description si of the just-executed
action. The string si is stored as the system’s working memory.

2. Query generator Q: Derives a query qi from the same observation Oi, which is used to
probe long-term memory for relevant episodes.

Together, S and Q provide a swift, text-based interface between raw sensory data and RoboMem-
ory’s retrieval machinery.

3.2 Lifelong Embodied Memory System

RoboMemory incorporates a lifelong memory system with four modules: Spatial, Temporal,
Episodic, and Semantic. The four-module structure is designed to enable continuous learning in
dynamic real-world environments. To mitigate latency from repeated VLM invocations, we unify
the four modules’ update and retrieval processes into a single paradigm with parallel implementa-
tion. As shown in Fig. 2, all four modules perform updates and retrievals in parallel. Thus, the
framework avoids latency escalation despite multiple memory components.

Memory modules in Lifelong Embodied Memory System have three types of update frequency:

1. Action-level, which is updated once per action;

2. Task-level, which is updated only after the completion of each task;

3. Mixed-level, which is updated at both the action level and the task level.
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3.2.1 Spatial-Temporal Memory System

To adapt to dynamic real-world environments, we design the Spatial-Temporal Memory. The spatial
and temporal memory update in action-level frequency. The Temporal memory is a first-in-first-out
(FIFO) buffer whose size is N . The buffer can store N summary steps s[i:i+N ]. When the buffer
is full, it will be fully cleared. Then, we use an LLM to summarize the short-term memories in the
discarded N step into a single entity, inserted as the first entry of the buffer.

The Spatial Memory is a dynamically updated KG-based module that addresses LLMs’ limitations
in implicitly extracting spatial information from temporal memory. This system dynamically records
spatial relationships in the scene while efficiently maintaining a dynamic KG. Unlike previous KG
construction algorithms [16, 12], which are designed for static information gathering. Our spatial
memory needs to be updated frequently. To speed up the KG update process, we design a two-phase
progressive approach: (1) Rapid Response Phase: New information is quickly buffered to avoid
losing observations. (2) Local Integration Phase: On buffer saturation or conflict detection, affected
local subgraphs are integrated (entity de-duplication, relationship merging, conflict detection).

This algorithm limits KG updates to the environment. For each update, we only consider relevant
segments, controlling efficiency and updater context length for better performance. The algorithm is
shown in Algorithm 1. Meanwhile, to illustrate the growth of dynamic spatial memory, we provide
a sample in Appendix E.

Our retrieval-based incremental KG update algorithm has provable efficiency guarantees. Specif-
ically, for a KG with n nodes and maximum degree D, the number of nodes processed in each
update is bounded by O(DK) where K is the retrieval hop distance (see Appendix D for formal
proof). This ensures scalability even as the spatial memory grows over time.

3.2.2 Lifelong Learning System

In real-world scenarios, agents process sequential tasks over their lifetime, requiring continuous
improvement through prior experiences. Drawing on cognitive psychology’s classification of hu-
man long-term memory, we divide our system into episodic and semantic memory: the former
records agent-environment interaction histories, while the latter extracts experiential insights to sup-
port long-term task reasoning. This update process mirrors human daily experience consolidation
during sleep [23].

Episodic Memory: It captures task-level interactions, accounting for temporal interdependencies
between sequential tasks in the same environment. The agent must memorize what it has done
before to complete future tasks. Moreover, task-level interactions can be a reference that may help
the agent improve its plan in the future.

Semantic Memory: It accumulates step-by-step action usage experiences (based on invoked actions
and outcomes) to inform action arrangement. Post-task, it summarizes temporal memory, distilling
successes from completed tasks and identifying failure causes/improvement strategies from unsuc-
cessful ones, thus enabling both action-level and task-level learning across both task and action
levels.

In implementation, both episodic and semantic memory share the same RAG framework consisting
of an extractor, updater, and RAG storage (each entry is a memory entity). Post-task, the Extractor
summarizes the task’s Spatial-Temporal Memory into a new memory entity. The RAG then retrieves
similar existing entities (old information) from the RAG. Then, the Updater deletes, adds, or updates
old memory entities according to new information. After that, we write the updated memory entities
back to the RAG. Because we only update memory entities similar to new information, efficiency
is ensured by restricting updates to old memory entities relevant to the new entity instead of all
memory entities stored in the RAG.

