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Abstract

Transformer-based models have recently become wildly successful across a diverse set of
domains. At the same time, recent work has shown empirically and theoretically that
Transformers are inherently limited. Specifically, they argue that as model depth increases,
Transformers oversmooth, i.e., inputs become more and more similar. A natural question
is: How can Transformers achieve these successes given this shortcoming? In this work we
test these observations empirically and theoretically and uncover a number of surprising
findings. We find that there are cases where feature similarity increases but, contrary to
prior results, this is not inevitable, even for existing pre-trained models. Theoretically, we
show that smoothing behavior depends on the eigenspectrum of the value and projection
weights. We verify this empirically and observe that the sign of layer normalization weights
can influence this effect. Our analysis reveals a simple way to parameterize the weights
of the Transformer update equations to influence smoothing behavior. We hope that our
findings give ML researchers and practitioners additional insight into how to develop future
Transformer-based models.

1 Introduction

In recent years, Transformer models (Vaswani et al., 2017) have achieved astounding success across vastly
different domains: e.g., vision (Dosovitskiy et al., 2021} Touvron et al., 2021al), NLP (Touvron et al., 2023;
[Wei et al., 2023; [Kaddour et al., 2023a)), chemistry (Schwaller et al., 2019), and many others. However
their performance can quickly saturate as model depth increases (Kaplan et all, [2020; [Wang et all 2022)).
This appears to be caused by fundamental properties of Transformer models. Empirically, researchers first
observed that as depth was increased, even to just 12 layers, features became more and more similar to one
another (Tang et all 2021} |Zhou et all [2021ajb; |Gong et al., [2021} [Yan et al| 2022). Theoretically, these
observations were characterized as (a) Input Convergence: Transformer features converge to the exact
same vector (Park & Kim) 2022} [Wang et al., [2022; Bai et al), 2022)); (b) Angle Convergence: the angle
between Transformer features converges to 0 (Tang et al., [2021} |Zhou et al., 2021a; Gong et al.l 2021} [Yan|
let al.,2022; |Shi et al., 2022; Noci et al.,2022;|Guo et al., 2023); or (c) Rank Collapse: Transformer features
collapse to a rank one matrix (Dong et al.| 2021} [Shi et al.l 2022} [Noci et al. [2022;|Guo et al.| 2023} |Ali et al.l
. In practice, this has led to a search for replacements for Transformer layers, including completely
new attention blocks (Zhou et al., 2021afbt [Wang et al., 2022} [Ali et al., [2023), normalization layers
let al.l 2023; |Zhai et al.,|2023), altered skip connections (Tang et al.l 2021; Noci et al.,2022; Shi et al., 2022),
convolutional layers (Park & Kim) 2022), fully-connected layers (Liu et al., 2021a; Kocsis et al., 2022;

2022a)), and even average pooling layers (Yu et al., 2022b).

But are Transformers destined to oversmooth? In this work we test the above observations theoretically and
empirically. Theoretically, we analyze the eigenspectrum of a simplified Transformer layer: fixed attention,
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weights, and a residual connection. We show even for this simplified setup that: (a) There are cases
where all features converge to the same vector, but this is not inevitable, contrary to prior results; (b) Angle
convergence is also possible, but not guaranteed; and (c¢) while rank collapse is likely, it is also not necessarily
happening. Empirically, for existing pre-trained models we find cases where (a) features do not converge to
the same vector, (c) feature angles do not converge to 0, and (c) rank does not collapse. In fact, our analysis
uncovers a parameterization that allows one, in some cases better than others, to increase smoothing or
reduce it. We observe that the sign of the weights of layer normalization plays a role in how much this
parameterization influences smoothing behavior.

2 Background & Related Work

2.1 The Transformer Update

At their core, Transformers are a linear combination of a set of ‘heads’ Each head applies its own self-
attention function on the input X € R**¢ as follows

1
vk

where the Softmax(-) function is applied to each row individually. Further, Wqo, Wg € are learned
query and key weight matrices. This ‘attention map’ A then transforms the input to produce the output
of a single head: AXWy W, where Wy, W, € R*4 are learned value and projection weights. Most
architectures then add a residual connection:

A= Softmax( XWQWIT(XT), (1)

Rdxk

X=Xy 1+ AX Wy W, (2)

These architectures also consist of layer-specific attention and weights, multiple heads (i.e., multiple A, Wy,
are to X and the outputs of each head is summed), layer normalization (either in the Post-LN format
(Vaswani et al., 2017; Wang et al.l [2019b; Xiong et al., 2020)) e.g., for BERT (Kenton & Toutanova, 2019),
RoBERTa (Liu et al., |2019), and ALBERT (Lan et al., [2019), or in the Pre-LN format (Baevski & Auli
2018), e.g., for GPT (Brown et al} 2020), ViT (Dosovitskiy et al) 2021), and PALM (Chowdhery et al.
2023) architectures), and fully-connected layers. Unfortunately, these layers make eigenspectrum analysis
intractable (we detail why this is the case in Section . However, recent work has demonstrated that
simplified Transformer models have surprisingly similar behaviors as full models (Von Oswald et al., [2023;
[Mahankali et al [2023; |[Ahn et al| 2024} Zhang et al. [2024; |Ahn et al., 2023)). We find that this is also the
case for oversmoothing: even though our analysis considers the restricted update in eq. it can explain
the smoothing behavior of full Transformer models (e.g., ViT and DeiT models).

2.2  What Is Oversmoothing?

In deep learning, ‘oversmoothing’ broadly describes the tendency of a model to produce more and more
similar features as depth increases. For Transformers, prior work largely uses one of three different ways
to measure oversmoothing: (a) Input Convergence: Do the inputs converge to the exact same feature
vector? (Park & Kim, 2022; Wang et al. |2022; Bai et al., |2022); (b) Angle Convergence: Do the angles
between inputs converge to 0?7 (Tang et all 2021} Zhou et al., 2021a} |Gong et all, [2021} [Yan et all 2022
let al., 2022; Noci et al., 2022;|Guo et al., 2023); (c) Rank Collapse: Does the rank of inputs collapse to 17
(Dong et al., 2021} |Shi et al. [2022; [Noci et al., 2022; \Guo et al., 2023; Ali et al., 2023).

