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Abstract
Forecasting is an important task in many do-001
mains, such as technology and economics.002
However existing forecasting benchmarks003
largely lack comprehensive confidence as-004
sessment, focus on limited question types,005
and often consist of artificial questions that006
do not align with real-world human fore-007
casting needs. To address these gaps, we008
introduce FORECAST (Future Outcome009
Reasoning and Confidence Assessment), a010
benchmark that evaluates models’ ability to011
make predictions and their confidence in012
them. FORECAST spans diverse forecast-013
ing scenarios involving Boolean questions,014
timeframe prediction, and quantity estima-015
tion, enabling a comprehensive evaluation016
of both prediction accuracy and confidence017
calibration for real-world applications.018

1 Introduction019

Recent advances in large language models020

(LLMs) have significantly improved their perfor-021

mance across a wide range of natural language022

processing (NLP) tasks. Alongside these devel-023

opments, various benchmarks and datasets have024

been introduced to effectively assess the capa-025

bilities of LLMs, particularly in terms of knowl-026

edge and reasoning (Zellers et al., 2019; Guo027

et al., 2023). Fact-based benchmarks, like Truth-028

fulQA (Lin et al., 2022) evaluate LLMs based029

on factual correctness, focusing on tasks like 030

retrieving and verifying facts that are known. 031

Forecasting is a crucial yet challenging task 032

across various domains, including technology, 033

economics, and public policy. Unlike tasks that 034

rely on retrieving and verifying existing knowl- 035

edge, forecasting requires predicting plausible 036

outcomes for future events, often under uncer- 037

tainty and incomplete information. This makes 038

forecasting particularly difficult, as models must 039

infer trends, assess probabilities, and adapt to 040

new information. Several datasets have been 041

introduced to evaluate LLMs’ forecasting ca- 042

pabilities. ForecastQA (Jin et al., 2020) uses 043

a multiple-choice format where models predict 044

future outcomes, but it lacks confidence assess- 045

ment. AutoCast (Zou et al., 2022) incorporates 046

confidence intervals, however its confidence es- 047

timates are not designed for forecasting. Other 048

datasets such as ExpTime (Yuan et al., 2024a) 049

are artificially generated from structured data, 050

focusing on explainable event forecasting based 051

on temporal knowledge graphs. 052

All of these aforementioned benchmarks ig- 053

nore a crucial aspect of forecasting: confidence 054

evaluation. Confidence plays a central role 055

in forecasting, as predictions about unresolved 056

events inherently lack definitive correctness at 057

the time of evaluation. Predictions made with 058

absolute certainty are undesirable, even if they 059

1



Type Question Resolution Confidence

Boolean Question Will a Frontier AI lab be established in China by 2026? Yes 0.73
Timeframe Prediction When will OpenAI announce GPT-5? 2024-08-01 0.85
Quantity Estimation How many spacecrafts will land on the moon in 2025? 3 0.65

Table 1: Examples of forecasting questions with their resolutions and confidence scores.

ultimately prove to be correct, because they fail060

to account for the uncertain nature of future061

events. Moreover, miscalibrated confidence can062

lead to poor decision-making: overconfident yet063

incorrect forecasts may result in costly errors,064

while underconfident but accurate predictions065

can erode trust in the model. Therefore, well-066

calibrated confidence scores are as crucial as the067

accuracy of the predictions themselves.068

To address these gaps, we present FORE-069

CAST: Future Outcome Reasoning and070

Confidence Assessment. FORECAST focuses071

on three distinct types of forecasting questions,072

shown in Table 1: (1) Boolean questions, such073

as "Will there be a Frontier AI lab in China be-074

fore 2026?"; (2) Timeframe Prediction, such as075

"When will OpenAI announce GPT-5?"; and (3)076

Quantity Estimation, such as "How many space-077

crafts will land on the moon in each of the fol-078

lowing years?" We conduct experiments using079

a range of models differing in size, training ob-080

jectives, and cutoff times, and explore multiple081

methods for estimating model confidence. Our082

results reveal that forecasting remains highly083

challenging for current LLMs, particularly in084

confidence evaluation, with no direct correlation085

between prediction performance and confidence086

calibration, and while larger models sometimes087

improve performance, the effect is inconsistent.088

2 FORECAST: Problem Formulation089

System responses in FORECAST consist of090

(1) a prediction answering a question given the091

available information and (2) a confidence score 092

in the prediction. This ensures a comprehensive 093

assessment of forecasting, accounting for both 094

correctness and confidence calibration. Ques- 095

tions belong to three types. (1) Boolean Ques- 096

tions, which ask yes/no questions about the oc- 097

currence of future events (sometimes within a 098

certain timeframe). Boolean questions are sim- 099

ple to evaluate, and they can still be surprisingly 100

challenging (Clark et al., 2019). (2) Timeframe 101

Prediction, which requires predicting a specific 102

timeframe for an event, and are essential for 103

applications where knowing whether an event 104

will happen or not without a timeframe is insuf- 105

ficient. (3) Quantity Estimation, which involves 106

providing numerical estimates related to future 107

events, e.g., economic indicators or trends. 108

Formally, let Q represent a question about a 109

future event, and let M denote a system with 110

access to information up to time ttrain (e.g., the 111

system’s knowledge cutoff point). The objective 112

is for M to produce an answer A in A and an 113

associated confidence score C, where: 114

M(Q) → (A,C), C ∈ [0, 1]. (1) 115
116

A = argmax
a∈A

P (X = a|Q,K(ttrain)). (2) 117

Here, K(ttrain) represents the knowledge acces- 118

sible to the model up to time ttrain. The answer 119

space A depends on the type of forecasting ques- 120

tion: for Boolean Questions, A = {Yes,No}; 121

for Timeframe Prediction, A consists of a single 122

date in the YYYY-MM-DD format; and for Quantity 123

Estimation, A = R, representing real numbers. 124
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3 Evaluating Predictions and125