3.3 Closed-Loop Planning Module for Dynamic Environment

The Closed-Loop Planning Module integrates information about the current task provided by the
Spatial-Temporal Memory, Semantic and Episodic information recorded in long-term memory, and
current observations to perform action planning. Each action is planned and passed on to the low-
level executor for execution.
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To enable closed-loop control in embodied environments, the Closed-Loop Planning Module adopts
the Planner-Critic mechanism [21], which consists of the planner and the critic module. For each
planning step, the planner generates a long-term plan consisting of multiple steps. However, due
to the dynamics of embodied environments, the action sequence in the long-term plan may become
outdated during the execution of the plan. Thus, before executing each step, we use the Critic model
to evaluate whether the proposed action in this step remains appropriate under the latest environment.
If not, the planner will replan based on the latest information. The demonstration of this process is
shown in Fig. 2.

However, our experiments reveal that the original Planner-Critic mechanism may suffer from infinite
loops. In the original mechanism, the first step of the action sequence output by the Planner is
evaluated by the Critic before execution, which can lead to an infinite loop: if the Critic always
demands replanning, no action will ever be executed. To address this, we modified the Planner-
Critic mechanism so that the first step is not evaluated by the Critic. This ensures that even if the
Critic persistently demands replanning, the RoboMemory will still execute actions.

3.4 Low-level Executer

The RoboMemory framework is a two-layer hierarchical agent framework. This design enables
RoboMemory to accomplish longer-term tasks in the real world. The upper layer is responsible only
for high-level planning, while the Low-level Executor carries out the actions planned by the upper
layer in the real environment.

We use π0 [7] as the action executor in the real world: actions planned by RoboMemory are con-
verted into arm and chassis movements via the Low-level Executer, with LoRA fine-tuning applied
to optimize performance in real-world robotic tasks. More details are provided in Appendix B.

Table 1: Comparison of Success Rates (SR) and Goal Condition Success Rates (GC) across difficulty
levels between RoboMemory and baseline methods on EB-ALFRED.

Method Type Avg. Base Long

SR GC SR GC SR GC

Single VLM-Agents

GPT-4o

Closed-source

59.0 % 68.3 % 64.0 % 74.0 % 54.0 % 62.5 %
GPT-4o-mini 17.0 % 32.4 % 34.0 % 47.8 % 0.0 % 17.0 %
Claude-3.5-Sonnet 62.0 % 63.3 % 72.0 % 72.0 % 52.0 % 54.5 %
Gemini-1.5-Pro 64.0 % 69.7 % 70.0 % 74.3 % 58.0 % 65.0 %
Gemini-2.0-flash 60.0 % 63.9 % 62.0 % 65.7 % 58.0 % 62.0 %

Llama-3.2-90B-Vision-Ins

Open-source

27.0 % 33.9 % 38.0 % 43.7 % 16.0 % 24.0 %
InternVL2.5-78B 40.0 % 45.7 % 38.0 % 42.3 % 42.0 % 49.0 %
InternVL3-78B 37.0% - 38.0% - 36.0% -
InternVL2.5-38B 31.0% 36.9% 36.0% 37.3% 26.0% 36.5%
Qwen2.5-VL-72B-Ins 42.0 % - 50.0 % - 34.0 % -

VLM-Agent Frameworks

Voyager (Qwen2.5-VL-72B-Ins)
Baselines

44.0% 63.7% 56.0% 73.2% 32.0% 54.2%
Reflexion (Qwen2.5-VL-72B-Ins) 29.0% 43.2% 48.0% 54.0% 10.0% 33.0%
Cradle (Qwen2.5-VL-72B-Ins) 43.0% 54.6% 54.0% 67.9% 32.0% 41.0%

RoboMemory (Qwen2.5-VL-72B-Ins) Ours 67.0 % 78.4 % 68.0 % 75.5 % 66.0 % 81.3 %

4 Experiments

4.1 Experimental Setup

4.1.1 Benchmarks

To evaluate the task planning ability of RoboMemory, we select a subset of the EB-ALFRED bench-
mark from EmbodiedBench[38]. We selected the Base and Long subsets because they aim to test
the agent’s planning ability. The Base and Long subset comprises 100 tasks for complex long-term
embodied tasks. The EB-ALFRED environment provides a visually-grounded operational setting
that closely mimics real-world conditions (see appendix B for environment details), enabling direct
comparison with established baselines.
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Additionally, we have also evaluated RoboMemory’s capabilities on the EB-Habitat benchmark [38].
For detailed results, please refer to Appendix A.

