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Abstract

We propose a framework, called neural-progressive
hedging (NP), that leverages stochastic program-
ming during the online phase of executing a re-
inforcement learning (RL) policy. The goal is to
ensure feasibility with respect to constraints and
risk-based objectives such as conditional value-at-
risk (CVaR) during the execution of the policy, us-
ing probabilistic models of the state transitions to
guide policy adjustments. The framework is partic-
ularly amenable to the class of sequential resource
allocation problems since feasibility with respect
to typical resource constraints cannot be enforced
in a scalable manner. The NP framework provides
an alternative that adds modest overhead during
the online phase. Experimental results demonstrate
the efficacy of the NP framework on two contin-
uous real-world tasks: (i) the portfolio optimiza-
tion problem with liquidity constraints for finan-
cial planning, characterized by non-stationary state
distributions; and (ii) the dynamic repositioning
problem in bike sharing systems, that embodies
the class of supply-demand matching problems.
We show that the NP framework produces poli-
cies that are better than deep RL and other baseline
approaches, adapting to non-stationarity, whilst sat-
isfying structural constraints and accommodating
risk measures in the resulting policies. Additional
benefits of the NP framework are ease of imple-
mentation and better explainability of the policies.

INTRODUCTION

Reinforcement learning (RL) experienced a surge in popular-
ity when deep models demonstrated superior performance
in game playing with Deep Q-learning Networks (DQN)
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[Mnih et al., 2013]. The role of RL was cemented when it
was used to beat the reigning Go world champion [Silver
et al., 2017]. Improvements to deep RL algorithms have
abounded, including RL for continuous state and action
spaces, with DDPG [Lillicrap et al., 2015], TRPO [Schul-
man et al., 2015], and PPO [Schulman et al., 2017]. In
spite of these advances, the dominance of RL for real-world
problems has lagged. We believe that this is due to three
shortcomings.

First, RL policies cannot enforce business rules, or con-
straints during policy execution. Yet, often structural con-
straints must be respected for a policy to be implementable.
Existing methods, such as constrained policy gradient
[Achiam et al., 2017] or “safe" RL methods [Garcıa and
Fernández, 2015] do not prevent constraint violations dur-
ing policy execution. Moreover, these methods can often be
difficult to train and not scalable to large problems. Second,
there is a natural trade-off between expected reward and
risk. The majority of RL algorithms seek to maximize the
expected return. While there have been RL algorithms that
optimize for various risk measures, doing so in a scalable
manner and under constraints is still challenging. Third,
the sample inefficiency of RL has posed an impediment
to solving problems where high-fidelity simulators are not
available to generate sufficiently large number of sample
trajectories. A hope to overcoming this is through the judi-
cious use of models to explore more sparingly the state and
action spaces.

We introduce a framework to address these issues for prob-
lems with continuous state and action spaces. An uncon-
strained RL policy is first trained offline. During the online
execution phase, a stochastic program (SP) is used to re-
optimize the given RL policy under constraints and risk
measures over a short-term future trajectory. Once the next
action is chosen, the process repeats in a rolling-horizon
fashion using updated state information. We call this neural-
progressive hedging (NP). During execution time, the NP
method aims to exploit the generalization ability of RL to un-
seen scenarios that are not experienced during training time,
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jointly with the ability of SP to exploit models and enforce
scenario-dependent constraints as well as incorporating risk
measures. Since the NP framework relies on a model-based
online phase, it is most useful in problem settings where
closed-form models of state transitions are relatively good
approximations to the true state transitions. Sequential and
dynamic resource allocation problems are a key example in
which the NP framework excels.

Empirically, we show that the NP method results in policies
that offer substantial improvements in reward under various
risk measures whilst satisfying hard constraints1. Moreover,
we observe that the NP policy, with its more sample-efficient
initial RL policy followed by the online fine-tuning phase,
is able to outperform the fully-trained (and data-hungry) RL
policy. An additional benefit of the framework is ease of
implementation: it can be implemented using existing deep
RL algorithms and off-the-shelf optimization packages. Fur-
thermore, the SP counterpart of the NP method allows easily
performing sensitivity analysis on the model parameters and
ensures that the business rules or constraints are enforced
during online execution of a policy which adds significant
transparency and explainability to the policy choices in com-
parison to deep RL. To that end, the key contributions of the
paper are as follows:

1. We define a novel method, neural-progressive hedging,
combining stochastic programming model-based on-
line planning with offline, deep RL for a continuous
policy that satisfies hard constraints during execution;

2. We incorporate risk-measures such as CVaR with-
out sacrificing model structure or decomposition al-
gorithm; and

3. We demonstrate the efficacy of the NP method on the
class of resource allocation models, including two real-
world problems: (i) liquidity-constrained portfolio op-
timization with a CVaR objective; and (ii) dynamic
repositioning in a bike sharing system, where the NP
method outperforms deep RL, both constrained and
unconstrained as well as other baselines.

PRELIMINARIES

Consider the problem of learning a deterministic policy
π : S → A in a Markov Decision Process (MDP) given
by (S,A, p, f, γ, T,G), with continuous states s ∈ S, con-
tinuous actions x ∈ A, transition probability distribution
p(st+1|st, xt), cost function f(st, xt, st+1) ∈ R, discount
factor γ ∈ [0, 1], decision horizon T , and constraint set
G. We allow T = ∞ whenever γ < 1. The constraint set
G contains a set of K additional cost functions g1 . . . gK
where gk(st, xt, st+1) ∈ R and constants β1 . . . βK ∈ R.

