
Not All Knowledge Is Created Equal:
Mutual Distillation of Confident Knowledge

Ziyun Li
Hasso Plattner Institute, Germany

ziyun.li@hpi.de

Xinshao Wang∗

University of Oxford, UK
Zenith Ai, UK

xinshaowang@gmail.com

Di Hu
Renmin University of China, China

dihu@ruc.edu.cn

Neil M. Robertson
Queen’s University Belfast, UK
n.robertson@qub.ac.uk

David A. Clifton†

University of Oxford, UK
davidc@robots.ox.ac.uk

Christoph Meinel
Hasso Plattner Institute, Germany
christoph.meinel@hpi.de

Haojin Yang
Hasso Plattner Institute, Germany

haojin.yang@hpi.de

Abstract

Mutual knowledge distillation (MKD) improves a model by distilling knowledge
from another model. However, not all knowledge is certain and correct, especially
under adverse conditions. For example, label noise usually leads to less reliable
models due to undesired memorization. Wrong knowledge harms the learning
rather than helps it. This problem can be handled by two aspects: (i) knowledge
source, improving the reliability of each model (knowledge producer) improving
the knowledge source’s reliability; (ii) selecting reliable knowledge for distillation.
Making a model more reliable is widely studied while selective MKD receives
little attention. Therefore, we focus on studying selective MKD and highlight
its importance in this work. Concretely, a generic MKD framework, Confident
knowledge selection followed by Mutual Distillation (CMD), is designed. The
key component of CMD is a generic knowledge selection formulation, making the
selection threshold either static (CMD-S) or progressive (CMD-P). Additionally,
CMD covers two special cases: zero knowledge and all knowledge, leading to a
unified MKD framework. Extensive experiments are present to demonstrate the
effectiveness of CMD and thoroughly justify the design of CMD.

∗Work mainly done when being a Postdoc at the University of Oxford.
†Prof. David A. Clifton was supported by the NIHR Oxford Biomedical Research Centre, the InnoHK Hong

Kong Centre for Cerebro-cardiovascular Health Engineering (COCHE), and the Pandemic Sciences Institute at
the University of Oxford.

2022 Trustworthy and Socially Responsible Machine Learning (TSRML 2022) co-located with NeurIPS 2022.

Table 1: The interactions between how each model is trained (i.e., LS, CP, ProSelfLC, and our
proposed variant MyLC) and what knowledge should be distilled (zero knowledge, all knowledge,
and our proposed CMD-S/P). Experiments are done on CIFAR-100 using ResNet34. The symmetric
label noise rate is 40%. The average final test accuracies (%) of two models are reported. The
performance difference between the two models is negligible.

Distilled Knowledge Label smooth (LS) Confidence penalty (CP) ProSelfLC MyLC

Zero 51.53 50.06 62.75 65.04
All 53.63 53.18 59.26 61.11

CMD-S (ours) 55.10 53.86 67.26 68.45
CMD-P (ours) 56.73 56.47 68.29 69.09

1 Introduction

“What knowledge to be selected for distillation” is an essential question of mutual knowledge
distillation (MKD) but has received little attention. Existing MKD methods treat all knowledge of a
deep model equally, i.e., all knowledge is distilled into another model without selection. However,

Should all knowledge or partial knowledge of a model be distilled into another model?

In clean scenarios, the knowledge source is generally reliable. Thus, simply distilling all knowledge
is reasonable, and it has widespread use in existing KD works. However, in label-noise scenarios,
the knowledge source is less reliable. The distilled incorrect knowledge would mislead the learning
rather than help. Therefore, it is vital to note “not all knowledge is created equal” and identify
“what knowledge could be distilled?”. We work on this problem from two aspects: (i) making the
knowledge source more reliable. (ii) selecting the certain knowledge to distill. For the first aspect,
many algorithms have been proposed, e.g., Tf-KD [1] and ProSelfLC [2]. For simplicity, we exploit
them and focus more on the second aspect: selective knowledge distillation.