Moreover, we set up a real-world environment to test the lifelong learning ability of RoboMemory
in the real world.

4.1.2 Settings & Baselines

To facilitate comparisons, we consider two types of baselines. First, we choose the advanced closed-
source and open-source VLMs as a single agent. We compare their performance with RoboMemory.
For closed source VLMs, we choose GPT-4o and GPT-4o-mini [26, 19], Claude3.5-Sonnet [3],
Gemini-1.5-Pro and Gemini-2.0-flash [34, 11]. For open source VLMs, we choose LLama-3.2-90B-
Vision-Ins [24], InternVL-2.5-78B/28B [10], InternVL-3-72B [46], and [4]. Secondly, we choose
three agent frameworks: (1) Reflexion [30], which introduces a simple long-term memory and a
self-reflection module. Reflexion uses the self-reflection module to summarize experiences as long-
term memory, thereby enhancing the model’s capabilities. (2) Voyager [36], which utilizes a skill
library as its procedural memory, is a widely used baseline for embodied agent planning. (3) Cradle
[33], which proposes a general agent framework with episodic and procedural memory and gains
good performances at various multi-model agent tasks.

In our experiments, each agent framework is tested using Qwen2.5-VL-72b-Ins [35]. The Qwen2.5-
VL-72b-Ins represents a high-performing open-source alternative. Notably, the Qwen2.5-VL-72b-
Ins demonstrates performance comparable to advanced closed-source VLMs in several benchmark
tasks [37]. We use the Qwen3-Embedding model [44] to create embedding vectors for RAGs in
RoboMemory. For the Low-level Executor, since EB-ALFRED provides high-level action APIs, we
use the low-level executor provided by EmbodiedBench instead of the VLA-based method.

4.1.3 Evaluation metrics

We define two evaluation metrics to assess the performance: (1) Success Rate (SR), which is the
ratio of completed tasks to the total number of tasks in each difficulty level. This metric reflects the
agent’s ability to complete tasks across randomly generated scenarios. (2) Goal Condition Success
Rate (GC), which is the ratio of intermediate conditions achieved to the maximum possible score in
each scenario. An GC of 100% indicates that the task is completed in the given scenario. These two
metrics can be computed as:

SR = Ex∈X [1SCNx=GCNx
] (1)

GC = Ex∈X

[
SCNx

GCNx

]
(2)

WhereX denotes the test subset, and x represents a test task. The success condition number (SCNx)
refers to the number of conditions the agent has accomplished, while the global condition number
(GCNx) indicates the total number of conditions required for task completion. The task is consid-
ered successful if SCNx = GCNx.

4.2 Main results

As shown in Table 1, our model achieves significant improvements over both single VLM agents
and Agent frameworks on the EB-ALFRED. Compared to the SOTA Single VLM-Agent model,
Gemini1.5-Pro, RoboMemory with Qwen2.5-VL-72B-Ins backbone improves the average SR by
3% and GC by 8.7%. This demonstrates RoboMemory’s superiority over single VLM-Agents, prov-
ing that an Agent framework with open-source models can outperform closed-source SOTA models.
Furthermore, when tested against other VLM-Agent frameworks, RoboMemory also shows sub-
stantial gains. This is because, unlike other frameworks, RoboMemory’s brain-like memory system
provides embodied models with more accurate and persistent contextual information. Additionally,
the Planner-Critic mechanism provides a closed-loop planning ability, which helps the RoboMem-
ory gain better performance in long-term tasks. Because the RoboMemory can detect and try to
overcome possible failures. And it is more robust when encountering unexpected situations.
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Figure 3: The reason why RoboMemory failed
to complete the task.

Table 2: Ablation Study on RoboMemory’s Suc-
cess Rate (SR)

Method Avg. Base Long

RoboMemory 67% 68% 66%
- w/o critic 55 % 60 % 50%
- w/o spatial memory 47 % 52 % 42 %
- w/o long-term memory 57% 66% 48%

4.3 Ablation Studies

We used the full Base and Long Subset from EB-ALFRED to validate RoboMemory’s effective-
ness. We removed each component systematically and observed performance changes across task
categories. We use the success rate as our metric. Results are shown in Table 2.

4.3.1 Long-term Memory

Adding long-term memory significantly improved RoboMemory’s success rate. The experiment
shows that it enables continuous learning while it attempts to complete tasks. The semantic memory
learns low-level skills’ properties, such as in what circumstances an action may fail. The temporal
memory records all task attempts (successful/failed), providing valuable experience at the task level
and giving insight into how to complete a task successfully. This helps the RoboMemory predict
action outcomes and avoid ineffective attempts. This ability indicates that the RoboMemory has a
lifelong learning capability.