Input Convergence. One way to formalize oversmoothing is through the lens of signal-processing
2022)): the smoothing of a function can be measured by how much it suppresses higher frequencies
in the signal, removing smaller fluctuations to highlight the larger trend. To measure the smoothing of the
Transformer update in eq. we can compute the ratio of high frequency signals to low frequency signals
preserved in X,. If this goes to 0 as £ — oo, all high frequency information is lost: the signal is maximally
smoothed. To estimate these signals we can compute the Discrete Fourier Transform (DFT) F of Xy, via
F(X;) := FXy, where F € C**" is equal to Fy; := 2™ (*=D0=D for all k,1 € {2,...,n} (where i :=/~1),
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and is 1 otherwise (i.e., in the first row and column). Define the Low Frequency Component (LFC) of
X, as LFC[X/] := F~ldiag([1,0,...,0])FX; = (1/n)117X, (where 1 is the column vector of all ones).
Further, define the High Frequency Component (HFC) of X, as HFC[X,] := F~!diag([0,1,...,1])FX, =
(I-(1/n)117)X,. We can now state the first definition of oversmoothing:

Definition 1 (Input Convergence (Wang et al., [2022)). The Transformer update in eq. (@ oversmooths if
for all X € R™"*¢ we have that

HFC

i [HECL: _,
This definition measures the extent to which inputs converge to the same feature vector. To see this, notice
that the term in the numerator HFC[X,] = (I — (1/n)117)X, goes to 0 if X, = 1X' where X € R? is a
vector where entry 7; is the mean of the ith column of X. This is because (1/n)11TX = 1X'. Finally, the

required condition X, = 1X' only holds when all input vectors are equal. In the following we will refer to
the ratio in the above definition as HFC/LFC.

Angle Convergence. Another way to quantify oversmoothing is via the cosine similarity between inputs:

Definition 2 (Angle Convergence). The Transformer update in eq. (@ oversmooths if for all X € R™*% we
have that

EX] ‘
lim —— E E %, =1,
£—00 n

2 2 Txadlla il

where x; , € R? is the ith row of X,. This measures the cosine of the angle 6 between every pair of inputs
X, Xj¢ and is 1 iff 6 = 0.

Rank Collapse. Finally, we can also measure oversmoothing via rank collapse in X,. This is usually
described as limy_, o, rank(X,) = 1. While rank can be computed via a singular value decomposition (SVD),
it is highly-sensitive to the threshold deciding when a singular should be treated as zero. Instead, Guo et al.
(2023)) use a continuous approximation of rank called the ‘effective rank’, first introduced by Roy & Vetterli
(2007)).

Definition 3 (Rank Collapse). Given X, € R4 let X, = U2, V, be a singular value decomposition
of X with singular values diag(Xy) = (01,4, ..,0r¢] for r <min{n,d} and 010> --- > 0,0 > 0. Define the
following discrete distribution according to the singular values as p;¢ = 0/ 25:1 oje. The effective rank
(Roy & Vetterli, |2007) is the exponential of the entropy of this distribution: exp(—>_._, —p;¢logpie). The
Transformer update in eq. (@ oversmooths if for all X € R™*% we have that

;
elggo exp(— Zpi,e logp;e) =1

Roy & Vetterli (2007) prove that 1 < exp(—>__, pi¢logpi¢) < r, where r is the rank of X,.

Notice that Definitions [I}j3] are progressively relaxed, i.e., if an update satisfies an oversmoothing definition,
it also satisfies any later definitions. For each measure, we say that a model producing X, causes smoothing
if the measure approaches the value in each Definition (i.e., towards 0 for Definition 1 and 1 for Definitions
2 & 3). Alternatively, if the measures move away from the value in each Definition, then we say that the
model causes sharpening (i.e., Definitions 1 & 3 grow towards oo and Definition 2 shrinks towards 0).

2.3 Observations of Transformer Oversmoothing

The term ‘oversmoothing’ was first coined by |Li et al.| (2018]) to describe how GNN node features become
more similar with more rounds of message passing. A similar observation was made for Transformers by
Zhou et al. (2021a). They observed that as depth was increased, the cosine similarity among self-attention
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Figure 1: Theory of Transformer Oversmoothing. A + indicates prior work says that the corresponding
Definition is always satisfied, an ¥ indicates it is not always satisfied. Note that if a Definition is satisfied,
then all later Definitions, which are progressively more relaxed, must also be satisfied. The asterisk at the
bottom right indicates that Definition 3 is not guaranteed, but it is highly likely.

layers also increased. After this work many other works noticed that feature similarity in vision and language
Transformers also increased with depth (Zhou et al.,[2021bj |Gong et al.l 2021} |Tang et al.| 2021} Raghu et al.
2021}, [Yan et all 2022} [Shi et all, 2022} [Wang et all 2022} [Park & Kiml, [2022; [Bai et all [2022} [Choi et al.
2023) found. Multiple works around this time found that it was possible to improve vision Transformers
by replacing self-attention layers with convolutional layers (Han et al., 2021} Liu et al., 2021b; |Jiang et al.
[2021; |Touvron et al., 2021b; [Yuan et al. 2021; Park & Kim)| 2022).

2.4 The Theory of Transformer Oversmoothing

Figure [I] shows current work on the theory of Transformer oversmoothing for three Transformer updates.

Input Convergence. [Wang et al.|(2022) analyzed oversmoothing from the lens of signal processing (Defi-
nition . They showed that as the number of self-attention operations tended to infinity, all inputs converge
to the same feature vector, producing a low-pass filter. They also analyzed the convergence rate when the
residual connection, weights, multiple heads, and a linear layer is added, and found that convergence is
not guaranteed. However, they argued that even with these additions oversmoothing still happens: ‘it is
inevitable that high-frequency components are continuously diluted as ViT goes deeper’, i.e., Definition [I]
holds. At the same time investigated oversmoothing using a different notion of input conver-
gence. Curiously, while they argue that oversmoothing can be due to the parameters of layer normalization,
their analysis seems to suggest that without layer normalization, oversmoothing does not occur. Recently,
Wu et al. analyze oversmoothing using a metric that is the numerator of the metric defined in |Wang
@ . They analyze the transformer update with layer-specific attention and weight matrices and
layer normalization, but without the residual connection. Contrary to they show that layer
normalization can prevent oversmoothing. We use the definition of input convergence described by

(2022)) (our results also hold for the definition used in (2024)).

Angle Convergence. As far as we are aware, there is no prior work that directly analyzes oversmoothing
from the perspective of angle convergence (Deﬁnition. However, if an update is shown to input-converge it
will also angle-converge (and rank collapse), because input convergence is a stricter requirement than angle
convergence (and rank collapse).