1Source codes of our NP method are available here:
https://github.com/supriyog/neural-progressive-hedging

Our constrained MDP setting follows that of Altman [1999],
where we aim to solve the following problem:

minimize
π

Eπ

[
T∑
t=1

γt−1f(st, xt, st+1)

]
(1)

s.t. Eπ

[
T∑
t=1

γt−1gk(st, xt, st+1)

]
≤ βk, k=1 . . .K.

Without loss of generality we assume a fixed initial state
s1. The expectation Eπ is taken with respect to randomness
induced by the transitions st+1 ∼ p(·|st, xt) by taking xt =
π(st), for all t. Problem (1) is very challenging to solve for
general MDPs with continuous states and actions. We shall
now put this constrained MDP in the context of stochastic
programming (SP) from which we borrow many of the
algorithmic tools in this work.

The key assumption from SP is that all the randomness or
uncertainty in the system comes from external sources. This
decoupling of randomness allows us to employ powerful
optimization tools in solving the main problem. Assume
T is finite and let ξ1 . . . ξT be random variables such that
the next state st+1 is given by st+1 = p̃(st, xt, ξt) where
p̃ is a deterministic function once ξt is fixed. We call each
realization of ξ = (ξ1 . . . ξT ) a scenario. Given a particu-
lar scenario ξ 2, one can find the best action sequence in
“hindsight” by solving the following problem:

minimize
x=(x1...xT )

f̃(x, ξ) (2)

s.t. g̃k(x, ξ) ≤ βk, k = 1 . . .K

where we define

f̃(x, ξ) :=

T∑
t=1

γt−1f [st, xt, p̃(st, xt, ξt)]

g̃k(x, ξ) :=

T∑
t=1

γt−1gk[st, xt, p̃(st, xt, ξt)].

If, for each ξ, the functions f̃ and g̃k for all k are all convex
in x, then each scenario sub-problem can be readily solved
using existing convex optimization tools. To simplify no-
tation, we define the constraint set G(ξ) := {x|g̃k(x, ξ) ≤
βk, k = 1 . . .K}, so problem (2) can be stated simply as
minimizex∈G(ξ)f̃(x, ξ).

Suppose that one starts with a finite set Ξ of scenarios, with
known probability distribution q(ξ) where

∑
ξ∈Ξ q(ξ) = 1.

One can solve problem (2) for each individual ξ ∈ Ξ to
obtain a mapping x(·) that provides a solution x(ξ) =
(x1(ξ) . . . xT (ξ)) for each ξ ∈ Ξ. Suppose that the ac-
tion space A ⊆ Rn and |Ξ| = N , then x(·) ∈ AN×T ⊆
RN×T×n. How could we then reconcile the various xt(ξ)

2We abuse notation slightly by using ξ to refer to both the
random variable and its particular realizations.



across all ξ ∈ Ξ, at time t? For the resulting solutions to be
implementable, one needs to enforce a nonanticipative prop-
erty which states that xt must only depend on information
available at time t. From an MDP point of view, the state st
captures all observations available up to time t, represented
by ξ1 . . . ξt−1, and therefore xt must only depend on these
if it is to be implementable, i.e., xt(ξ) = xt(ξ1, . . . , ξt−1)
and x1(ξ) must be the same for all ξ. All solutions x(·) that
satisfy this nonanticipative property can be expressed as:

x(ξ) = (x1, x2(ξ1), . . . , xT (ξ1, . . . , ξT−1)), ∀ξ ∈ Ξ.

We useM to denote the space of all nonanticipative map-
pings. Define an inner product onAN×T by 〈x(·), w(·)〉 :=∑
ξ q(ξ)

∑T
t=1〈xt(ξ), wt(ξ)〉 where 〈xt(ξ), wt(ξ)〉 is the

standard inner product in Rn. Given any x̂(·) ∈ AN×T ,
one can find a nonanticipative version x(·) = PM[x̂(·)]
where PM is the orthogonal projection ontoM given by
the conditional expectation xt(ξ) = Eξ|ξ1...ξt−1

x̂t(ξ) for all
t and ξ. Note that PM can be computed via simple averaging
over the appropriate subsets of scenarios.