4.3.2 Spatial Memory

Spatial memory is crucial for embodied agents, especially given that current pretrained VLMs have
limited spatial understanding ability. Our novel dynamic KG update algorithm enables KG-based
spatial memory in dynamic environments. This spatial reasoning helps RoboMemory handle par-
tially observable embodied settings.

4.3.3 Critic Module

Table 2 shows performance without the critic module (55% vs 67% with full system). This
drop highlights how the critic’s closed-loop planning adapts to dynamic environments. It helps
RoboMemory recover from failures faster and handle unexpected situations better.

4.4 Real-world Robot Deployment

To evaluate RoboMemory’s lifelong learning capability in the real world, we designed a kitchen
environment inspired by EB-ALFRED and EB-Habitat. The scene contains 5 navigable points, 8
interactive objects, and over 10 non-interactive (but potentially distracting) items. The environment
is shown in Figure 4. In the real world, we use continuous video recordings during action execution
(instead of snapshots after the action execution) as RoboMemory’s input. This provides a more
temporally coherent perception. We created three task categories (5 tasks each, totaling 15 tasks)
with difficulty matching EB-ALFRED’s Base subset (average oracle trajectory length from 5 to 10).
Additional hardware experiment details are in Appendix B.
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Figure 4: Visualization of the experimental
environment.

Figure 5: The improvement of RoboMemory
after learning in the real world.

To test the lifelong learning ability of RoboMemory, we run each task twice without clearing long-
term memory between attempts. Success rates for first and second attempts are shown in Figure
5.

The second attempt showed significantly higher success rates. This proves RoboMemory’s long-
term memory effectively guides subsequent tasks in real embodied environments. Key observations
include: (1) Closed-loop error recovery: RoboMemory retries failed actions when possible, even if
the low-level executor (VLA model) fails. (2) Spatial reasoning: RoboMemory remembers object
locations and spatial relationships using its memory. (3) Lifelong learning: RoboMemory analyzes
failure causes reasonably. These analyses guide future decisions.

Detailed examples demonstrating these capabilities and further discussions are provided in Ap-
pendix E.

Moreover, we observed a significant drop in task success rates when deploying the agent with the
Low-level Executor in real-world environments. This performance degradation primarily stems from
the executor’s inherent limitations: (1) The VLA model exhibits unreliable instruction-following ca-
pabilities, frequently failing during grasping actions or selecting incorrect objects; (2) Pre-trained
VLM models demonstrate inadequate video understanding - while capable of recognizing static ob-
jects, they struggle to interpret dynamic visual information such as action failures or state changes.
These limitations collectively contribute to the reduced performance compared to simulated envi-
ronments.

5 Conclusion and Future Work

In conclusion, RoboMemory, a brain-inspired multi-memory framework, enables lifelong learning
and long-term planning in real-world embodied systems by addressing key challenges: continuous
learning, memory latency, task correlation capture, and planning infinite loops. Experimental results
on EmbodiedBench show it outperforms SOTA closed-source VLMs and agent frameworks, with
ablation studies validating critical components like the Critic module and spatial/long-term mem-
ory. Real-world deployment confirms its lifelong learning capability via improved success rates in
repeated tasks. While limited by reasoning errors and executor reliance, it paves the way for gener-
alizable memory-augmented agents, with future work focusing on refining reasoning and enhancing
execution robustness.

A key unsolved problem in current hierarchical agent research for embodied tasks, including ours, is
about the interaction between high-level agents and low-level executors (e.g., VLAs). Most existing
frameworks use language instructions solely as action instructions from high-level agents. However,
some action details are hard to describe with language. Other modalities (e.g., vision) can better rep-
resent these details (e.g., grasp points). While our work focuses on long-term planning and lifelong
learning for agents, future work can consider enhancing generalization within existing frameworks
by improving the interaction method between the VLA and the Agent.
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A Additional Experiments

Figure 6: Comparison of Success Rates (SR) and Goal Condition Success Rates (GC) across diffi-
culty levels between RoboBrain and baseline methods on EB-Habitat.

A.1 Evaluate on EB-Habitat

Similar to EB-ALFRED, we also deploy RoboMemory to EB-Habitat. Both EB-Habitat and EB-
HALFRED are subsets of EmbodiedBench. We evaluate our model on the Base and Long subsets.
Each subset contains 50 different trails. The results are shown in Fig 6.