Rank Convergence. The first work we are aware of that developed a theory around Transformer over-
smoothing was Dong et al.| (2021)) using the notion of rank collapse. Initially, they showed that, without
skip-connections, repeated self-attention layers converge double-exponentially to a rank 1 matrix. They then
show that there exist models where skip-connections counteract this convergence. Noci et al.| (2022) con-
tradict this, arguing that oversmoothing still happens when the residual connection is added, but this can
be counteracted if the residual connection is scaled appropriately. show that rank collapse
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Figure 2: Are models oversmoothing? The smoothing metrics defined in Definitions |1| (left column),
(center column), and |3| (right column) vs. layer number, for different models and datasets in vision and
NLP. Each curve represents a different model. We compute each smoothing metric after each attention layer
(grey bars), fully-connect layers (white bars), and layer normalization layers (yellow bars). If oversmoothing
was fundamental issue for Transformer models we would expect all curves in the left and right columns to
decrease to 0 and 1, respectively, and all curves in the center column to increase to 1. While ImageNet
models and Gemma 2B broadly trend these ways, increasing model depth does not exacerbate smoothing, as
predicted by prior work. Further, ViT-Ti (Touvron et al., [2021a)) on CIFAR100 exhibits the exact opposite
trend: smoothing is actually reduced by the model. These observations motivate our investigation.

happens without a residual connection and value and projection weights. When a residual connection is
added our analysis shows that it is possible to avoid rank collapse.

3 Do Transformers Always Oversmooth?

Given the current theory on Transformer oversmoothing, how are Transformer models so successful for
vision and NLP applications (Kenton & Toutanova, 2019; [Liu et al.; |2019; Lan et al.| 2019; Brown et al.,
2020; Dosovitskiy et al.l |2021; |Chowdhery et al., 2023)7 To investigate this, we computed the above three
metrics in Definitions on a set of pre-trained models for vision and NLP that have been used in prior
work on oversmoothing (Wang et all 2022; |Choi et all 2023) in Figure |2l We notice that for all ImageNet
models (ViT-B, ViT-L (Dosovitskiy et al. [2021)), DeiT-B (Touvron et al., 2021a)), DeiT3-L (Touvron et al.,
2022))), as depth increases, we do see the metrics approaching their oversmoothing values as described in
Definitions Rank (Definition [3) does not consistently decrease and stays relatively high for 12 layer
models, but continues to drop as depth is increased. However, we see something completely unexpected
from the CIFAR model (ViT-Ti (Touvron et al., [2021a))). All of the metrics show reduction in smoothing
behavior as depth increases. Similarly, for The Pile model (Crammed BERT (Geiping & Goldstein) [2023)))
we see behavior that appears to oscillate between more and less smoothing. These behaviors motivate us to
further investigate the Transformer update.
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3.1 Preliminaries

Our strategy will be to understand the eigenspectrum of the Transformer update in the limit and to use this
understanding to derive what the features X, converge to as £ — oo. This will allow us to understand if and
when Definitions hold. We start by rewriting the Transformer update, eq. , to make it more amenable
to analysis. Define the vec(M) operator as converting any matrix M to a vector m by stacking its columns.
We can rewrite eq. vectorized as follows

vec(Xy) = I+ W] W/ ®A)vec(X,_1). (3)
———

proj

=H
This formulation is especially useful because vec(X,) = (I+H® A)‘vec(Xy). We now introduce an assump-
tion on A that is also used in prior work (Ali et all 2023; [Wang et al., 2022).

Assumption 1 (Ali et al|(2023)); Wang et al.| (2022))). The attention matriz is positive, i.e., A > 0, and
diagonalizable.

This assumption nearly always holds unless A numerically underflows. In our experiments we never en-
countered a;; = 0 for any element (7, j) € R" x R™ or A that was not diagonalizable, in any architecture.
Note A is also right-stochastic, i.e., > jai;=1, by definition in eq. . This combined with Assumption
immediately implies the following proposition.

Proposition 1 (Meyer & Stewart| (2023)). Given Assumption (1], all eigenvalues of A lie within (—1,1].
There is one largest eigenvalue that is equal to 1, with corresponding unique eigenvector 1.

We leave the proof to the Appendix. We can now analyze the eigenvalues of the Transformer update
equations.

3.2 The Eigenvalues

First notice that the eigenvalues of (I +H ® A)* can be written in terms of the eigenvalues of H, A:

Lemma 1. Let \{,... A2 be the eigenvalues of A and let NI, ..., )\f be the eigenvalues of H. The eigen-
values of (T+H® A)" are equal to (1+ N1 for je{1,...,d} andi e {1,...,n}.

The proof can be derived from Theorem 2.3 of|Schacke| (2004). Given this, notice that as the number of layers
¢ in the Transformer update eq. increases, one eigenvalue (1 + /\jH* /\ﬁ) will dominate the rest (except in
cases of ties).

Definition 4 (Dominating eigenvalue(s)). At least one of the eigenvalues of (I + H ® A) has a larger
magnitude than all others, i.e., there exists j*,i* (which may be a set of indices if there are ties) such that
1+ MM > 1+ )\ﬁ)\ﬂ forall i € {1,...,d}\ j* and i’ € {1,...,n} \ i*. These eigenvalues are called
dominating.

Which eigenvalue dominates will control the smoothing behavior of the Transformer.
Theorem 1. Given the Transformer update in eq. (@), let {2}, and {MT}I_, be the eigenvalues of A

and H. Let the eigenvalues be sorted as follows, A\ < --- < A4 and [L+ M| < < |1+ M| As the number
of layers £ — oo, there are two types of dominating eigenvalues: (1) (1+AIND). and (2) (1+AEA)

n

We leave the proof to the Appendix (where we describe all possible cases). We can now use this result to
derive what X, converges to as depth increases.

3.3 The Features

Theorem 2. Given the Transformer update in eq. (@, if a single eigenvalue dominates, as the number of
total layers £ — oo, the feature representation Xy converges to one of two representations: (1) If (1 +)\f/\;?)
dominates theﬂ

X, = (14+ MM s v (4)

1From Propositionwe have that, v4 = 1.
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(2) If (1 + AT dominates then,

T

Xy — (1 + /\JH)\?)ZSJ'JV?VJH (5)
where vH ,vA are eigenvalues of H, A and s;j; := <VQ;3,VEC(X)> and VQJ-_; is row ji in the matriz Q™!
(here Q is the matriz of eigenvectors of I+ H® A)). (8) If multiple eigenvalues have the same dominating
magnitude, Xy converges to the sum of the dominating terms.

Corollary 1. If the residual connection is removed in the Transformer update, then the eigenval-
ues are of the form ()\f)\f). Further, (A;{/\f) is always a dominating eigenvalue, and X, —

i
1(Zj*egrgax()\ﬁ)\;?)esj*,nvﬁ ) as £ — oo, where EL,

xS the set of all eigenvalue indices equal to the

dominating eigenvalue )\f

See the Appendix for proofs of the above statements. Given these results, we can now understand when the
oversmoothing definitions apply.

3.4 When Oversmoothing Happens

Theorem 3. Given the Transformer update eq. (@, as the number of total layers £ — oo, if (1) one
eigenvalue (1 + )\5{ YY) dominates, we have input convergence, angle convergence, and rank collapse. If (2)
one eigenvalue (1 4+ )\]H* A1) dominates, we do not have input convergence or angle convergence, but we do
have rank collapse. If (8) multiple eigenvalues have the same dominating magnitude and: (a) there is at
least one dominating eigenvalue (1 + )\jI{ )\ﬁ) where )\ﬁ £ A\, then we do not have input convergence or

n’

angle convergence, if also (b) the geometric multiplicity of \{* and /\;-L{ are both greater than 1, then we also
do not have rank collapse.