To explore the knowledge selection problem, we design a selective MKD framework, i.e., mutual
distillation of confident knowledge, which is shown in Figure 1. We propose to only distill confident
knowledge. Specifically, we design a generic knowledge selection formulation, so that we can either
fix the knowledge selection threshold (CMD-Static, shortened as CMD-S) or change it progressively
as the training progresses (CMD-Progressive, abbreviated as CMD-P). In CMD-P, we leverage
the training time to adjust how much knowledge would be selected dynamically considering that
a model’s knowledge improves along with time. CMD-P performs slightly better than CMD-S,
according to our empirical studies, e.g., Table 1.

We summarise our contributions as follows:

• We study what knowledge to be selected for distillation in MKD. Correspondingly, we
propose a generic knowledge selection formulation, which covers the variants of zero-
knowledge, all knowledge, CMD-S, and CMD-P.

• Thorough studies on the models’ learning curves, knowledge selection criterion’s settings,
and hyperparameters justify the rationale of our selective MKD design and its effectiveness.

2 Background

KD is an effective method for distilling the knowledge of complex ensembles or a cumbersome model
(usually named teacher models) to a small model (usually named a student) [3, 4]. Recently, many
deep KD variants have been proposed, e.g., self knowledge distillation (Self KD) which trains a single
learner and leverages its own knowledge [2, 1], MKD with knowledge transfer between two learners
[5–7], ensemble-based KD methods [8, 9], and born-again networks with knowledge distilling from
multiple student generations [10]. Since we focus on training two learners, Teacher→Student KD
(T2S KD) and MKD are more relevant. We briefly present them as follows and more related work is
provide in Appendix A.

2

(a) Conventional MKD. (b) CMD.

Figure 1: Comparison of conventional MKD and our CMD. Dotted frames represent components
from model A and solid frames represent components from model B. pA and pB are predictions
from mode A and model B, respectively. In (b), q̃A and q̃B represent the refined labels by a self
distillation method, and χ is the threshold to decide whether the prediction is confident enough or not.
H(p) denotes the entropy of p, and H(q,p) is the cross entropy loss between q and p.

T2S KD [4] transfers knowledge from a teacher model to a student model and be formulated as:

LT2SKD(q,ps,pt) = (1− ϵ)H(q,ps) + ϵDKL(pt,ps), (1)

where q is the given one-hot label, p is the predicted distribution by a student model and pt is the
output of a teacher model. H(q,p) represents the cross entropy loss between target q and prediction
p. DKL(pt,p) denotes the Kullback–Leibler (KL) divergence of pt from p.

MKD [5] trains two models A and B, making them learn from each other as follows:

LA(q,pA,pB) = (1− ϵ)H(q,pA) + ϵDKL(pB,pA)

LB(q,pB,pA) = (1− ϵ)H(q,pB) + ϵDKL(pA,pB)

LMKD = LA(q,pA,pB) + LB(q,pB,pA).

(2)

3 Method

We design a generic knowledge selection formulation that unifies zero knowledge, all knowledge, and
partial knowledge selection in a static and progressive fashion (CMD-S and CMD-P). The pseudocode
of the algorithm is provided in the Appendix D.

3.1 Learning Objectives

To distill model B’s confident knowledge into model A, we optimise A’s predictions towards B’s
confident predictions:

LB2A =

{
H(q̃B,pA), H(pB) < χ,

0, H(pB) ≥ χ.
(3)

We use the entropy H(pB) to measure the confidence of pB. Low entropy indicates high confidence,
and vice versa [11, 12, 4, 13]. χ is a threshold to decide whether a label prediction is confident
enough or not. Specifically, only when H(pB) < χ, the model B’s knowledge w.r.t. x is confident
enough. q̃B is the model B’s learning target, which can be generated by a self label correction method
as it is more reliable. Note that instead of directly distilling confident predictions pB, we transfer
targets (refined labels) q̃B that produce confident predictions.