The results demonstrate that our RoboMemory can adapt well to different environments. It achieves
significant improvements over the baseline across various settings. On average, the success rate
increases by 24% compared to the SOTA Multi-Agent Method. The goal-conditioned success rate
improves by 12%.

These improvements indicate that RoboMemory enhances the agent’s embodied intelligence in var-
ious environments. The key factor is its complete memory system.

A.2 Error Analysis

We analyze RoboMemory trajectories for failed tasks. We identify error types based on the above
definitions. A single task may contain multiple errors. We calculate the occurrence probability of
each error type to show RoboMemory’s strengths and weaknesses. The results are shown in Figure
3.

We can observe that among all error types, the planning errors are the most common. This means
that even though the memory modules can provide comprehensive information about the RoboMem-
ory agent’s previous experience and spatial and temporal memory for the current task, the planner
module may still not provide good action plans. This may be due to the capability of the pretrained
base model.

The most common perception error is the hallucination error. We can observe that although some
hallucinations can be handled by the critic module or memory information, there are still some cases
in which the planner ignores all insights from memory and critic and fails to complete the task.

The detailed examples and discussions are provided in Appendix E.

B Additional Environment settings

B.1 EB-ALFRED and EB-Habitat

We adopt the same environment parameters as in EmbodiedBench. The maximum steps per task
are set to 30, with image inputs of size 500 × 500. The temporal memory buffer length is set to
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Table 3: Robot Action Command For different environments
Action Type EB-ALFRED EB-Habitat Real World
Navigate to object/navigation point find(obj) navigate(point) navigate to(point)
Pick Up Object pick up(obj) pick(obj) pick up(obj)
Drop to Ground drop() – –
Place to Receptacle put down() place(rec) put down to(rec)
Open Object open(obj) open(obj) open(obj)
Close Object close(obj) close(obj) close(obj)
Turn On turn on(obj) – turn on(obj)
Turn Off turn off(obj) – turn off(obj)
Slice Object slice(obj) – –
Task Complete – – task complete()

3. However, we modify the action formats of EB-ALFRED and EB-Habitat to better simulate real-
world scenarios. Specifically, we define different action APIs (Python functions), where each action
takes an object parameter indicating its target. We extract all possible objects from the environment
as inputs to the Agent. The Agent must select appropriate actions and object parameters based on
task requirements. Compared to the original interaction method in EmbodiedBench (which enumer-
ates all possible actions, including both action names and target objects, and requires the Agent to
choose), our approach offers greater flexibility. The detailed action APIs are presented in Table 3.

Since EB-ALFRED and EB-Habitat provide comprehensive high-level action APIs, we do not em-
ploy the VLA-Based Low-Level Executor in these environments. Instead, we utilize the built-in
low-level controllers from EmbodiedBench.

B.2 Real-world experiments

We construct a common kitchen scenario to evaluate the RoboMemory framework’s lifelong learn-
ing capabilities in real-world settings. Using Mobile ALOHA [14] as our physical robotic platform,
we design three categories of tasks: (1) Pick up & put down: The agent must locate a specified
object among all possible positions and place it at a designated location. This task tests the model’s
basic object-searching and planning abilities. (2) Pick up, operate & put down: Building upon the
first task, the agent must additionally perform operations such as heating or cleaning the object. This
task requires longer-term planning, which is crucial in embodied environments. (3) Pick up, gather
& put down: The agent must place specified objects into a movable container and then move the
container to a target location. This task evaluates the agent’s understanding of object relationships,
requiring it to remember the positions of at least two objects (the container and the target item) and
their spatial relationship.

To adapt to the real-world setup, we define high-level action APIs similar to those in EB-ALFRED
and EB-Habitat. Additionally, we train a VLA-based model to execute tasks according to our action
APIs. The detailed action APIs are presented in Table 3.

For the low-level executor, we use one main camera and two arm-mounted cameras as input, each
with a resolution of 640 × 480. The temporal memory buffer length is set to 3.

In our experiments, we set the maximum steps per task to 15. We also provide an API for actively
terminating tasks. Since real-world environments lack direct success/failure feedback, RoboMem-
ory must autonomously determine task completion. To prevent excessively long task execution, we
enforce termination after 15 steps if no success is achieved. A single main camera (640 × 480 reso-
lution) records video during action execution as input for RoboMemory’s higher-level processing.