Confidence126

Evaluating Boolean Questions For Boolean127

questions, where the answer space is A =128

{Yes,No}, prediction performance is evaluated129

using standard classification metrics, including130

accuracy and F1-score. Confidence calibration131

is assessed using a modified version of the Brier132

score (Brier, 1950), which measures the mean133

squared error between predicted confidence and134

the gold confidence provided in the dataset,135

which we assume is provided, and represents136

the likelihood of an event occurring. The modi-137

fied Brier score is defined as:138

Brier =
1

N

N∑
i=1

(C
pred
i − C

gold
i )2, (3)139

where C
pred
i is the model’s predicted confi-140

dence and C
gold
i is the gold confidence. This141

modification ensures that models are evaluated142

based on their ability to match the likelihood of143

an event. Lower Brier scores indicate better cal-144

ibration, reflecting how well the predicted confi-145

dence aligns with the likelihood of the event.146

Evaluating Timeframe Prediction For time-147

frame prediction, where the answer space con-148

sists of specific dates in the YYYY-MM-DD format,149

predictive accuracy is measured using absolute150

day error (ADE). Given a predicted date D
pred
i151

and the gold date Dgold
i , we compute the normal-152

ized error as:153

EADE
i =

2

1 + e−α|Dpred
i −D

gold
i |

− 1, (4)154

where α is a scaling factor that controls how155

sharply large errors are penalized. This transfor-156

mation ensures that extreme deviations do not157

disproportionately dominate the evaluation.158

For confidence calibration, rely on the Contin- 159

uous Ranked Probability Score (CRPS) (Mathe- 160

son and Winkler, 1976), which is a generalisa- 161

tion of the Mean Absolute Error to probabilistic 162

forecasts, and extend it to compare the predicted 163

probability distribution with a gold distribution. 164

Specifically, we assume that both the predicted 165

and the gold confidence predictions follow Gaus- 166

sian distributions, namely N (D
pred
i , σ

pred
i ) and 167

N (D
gold
i , σ

gold
i ) respectively, where the stan- 168

dard deviations are computed as: 169

σ
pred
i = σmax · (1−C

pred
i ) + σmin ·Cpred

i , (5) 170

171
σ

gold
i = σmax · (1−C

gold
i ) + σmin ·Cgold

i . (6) 172

Here, Cpred
i is the model’s predicted confidence 173

for the ith question, and C
gold
i is the correspond- 174

ing gold confidence provided in our dataset. The 175

parameters σmax and σmin define the upper and 176

lower bounds for the standard deviation. Intu- 177

itively, when confidence is low (C ≈ 0), un- 178

certainty is high, leading to σ ≈ σmax, while 179

when confidence is high (C ≈ 1), uncertainty is 180

low, resulting in σ ≈ σmin. We then compute 181

the CRPS as the integrated squared difference 182

between the cumulative distribution functions 183

(CDFs) of the predicted and gold distributions: 184

CRPS =
1

N

N∑
i=1

∫ (
F

pred
i (d)− F

gold
i (d)

)2
dd,

(7) 185

where F
pred
i and F

gold
i denote the CDFs of the 186

predicted and gold Gaussian distributions, re- 187

spectively. A lower CRPS indicates better cal- 188

ibration, as it reflects a closer match between 189

the predicted uncertainty and the uncertainty as 190

specified by the gold confidence. 191

Evaluating Quantity Estimation For quan- 192

tity estimation, where the answer space consists 193

of non-negative real numbers (A = R≥0), we 194
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evaluate prediction performance using two error195

metrics: absolute percentage error (APE) and196

mean absolute error (MAE). Given a predicted197

quantity Q
pred
i and the gold quantity Q

gold
i , the198

normalized errors are computed as:199

EAPE
i =

2

1 + e
−α

|Qpred
i

−Q
gold
i

|

Q
gold
i

+ϵ

− 1, (8)200

201

EMAE
i =

2

1 + e−α|Qpred
i −Q

gold
i |

− 1. (9)202

Here, ϵ is a small constant to prevent division by203

zero, and α is a scaling factor that controls how204

sharply large errors are penalized, similar to the205

timeframe prediction evaluation. Confidence206

calibration is assessed using CRPS, following207

the same Gaussian assumption as in timeframe208

prediction. The predicted quantity is modeled as209

a Gaussian distribution N (Q
pred
i , σ

pred
i ), and the210

gold quantity as N (Q
gold
i , σ

gold
i ). The standard211

deviations σ
pred
i and σ

gold
i are computed using212

the same formulation as in timeframe prediction.213

4 FORECAST Construction214

4.1 Data Source and Question Selection215

FORECAST is constructed from Metaculus,1216

an online forecasting platform where forecast-217

ers submit probabilistic predictions to questions218

across various domains. Metaculus aggregates219

individual forecasts into a continuously updated220

community prediction, which is finalized just221

before resolution. Each question has predefined222

resolution criteria, ensuring verifiable outcomes.223

To ensure dataset reliability, we include only224

questions with a definitive resolution and at least225

100 forecasts to maintain statistical reliability.226

Ambiguous or subjectively resolved questions227

1www.metaculus.com. Examples in Appendix A.