Analogously, we distill model A’s confident knowledge into model B:

LA2B =

{
H(q̃A,pB), H(pA) < χ,

0, H(pA) ≥ χ.
(4)

The final loss functions for models A and B are:

LA = LASelfKD
+ LB2A =

{
H(q̃A,pA) + H(q̃B,pA), H(pB) < χ,

H(q̃A,pA), H(pB) ≥ χ.
(5)

3

LB = LBSelfKD
+ LA2B =

{
H(q̃B,pB) + H(q̃A,pB), H(pA) < χ,

H(q̃B,pB), H(pA) ≥ χ.
(6)

3.2 A Generic Design for Knowledge Selection

As aforementioned, we use an entropy threshold χ to decide whether a piece of knowledge is certain
enough or not. We design a generic formation for χ as follows:

χ =
H(u)

η
∗ 2s(t

Γ
−, b), (7)

where s(·, ·) is a logistic function. u is a uniform distribution, thus H(u) is a constant. t and Γ denote
the current epoch and the total number of epochs, respectively. For a wider unification, we make
the design of Eq. (7) generic and flexible. Therefore, we use η to control the starting point. While b
controls how the knowledge selection changes along with t. χ has two different modes:

• Static (CMD-S). The confidence threshold χ is a constant when b = 0. Concretely,
2s(t

Γ − 0.5, 0) = 1 → χ = H(u)
η . This mode covers two special cases:

(i) One model’s all knowledge is distilled into the other when η ∈ (0, 1] → χ ≥ H(u),
which degrades to be the conventional MKD.
(ii) Zero knowledge is distilled between two models when η ∈ {+∞,R−} → χ ≤ 0.

• Progressive (CMD-P). When b ̸= 0, χ changes as the training progresses. To make it
comprehensive, χ can be either increasing or decreasing at training:
(i) If b > 0, χ increases as t increases. Since the knowledge selection criteria is relaxed,
more knowledge will be transferred between the two models at the later learning phase.
(ii) On the contrary, χ gradually decreases when setting b < 0. This only allows knowledge
with higher confidence (lower entropy) to be distilled.

4 Experiments

In this section, we first demonstrate that CMD is effective in robust learning against an adverse
condition, i.e., label noise (Section 4.1). Then we empirically verify that CMD, as a selective MKD,
outperforms prior MKD approaches for training two models collaboratively no matter whether they
are of the same architecture or not (Section 4.2). We subsequently present a comprehensive ablation
study and hyper-parameters analysis (Sections 4.3). Different network architectures are evaluated.
For all experiments, we report the final results when the training terminates. For a more thorough
comparison, we also provide an alternate self-training method called MyLC in Appendix B. More
implementation details are provided in the Appendix C. The code will be released once this work is
accepted.

4.1 CMD for Robust Learning Against Noisy Labels

Label noise generation We verify the effectiveness of our proposed CMD on both synthetic and
real-world label noise. For synthetic label noise, we consider symmetric noise and pair-flip noise [14].
For symmetric label noise, a sample’s original label is uniformly changed to one of the other classes
with a probability of noise rate r. The noise rates are set to 20%, 40%, 60%, and 80%. For pair-flip
noise, the original label is flipped to its adjacent class with noise rates of 20% and 40%, respectively.

4.1.1 The Interaction Between CMD and Self Label Correction

As shown in Tables 1 and 2, CMD, as a new selective MKD method, can be easily combined with
existing self training methods as a collaborative mutual enhancer.