Corollary 2. If the residual connection is removed in the Transformer update, input convergence, angle
convergence, and rank collapse are guaranteed.

The proofs are left to the Appendix. The above statements follow directly from Theorem [2]and Corollary
They tell us that whenever a single eigenvalue (1 + )\f AY) dominates, every input in X, converges to the
same feature vector. This happens because v\ = 1 and so Xp,i ~ Vf, for all ¢ as £ — oo. But there is a
second case: whenever the single eigenvalue (1 + /\f A') dominates, each feature is not guaranteed to be

identical. However, X, — (14 )\f Ae sj,lv’f‘vf T is still a matrix of rank one. If instead multiple eigenvalue

dominate and the geometric multiplicity of A{* and /\jl-{ are both greater than 1 then X, is a sum of at least
2 rank-1 matrices and so we do not have rank collapse.

Theorem [3] largely contradicts prior theoretical results on oversmoothing. We suspect a few reasons for this.
First, if multiple types of analyses are used within one paper, and they give conflicting results, resolving
this can be especially challenging (Wang et al., [2022). Second, certain assumptions may not always hold in
practice, e.g., Noci et al.| (2022) assume that A = %11T at initialization.

On Layer Normalization & Feed Forward Layers. Most Transformers also include layer normalization
and feedforward layers. Unfortunately, both of these break our analysis. For instance, a repeated Pre-LN
layer can be represented by the following update,

vec(Xy) = (I+HD ! @ A)‘vec(X) — £(vec(A1b'DIHT)),

where b and D~ are terms introduced by the normalization layer. However, as far as we are aware there is
no way to characterize the relationship between the eigenvalues of (I+HD ™! ® A) and the eigenvalues of H,
A, and D, without introducing further assumptions (e.g., if H is symmetric there is a known relationship).
This difficulty also applies to Post-LN layers. We encounter a similar difficulty for feed forward layers,

vec(Xy) = (W' @I+ WTH® A)‘vec(X),
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where W is the parameter of the feed forward layer. Similar to layer normalization, as far as we are aware,
we cannot characterize the eigenvalues of (W' @ I+ WTH ® A) in terms of the eigenvalues of H, A, and
W, without further assumptions.

Takeaways: We find that oversmoothing is not inevitable. Whether a layer smooths its input depends
on the interaction between the spectrum of the attention A and weights H. The largest eigenvalue of
(I+H ® A) dictates smoothing behaviour: if (1 + /\f A\4) is largest, the inputs eventually converge to
the same feature vector, but if (1 + )\f A7) is largest, they do not.

A natural question is can we use the above analysis to influence the smoothing behavior of Transformer
models? In the next section we derive a Corollary of Theorem [I| that allows one to do so using a simple
reparameterization of H.

4 Testing the Theory

How applicable are the theoretical results developed in the previous section? Similar to recent theoretical
work on Transformer optimization (Ahn et al.| |2023; [Mahankali et all 2023; [Von Oswald et al., 2023 |Ahn
et al., |2024; |Zhang et al.| 2024)), the Transformer update we analyze in eq. is simplified: no positional
encoding, fixed attention and weights, single-head attention, no layer normalization or feed-forward layers.
How we understand the explanatory impact of our theory on full-scale Transformer models? To do so, we
derive a simple reparameterization of the weights H that allows one influence smoothing behavior. We can
then test this parameterization in existing Transformer architectures to see if smoothing can be affected, and
also judge its impact on generalization.

To derive this reparameterization, first note that Theorem 3| tells us that if (1 4 )\f A7) dominates then this
will cause oversmoothing, whereas if instead (1 + )\f M) dominates we avoid it. To find A and H that are
guaranteed to have either (1+ A7 A{') or (14 X)) dominate we could dig through the proof of Theorem
and consider all cases. However, as A changes for every batch of data X there is no easy way to guarantee
the smoothing behavior of a model. Because of this, we need a solution that involves only controlling the
eigenvalues of H. Luckily, we can simplify the proof of Theorem [I] into a much simpler condition.

Corollary 3. If the eigenvalues of H fall within [—1,0), then (1 + )\ﬁ YY) dominates. If the eigenvalues of
H fall within (0,00), then (1 + )\ﬁ \2) dominates.

See the Appendix for a proof. To ensure that the eigenvalues of H fall in these ranges, we propose to directly
parameterize its eigendecomposition. Specifically, define H as H = VA HVI_Jl, where Vg is a full-rank
matrix and Ay is diagonal. We learn parameters Vg by taking gradients in the standard way (i.e., directly
and through the inversion). To learn the diagonal of Ay, i.e., diag(Ay), we parameterize the sharpening
model as diag(A ) := clip(v, [—1, 0]), where %) are tunable parameters and clip(?, [[, u]) := min(max (e, 1), u)
forces all of ¢ to lie in [I,u]. Similarly we parameterize the smoothing model as diag(Az) := clip(e, [0, 1])E|

5 Experiments

We now run experiments using our reparameterization, in order to understand the predictive power of
our results on full Transformer architectures. We train sharpening and smoothing models on CIFAR100
(Krizhevsky et al., [2009), ImageNet (Deng et al. |2009), and The Pile (Gao et al., [2020). We expect that
the attention layers of sharpening models reduce smoothing, i.e., HFC/LFC (Definition [1|) increases, cosine
similarity (Definition decreases, and effective rank (Definition increases, while smoothing attention
layers increase smoothing.

Initialization. We initialize H = VHAHV;I1 to mimic the initializations used in the ViT-Ti and Bert
baselines, which are initialized using He initialization (He et al., |2015)). Specifically, we first initialize Vg

2While we could have allowed the smoothing model to use the space of positive reals via diag(Ag) := |¢| , we found that
restricting the space of allowed eigenvalues stabilized training.
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Figure 3: Testing the theory. We take a model architecture for each dataset and reparameterize H as
H = VHAHV;. We then train a sharpening model where diag(Agy) := clip(?),[—1,0]) and a smoothing
model where diag(Ay) := clip(¢,[0,1]). Here 1 are tunable parameters. Our theory suggests that the
smoothing model should cause the metric of Definition [1| (left column) to decrease, Definition [2| (center
column) to increase, and Definition 3| (right column) to decrease. These trends seem to generally hold for
CIFAR100 and The Pile, but not for ImageNet. We suspect this has to do with impact of layer normalization,
which we test in Figures [4] and [6}

CIFAR100 ImageNet The Pile
ViT-Ti ViT-Ti ViT-Ti ViT-S ViT-S ViT-S Cram. Bert Cram. Bert Cram. Bert
Attention 0.000 1.000 0.083 0.000 0.333 0.167 0.667 0.467 0.200
LayerNorm  0.500 0.542 0.125 0.833  0.708  0.542 0.750 0.750 0.156
MLP 1.000 0.167 1.000 0.583  0.167  0.500 0.600 0.600 0.267

Table 1: Proportion of layers that increase the HFC/LFC (Definition |1 for each layer type.