are excluded, and we remove those whose out- 228

comes depend on arbitrary or uncontrollable fac- 229

tors. These steps ensure that FORECAST con- 230

sists of high-quality, well-formed forecasting 231

questions with verifiable outcomes. 232

4.2 Extracting Confidence from 233

Crowdsourced Forecasts 234

Forecasting distinguishes between physical 235

probabilities—objective likelihoods derived 236

from statistical or scientific models—and hu- 237

man beliefs (Sanders, 1963) about future events. 238

While physical probabilities can be useful, they 239

are often unavailable, particularly for questions 240

involving human behavior, economics, or so- 241

ciopolitical outcomes. Instead, collective hu- 242

man forecasts offer a more practical confidence 243

estimate, integrating expert reasoning, contex- 244

tual knowledge, and evolving evidence. For in- 245

stance, predicting a technological breakthrough 246

depends more on expert assessment and current 247

trends than on rigid probabilistic models. There- 248

fore, confidence in FORECAST is derived from 249

Metaculus community forecasts, which aggre- 250

gate predictions from a diverse pool of forecast- 251

ers. While human predictions are sometimes 252

incorrect, they still serve as a valuable proxy 253

for uncertainty, as they reflect the best available 254

reasoning given the information at the time. 255

Formal Definition of Gold Confidence. Gold 256

confidence in FORECAST is derived from the fi- 257

nal Metaculus community prediction before res- 258

olution. Instead of directly using the predicted 259

probability for the correct outcome, we com- 260

pute a log score relative to a uniform baseline, 261

ensuring that confidence reflects how much the 262

forecast deviates from random guessing. This 263

transformation prevents extreme probabilities in 264

inherently uncertain scenarios and makes confi- 265

dence scores more comparable across different 266
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forecasting tasks. The final score is mapped to267

(0, 1) using a sigmoid function.268

For Boolean questions, where the human-269

forecasted probability for the correct outcome is270

P gold, gold confidence is computed as:271

Cgold = σ

(
lnP gold − ln 0.5

ln 2

)
, (10)272

where σ(x) is the sigmoid function.273

Similarly, for timeframe prediction and quan-274

tity estimation, where the human-forecasted275

probability density function (PDF) assigns prob-276

ability to a continuous outcome xgold, gold con-277

fidence is computed as:278

Cgold = σ

(
ln f(xgold)− ln funiform

2

)
, (11)279

where f(xgold) is the forecasted probability den-280

sity at the resolved outcome, and funiform is the281

uniform baseline density over the valid range of282

values. The denominator 2 ensures numerical283

stability and scales confidence appropriately.284

4.3 Dataset Statistics and Comparison285

FORECAST consists of 2256 forecasting ques-286

tions, spanning domains such as politics, eco-287

nomics, science, and technology. Each question288

includes a resolved outcome, a gold confidence289

score, and a final Metaculus community forecast290

before resolution. To facilitate model develop-291

ment and evaluation, we split the dataset into292

65% training, 10% validation, and 25% test. The293

full dataset statistics is shown in Appendix B.294

Table 2 provides a comparison between295

FORECAST and existing forecasting bench-296

marks. Compared to prior datasets, FORECAST297

uniquely emphasizes both forecasting accuracy298

and confidence calibration, includes a diverse299

set of forecasting tasks, and is constructed from300

a well-established crowdsourced platform with301

rigorous resolution criteria.302

Benchmark Question Types Natural Questions Confidence

ForecastQA MCQ ✓ ✗
AutoCast Various ✓ ✗
ExpTime Boolean ✗ ✗
FORECAST Various ✓ ✓

Table 2: Comparison of key features across our
benchmark variants, highlighting our evaluation of
confidence across different question types.

5 Experiments on FORECAST 303

5.1 Experimental Setup 304

Models. We evaluate a diverse set of large 305

language models (LLMs) with varying training 306

data cutoffs, model sizes, and instruction tuning. 307

To analyze the impact of knowledge recency, we 308

group models by family and assume the cutoff 309

date is the 1st of the stated month. The models 310

used are shown in Table 3. 311

Model Family Model Variants Cutoff Date

GPT-2 GPT-2, GPT-2 XL 2017-12-01
Pythia 14M, 160M, 2.8B 2020-03-01
BLOOM 560M, 7B1 2021-12-01
LLaMA LLaMA-7B 2022-08-01
OLMo 1B, 7B, 7B-Instruct 2023-03-01
OLMo-2 7B, 7B-Instruct 2023-12-01

Table 3: Models used in our experiments, grouped
by family and ordered by training data cutoff date,
including: GPT-2 (Radford et al., 2019), Pythia (Bi-
derman et al., 2023), BLOOM (Scao et al., 2023),
LLaMA (Touvron et al., 2023), OLMo (Groeneveld
et al., 2024), and OLMo-2 (OLMo et al., 2024).

Inference. We use 1-shot in-context learning 312

to provide models with a structured example 313

of how to answer forecasting questions. For 314

instruction-tuned models, we add an extra line of 315

instruction to align with their training paradigm. 316

To ensure fair comparison, baseline prompts are 317

kept minimal while maintaining clarity. Confi- 318

dence is estimated using logit-based normalized 319
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heuristics. Full prompts and hyperparameters320

are provided in Appendix C and Appendix D.321

Model N Accuracy (↑) F1 (↑) Brier (↓)

GPT2 401 0.5835 0.3650 0.4199
GPT2-XL 401 0.6708 0.3158 0.4540
Pythia-14m 343 0.5860 0.1374 0.6245
Pythia-160m 343 0.6093 0.2584 0.5273
Pythia-2.8b 343 0.5452 0.3906 0.4426
Bloom-560m 263 0.4905 0.4071 0.4521
Bloom-7b1 263 0.6426 0.3286 0.3200
Llama-7b 226 0.5708 0.3433 0.5201
OLMo-1B 188 0.2340 0.1591 0.7545
OLMo-7B 188 0.2074 0.1687 0.8199
OLMo-7B-Instruct 188 0.6543 0.1408 0.3811
OLMo-2-7B 145 0.5103 0.2444 0.4377
OLMo-2-7B-Instruct 145 0.5862 0.3023 0.4078

Table 4: Performance of forecasting models on
Boolean questions in FORECAST. Reported met-
rics include the number of evaluated questions (N),
accuracy, F1 score (both higher is better), and the
Brier score (lower is better).