In Table 1, we explore to train each model using self label correction methods (LS, CP, ProselfLC [2]
and MyLC). At the same time, we try four types of knowledge communication: Zero/no knowledge
is distilled into the peer model and two models are trained independently; All knowledge is distilled
without selection, as SyncMKD does; our proposed methods including CMD-S and CMD-P. Vertically,
from the selective knowledge distillation perspective, we clearly observe that CMD methods (CMD-S
and CMD-P) are better than “Zero” and “All” consistently no matter how each model is trained. This
empirically demonstrates that selecting confident knowledge for distillation is better. In addition,

4

Table 2: Results on CIFAR-100 clean test set. All methods use ResNet34 as the network architecture.
The top results of each column are bolded.

Method Pair-flip label noise Symmetric label noise Clean
20% 40% 20% 40%

CE 63.52 45.40 63.31 47.20 75.58
LS 65.15 50.02 67.45 51.53 76.33
CP 64.97 49.01 65.97 51.09 75.29
Boot-soft 64.04 48.85 63.25 48.41 75.37
ProSelfLC 74.13 69.49 71.49 64.07 75.73

CMD-S+ProselfLC 75.68 74.22 72.11 67.26 76.25
CMD-P+ProselfLC 75.76 74.55 72.58 68.29 77.32
MyLC 73.12 62.29 71.04 65.04 75.20
CMD-S+MyLC 75.39 74.32 72.20 68.45 75.92
CMD-P+MyLC 75.89 74.72 73.22 69.09 76.42

Table 3: Recent approaches for label noise are compared. All methods apply ResNet50 as the network
architecture. For Food-101, we use a ResNet50 pre-trained on ImageNet. For Webvision, we follow
the “Mini” setting in [15–18]. The top results of each column are bolded.

Method
CIFAR-100 Real-world noise

Pair-flip label noise Symmetric label noise Food-101 Webvision (Mini)

20% 40% 20% 40% ∼20% ∼50%

CE 64.10 52.77 63.93 56.82 84.03 57.34
GCE [19] 62.32 55.03 65.62 57.97 84.96 55.62
Co-teaching [14] 58.11 48.46 61.47 53.44 83.73 61.22
Co-teaching+ [20] 56.31 38.03 64.13 55.92 76.89 33.26
Joint [21] 67.35 52.22 54.88 45.64 83.10 47.60
Forward [22] 58.37 39.82 66.12 59.45 85.52 56.33
MentorNet [16] 54.73 45.31 57.27 49.01 81.25 57.66
T-revision [23] 62.69 52.31 64.67 57.15 85.97 60.58
DMI [24] 58.77 42.89 62.77 57.42 85.52 56.93
S2E [25] 58.21 41.74 64.21 43.12 84.97 54.33
APL [18] 59.77 53.25 59.37 51.03 82.17 61.27
CDR [15] 71.93 56.94 68.68 62.72 86.36 61.85
ProSelfLC [2] 73.11 69.49 71.17 60.38 86.97 62.40

CMD-P+ProselfLC 75.16 73.36 73.25 64.09 87.54 67.40
MyLC 72.25 70.84 69.92 62.80 86.70 64.44
CMD-P+MyLC 74.38 73.86 72.23 64.30 87.60 67.48

CMD-P is slightly better than CMD-S, mainly due to the fact that a model’s knowledge upgrades and
becomes confident as the training progresses.

Table 2 is an extension of Table 1. Results of different noise types and rates are present. Since
ProSelfLC and MyLC always performs better than the other approaches, therefore we only apply
CMD over them to explore how much CMD can enhance stronger baselines.

4.1.2 Comparison with Learning with Noisy Labels Methods

In this subsection, our objective is to compare with recent methods for addressing label noise. For
simplicity, we only train CMD-P together with ProSelfLC and MyLC, which are demonstrated to be
the best in Section 4.1.1. Table 3 (CIFAR-100) shows results of training ResNet50 on CIFAR-100.
CMD-P+ProSelfLC and CMD-P+MyLC outperform all the recent label-noise-oriented methods
under both pair-flip and symmetric noisy labels. Notably, their improvements are more significant
when noise rate rises. We also presents the results on two real-world noisy datasets, Webvision and
Food-101 in Table 3. For Webvision, we follow the “Mini” setting in [16]. The first 50 classes of the
Google resized image subset is treated as training set and evaluate the trained networks on the same
50 classes on the ILSVRC12 validation set. The results of CMD-P+ProSelfLC and CMD-P+MyLC

5

Table 4: The performance of CMD under different settings, two distinct architectures, and the same
architectures. CMD+MyLC outperforms other MKD methods.