Define G ⊆ AN×T such that x(·) ∈ G iff x(ξ) ∈ G(ξ) for
all ξ. We then aim to solve the following global problem:

minimize
x(·)∈G∩M

Eξ f̃(x(ξ), ξ) (3)

where Eξ f̃(x(ξ), ξ) =
∑
ξ∈Ξ q(ξ)f̃(x(ξ), ξ). Without the

constraint x(·) ∈M, problem (3) would in fact be separable
and could be decomposed into solving individual scenarios
as in problem (2). This problem, however, can still be solved
in an iterative manner where each iteration involves solving
a slightly modified version of problem (2) for each scenario.
This “progressive hedging” algorithm by Rockafellar and
Wets [1991], which is an application of the proximal point
algorithm, involves keeping track of the solution xi(·) as
well as a Lagrange multiplier λi(·) in each iteration i, until
convergence. It also involves a parameter νi > 0, which
may be constant for all i. Each iteration involves solving the
following steps:

1. At iteration i, solve the following for each scenario ξ:

x̂i(ξ) ∈ arg min
x(ξ)∈G(ξ)

f̃(x(ξ), ξ) + 〈λi(ξ), x(ξ)〉

+
νi

2
‖x(ξ)− xi(ξ)‖2 (4)

2. Compute xi+1(·) = PM[x̂i(·)].
3. Update the Lagrange multiplier λi+1(·) = λi(·) +
νi[x̂i(·)− xi+1(·)].

In the case where f̃ and G are both convex, the algorithm
is guaranteed to converge to an optimal solution x∗(·) of
problem (3) starting from arbitrary x1(·) and λ1(·). Lo-
cal convergence to a stationary point for nonconvex f̃ was
shown by Rockafellar [2019].

Algorithm 1 Neural-Progressive Hedging Algorithm

Initialization: Obtain RL policy πθ. Define inner conver-
gence criterion ε, convex combination parameters κi and
penalty parameters νi > 0 for i > 0.
for τ = 1, 2, . . ., do

Observe state s(τ). Sample scenario set Ξ, and query
πθ to obtain xπ(·). Set x1(·) = xπ(·). Set λ1(·) = 0,
u1(·) = 0 and i = 1.
while convergence criterion δi > ε do

1. Solve, for each ξ ∈ Ξ, (5) (or (4) for the risk-
neutral case) to obtain x̂i(ξ) and ŷi(ξ).
2. Set xi+1(·) = κixπ(·) + (1− κi)PM[x̂i(·)]. Set
yi+1(·) = Eξ[ŷi(·)].
3. Update multipliers: λi+1(·) = λi(·) + νi(x̂i(·)−
xi+1(·)) and ui+1(·) = ui(·) + νi(ŷi(·)− yi+1(·)).

4. Update κi, νi.
5. Convergence test: δi+1 := ‖x̂i(·) − xi(·)‖ +
‖ŷi(·)− yi(·)‖
6. Set i← i+ 1, continue.

end while
From converged solution x∗(·), obtain and execute x∗1.

end for

The SP framework can be adapted to measures of risk. Con-
sider CVaR, the conditional value-at-risk, a popular measure
for finding risk-averse solutions. The CVaR of a random
variable Z at level α ∈ [0, 1) can be written as:

CVaRα(Z) := min
y∈R

{
y +

1

1− α
EZ [max{0, Z − y}]

}
.

CVaR at α = 0 gives the expectation. We solve the CVaR
version of problem (3), replacing the expectation Eξ with
CVaRα, by following a modified progressive hedging al-
gorithm [Rockafellar, 2018] with an introduction of an ad-
ditional variable yi(ξ) ∈ R and the corresponding dual
ui(ξ) ∈ R for each ξ. Instead of equation (4), we solve
equation (5) in step 1 with corresponding changes in steps
2 and 3.

(ŷi(ξ), x̂i(ξ)) ∈ arg min
y(ξ)∈R,x(ξ)∈G(ξ)

{
y(ξ) +

1

1− α
·

max{0, f̃(x(ξ), ξ)− y(ξ)}+
νi

2
|y(ξ)− yi(ξ)|2+

ui(ξ)y(ξ) + 〈λi(ξ), x(ξ)〉+
νi

2
‖x(ξ)− xi(ξ)‖2

}
(5)

NEURAL-PROGRESSIVE HEDGING

We introduce Neural-Progressive Hedging (NP) method
combining the generalization capability of offline RL with
the ability of SP through an online phase to exploit mod-
els while enforcing scenario-dependent constraints and risk



measures. The key steps of the NP method are shown com-
pactly in Algorithm 1.

The NP method works as follows: an unconstrained RL
policy πθ, parameterized by θ, is obtained by solving (1),
or its risk-aware counterpart, without constraints. In each
time-step τ , the NP method observes current state s(τ) and
queries RL policy πθ to get initial action xπ(·). The new
NP policy is guided by the initial RL policy via a convex
combination parameter κ so that, at convergence, the exe-
cuted actions satisfy constraints of G and the risk measures.
Inner iterations are denoted by i = 1, . . .; at each iteration
i, the SP sub-problems are solved for each scenario ξ ∈ Ξ
with updated Lagrangian multipliers λi, ui to obtain the
dual solution x̂i(ξ) and ŷi(ξ). Then, we project x̂i(ξ) onto
a feasible space PM[x̂i(·)], that satisfies the nonanticipative
property, by averaging over all the scenarios. The primal
solution xi+1(·) is obtained as a convex combination with
the initial RL policy xπ(·) then projected with PM[x̂i(·)].
We then update multipliers λi, ui, and parameters κi, and
νi. This iterative process continues until the difference be-
tween primal and dual solutions, δi, is below a pre-defined
threshold ε.