CIFAR100 ImageNet The Pile
ViT-Ti VIiT-Ti VIiT-Ti ViT-S ViT-S ViT-S Cram. Bert Cram. Bert Cram. Bert
Attention 1.000 0.000 1.000 1.000 0.667 0.833 0.333 0.533 0.800
LayerNorm  0.458 0.458 0.708 0.167 0.250  0.458 0.469 0.250 0.688
MLP 0.000 0.917 0.000 0.417 0.833 0.583 0.333 0.400 0.733

Table 2: Proportion of layers that increase the cosine similarity (Definition [2)) for each layer type.

using He initialization. To initialize diag(Ay) we sample from a normal distribution with mean 0, and
variance 0.1 (we show the impact of different initialization variances on smoothing and training loss in
Figures [§land [9). All other training and architecture details are in the Appendix.
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CIFAR100 ImageNet The Pile
ViT-Ti ViT-Ti ViT-Ti ViT-S ViT-S ViT-S Cram. Bert Cram. Bert Cram. Bert
Attention 0.250 1.000 0.167 0.083 0.833  0.500 0.733 0.600 0.267
LayerNorm  0.583 0.667 0.583 0.875 0.500 0.583 0.594 0.594 0.781
MLP 0.917 0.417 0.917 0.417 0.250  0.167 0.733 0.733 0.333

Table 3: Proportion of layers that increase the effective rank (Definition |3)) for each layer type.

HFC/LFC, cosine similarity, effective rank,
ViT-S ViT-Ss ViT-S ViT-S ViT-S ViT-S ViT-S ViT-S ViT-S

Attention ~ 0.000 1.000 0.250 1.000 0.000 0.750 0.083 0.500  0.250
LayerNorm 0.833 1.000 0.958 0.167 0.000 0.042 0.875 0.750  0.958
MLP 0.583 0.167 0.417 0417 0.833 0.583 0.417 0.833 0.667

Table 4: No LN weights. Proportion of layers that increase HFC/LFC, cosine similarity, effective rank.

Reparameterization results. Figure |3[shows the effect of the two reparameterizations: sharpening and
smoothing. Since our analysis deals with the attention layer, we plot the variations in metrics for each part
of the attention block to clearly visualize their individual impact. This is useful since those layers can have
different, sometimes opposite impacts on the metrics we are interested in.

We immediately notice that the effects of the reparameterizations vary wildly depending on the dataset and
the smoothing metric. On one end of the spectrum is CIFAR100: where the sharpening model reduces
smoothing and the smoothing model increases smoothing, for all metrics. The theory seems to predict the
attention layer perfectly here as 100% of the attention layers in the sharpening model increase the HFC/LFC
(Table[l)) and the effective rank (Table[3) and 0% of the increase the cosine similarity (Table[2). We observe
nearly the opposite, intended, behaviour for the smoothing model. On the other end of the spectrum is
ImageNet, where the reparameterizations seem to have little effect on the HFC/LFC and cosine similarity
smoothing metrics. Here only 33% of the attention layers of the sharpening model increase the HFC/LFC
(Table and a majority of attention layers actually increase the cosine similarity (67%, Table , the
opposite of its intended effect! The effective rank can be slightly manipulated: 83% of attention layers of the
sharpening model increase the effective rank (Table . However, the final smoothing of the model is nearly
the same as the original model as both LayerNorm and MLP layers of the sharpening model increase the
effective rank less than the original model. In between these extremes is The Pile, where the smoothing model
seems to predictably reduce the HFC/LFC and effective rank, compared to the original model, dropping
the percentage of attention layers that increase HFC/LFC down from 67% to 20% (Table , and dropping
effective-rank-increasing layers from 73% down to 27% (Table . However, the smoothing model has less
overall smoothing than the base model, as defined by cosine similarity (Figure |3)).

w
=)

The impact of layer normalization. We suspect the
reason we observe such varied effects is due to interac-
tions between attention layers and other layers that we
were unable to analyze. To test this theory, we run a
simple experiment: we create two ‘repeating’ models that
obey eq. 7 i.e., weights and attention repeat instead
of being layer-dependent. The first model is reparam-
eterized as above to be sharpening (i.e., W] W, := : 12 24 48
H = VyAyVy' such that diag(Ay) = clip(e, [~1,0])) depth
and the second is reparameterized to be smoothing. This Figure 5: Test accuracy improvements (CI-
way, both models follow our theory exactly so, by Corol- FAR100). Test results of reparameterized
lary sharpening and smoothing is guaranteed. Fig- models for model depths {12,24,48}. Results
ure [4] (left) shows the HFC/LFC (Definition [[)) of each —are averaged over 3 trials, numbers over bars re-

repeating model, and as predicted, the HFC/LFC of the POrt average accuracy, gray bars show standard
deviations.

N
5]

N
=)

=
=)

test accuracy improvement %
‘C) =
w w

o
o
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Figure 4: Impact of Layer Normalization. The average HFC/LFC for the Transformer update with
repeated layers, as in eq. (3), and different types of layer normalization (Post-LN (Vaswani et all, 2017),
Pre-LN (Baevski & Auli, 2018)) where the weights of the layer normalization are fixed to be positive or
negative. See text for details.
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Figure 6: Smoothing, no LN weights. HFC/LFC (Definition , cosine similarity (Definition , and
effective rank (Definition [3)) for reparameterized models with and without layer normalization weights.

smoothing model decreases (exponentially), approaching 0, while the HFC/LFC of the sharpening increases.
We then introduce Post-LN (Vaswani et al.| |2017) and Pre-LN (Baevski & Auli, [2018) into the repeating
architectures and plot the HFC/LFC when layer normalization weights (y) are either positive or negative
(both randomly sampled)ﬂ We observe that Post-LN has no impact on the behaviour of the smoothing
model. Post-LN does affect the sharpening model, creating a more erratic sharpening pattern, however the
overall trend is preserved. On the other hand, Pre-LN (which is used in all of the full Transformer archi-
tectures in our experiments) reverses the expected behaviour when weights are negative. This could explain
the surprising results we observe in Figure

To test this in full Transformer models, we train smoothing and sharpening models without layer normal-
ization weights (i.e, we fix ¥ = 1, 8 = 0) on ImageNet, the dataset most resistant to reparameterization.
The results are shown in Figure [f] While the smoothing model behaves similarly to the model with layer
normalization weights, the sharpening model without layer normalization weights reduces smoothing far
beyond the model with layer normalization weights. This is particularly apparent for HFC/LFC, where the
percentage of layers that increase HFC/LFC goes from 33% to 100% (Table [}, and for cosine similarity,
where the percentage of layers increasing cosine similarity go from 67% to 0% (Table [4)).