5.2 Results and Findings322

Our experiments on the FORECAST dataset re-323

veal that forecasting remains highly challeng-324

ing for current LLMs, particularly in confi-325

dence estimation. While models achieve reason-326

able accuracy in point predictions, their uncer-327

tainty estimates—captured by Brier score and328

CRPS—vary significantly. This suggests that329

confidence evaluation must be treated as a sepa-330

rate challenge from prediction assessment.331

Boolean Questions: Table 4 shows that while332

some models achieve reasonable accuracy, their333

calibration remains inconsistent. For exam-334

ple, GPT2-XL achieves an accuracy of 0.67 but335

has a relatively high Brier score of 0.45, while336

OLMo-7B-Instruct achieves similar accuracy337

(0.65) with a lower Brier score of 0.38, sug-338

gesting better confidence estimation. Notably,339

models with later training cutoffs do not always340

outperform older ones; for instance, LLaMA-7B341

has lower accuracy (0.57) and a worse Brier 342

score (0.52) than some earlier models. This 343

indicates that forecasting accuracy depends on 344

multiple factors beyond knowledge recency. 345

Model N ADE (↓) CRPS (↓)

GPT2 26 0.9944 0.9884
GPT2-XL 26 1.0000 1.0000
Pythia-14m 25 1.0000 1.0000
Pythia-160m 25 1.0000 1.0000
Pythia-2.8b 25 0.9650 0.9634
Bloom-560m 12 1.0000 1.0000
Bloom-7b1 12 0.9984 0.9976
Llama-7b 10 0.9843 0.9769
OLMo-1B 6 1.0000 1.0000
OLMo-7B 6 1.0000 1.0000
OLMo-7B-Instruct 6 1.0000 1.0000
OLMo-2-7B 4 0.9981 0.9970
OLMo-2-7B-Instruct 4 0.8696 0.8197

Table 5: Performance of forecasting models on Time-
frame Prediction tasks in FORECAST. Metrics in-
clude the number of evaluated questions (N), the
normalized absolute days error (ADE), and the Con-
tinuous Ranked Probability Score (CRPS), where
lower values indicate better performance.

Timeframe Prediction: Table 5 reveals that 346

most models struggle with predicting event 347

timing, as both ADE and CRPS remain near 348

the worst-case scenario of 1.0. Across all 349

models, only one achieves a CRPS below 0.9: 350

OLMo-2-7B-Instruct (CRPS = 0.82), which 351

still indicates substantial uncertainty. Even 352

models with more recent training data, such as 353

OLMo-2-7B (CRPS = 0.99), fail to make well- 354

calibrated temporal forecasts. These results sug- 355

gest that even when models correctly anticipate 356

whether an event will happen, quantifying when 357

it will occur remains a major challenge. 358

Quantity Estimation: Table 6 highlights that 359

models differ widely in their ability to esti- 360
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Model N APE (↓) MAE (↓) CRPS (↓)

GPT2 81 0.2296 0.8697 0.8575
GPT2-XL 81 0.0295 0.7461 0.7169
Pythia-14m 77 0.1696 0.8753 0.8538
Pythia-160m 77 0.0274 0.7800 0.7620
Pythia-2.8b 77 0.0742 0.8106 0.7851
Bloom-560m 43 0.0462 0.7273 0.7082
Bloom-7b1 43 0.0644 0.7461 0.7176
Llama-7b 32 0.0564 0.6422 0.6126
OLMo-1B 23 0.2124 0.7883 0.7623
OLMo-7B 23 0.2157 0.8365 0.8201
OLMo-7B-Instruct 23 0.2358 0.7987 0.7703
OLMo-2-7B 20 0.0206 0.6457 0.6206
OLMo-2-7B-Instruct 20 0.0872 0.5968 0.5686

Table 6: Performance of forecasting models on Quan-
tity Estimation tasks in FORECAST. Metrics in-
clude the number of evaluated questions (N), normal-
ized absolute percentage error (APE), mean absolute
error (MAE), and Continuous Ranked Probability
Score (CRPS), where lower values are better.