Resource Allocation Problems: The NP approach is par-
ticularly effective for the class of resource allocation prob-
lems. In such applications, the main source of uncertainty
is external – consider stock price changes or customer de-
mands – and to a large extent such random variables are
unaffected by the actions of the policy. A scenario generator
can hence be readily trained using historical data. The set
of scenarios, Ξ, is obtained by sampling from such a sce-
nario generator. Given a scenario, ξ, this policy can then be
queried at any state st to obtain the corresponding action
xt. Given a finite scenario set Ξ, we can obtain from πθ its
solution xπ(·) ∈M.

THEORETICAL ANALYSIS

The parameter κi blends the offline RL policy with the
solution from SP (Step 2 in Algorithm 1). The assumption
below covers the settings of warm start, where κ1 = 1 and
ı̂ = 2, and imitation learning, where κi is a decreasing
sequence such as (1 + i)−2, where 1 ≤ ı̂ <∞.

Assumption 1 (Imitation learning and warm start) Let
κi → 0 as i→∞. Furthermore, there exists an ı̂ such that
for all i ≥ ı̂, κi = 0.

Assumption 2 (Existence and local convexity) Assume
that the solution set of equation (5) for a CVaR objective,
or equation (4) otherwise, is nonempty and finite, G(ξ) is
convex and compact, the gradients of f̃ are locally Lipschitz
for each ξ and that the dual penalty parameters νi are
sufficiently large for all i.

Lemma 1 Under Assumption 1, the NP algorithm is equiv-
alent to the progressive hedging algorithm over an infinite
number of iterations.

Proof: Assumption 1 states that there exists a finite iterate ı̂
such that for all i ≥ ı̂, κi = 0. Since xi+1(·) = κixπ(·) +
(1− κi)PM[x̂i(·)], for all i′ ≥ ı̂, xi

′
(·) = PM[x̂i

′
(·)], and

hence the update of the primal variable of the algorithm
reduces to the progressive hedging update. �

Instances of stochastic programming typically make use
of discretized support Ξ. We thus define the problem (3)
in terms of a discrete Ξ and refer to this problem for the
remainder of this section.

Assumption 3 (Discrete support) Let Ξ be a discrete sup-
port and let 1 . . .K index each scenario corresponding to a
random variable ξ ∈ Ξ, with probability pk = 1/K. Then,
problem (3) can be expressed as:

min
xk∈Gk;xk∈M

1

K

∑
k=1...K

f̃k(xk). (6)

Theorem 1 (Convergence of Alg. 1 for Convex f̃ )
Under Assumptions 1, 2 and 3, along with the convexity
of f̃ , the sequence of iterates (xi(·), yi(·), λi(·), ui(·))
generated by the NP algorithm is such that

‖xi+1 − xi‖2 + ‖yi+1 − yi‖2 + (1/ν2)‖λi+1 − λi‖2+

(1/ν2)‖ui+1 − ui‖2 < ‖xi − xi−1‖2 + ‖yi − yi−1‖2+

(1/ν2)‖λi − λi−1‖2 + (1/ν2)‖ui − ui−1‖2, and

|xi+1 − x∗|2 + |yi+1 − y∗‖2 + (1/ν2)‖λi+1 − λ∗‖2+

(1/ν2)‖ui+1 − u∗‖2 < |xi − x∗|2 + |yi − y∗|2

+ (1/ν2)‖λi − λ∗‖2 + (1/ν2)‖ui − u∗‖2

with equality at (x∗(·), y∗) in the case of finite conver-
gence, and thus converges to a local solution (x∗(·), y∗)
with (λ∗(·), u∗(·)) as i→∞.

Proof: From Lemma 1, Algorithm 1 is equivalent to the Pro-
gressive Hedging Algorithm of Rockafellar [2019] when run
for an infinite number of iterations. The convergence of the
Progressive Hedging Algorithm to a solution (x∗(·), y∗(·))
is thus guaranteed under Assumptions 2 and 3 along with
the convexity of f̃ . �

Theorem 2 (Convergence of Alg. 1 for Nonconvex f̃ )
Let Assumptions 1, 2 and 3, hold and let (xi(·), yi(·)) be
a locally optimal solution to each subproblem (5). If se-
quences {xi, yi, λi, ui} converge to point {x∗, y∗, λ∗, u∗},
then (x∗(·), y∗(·)) generated by the NP algorithm is a
locally optimal solution to problem (3).



Proof: From Lemma 1, Algorithm 1 is equivalent to the
Progressive Hedging Algorithm of Rockafellar [2019] when
run for an infinite number of iterations. For nonconvex f̃ ,
when the Progressive Hedging Algorithm converges to a
point, under Assumptions 2 and 3, it was shown in Rock-
afellar and Wets [1991] that the point is a stationary point
of the problem (3). �

The NP algorithm uses a decomposition of the measurability
constraints on the scenario tree from the scenario-specific
constraints, and then proceeds to solve the SP by standard
optimization methods. It should be noted however that the
structure and theoretical properties of the NP hold equally
with sample average approximation [Bertsimas et al., 2018].

When combining the unconstrained policy xπ(·) with the
constrained solution PM(x̂i(·)), we also show how the qual-
ity of xi+1 evolves as a function of xπ(·) and PM(x̂i(·)).