3We omit the bias term § to isolate the impact of layer normalization weights.
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Figure 7: Test accuracy/F1 improvements (SuperGLUE). Test results of reparameterized models.

Overall, these results show some evidence that our theoretical analysis can explain the smoothing behaviour
of full Transformer models. When it falls short, one possible explanation is the impact of layer normalization
weights. When these weights are removed in full Transformer models on ImageNet, our theoretical results
can better explain their smoothing behaviour. This explanation is far from perfect: the smoothing models
on ImageNet have nearly the same smoothing behaviour as the original model as measured by HFC/LFC
or cosine similarity, whether layer normalization weights are included in the model or not. It would be very
interesting to extend the analysis to explain this behaviour.

Test accuracy. Our goal in this section was to test how well our theory can explain full Transformer
architectures. While our intention is not to suggest using the reparameterized sharpening or smoothing
models in practice, we were curious to see what impact they had on test accuracy. Recall that prior work
argued that the reason why test accuracy flattened as model depth increased was because of oversmoothing.
This implies that sharpening models should increase test accuracy beyond the baseline model, whereas
smoothing models should reduce it. However, for ImageNet both sharpening and smoothing models have
lower test accuracy than the original model: —2.6% (sharpening) and —0.6% (smoothing). This seems to
contradict the oversmoothing hypothesis. For CIFAR100 (results in Figure [5),sharpening does improve test
accuracy, but as model depth is increased, smoothing improves it even more. This is the exact opposite of
what is stated by the oversmoothing hypothesis. Finally, we evaluate the reparameterized Crammed BERT
(Geiping & Goldstein), 2023) models on SuperGlue (Wang et al.| |2019al) (following the literature we report
changes in test F1 for the CB and MultiRC tasks, and test accuracy for the rest). Both Crammed Bert
(shapening) and Crammed Bert (smoothing) largely harm the performance of the original model. The only
benefits come from the smoothing model.

Takeaways: To understand how much of our theoretical analysis applies to full Transformer models, we
attempt to reduce or increase smoothing using sharpening and smoothing models. For certain datasets,
these reparameterized models act as predicted by the theory (i.e., CIFAR100). For others, they have little
effect (i.e., ImageNet). We hypothesize that this is due to the impact of layer normalization, and we find
that LN weights can reverse the intended effects of ‘repeated’ versions of the sharpening and smoothing
models that follow eq.[2] When we remove layer normalization weights in full Transformer models the
sharpening model significantly reduces smoothing on ImageNet. We investigate the sensitivity of the
reparameterized models with respect to their hyperparameters (see Appendix. Finally, we report the
test accuracy of the reparameterized models, which defy the oversmoothing hypothesis for Transformers.
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6 Discussion

One limitation of the current theoretical analysis is that the results are asymptotic, applying in the limit
as £ — oco. It would be useful to understand the rates of convergence. We would also like to expand the
theoretical analysis to account for layer normalization and fully-connected layers. Special conditions will
likely need to be placed on H to enable this analysis, such as symmetric A, H (Sander et al. [2022). Another
limitation is that we do not take into account language modeling aspects such as causal attention and
positional encoding, which Barbero et al.| (2024)) relate to oversquashing, another phenomenon discussed in
graph neural network literature. Considering how oversmoothing and oversquashing both lead to a form of
collapse, it would be interesting to unify these views.
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Appendix
A Proofs

Proposition 1 (Meyer & Stewart| (2023)). Given Assumption (1], all eigenvalues of A lie within (—1,1].
There is one largest eigenvalue that is equal to 1, with corresponding unique eigenvector 1.

Proof. First, because A is positive, by the Perron-Frobenius Theorem [Meyer & Stewart| (2023) all eigenvalues
of A are in R (and so there exist associated eigenvectors that are also in R). Next, recall the definition of
an eigenvalue \ and eigenvector v: Av = Av. Let us write the equation for any row ¢ € {1,...,n} explicitly:

@101+ + QinUn = Av;.
Further let,
Umax = max{|vi],...,|vn|} (6)

Note that vax > 0, otherwise it is not a valid eigenvector. Further let k.« be the index of v corresponding
t0 Umax. Then we have,
|)\|Umax - |ak 101+ akmaxnvn|

max

< akn]axl‘vl| +eee akmax”|vn|
S akmaxl ‘/Uk)maxl + T + a’kmaxn|vkmax|
= (Qhpax1 T+ Ol [ Vkimar | = [Vmax|

The first inequality is given by the triangle inequality and because a;; > 0. The second is given by the
definition of vyax as the maximal element in v. The final inequality is given by the definition of A in eq.
as right stochastic (i.e., all rows of A sum to 1) and because |vg, .. | = |Umax|- Next, note that because
Umax > 0, it must be that A < 1. Finally, to show that the one largest eigenvalue is equal to 1, recall by
the definition of A in eq. that A1 = 1, where 1 is the vector of all ones. So 1 is an eigenvector of A,
with eigenvalue \* = 1. Because a;; > 0, and we showed above that all eigenvalues must lie in in [—1, 1], by
the Perron-Frobenius theorem [Meyer & Stewart| (2023) A* = 1 is the Perron root. This means that all other
eigenvalues \; satisfy the following inequality |A\;] < A\*. Further 1 is the Perron eigenvector, and all other
eigenvectors have at least one negative component, making 1 unique. Finally, because A is diagonalizable
it has n linearly independent eigenvectors. O

We now prove a lemma that will allow us to prove Theorem [I]

Lemma 2. Consider the Transformer update in eq. (@) Let {)\24, Vfx ™, and {)\f, Vf ?:1 be the eigenvalue
and eigenvectors of A and H. Let the eigenvalues (and associated eigenvectors) be sorted as follows, \j* <
s < Moand [T+ M < < T+ M) Let oL ol be the phases of NI, ... M. As the number of

layers L — oo, one eigenvalue dominates the rest (multiple dominate if there are ties):

L+ AT if 1+ AT > 1
PRV AV a0
(1 +)\min>\1) Zf|1+)\d >\n| <1
L+ MDY if [T+ M > 1+ AE)
R A A S POV N R
(L+ACAT) i [+ A AT <1+ A0AT
LAY f [T+ AT > 1+ A0
WAt A= L <ol € (gorulem—7)
(L+AGAD) i [T+ AGAL] < |14 AG AT
where ML, is the eigenvalue of H with smallest magnitude and M\ is the eigenvalue with the largest index

k such that pf € (7/2,7] U [-7, —7/2).
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Proof. Given Lemmal} the eigenvalues and eigenvectors of (I+H® A) are equal to (1+ A A2 and vi @vi
for all j € {1,...,d} and i € {1,...,n}. Recall that eigenvalues (and associated eigenvectors) are sorted in
the following order A\{ < --- < A4 and |1 + M| < ... < |1 + A|. Our goal is to understand the identity of
the dominating eigenvalue(s) /\f{ A4 for all possible values of Mg, Aa.