B.3 Training Details of Low-Level Executer

We use the π0 model as our foundation model. We collected 1,040 data samples over 10 types
of tasks for fine-tuning. We use LoRA [17] fine-tuning to save resources during fine-tuning. The
specific fine-tuning parameters and action types are given in Table 4. For tasks involving both pick-
up and place actions, we split these tasks into separate pick-up and place actions. These are then
treated as two distinct data samples during training. The separation of pick-up and place action
allows the VLA to carry an object in its hand. For training, we used a server with six A100-80GB
GPUs. The total training time was 12 hours.
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Table 4: Dataset statistics and training hyperparameters for robotic manipulation tasks.
Dataset Statistics Training Configuration

Action Type #Episodes Parameter Value
Turning on/off faucet 142 Optimizer AdamW
Picking up & Placing basket on counter 63 Batch size 32× 6

Picking up & Placing basket in sink 72 Training steps 10,000
Picking up & Placing banana into basket 114 Learning rate 6.12× 10−5

Throwing bottle into trash bin 132 warm up step 500
Placing gum box on dish 120 LoRA Configuration
Picking up & Placing cup on plate 51 rank 16
Picking up & Placing dish into sink 69 α 16
Throwing paper ball into trash bin 135 Resource Usage
Open/close oven 142 GPU A100-80GB × 6
Total episodes 1040 Training time 12 hours

Besides, we use the built-in LiDAR SLAM system of the Mobile ALOHA robot base as the naviga-
tion action actuator. We define five typical navigation points, similar to EB-Habitat. We used SLAM
to navigate between these navigation points.

C Algorithm for Dynamic KG update algrithm

Algorithm 1 Retrieval-based Incremental Knowledge Graph Update Algorithm
Require: New triplet set Tnew, main knowledge graph G = (V,E), latest retrieval entities Entityl,

entity embeddings E : V → Rd, similarity threshold θ, conflict detection V LMdt, retrieval
function Retrieve(·)

Ensure: Updated consistent knowledge graph G′

1: Step 1: Retrieve relevant subgraph based on new triplets
2: Gretrieved ← Retrieve(G,Entityl, E , θ)
3: Step 2: Create local working subgraph
4: Glocal ← Gretrieved ∪ Tnew

5: Step 3: Conflict detection within local subgraph
6: GNewSubgraph ← V LMdt (Glocal)
7: Step 4: Generate updated subgraph
8: Gupdated ← resolve all conflicts and integrate Tnew into GNewSubgraph

9: Step 5: Merge updated subgraph back to main graph
10: G′ ← merge Gupdated back into G
11: Update vector database V with new embeddings
12: return G′

D Proof of Dynamic Spatial Memory Update Algorithm

Theorem 1 (Upper Bound on K-hop Node Extraction in Directed Graphs). Let G = (V,E) be a
finite directed graph with maximum out-degree D ≥ 1, and let S ⊆ V be a set of M source nodes.
Define the K-hop neighborhood NK(s) of a node s ∈ S as the set of nodes reachable from s via
directed paths of length at most K. Then the total number of distinct nodes in the union of all K-hop
neighborhoods,

NK(S) =
⋃
s∈S
NK(s),

Satisfies the following upper bound:

|NK(S)| ≤

M · D
K+1 − 1

D − 1
, if D > 1,

M · (K + 1), if D = 1.
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Proof. For any node s ∈ S , the number of distinct nodes reachable from s within i hops is at most
Di, assuming the worst-case scenario where each node encountered has the maximum out-degree
D, and all neighbors are distinct and non-overlapping.

Thus, the size of the K-hop neighborhood of a single node satisfies:

|NK(s)| ≤
K∑
i=0

Di =

DK+1 − 1

D − 1
, if D > 1,

K + 1, if D = 1.

Since there are M such source nodes and assuming no overlaps between their K-hop neighborhoods
(worst case), the union size satisfies:

|NK(S)| ≤M · |NK(s)|.

Substituting the bound on |NK(s)| gives the result.

Theorem 2 (Upper Bound for K-hop Node Extraction in Normalized Directed Graphs). Let G =
(V,E) be a finite directed graph with |V | = n nodes. Assume the maximum out-degree is at most
Dmax = Dn, and the maximum in-degree is at most Nmax = Nn, where D,N ∈ (0, 1] are
constants. Let S ⊆ V be a set of M source nodes. Define NK(S) as the union of all nodes
reachable from S via paths of length at most K, using only outgoing edges. Then the number of
extracted nodes satisfies:

|NK(S)| ≤ min

{
n, M · (Dn)K+1 − 1

Dn− 1

}
.