mate numerical values. Some achieve relatively361

low APE, such as GPT2-XL (APE = 0.03) and362

Pythia-160M (APE = 0.02), yet their confi-363

dence calibration, CRPS, does not always align364

with their point prediction performance. For365

instance, GPT2-XL has a CRPS of 0.72, while366

Pythia-160M has a slightly higher CRPS of367

0.76, despite achieving lower APE. In contrast,368

OLMo-2-7B-Instruct, which has a relatively369

higher APE of 0.08, achieves the lowest CRPS370

(0.57) among all models. These results indicate371

that prediction quality and confidence calibra-372

tion do not necessarily improve together, rein-373

forcing the complexity of numerical forecasting.374

Impact of Model Size on Forecasting Per-375

formance Larger models do not consistently376

improve forecasting performance. Within377

the Pythia family, Pythia-2.8b shows occa-378

sional gains in accuracy and calibration over379

Pythia-14m and Pythia-160m, but the im-380

provements are not uniform across all metrics.381

Similarly, while OLMo-2-7B variants sometimes382

achieve lower CRPS and MAE in quantity es- 383

timation, these benefits often come with trade- 384

offs in point prediction. These results suggest 385

that model size alone is not a reliable predic- 386

tor of forecasting performance. This highlights 387

the importance of developing task-specific tech- 388

niques rather than relying on ever-larger models 389

to solve the forecasting problem. 390

Impact of Instruction Tuning on Forecast- 391

ing Performance Table 7 compares base and 392

instruct-tuned variants of OLMo-7B and OLMo- 393

2-7B across Boolean, timeframe, and quan- 394

tity forecasting tasks. For Boolean questions, 395

OLMo-7B-Instruct achieves higher accuracy 396

(0.65 vs. 0.21) and a lower Brier score (0.38 397

vs. 0.82), indicating better confidence calibra- 398

tion. In timeframe prediction, the instruct- 399

tuned OLMo-2-7B-Instruct improves uncer- 400

tainty estimation, with an ADE of 0.87 and 401

CRPS of 0.82, compared to 0.9981 and 0.9970 402

for the base OLMo-2-7B. For quantity estimation, 403

instruct-tuned models have slightly higher APE 404

but lower MAE and CRPS, suggesting better 405

uncertainty calibration. These results indicate 406

that instruction tuning enhances confidence esti- 407

mation, even if it does not always improve point 408

prediction accuracy. This suggests a trade-off 409

where instruct-tuned models prioritize more re- 410

liable uncertainty quantification. 411

Impact of Aggregation Methods on Forecast- 412

ing Performance Table 8 compares different 413

aggregation methods for deriving the final pre- 414

diction and confidence estimate from the top 415

10 outputs of Llama-7B. Bayesian Aggregation 416

achieves the highest accuracy (0.5796) and F1 417

score (0.3485), suggesting it is the most effec- 418

tive at identifying correct outcomes. However, 419

Weighted Average yields a significantly lower 420

Brier score (0.2914), indicating superior confi- 421

dence calibration compared to other methods. 422
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Model Accuracy (↑) F1 (↑) Brier (↓) ADE (↓) CRPS (T) (↓) APE (↓) MAE (↓) CRPS (Q) (↓)

OLMo-7B 0.2074 0.1687 0.8199 1.0000 1.0000 0.2157 0.8365 0.8201
OLMo-7B-Instruct 0.6543 0.1408 0.3811 1.0000 1.0000 0.2358 0.7987 0.7703
OLMo-2-7B 0.5103 0.2444 0.4377 0.9981 0.9970 0.0206 0.6457 0.6206
OLMo-2-7B-Instruct 0.5862 0.3023 0.4078 0.8696 0.8197 0.0872 0.5968 0.5686

Table 7: Effect of instruction tuning on forecasting performance across boolean, timeframe, and quantity
estimation questions. Metrics include accuracy, F1, and Brier score for binary questions; ADE and CRPS (T)
for timeframe prediction; and APE, MAE, and CRPS (Q) for quantity estimation.

Aggregation Method N Accuracy (↑) F1 (↑) Brier (↓)

Majority Vote 226 0.5575 0.2353 0.5287
Highest Confidence 226 0.5708 0.3433 0.5201
Weighted Average 226 0.5575 0.2353 0.2914
Logit Mean Probability 226 0.5575 0.2353 0.6195
Bayesian Aggregation 226 0.5796 0.3485 0.5493

Table 8: Ablation study on different aggregation
methods for extracting predictions and confidence
from Llama-7B outputs.

Majority Vote, Highest Confidence, and Logit423

Mean Probability produce comparable accuracy424

and F1 scores but have noticeably higher Brier425

scores, suggesting weaker uncertainty estima-426

tion. These results highlight that even when427

point prediction performance is similar, aggre-428

gation methods substantially impact confidence429

reliability. The challenge remains in develop-430

ing techniques that optimize both accuracy and431

calibration simultaneously, emphasizing the im-432

portance of uncertainty-aware forecasting.433

6 Related Work434

Recent forecasting benchmarks focus on event435

prediction but largely overlook confidence cal-436

ibration. OpenForecast (Wang et al., 2025) in-437

troduces a large-scale dataset for open-ended,438

multi-step event forecasting but does not as-439

sess model confidence. ForecastBench (Karger440

et al., 2024) evaluates binary (Yes/No) forecast-441

ing by prompting models for direct probability442

estimates, but since it queries each option sepa-443

rately, the assigned probabilities do not necessar-444

ily sum to 1, leading to potential inconsistencies. 445

Neither benchmark systematically evaluates con- 446

fidence calibration, a crucial aspect for reliable 447

forecasting in real-world applications. 448

Beyond forecasting, several benchmarks as- 449

sess language models’ reasoning and infer- 450

ence capabilities. COPA (Roemmele et al., 451

2011) evaluates causal reasoning by present- 452

ing a premise and two alternatives, requiring 453

models to select the more plausible cause or 454

effect. HellaSwag (Zellers et al., 2019) chal- 455

lenges models with sentence completion tasks 456

that demand commonsense reasoning, where 457

models must choose the most sensible contin- 458

uation of a given scenario. PRobELM (Yuan 459

et al., 2024b) assesses models’ capacity to rank 460

scenarios by plausibility, bridging the gap be- 461

tween factual accuracy and world knowledge. 462

While these benchmarks provide insights into 463

models’ reasoning abilities, they do not address 464

the challenges of forecasting future events. 465

7 Conclusion 466

We introduce FORECAST, a benchmark for 467

evaluating both forecasting accuracy and con- 468

fidence calibration in language models. Un- 469

like existing datasets, FORECAST explicitly 470

assesses confidence alongside predictions. Our 471

results show that current models struggle with 472

both prediction and well-calibrated confidence, 473

underscoring the need for improved uncertainty 474

estimation and confidence calibration. 475
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Limitations476

While FORECAST represents a significant step477

toward evaluating forecasting accuracy and con-478

fidence calibration, there are inherent limita-479

tions that we view as opportunities for future480

research rather than fundamental shortcomings481

of our work. First, our dataset is constructed482

solely from Metaculus, which may not fully rep-483

resent the global diversity of forecasting prac-484

tices or question domains. Second, our method485

for deriving gold confidence relies on commu-486

nity forecasts and heuristic transformations that487

might not capture all nuances of human uncer-488

tainty. Lastly, our focus on English-language489

forecasts limits the benchmark’s applicability490

across different languages and cultural contexts.491

Addressing these issues is part of our future492

work agenda.493

Ethical Statement494

FORECAST is built from data sourced exclu-495

sively from Metaculus, an English-language496

forecasting platform. As a result, the dataset497

may embody the linguistic, cultural, and social498

biases inherent in its user community. These499

biases could affect both question selection and500

confidence judgments. We acknowledge these501

concerns and stress that our benchmark is in-502

tended as an initial step toward more inclusive503

forecasting evaluations. Future efforts should504

aim to incorporate data from a broader range505

of platforms and languages to mitigate these506

biases.507
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A Example Metaculus Questions613

To illustrate how human forecasts evolve over614

time, we present two questions from different615

domains: Q1 is in the business and geopolitics616

domain and Q2 is in the technology domain.617

Q1: Will TikTok become available in the US618
on both the App Store and Google Play before619
April 5, 2025?620

Q2: When will a SpaceX Starship reach orbit?621

For Q1, Figure 1 shows how community fore-622

casts changed over time, while Figure 2 presents623

the histogram of the final forecast distribution.624

Figure 1: Community prediction trend for a Metacu-
lus question on TikTok’s availability in the US.