Proposition 1 Let f̃ be Lipschitz ∀ξ, i.e., ‖f̃(x(ξ), ξ) −
f̃(x′(ξ), ξ)‖ ≤ L‖x(ξ) − x′(ξ)‖. We have the following
bound as a function of κi and Lipschitz constant L:

E[f̃(xi+1(·), ·)] ≤ E[f̃(xπ(·), ·)] + L(1− κi)·
‖PM(x̂i(·))− xπ(·)‖.

Proof: For each scenario ξ, we have

f̃(xi+1(ξ), ξ)− f̃(xπ(ξ), ξ) ≤ L‖xi+1(ξ)− xπ(ξ)‖
≤L‖κixπ(ξ) + (1− κi) · PM(x̂i(ξ))− xπ(ξ)‖
≤L(1− κi)‖PM(x̂i(ξ))− xπ(ξ)‖�

Naturally, we expect an unconstrained RL solution to
achieve a higher objective value, but the executed solution
may include constraint violations and excessive risk. The
parameter κ, thus controls the trade-off between a higher
objective value and constraint satisfaction and risk aversion.

EXPERIMENTAL RESULTS

To evaluate the performance of the proposed neural-
progressive hedging (NP) approach, we conduct experi-
ments on two real-world domains where risk measures and
constraints are an integral part of implementable policies: (i)
Liquidity management through portfolio optimization which
seeks to optimally reinvest earnings based on the CVaR
whilst maintaining sufficient liquidity; and (ii) Online repo-
sitioning which seeks to dynamically match supply-demand
when resources (here, represented by bikes in a bike-sharing
system) must be continuously rebalanced to meet changes
in demand whilst respecting the station capacity constraints.

We compare performance of NP method with Constrained
Policy Optimization (CPO) [Achiam et al., 2017], and
Lagrangian-relaxed Proximal Policy Optimization (PPO-
L) [Ray et al., 2019]. DDPG [Lillicrap et al., 2015] is used

to solve the unconstrained RL problems. Note that when
κ = 1, the NP approach returns the DDPG solution. Simi-
larly, when κ = 0, the NP method returns the results of a
pure stochastic program (SP), computed using progressive
hedging method [Rockafellar, 2019].

Experiment settings: We perform all the experiments on
Ubuntu 18.04 virtual machines with 32-core CPU, 64 GB of
RAM, and a single Nvidia Tesla P100 GPU. The distributed
Ray framework and RLlib [Liang et al., 2017] were used for
the DDPG method. The pure SP and NP methods with linear
and non-linear objective function are solved using IBM
ILOG CPLEX 12.9 and IPOPT [Wächter and Biegler, 2006],
respectively. The CPO and PPO-L methods are solved using
OpenAI safe RL implementation [Ray et al., 2019].

The unconstrained RL policy used as an expert is com-
puted at each time step t using the DDPG algorithm [Lil-
licrap et al., 2015]. We use a recurrent neural network
(RNN) architecture for training the DDPG method with
1 hidden layer consisting of 25 hidden predictor nodes and
a tanh nonlinear activation function. In addition, a long
short-term memory (LSTM) model is used to represent the
RNN architecture with LSTM cell size 256 and maximum
sequence length of 20. Parameter values are as follows:
the discounting factor γ = 0.99, minibatch size b = 50
and learning rate lr = 3e−5. Two state-of-the-art meth-
ods are used to compare with the constrained RL policy:
(i) Constrained policy optimization [Achiam et al., 2017];
and (b) Proximal policy optimization with a Lagrangian
penalty [Ray et al., 2019]. For both we use a neural network
with 2 hidden layers, each consisting of 256 hidden nodes
with tanh nonlinear activation function. The source codes
for the constrained benchmark algorithms can be found at
https://github.com/openai/safety-starter-agents.

A discretized scenario tree is used in each decision epoch to
solve the NP method for the experiments. For the financial
planning example, in each decision period t, we generate
a two layer scenario tree where the first layer consists of a
root node and the second layer includes 1000 nodes, giv-
ing rise to 1000 scenarios. The interest rates for each of
the scenarios are sampled from a multi-dimensional log
normal distribution whose mean and covariance matrix are
estimated from the training data set of price movements in
the S&P500. For the liquidity constraints, we sample 10 liq-
uidity demand processes from a Gaussian distribution with
µ = 0.025 and σ = 0.01, giving rise to 10,000 scenarios in
the second layer of the scenario tree. For the bike sharing
problem, due to its complex non-linear objective function,
we generate a two-layer tree with 200 leaf nodes, giving rise
to 200 scenarios. The demand values at stations for each
of the scenarios are sampled from a multi-variate normal
distribution whose mean and covariance matrix are learnt
from 60 days of training demand data [Ghosh et al., 2019].



LIQUIDITY-CONSTRAINED PORTFOLIO
OPTIMIZATION

The liquidity management problem seeks to optimally rein-
vest earnings in a portfolio based on the CVaR whilst main-
taining sufficient liquidity. Too much liquidity means loss
of potential returns and too little incurs borrowing costs.
Model-based forecasts of the price movements and liquidity
process are generally available in practice. The overall prob-
lem thus involves computing allocations across a universe
of financial instruments, given observed rewards, prices,
and model-based forecasts of the price and liquidity pro-
cesses. We have one risk-free liquid instrument. In each
time step a constraint requires that the amount in the liq-
uid account to satisfy forecasted demand. We consider four
portfolios, each with nine stocks and one risk-free instru-
ment. The state at time t includes the current allocation,
observed price changes and liquidity demands up to time t.
The action is a vector, xt = (xt,1, ..., xt,J), of allocations
across J instruments at time t, where j = 1 is the liquid
asset. Let ξt,1 be the cumulative liquidity requirement and
Wt the wealth at the beginning of time t. The constraint set
is G(ξ) := {x|Wt · xt,1 ≥ ξt,1,

∑
j xt,j = 1, t = 1 . . . T}.