In particular, when Dn≫ 1, we have the approximation:

|NK(S)| ⪅ M · (Dn)K .

Proof. For each node s ∈ S, the maximum number of reachable nodes within i-hops is at most
(Dn)i under the assumption of maximum out-degree and no overlap.

Summing over hops from 0 to K, we get for each root:

|NK(s)| ≤
K∑
i=0

(Dn)i =
(Dn)K+1 − 1

Dn− 1
.

Assuming no overlap among the M source node expansions (worst case), we have:

|NK(S)| ≤M · (Dn)K+1 − 1

Dn− 1
.

Since the total number of nodes in the graph is n, this quantity is also trivially bounded above by n,
yielding the result.

E Supplementary Examples for Qualitative Analysis

E.1 Example of Dynamic Spatial Memory Update process

In RoboMemory’s Spatial Memory, the KG is dynamically constructed during environment explo-
ration. As illustrated in Figure 7, we demonstrate the progressive expansion of the KG in Spatial
Memory as the agent navigates through the environment. The figure indicates a continuous growth
in the number of both nodes and edges of the KG as exploration progresses.

Notably, the KG undergoes dynamic updates through RoboMemory’s environmental interactions.
For example, the initial KG state displays the relation “I am near the apple. But as the agent picks
up the apple in the third step, in the fourth KG, the relationship becomes “I hold the apple”. This
demonstrates RoboMemory’s capability for dynamic KG maintenance and expansion.

By querying this KG, the Planner-Critic module gains access to rich spatial information, empower-
ing RoboMemory with robust spatial memory capabilities that significantly enhance its performance
in both TextWorld and EmbodiedBench environments.
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Figure 7: Visualization of Spatial Memory’s dynamic update process.

E.2 Real World

In Figure 8, we demonstrate an example of RoboMemory learning through trial and error in a real-
world environment. Our task is “place a banana into the oven.” This task required RoboMemory
to complete the objectives of finding the banana, picking it up, and transporting it to the oven. We
observed that RoboMemory became stuck in an infinite loop during the first attempt. The banana
was randomly placed on the “kitchen counter,” but RoboMemory overlooked this navigation target
and remained trapped exploring other navigation targets instead.

However, based on this bad attempt, the semantic memory summarized that the robot should not
repeatedly search in locations where the “banana” could not be found. Meanwhile, the episodic
memory recorded what RoboMemory had done and the outcomes during the first attempt. Based on
the information provided by semantic and episodic memory, in the second attempt, RoboMemory
recognized that it had not previously tried navigating to the “kitchen counter.” After attempting this,
it successfully completed the task. This example illustrates the role of RoboMemory’s long-term
memory.

We also provide an example that completes the task in the first attempt. The example is shown in
Figure 9. This example demonstrates that the RoboMemory has the ability to handle some relatively
complex tasks in the real world. The task in this example is “Place a box of gum into the basket and
put the basket on the kitchen counter”. Because two objects in different positions are involved in
this task, RoboMemory has to memorize the position of at least one object to achieve the goal. With
the help of the spatial memory, RoboMemory completes the task successfully.

E.3 EB-ALFRED

We select three examples in EB-ALFRED to show the errors that RoboMemory may encounter and
the reasons why or why not RoboMemory can achieve the goal.
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Step 1: Navigate to the 

left side of the desk

Step 2: Navigate to the 

right side of the desk

Step 3: Navigate in 

front of the oven

Task: Place banana into the oven 

…

Step 4~15: Navigate to 

these three points in an 

infinite loop, but failed 

to explore new areas.

Step 1: Navigate to the 

left side of the desk

Step 2: Navigate to the 

right side of the desk

Step 3: Navigate to the 

kitchen counter

Step 4:  Pick up the 

banana

Step 5:  Navigate to the 

oven

Step 6:  Open the oven Step 7: Put down 

(banana) to the oven

Step 8: Close the oven

The first time

Semantic Memory
… The robot should avoid navigating to places that do not contain the target object again and 

again.

Episodic Memory
… The task is to place a banana into the oven. The robot navigated to the left side of the desk, 

the right side of the desk, and in front of the oven multiple times, but failed to find the banana.

The second time

Figure 8: Case that a task is failed but the experience can help RoboMemory to succeed in the next
try.