Figure 2: Histogram of final community forecasts.

For Q2, Figure 3 tracks forecast updates,625

while Figure 4 shows the final probability den-626

sity function (PDF) of predicted launch dates.627

Figure 3: Community prediction trend for SpaceX
Starship’s first orbital launch.

Figure 4: Probability density function of final com-
munity forecasts for SpaceX Starship reaching orbit.

Split Boolean Timeframe Quantity Total

Training 1142 90 223 1465
Validation 175 13 35 223
Test 441 36 91 568

Total 1758 139 349 2256

Table 9: Dataset statistics for FORECAST, showing
the distribution of questions across different forecast-
ing types, with the overall total in the last column.

B Dataset Statistics 628

Table 9 presents detailed dataset statistics, in- 629

cluding the total number of questions and their 630

distribution across Boolean Questions, Time- 631

frame Prediction, and Quantity Estimation tasks. 632

C Prompts 633

To ensure a fair and consistent evaluation 634

across models, we use simple one-shot prompts 635

with structured outputs in JSON format. For 636

instruction-tuned models, we provide an addi- 637

tional instruction line specifying the task. The 638

prompts are designed for three forecasting ques- 639

tion types: Boolean Questions (Yes/No), Time- 640

frame Prediction (YYYY-MM-DD), and Quan- 641

tity Estimation (numeric values). 642
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C.1 Instruction-Tuned Models643

For models containing "Instruct" in their name, we use the following prompts:644

Quantity Estimation645

You are an AI assistant providing precise numerical forecasts.646

Answer the following question with a single numeric value in JSON format.647

648

Example:649

Q: How much global photovoltaic energy generation was deployed650

by the end of 2020?651

A: { "value": 738 }652

653

Q: $question654

A: { "value": "655

Timeframe Prediction656

You are an AI assistant providing precise date forecasts.657

Answer the following question with a single date in YYYY-MM-DD format in JSON.658

659

Example:660

Q: When did an AI system achieve a significant victory against661

a professional human in Starcraft 2?662

A: { "value": "2019-01-24" }663

664

Q: $question665

A: { "value": "666

Boolean Questions667

You are an AI assistant providing binary (Yes/No) answers.668

Answer the following question with "Yes" or "No" in JSON format.669

670

Example:671

Q: Will we confirm evidence for megastructures orbiting the672

star KIC 8462852?673

A: { "value": "No" }674

675

Q: $question676

A: { "value": "677

C.2 Base Models678

For non-instruction-tuned models, we use the same examples but without additional instructions:679

Quantity Estimation680

12



Q: How much global photovoltaic energy generation was deployed 681

by the end of 2020? 682

A: { "value": 738 } 683

684

Q: $question 685

A: { "value": " 686

Timeframe Prediction 687

Q: When did an AI system achieve a significant victory against 688

a professional human in Starcraft 2? 689

A: { "value": "2019-01-24" } 690

691

Q: $question 692

A: { "value": " 693

Boolean Questions 694

Q: Will we confirm evidence for megastructures orbiting the 695

star KIC 8462852? 696

A: { "value": "No" } 697

698

Q: $question 699

A: { "value": " 700
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D Hyperparameter Settings701

D.1 Generation Hyperparameters702

We generate responses using temperature-based703

sampling with the following hyperparameters:704

• max_length = 200705

• do_sample = True706

• top_k = 50707

• top_p = 0.9708

Among the generated outputs, we select the one709

with the highest confidence as the final predic-710

tion. All experiments are conducted using full711

precision on an NVIDIA RTX 8000 GPU.712

D.2 Evaluation Hyperparameters713

The scaling factor α in Equation 4, Equation 8,714

and Equation 9 is set to 0.05. For Equation 5715

and Equation 6, we set σmax to 30 and σmin to716

1 for Timeframe Prediction, while for Quantity717

Estimation, σmax is 20 and σmin is 1. These val-718

ues ensure that evaluation metrics appropriately719

scale errors and confidence calibration.720

E Additional Results721

This section provides extended results catego-722

rized by the training data cutoff date of each723

model. Forecasting performance depends on724

model architecture, scale, and knowledge re-725

cency, so we evaluate models with different cut-726

off dates to examine how access to more recent727

information influences prediction accuracy and728

confidence calibration.729

Models trained after certain event resolutions730

may have indirectly encountered outcome-731

related information, potentially affecting evalua-732

tion fairness. This should be considered when733

interpreting results.734

Detailed model-specific performance metrics for 735

Boolean Questions, Timeframe Prediction, and 736

Quantity Estimation are presented in Table 10 737

to Table 15. 738

These results highlight trends in forecasting ac- 739

curacy and confidence calibration across models 740

with different knowledge recency. 741
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Model Accuracy (↑) F1 (↑) Brier (↓) ADE (↓) CRPS (T) (↓) APE (↓) MAE (↓) CRPS (Q) (↓)