First recall that A € (=1,1] and A/} = 1. A useful way to view selecting A¥' A2t to maximize |1+ AFAZ2|
is as maximizing distance to —1. If (i), A\{* > 0 then A2, for all i € {1,...,n — 1} always shrinks )\jH
to the origin and \?' leaves it unchanged. Because of how the eigenvalues are ordered we must have that
1+ )\JH| =1+ )\f/\,ﬂ <14+ AIND =11+ M| If |1+ AF A2 | > 1 then shrinking any AX to the origin will
also move it closer to —1. However, if [1 4+ A A\| < 1 then shrinking to the origin can move A\ farther from
—1 than |1+ Af)Z|. The eigenvalue of H that can be moved farthest is the one with the smallest overall
magnitude, defined as A, . The eigenvalue of A that can shrink it the most is A\i'. This completes the first
two cases.

If instead (ii), A;' < O then it is possible to ‘fip’ )\f across the origin, and so the maximizer depends
on pH. If (a) o € [-7/2,m/2] then let A\f be the eigenvalue with the largest index k such that ¢ff €
(m/2, m|U[—m, —7/2). Tt is possible that ‘flipping’ this eigenvalue across the origin makes it farther away than
M den, [T+HAIAY] > [14+AT A2, In this case (1+AZ A1) dominates, otherwise (1+AJ \7') dominates. If they
are equal then both dominate. If instead (b) ¥ € (7/2, 7]U[—7, —7/2) then either [1+AF 4| > |1 —|—/\£{)\ﬁ|
for all j/ # d and i’ # n, and so (1 + A AZ') dominates, or ‘flipping’ A} increases its distance from —1, and
so [T+ AN > 1+ )\]If}\fﬂ for all j/ # d and i’ # n, and instead (1+ AH \{') dominates. Because we cannot
have that |14+ AFA2] = [1 4+ MM as A{' > —1 this covers all cases. O

Now we can prove Theorem

Theorem 1. Given the Transformer update in eq. (@), let {02}y and {NF}I_, be the eigenvalues of A
and H. Let the eigenvalues be sorted as follows, A\ < --- < A4 and [L+ M| < < |1+ M| As the number
of layers £ — oo, there are two types of dominating eigenvalues: (1) (1+MIAY). and (2) (1+ AN

The proof follows immediately from Lemma 2]

Theorem 2. Given the Transformer update in eq. (@, if a single eigenvalue dominates, as the number of
total layers £ — oo, the feature representation Xy converges to one of two representations: (1) If (1 +)\§{)\;?)
dominates then,

X, = (14X s v (7)
(2) If (1+ )\f)\f) dominates then,

X = (14 MY siavivi (8)
where v, vA are eigenvalues of H, A and s;j; := <VQ;1-1,vec(X)> and VQ;; is row ji in the matriz Q™!

(here Q is the matriz of eigenvectors of I+ H® A)). (3) If multiple eigenvalues have the same dominating
magnitude, Xy converges to the sum of the dominating terms.

Proof. Recall that the eigenvalues and eigenvectors of (I+H ® A) are equal to (1 + )\f )\f) and vjH ® vf
for all j € {1,...,d} and i € {1,...,n}. This means,
— HyAVe/ QL H A
vec(Xy) = Z(l + AT AV, vee(X)) (v @ vi).
4,J

Recall that v@;; is row ji in the matrix Q !, where Q is the matrix of eigenvectors v’ @ v, Further
recall that vi* = 1. As described in Theorem [1} as ¢ — co at least one of the eigenvalues pairs )\f )\f‘ will
dominate the expression (1 + )\f AME which causes vec(Xp) to converge to the dominating term. Finally,
we can rewrite, vi ® vo as vec(vav] ). Now all non-scalar terms have vec(-) applied, so we can remove this

function everywhere to give the matrix form given in eq. (7) and eq. (g). O
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Corollary 1. If the residual connection is removed in the Transformer update, then the eigenval-

ues are of the form ()\f)\f). Further, ()\]I{)\f) is always a dominating eigenvalue, and X, —
l(zj*egH ()\f{)\;?)esj*ynvﬁ—r) as I — oo, where EX is the set of all eigenvalue indices equal to the

dominating eigenvalue )\f

Proof. The eigendecomposition of the Transformer update without the residual connection is:

vee(Xe) = Y (MM AV vee(X)) (v @ vih).

,J
In this case, (A A1) is always a dominating eigenvalue because |\/'| > |[A\Z| for any i € {1,...,n — 1}. This

. . . . . T
observation, combined with the above eigendecomposition, produces X, — 1(2;‘*@53 (/\f{ )\,‘,?)Zsj*,nvg )
as £ — oo. . O

Theorem 3. Given the Transformer update eq. @, as the number of total layers £ — oo, if (1) one
eigenvalue (1 + /\f/\f?) dominates, we have input convergence, angle convergence, and rank collapse. If (2)
one eigenvalue (1 + )\f/\f‘) dominates, we do not have input convergence or angle convergence, but we do
have rank collapse. If (8) multiple eigenvalues have the same dominating magnitude and: (a) there is at
least one dominating eigenvalue (1 + )\f*)\ﬁ) where A\ # )2, then we do not have input convergence or

angle convergence, or (b) the geometric multiplicity of \{* and )\jfi are both greater than 1, then we also do
not have rank collapse.

Proof. If (1) one eigenvalue (1+A A1) dominates then we have that X, — (1+)\f)\;?)zsj,n1v§{—r. Therefore,
X, has all the same inputs which implies input convergence, angle convergence, and rank collapse. If (2)
one eigenvalue (1 + )\f)\f‘) dominates then we have that X, — (1 + )\f)\f)esj,lvaf—r. Therefore, we do
not have input convergence. Further as vi' can contain both positive an negative components we do not
have angle convergence. However, X, is rank one so we do have rank collapse. If (3) multiple eigenvalues
have the same dominating magnitude and: (a) there is at least one dominating eigenvalue (1+ )\ﬁ A4 ) where
A2 # M\ then we do not have input convergence or angle convergence, as shown for case (2); if (b) the
geometric multiplicity of \{' and )\ﬁ are both greater than 1, then X, converges to the sum of at least 2

rank-1 matrices which are not themselves linear combinations of each other. Therefore, rank(X,) >2. O

Corollary 2. If the residual connection is removed in the Transformer update, input convergence, angle
convergence, and rank collapse are guaranteed.