E.3.1 Successful example

We select a successful example to show how RoboMemory performed in the EB-ALFRED environ-
ment. The example trajectory is shown in Figure 10.

The task of this example is “set a plate with a spoon on it on the kitchen table”. However, in step
10, the Planner seems to ignore the temporal information from memory modules. RoboMemory
thinks that it still needs to pick up the spoon (even though it has already placed a spoon in the
plate). However, with the help of the critic, it finally becomes aware that picking up another spoon
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Task: Place a box of gum into the basket and put the basket to 

the kitchen counter 

Step 1: Navigate to the 

left side of the desk

Step 2: Navigate to the 

kitchen counter

Step 3: Pick up the gum 

box

Step 4:  Navigate to the 

left side of the desk

Step 5:  Put down (gum 

box) to the basket

Step 6:  Pick up the 

basket

Step 8: Put down 

(basket) to the kitchen 

counter

Step 7: Navigate to the 

kitchen counter

Figure 9: Case that a task is successful.

is redundant, so RoboMemory goes back to the current trajectory and successfully completes the
task at the end.

In this example, RoboMemory successfully overcame the hallucination and eventually achieved the
goal. This example demonstrates that the critic module can help RoboMemory to overcome error
cases.

E.3.2 Failed example

We demonstrate a representative example of the Critical Error. The example trajectory is shown in
Figure 11. In this example, the task involves slicing and heating a tomato and moving the heated
tomato slice to the trash can. Initially, RoboMemory successfully sliced the tomato with a knife.
But when the planner plans the whole sequence, it forgets to drop the knife before picking up the
tomato (this is necessary because in EB-ALFRED, the robot can only hold one object at a time).
The critic and the planner should notice this situation and ask the critic to replan, as RoboMemory
failed to pick up a tomato slice. However, the critic module ignores this issue, and thus, after it heats
the knife instead of a tomato slice, it stacks in an infinite loop.

Besides, we provide another example demonstrating a representative failure caused by inaccurate
action planning. The example trajectory is shown in Figure 12. In the trajectory, RoboMemory is
asked to place two CDs into the drawer. However, at step 6, the robot failed to select correct CD
object. In this experiment, RoboMemory has already put CD 2 into the drawer, but it keeps pick-
ing up CD 2 even though the memory has clearly indicated that CD 2 has already been put down.
So we classify this as inaccurate action error. This indicates that the planner failed to comprehen-
sively integrate information from both the memory and information-gathering modules, resulting in
inaccurate action planning.
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Task:  Set plate with a spoon in it on the kitchen table

Step 1: Initialize Step 2: Find the 

plate 

Step 3: Pick up 

the plate
Step 4:  Find the 

spoon

Step 5: Put down 

the plate

Step 6: Pick up 

the spoon

The PaperPlaza Conference/Journal Management System

Step 7: Put down Step 8: Find the 

plate

Step 9: Pick up 

the plate

Step 10: Drop 

(Hallucination)

Step 12: Pick up 

spoon 2

Step 13: Find the 

plate

Step 14: Drop Step 15: Pick up 

the plate

Step 16: Find the 

table

Step 17: Put 

down

Figure 10: Case that a task is successful with the help of the critic and spatial memory modules.
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The PaperPlaza Conference/Journal Management System

Task:  Cook a sliced tomato and throw it in the trash

Step 1: Initialize Step 2: Find the 

tomato

Step 3: Find the 

knife
Step 4:  Pick up 

the knife

Step 5: Slice the 

tomato

Step 6: Find 

tomato

Step 7: Slice the 

tomato

Step 8: Pick up 

the tomato

Step 9: Find the 

microwave

Step 10: Open 

the microwave

Step 12: Put 

down

Step 13 ~ 30: 

Infinite loop

…

Figure 11: Case that a task fails in an infinite loop because the critic module failed to stop the agent
when its planned action is no longer suitable.
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Task: Move two CDs to the bottom drawer of the desk

Step 1: Find 

CD_2

Step 2: pick up 

CD_2

Step 3: Find the 

drawer 
Step 4: Open the 

drawer

Step 5: Put down Step 6: Find the 

CD_2 

Step 7: Pick up 

CD_2 

Step 8: Put down

Step 10: Pick up 

CD_2
Step 9: Find 

CD_2

…

Step 11~30: 

Infinite loop

Figure 12: Case that a task fails in an infinite loop because of inaccurate action planning.
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