GPT2 0.5835 0.3650 0.4199 0.9944 0.9884 0.2296 0.8697 0.8575
GPT2-XL 0.6708 0.3158 0.4540 1.0000 1.0000 0.0295 0.7461 0.7169
Pythia-14m 0.5960 0.1548 0.6200 0.9998 0.9996 0.1754 0.8604 0.8399
Pythia-160m 0.6135 0.2537 0.5264 0.9998 0.9998 0.0267 0.7551 0.7387
Pythia-2.8b 0.5337 0.3746 0.4562 0.9661 0.9646 0.0758 0.7946 0.7708
Bloom-560m 0.4763 0.4199 0.4764 1.0000 1.0000 0.0585 0.7695 0.7533
Bloom-7b1 0.6284 0.3196 0.3514 0.9681 0.9549 0.0503 0.7645 0.7381
Llama-7b 0.5536 0.3678 0.5278 0.9390 0.9294 0.0837 0.7223 0.6999
OLMo-1B 0.2269 0.2041 0.7906 1.0000 1.0000 0.1521 0.8430 0.8245
OLMo-7B 0.2070 0.1739 0.7986 1.0000 1.0000 0.2693 0.8791 0.8687
OLMo-7B-Instruct 0.6658 0.3333 0.3871 0.9201 0.9138 0.2935 0.7997 0.7814
OLMo-2-7B 0.5362 0.3307 0.4995 0.9225 0.9081 0.0363 0.6983 0.6752
OLMo-2-7B-Instruct 0.5935 0.4240 0.3992 0.8407 0.8264 0.1281 0.6948 0.6725

Table 10: Combined forecasting performance for cutoff 2017-12-01. CRPS (T) denotes the Continuous
Ranked Probability Score for Timeframe Prediction, while CRPS (Q) denotes the Continuous Ranked
Probability Score for Quantity Estimation.

Model Accuracy (↑) F1 (↑) Brier (↓) ADE (↓) CRPS (T) (↓) APE (↓) MAE (↓) CRPS (Q) (↓)

GPT2 0.5918 0.3750 0.4136 0.9942 0.9879 0.2342 0.8852 0.8749
GPT2-XL 0.6735 0.3190 0.4465 1.0000 1.0000 0.0277 0.7667 0.7366
Pythia-14m 0.5860 0.1374 0.6245 1.0000 1.0000 0.1696 0.8753 0.8538
Pythia-160m 0.6093 0.2584 0.5273 1.0000 1.0000 0.0274 0.7800 0.7620
Pythia-2.8b 0.5452 0.3906 0.4426 0.9650 0.9634 0.0742 0.8106 0.7851
Bloom-560m 0.5015 0.4393 0.4562 1.0000 1.0000 0.0481 0.7832 0.7651
Bloom-7b1 0.6297 0.3280 0.3477 0.9668 0.9531 0.0508 0.7877 0.7601
Llama-7b 0.5510 0.3677 0.5311 0.9365 0.9266 0.0634 0.7239 0.7012
OLMo-1B 0.2332 0.1928 0.7843 1.0000 1.0000 0.1568 0.8696 0.8491
OLMo-7B 0.2041 0.1538 0.8023 1.0000 1.0000 0.2568 0.8855 0.8731
OLMo-7B-Instruct 0.6647 0.2968 0.3975 0.9169 0.9103 0.2746 0.8002 0.7818
OLMo-2-7B 0.5335 0.3256 0.5057 0.9194 0.9045 0.0267 0.7097 0.6848
OLMo-2-7B-Instruct 0.5948 0.4085 0.3987 0.8343 0.8195 0.1226 0.7044 0.6821

Table 11: Combined forecasting performance for cutoff 2020-03-01. CRPS (T) denotes the Continuous
Ranked Probability Score for Timeframe Prediction, while CRPS (Q) denotes the Continuous Ranked
Probability Score for Quantity Estimation.

Model Accuracy (↑) F1 (↑) Brier (↓) ADE (↓) CRPS (T) (↓) APE (↓) MAE (↓) CRPS (Q) (↓)

GPT2 0.6084 0.3522 0.3754 1.0000 1.0000 0.2649 0.8513 0.8384
GPT2-XL 0.6730 0.2586 0.4463 1.0000 1.0000 0.0313 0.7427 0.7035
Pythia-14m 0.6008 0.1319 0.6531 1.0000 1.0000 0.2187 0.8598 0.8376
Pythia-160m 0.6312 0.2400 0.5190 1.0000 1.0000 0.0220 0.7278 0.7016
Pythia-2.8b 0.5171 0.3280 0.4376 1.0000 1.0000 0.0686 0.7692 0.7412
Bloom-560m 0.5015 0.4393 0.4521 1.0000 1.0000 0.0481 0.7273 0.7082
Bloom-7b1 0.6297 0.3280 0.3200 0.9984 0.9976 0.0644 0.7461 0.7176
Llama-7b 0.5741 0.3625 0.5184 0.9869 0.9807 0.0473 0.6532 0.6232
OLMo-1B 0.2395 0.1849 0.7721 1.0000 1.0000 0.2159 0.8414 0.8203
OLMo-7B 0.2243 0.1754 0.7954 1.0000 1.0000 0.2253 0.8482 0.8354
OLMo-7B-Instruct 0.6654 0.1782 0.4045 0.9234 0.9205 0.2189 0.7629 0.7372
OLMo-2-7B 0.5323 0.2692 0.4872 0.9266 0.9221 0.0270 0.6676 0.6427
OLMo-2-7B-Instruct 0.6084 0.3758 0.3858 0.8590 0.8385 0.1039 0.6382 0.6114

Table 12: Combined forecasting performance for cutoff 2021-12-01. CRPS (T) denotes the Continuous
Ranked Probability Score for Timeframe Prediction, while CRPS (Q) denotes the Continuous Ranked
Probability Score for Quantity Estimation.
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Model Accuracy (↑) F1 (↑) Brier (↓) ADE (↓) CRPS (T) (↓) APE (↓) MAE (↓) CRPS (Q) (↓)