The liquidity requirement `t(ξ) for time t is sampled from
a Gaussian ` ∼ N (µ, σ);µ` = 0.025, σ` = 0.01 and ac-
cumulates over time, i.e., ξt,1 = Lt−1 + `t, where Lt−1

denotes the accumulated realized liquidity requirement.

We use 11 years of S&P500 daily data from 2009–2019. The
data from 2009–2016 is used for training the unconstrained
RL policy πθ and price movement model. For the SP and
NP, in each time step, we sample 1000 scenarios from a
multi-variate log-normal distribution whose parameters are
learnt from the training data. Hyperparameter tuning of πθ
is done using data of 2017–2018. Tests are done on two
consecutive 30 working day periods in 2019 (Jan 1-Feb 11,
and Feb 12-Mar 25). It should be noted that the experiments
for these two testing datasets are done independently, where
we assume that the initial investment starts with 1 unit of
liquid asset at the first day. In Figure 1, we demonstrate
the convergence of the neural-progressive hedging method
for four asset universes on the first testing dataset, in the
presence of and after damping to zero the expert guidance
after 20 iterations.

Figure 2(a)-(b) shows the mean and standard error in re-
turns of NP with CVaR α = 0.95, 0.99, along with the
unconstrained RL policy and the pure SP policy, over four
asset universes. The NP policies with CVaR α = 0.95, 0.99
significantly outperforms the pure SP policy and improves
the average return by 14% and 18% over the DDPG policy.
It should be noted that the variance (demonstrated by the
light shaded area) arises from differences in return rates
for 4 different asset universes, but our NP method always
outperforms other baseline methods for individual asset
universe. Table 1 provides performance metrics including

Figure 1: Convergence of the NP algorithm with CVaRα=95.
According to Theorem 1, initial iterates may decrease non-
monotonically but for iterations i ≥ ı̂ = 20 progression to
an optimum is monotonic.

the Sharpe ratio, volatility and maximum daily drawdown
(MDD), as well as the performance of four well-known
and best performing online portfolio selection algorithms as
benchmarks: (i) A uniform constant rebalancing portfolio
(uCRP) approach [Cover, 2011]; (ii) Online moving aver-
age reversion (OLMAR) [Li and Hoi, 2012]; (iii) Passive-
aggressive mean reversion (PAMR) [Li et al., 2012] and (iv)
Robust median reversion (RMR) [Huang et al., 2016]. We
use a grid search to optimize the two key hyper-parameters
of these online universal portfolio algorithms: namely the
lookback window w and threshold parameter ε3. Average
returns and Sharpe ratios of the NP are higher than all the
benchmark approaches.

In Figure 2(c), we demonstrate the sample efficiency of our
expert-guided NP approach. For this experiment, we train a
DDPG policy with fewer samples (referred as “DDPG-LS",
“LS=less samples") obtained after 0.5 million training steps,
and use it as the expert policy to guide our NP approach. It
should be noted that the data for generating scenario samples
for the SP counterpart in our NP method is from the 0.5
million step samples used during training of sub-optimal
DDPG only. Therefore, despite having less training data, NP
still provides better returns than the sample-hungry DDPG
policy, which is trained to convergence at 1.5 million steps.

A significant benefit of the NP framework is the ability to
enforce constraints, otherwise difficult to handle in an RL
policy. Figure 3(a)-(b) show the mean and standard error
in returns under liquidity constraints. We compare against
a heuristic we call DDPG-H that uses DDPG, but reserves
µ` + 3σ` of the funds for the 0-interest cash account by
re-normalizing the remaining allocations. DDPG-H thus
provides a conservative, but constraint-feasible policy, by
construction. The constrained NP policy outperforms CPO,
PPO-L, DDPG-H and even the unconstrained DDPG policy.

In Figure 3(c), we show constraint violations; the red in-
creasing line shows cumulative liquidity demand in each

3The source codes for the online portfolio selection algorithms
can be found at https://github.com/Marigold/universal-portfolios.
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Figure 2: (a)–(b) Returns without liquidity constraints. NP policies outperform DDPG, SP; (c) Sample efficiency of NP.