Proof. Corollary tells us that in this case X, — 1(Zj*e£H, (ML Aﬁ)esj*7anT) as £ — co. This matrix is

e
rank-1 and so we have input convergence, angle convergence, and rank collapse. O

Corollary 3. If the eigenvalues of H fall within [—1,0), then (1 + )\ﬁ YY) dominates. If the eigenvalues of
H fall within (0,00), then (1 + )\jhi MY dominates.

Proof. Let M < ... < )\gI . Again we can think of selecting )\f )\;4 that maximizes |1+ )\f )\f‘| as maximizing
the distance of )\]H)\f‘ to —1. Consider the first case where M ... A € [-1,0), and so A is the closest
eigenvalue to —1 and )\dH is the farthest. If A\{* > 0 then all A* can do is shrink A to the origin, where \{!
shrinks A the most. The closest eigenvalue to the origin is A%, and so (1 + AF\{') dominates. If instead
At <0, then we can ‘flip’ )\f over the origin, making it farther from —1 than all other )\f . The eigenvalue

that we can ‘flip’ the farthest from —1 is A¥, and so (1 + A?\{') dominates. If all eigenvalues of H are
equal, then both (1 + A¥A{') and (1 + AMA{') dominate. For the second case where A, A € (0, 00),
we have that |1 + AFA4 > |1+ /\f)\fﬂ for all 7/ € {1,...,d—1} and ¢’ € {1,...,n — 1}. This is because,
by definition MZA2 > )\f)\f}. Further, 1+ AJA4 > |1 + )\ﬁ)\fﬂ as the largest |1 4+ )\ﬁ)\ﬂ can be is either
(1) [T —eX| for 0 < e < 1or (i) |1 + ML A2 (ie., in (i) A is negated by A{' and in (ii) AZ | is the next
largest value of A\H). For (i), it must be that 1+ AFA2 > |1 —eAH | as AF > 0. For (i) \f > A\f | >0, and
0 |1+ MM > |1+ ME A2, Therefore \?' dominates. O

19



Published in Transactions on Machine Learning Research (07/2025)

=

clipping

Definition 1 (average HFC/LFC)

Definition 3 (average erank)

Definition 2 (average cosine similarity)

7
layer layer

&

°

°

initialization CIFAR100

[ I

°

Definition 1 (average HFC/LFC)

s
Definition 3 (average erank)

Definition 2 (average cosine similarity)

°

3 7 8 1 [ 7 B T 3 3 3 1
layer layer layer

Figure 8: Sensitivity of smoothing metrics. HFC/LFC (Definition , cosine similarity (Definition ,
and effective rank (Deﬁnition for reparameterized models with different clipping thresholds and initializa-
tion variances for diag(Ag).

B Training & Architecture Details

Crucially, even though our theoretical analysis applies for fixed attention A and weights H, we use exist-
ing model architectures throughout, i.e., including different attention/weights each layer, multi-head
attention, layer normalization (arranged in the pre-LN format Xiong et al| (2020)), and fully-connected

1ayersE|

Image Classification: Training & Architecture Details. We base our image classification experiments
on the ViT model Dosovitskiy et al|(2021) and training recipe introduced in Touvron et al| (2021a). On
CIFARI100 for 300 epochs using the cross-entropy loss and the AdamW optimizer |Loshchilov & Hutter| (2019).
Our setup is the one used in [Park & Kim)| (2022) which itself follows the DeiT training recipe [Touvron et al.
. We use a cosine annealing schedule with an initial learning rate of 1.25 x 10~* and weight decay
of 5 x 1072. We use a batch size of 96. We use data augmentation including RandAugment Cubuk et al.
(2019), CutMix [Yun et al| (2019), Mixup Zhang et al| (2018), and label smoothing [Touvron et al, (2021a)).
The models were trained on two Nvidia RTX 2080 Ti GPUs. On ImageNet, we use the original DeiT code
and training recipe described above. Changes from CIFAR100 are that we use a batch size of 512 and train
on a single Nvidia RTX 4090 GPU.

Text Generation: Training & Architecture Details. We base our NLP experiments on
7 using their code-base. Following this work we pre-train encoder-only ‘Crammed’ Bert
models with a maximum budget of 24 hours. We use a masked language modeling objective and train on the
Pile dataset |Gao et al.| (2020). The batch size is 8192 and the sequence length is 128. We evaluate models
on SuperGLUE Wang et al.| (2020) after fine-tuning for each task. In order to ensure a fair comparison, all
models are trained on a reference system with an RTX 4090 GPU. We use mixed precision training with
bfloat16 as we found it to be the most stable Kaddour et al.| (2023b).

C Hyperparameter Sensitivity

Another aspect that may have an effect on the smoothing behaviour of reparameterized models is the choice
of hyperparameters. Specifically, there are two hyperparameters we set for diag(Ag): (a) the clipping interval
(defaults: clip(ep,[—1,0]) and clip(?, [0,1])), and (b) the initialization variance (default: 0.1). To test (a), we
halve the size of each clipping interval. For (b), we try initialization variances within the set {0.01,0.1,1}.

4If a model has multiple heads we will define Wy = V and W) = AHVII).
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clipping initialization

diag(An

diag(A ) := clip(1,[0,0.5))
diag(Asr) == clip(t, [0,1])

diag(Ar) = clip(ap, [-0.5,0)) | 35
diag(Agr) = clip(ap, [~1,0])
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Figure 9: Sensitivity of training loss. Training loss curves for reparameterized models with different
clipping thresholds and initialization variances for diag(Ag).

We test all changes on CIFAR100, as this dataset seems most sensitive to reparameterization and so should
give us a sense of an upper bound on hyperparameter sensitivity. The results are shown in Figure [§f We
notice that clipping interval seems to have a small effect on the smoothing behaviour of reparameterized
models: the largest change is the final HFC/LFC of the sharpening model, which increases by roughly one
when the clipping interval is halved.

The initialization variance has a much larger effect on the smoothing model: increasing the variance induces
stronger smoothing across all metrics, for all layers beyond the second layer. Curiously it has little effect
on the final smoothing of the sharpening model, even when increasing the variance reduces sharpening for
intermediate layers. Finally, we were curious if hyperparameter choices introduced any training instability
which could explain these results. Figure[J]shows that this is not the case: under any hyperparameter choice
tested, the training curves are stable.

D Distribution of the eigenvalues of H in trained models
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Figure 10: Distributions of eigenvalues of H (Top) Vision models have distributions skewing to the
negatives; (Bottom) Language models have symmetrically distributed eigenvalues.
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