GPT2 0.6150 0.3556 0.3589 1.0000 1.0000 0.2576 0.8125 0.7984
GPT2-XL 0.6814 0.2653 0.4392 1.0000 1.0000 0.0345 0.7430 0.6980
Pythia-14m 0.6062 0.1558 0.6537 1.0000 1.0000 0.1946 0.8696 0.8472
Pythia-160m 0.6504 0.2524 0.5285 1.0000 1.0000 0.0221 0.7275 0.6998
Pythia-2.8b 0.5177 0.3230 0.4470 1.0000 1.0000 0.0843 0.7769 0.7435
Bloom-560m 0.5044 0.3978 0.4308 1.0000 1.0000 0.0528 0.7232 0.7058
Bloom-7b1 0.6460 0.3333 0.3061 0.9981 0.9971 0.0796 0.7765 0.7449
Llama-7b 0.5708 0.3433 0.5201 0.9843 0.9769 0.0564 0.6422 0.6126
OLMo-1B 0.2257 0.1800 0.7762 1.0000 1.0000 0.2206 0.8267 0.8032
OLMo-7B 0.2257 0.1702 0.8156 1.0000 1.0000 0.2238 0.8724 0.8575
OLMo-7B-Instruct 0.6460 0.1176 0.4043 0.9081 0.9046 0.2058 0.7799 0.7512
OLMo-2-7B 0.5398 0.2576 0.4698 0.9119 0.9065 0.0300 0.6814 0.6535
OLMo-2-7B-Instruct 0.5973 0.3259 0.3992 0.9283 0.8983 0.1038 0.6517 0.6216

Table 13: Combined forecasting performance for cutoff 2022-08-01. CRPS (T) denotes the Continuous
Ranked Probability Score for Timeframe Prediction, while CRPS (Q) denotes the Continuous Ranked
Probability Score for Quantity Estimation.

Model Accuracy (↑) F1 (↑) Brier (↓) ADE (↓) CRPS (T) (↓) APE (↓) MAE (↓) CRPS (Q) (↓)

GPT2 0.5957 0.3559 0.3800 1.0000 1.0000 0.2642 0.7407 0.7222
GPT2-XL 0.6543 0.2353 0.4183 1.0000 1.0000 0.0383 0.7087 0.6530
Pythia-14m 0.6011 0.1562 0.6417 1.0000 1.0000 0.2195 0.8489 0.8243
Pythia-160m 0.6330 0.2581 0.4971 1.0000 1.0000 0.0220 0.6945 0.6611
Pythia-2.8b 0.5213 0.3382 0.4390 1.0000 1.0000 0.1080 0.7581 0.7199
Bloom-560m 0.5266 0.4183 0.4124 1.0000 1.0000 0.0654 0.6986 0.6713
Bloom-7b1 0.6649 0.3883 0.2964 0.9968 0.9952 0.1022 0.7897 0.7574
Llama-7b 0.5532 0.3214 0.5113 1.0000 1.0000 0.0566 0.6014 0.5689
OLMo-1B 0.2340 0.1591 0.7545 1.0000 1.0000 0.2124 0.7883 0.7623
OLMo-7B 0.2074 0.1687 0.8199 1.0000 1.0000 0.2157 0.8365 0.8201
OLMo-7B-Instruct 0.6543 0.1408 0.3811 1.0000 1.0000 0.2358 0.7987 0.7703
OLMo-2-7B 0.5106 0.2414 0.4438 0.9987 0.9980 0.0214 0.6464 0.6160
OLMo-2-7B-Instruct 0.5851 0.3276 0.4107 0.9100 0.8739 0.1150 0.6067 0.5748

Table 14: Combined forecasting performance for cutoff 2023-03-01. CRPS (T) denotes the Continuous
Ranked Probability Score for Timeframe Prediction, while CRPS (Q) denotes the Continuous Ranked
Probability Score for Quantity Estimation.

Model Accuracy (↑) F1 (↑) Brier (↓) ADE (↓) CRPS (T) (↓) APE (↓) MAE (↓) CRPS (Q) (↓)

GPT2 0.5931 0.3059 0.3673 1.0000 1.0000 0.2490 0.7319 0.7167
GPT2-XL 0.7103 0.3000 0.4207 1.0000 1.0000 0.0405 0.6887 0.6392
Pythia-14m 0.6207 0.1395 0.6479 1.0000 1.0000 0.2487 0.8481 0.8293
Pythia-160m 0.6690 0.3143 0.5090 1.0000 1.0000 0.0218 0.6731 0.6463
Pythia-2.8b 0.5241 0.2887 0.4481 1.0000 1.0000 0.1189 0.7315 0.6914
Bloom-560m 0.5241 0.3784 0.4103 1.0000 1.0000 0.0262 0.6740 0.6479
Bloom-7b1 0.6828 0.3611 0.3007 1.0000 1.0000 0.1140 0.7831 0.7528
Llama-7b 0.5379 0.2716 0.5452 0.9621 0.9443 0.0632 0.6173 0.5901
OLMo-1B 0.2345 0.2059 0.7507 1.0000 1.0000 0.2195 0.7639 0.7370
OLMo-7B 0.2207 0.2333 0.8271 1.0000 1.0000 0.2195 0.8218 0.8066
OLMo-7B-Instruct 0.6828 0.1569 0.3642 1.0000 1.0000 0.2682 0.8082 0.7842
OLMo-2-7B 0.5103 0.2444 0.4377 0.9981 0.9970 0.0206 0.6457 0.6206
OLMo-2-7B-Instruct 0.5862 0.3023 0.4078 0.8696 0.8197 0.0872 0.5968 0.5686

Table 15: Combined forecasting performance for cutoff 2023-12-01. CRPS (T) denotes the Continuous
Ranked Probability Score for Timeframe Prediction, while CRPS (Q) denotes the Continuous Ranked
Probability Score for Quantity Estimation.
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