First 30 days, annualized values Second 30 days, annualized values
Algorithms Returns Sharpe Volatility MDD Returns Sharpe Volatility MDD
SP-0.0 11.84 3.58 27.33 7.63 2.3 1.16 17.8 4.8
SP-0.95 11.83 3.58 27.37 7.65 0.87 0.51 17.32 4.85
SP-0.99 0.0 -0.54 0.0 0.0 0.0 -3.78 0.0 0.0
NP-0.0 22.47 4.44 40.29 10.46 7.44 2.22 29.1 7.41
NP-0.95 22.47 4.44 40.29 10.46 7.44 2.22 29.1 7.41
NP-0.99 21.64 4.29 40.38 10.44 7.4 2.09 30.96 7.99
DDPG 19.33 4.36 35.63 9.52 6.08 2.12 24.86 5.93
uCRP 12.08 5.68 17.16 5.26 1.38 0.97 12.5 3.77
OLMAR 10.4 4.65 18.26 5.97 -4.17 -2.69 12.98 3.54
PAMR 6.35 2.45 22.08 6.03 -8.02 -3.39 20.1 5.19
RMR 10.68 4.72 18.45 5.97 -4.56 -2.82 13.58 3.83

Table 1: Performance metrics without liquidity constraints. NP policies nearly always outperform all other strategies. SP
with α = 0.99 puts all funds in cash, hence MDD and volatility are 0, but returns are 0 as well.

(a) (b) (c)

Figure 3: (a)-(b) Returns with liquidity constraints. NP with CVaRα=95 and CVaRα=99 are nearly identical in (b). NP
policies outperform CPO, PPO-L and DDPG-H; (c) Average liquidity in each policy, Liquidity constraint is shown in red.

period. Although PPO-L, unlike CPO, was able to learn the
constraints during training, both CPO and PPO-L are unable
to come close to satisfying the liquidity constraints in testing
(see the Supplementary Materials for constraint violations
during training). Only DDPG-H and NP satisfy the con-
straints in testing, but the DDPG-H method over-allocates
to the liquid account, thereby reducing net returns.

ONLINE REPOSITIONING IN BIKE-SHARING

The bike repositioning problem is a form of online re-
source matching in an uncertain environment. Uncoordi-
nated movements of users in bike or electric vehicle shar-
ing, along with demand uncertainty, results in the need to
often reposition the resources [Ghosh et al., 2017, Schui-

jbroek et al., 2017, Ghosh et al., 2016, Ghosh and Varakan-
tham, 2017]. We use an RL-based simulator from Bhatia
et al. [2019] built upon the dataset of Hubway bike shar-
ing system in Boston, consisting of 95 base stations and
760 bikes. The state at time t includes the current allo-
cated bikes in each station j ∈ {1 . . . J} and ξt,j is the
random customer demand at station j. The action is a vector,
xt = {xt,1, ..., xt,J}, that represents the percent allocations
of bikes across all stations while respecting the constraint set
G(ξ) := {x|Čj ≤ N ·xt,j ≤ Ĉj ,

∑
j xt,j = 1, t = 1 . . . T},

where Čj and Ĉj denote the minimum and maximum
bounds on the number of allocated bikes at station j, and N
denotes the total number of bikes present in the system. The
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Figure 4: Performance comparison on the online bike repositioning problem for 12 time steps (6AM-12PM), averaged over
3 testing days: (a) cumulative reward value; (b) cumulative constraint violation cost.

(a) (b)

Figure 5: Sensitivity analysis results by varying (a) convex combination parameter, κ; and (b) number of scenarios.

objective function is represented by:

max
x

∑
t

∑
j

− L(xt,j , ξ)(1 + log(1 + L(xt,j , ξ))−

R(xt,j , ξ) sin(π ·R(xt,j , ξ))

where L(xt,j , ξ) represents the amount of unfulfilled de-
mand and R(xt,j , ξ) is the number of bikes picked up or
dropped off at station j at time t in action x, which incurs a
repositioning cost. We use two months of data to train the
models. We evaluate the learnt policies on 3 consecutive
days during the morning peak period (6AM–12PM) with 12
decision epochs, each having a duration of 30 minutes.

Figure 4(a) shows mean and standard error in cumulative re-
ward over 3 test days from NP with CVaR of α = 0.0, 0.99,
CPO and PPO-L, and unconstrained DDPG. After training
CPO and PPO-L methods for 1 million episodes, they fail
to perform at par with NP. NP using expected reward (i.e.,
α = 0.0) and with CVAR of α = 0.99 improves cumulative
reward by 11.3% and 7.9% over unconstrained DDPG. Fig-
ure 4(b) shows the cumulative constraint violation where
capacity violation per station costs 1 unit. Only NP variants
satisfy the constraints, while both CPO and PPO-L fail to
satisfy the capacity constraints during the test period.

Finally, we provide sensitivity analysis by varying (a) con-
vex combination parameter, κ; and (b) number of scenarios
sampled from the demand distribution. Figure 5(a) shows
the mean and standard error in cumulative reward for dif-
ferent κ that decreases over iterations of NP. Recall that at
κ = 1 and 0, NP reduces to DDPG and pure SP, respectively.

The best performance is achieved with κ = 1
i2 , which is our

default setting in the experiments. Figure 5(b) shows the
cumulative reward of NP in the last five time steps, varying
the number of scenarios. As expected, the NP performance
improves with the number of scenarios, as the approximate
distribution and hence the scenario tree formulation tends
towards the true distribution. However, the improvement
happens in a concave manner and beyond some number
of scenarios, the performance gain hits a plateau, implying
that computation requirements remain reasonable to achieve
a near-optimal solution with NP. We thus use 200 scenar-
ios for both the pure SP and NP in the default settings of
experiments.

RELATED WORK

The neural-progressive hedging algorithm combines offline
policy search with an online model-based phase to fine-tune
the policy so as to satisfy constraints and risk measures such
as CVaR. We categorize the existing relevant research into
three threads: (a) Combining model-free and model-based
methods for performance improvement; (b) Constrained and
risk-sensitive RL methods; and (c) Improving sequential
decisions through warm starting and imitation learning.

Ensemble of model-free and model-based methods:
Model-based methods are prized for sample efficiency, but,
as noted by Feinberg et al. [2018], high-capacity models
are “prone to over-fitting in the low-data regimes where
they are most needed", implying that the combination of



model-based and model-free methods will be important for
good performance in complex settings. They propose, as
do Buckman et al. [2018], to rollout the learned model for
use in value estimation of a model-free RL, in the latter
reference using an ensemble of such models to estimate
variance. Ghosh et al. [2021] demonstrate the efficiency of
combining the model-based and model-free RL methods
in a complex air traffic control domain. Lu et al. [2019],
Amos et al. [2018], Tamar et al. [2017], Kahn et al. [2017]
combine (online) planning models with model-free RL to
explore more sparingly the state and action spaces. Mansard
et al. [2018] suggest a structure similar to ours for control-
ling dynamical systems using models to initialize a model
predictive control formulation, as a warm-start. Lu et al.
[2019] develop Adaptive Online Planning (AOP) with a
continuous model-free RL algorithm, TF3 [Fujimoto et al.,
2018]. The goal is similar to ours – leveraging the respon-
siveness of online planning with reactive off-policy learning
to make better decisions. The approach is however different
from ours – AOP uses a model-based policy when uncer-
tainty is high and a reactive model-free policy when habitual
behavior should suffice.

Constrained and risk-sensitive RL methods: Garcıa and
Fernández [2015] surveyed safe RL methods which they
classify as either optimization-based or handling safety in
the exploration process. Pham et al. [2018] suggest after
each policy update to project the current iterate onto the
feasible set of safety constraints; since they assume that the
safety constraints may not be known in advance, they pro-
pose a method to learn the parameters of a linear polytope.
Yang et al. [2019] extend CPO method to solve constrained
RL by optimizing the reward function using TRPO and then
projecting the solution onto the feasible region defined by
safety constraints, similar to Pham et al. [2018]. Chow et al.
[2015, 2017] model risk-constrained MDPs with a CVaR
objective or chance constraints, and solve it by relaxing the
constraints and using a policy gradient algorithm. However,
similar to CPO and Lagrangian-relaxed PPO, the constraints
are not enforced during execution and need not be satisfied.
Most “safe" RL methods use an initial infeasible, uncon-
strained policy and iteratively render it feasible and locally
optimal, e.g., Berkenkamp et al. [2017] define an expanding
“region of attraction" to guide safe exploration to improve
the policy, whilst remaining feasible.

Imitation learning and warm start: NP can be viewed
through the lens of imitation learning. Gu et al. [2016] use
synthetic model-based “imagination" rollouts in the early
iterations of deep RL training, which can be considered
as a model-based warm-start. This is the opposite of our
approach, we propose a longer-horizon deep RL to warm
start the online stochastic program. Aggravate [Ross and
Bagnell, 2014] and Aggravated [Sun et al., 2017], building
on the seminal DAgger [Ross et al., 2011], involve itera-
tively mixing the learning step of a policy with an expert

policy, in that, at iteration n, πn = βnπ∗ + (1 − βn)π̂n,
where β → 0 as n → ∞. This is similar to the update
step of NP which uses a convex combination of the expert
and the learner policies, with damping. Cheng et al. [2018]
take this one step further by defining a framework with
a mirror descent gradient update that reduces to imitation
learning-based RL, depending on the choice of the gradi-
ent estimator; they introduce SLOLS, where the gradient
is a convex combination of a policy gradient and an expert
gradient. Plato [Kahn et al., 2017] is similar with the roles
of the expert and learner reversed: the Plato expert replans
at each step to avoid catastrophic failure in training, while
the learner is a neural network. Sun et al. [2018] propose
combining imitation learning and RL with the aim of faster
learning and improving beyond a sub-optimal expert. The
advantages achieved by the NP method in inverting the roles
of expert and learner are the ability of the SP to enforce
hard constraints and incorporate risk measures, and doing
so in an explainable manner. The NP warm start serves as
an external expert to guide the SP in the early iterations to
encourage convergence to a better solution by reshaping the
objective itself.

CONCLUSION

The neural-progressive hedging (NP) method starts from
an offline, unconstrained RL policy and iteratively en-
forces constraints and risk requirements using model-based
stochastic programming. It is thus a type of external point
method. We demonstrate the efficacy of NP method on two
real-world applications, in finance and logistics. The NP
method significantly outperforms both constrained and un-
constrained RL whilst handling both resource constraints
and risk measures. An important benefit of the framework
is its ease of implementation: NP method can be imple-
mented using existing deep RL algorithms and commercial
off-the-shelf optimization packages, and provides added
transparency and explainability on the constraint satisfac-
tion of the policy. One interesting direction for future work
is the online re-formulation of the problem to take into
account a time-varying distribution of ξ. Similarly, upper
bounding the loss from such a re-solving policy would be
of great interest.
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