Method Difference Same

ResNet18 ShufflenetV2 ResNet34

Baseline CE 50.63 44.06 47.20

Self KD
Tf-KDreg [1] 51.05 44.70 47.39
ProselfLC [2] 58.51 58.89 64.07

MyLC 55.94 61.21 65.04

MKD
MKD [5] 60.38 47.72 51.42
KDCL [8] 55.45 46.10 51.20

CMD+MyLC 68.10 64.37 69.09

Table 5: The results of CMD-S with different η. We train on CIFAR-100 using ResNet-34.

CMD-S Symmetric label noise
20% 40% 60% 80%

H(u) (η = 1) 70.37 59.26 36.18 16.17
1/2 H(u) (η = 2) 72.11 65.04 46.15 18.62
1/3 H(u) (η = 3) 72.83 66.42 51.34 19.84
1/4 H(u) (η = 4) 73.25 67.26 54.34 22.45

are around 5-6% higher than the latest methods including Co-teaching, APL, CDR, and ProselfLC.
Due to the increased difficulty of Food-101, the performance gap across techniques is narrower.
CMD-P+ProSelfLC and CMD-P+MyLC regularly outperform all compared algorithms.

4.2 Comparing with Recent MKD Methods

In Table 4, we present the results of the baseline CE, self KD methods (Tf-KDreg [1], ProselfLC and
MyLC), and mutual distillation algorithms (MKD, KDCL, CMD-P+ProSelfLC, and CMD-P+MyLC)
under noisy scenarios. For self KD methods, we train each model individually (i.e., without mutual
distillation) while for MKD methods, we train them together (i.e., with mutual distillation).

• MKD for two networks of the same architecture. In Table 4 (same), CMD-P+MyLC
achieves 17%-18% absolute improvement compared to MKD and KDCL. All experiments
are trained for 100 epoch.

• MKD for two networks of different architectures. In Table 4 (difference), we demonstrate
CMD’s effectiveness for training two different networks, ResNet18 and ShufflenetV2. CMD
improves MyLC for around 3% for ResNet18 and 1-3% for ShuffleNetV2. Each experiment
is trained for 200 epoch.

4.3 Hyper-parameters Analysis

4.3.1 Analysis of b

Mathematically, according to section 3.2, b decides how the knowledge selection threshold changes
along with the training epoch t. In Figure 2a, we fix η = 2 and study the effect of b under different
noise rates. We observe that the accuracy increases as b decreases for all noise rates. The trend
becomes more obvious as the noise rate increases. This empirically verifies the effectiveness of
confident knowledge selection again. Furthermore, progressively increasing the confidence criterion
leads to better performance. In Figure 2b, we further study b under different η. The accuracy keeps
increasing as b decreases for all η. Additionally, the trend is more significant when η becomes smaller.

6

505
b

35

40

45

50

55

60

65

70

75

Ac
cu

ra
cy

r=20%
r=40%
r=60%

(a) Under different noise rates with η = 2

505
b

40

45

50

55

Ac
cu

ra
cy

=4
=3
=2

(b) Under different η with noise rate r = 60%

Figure 2: Analysis of b under CIFAR-100.

4.3.2 Analysis of η

As presented in section 3.2, η is a parameter to linearly scale the knowledge selection criteria. To
study η, we first analyze the static mode. Table 5 shows the results of CMD-S with different η. We
can see that a lower threshold (i.e., larger η) has higher accuracy for all noise rates. This further
demonstrates the effectiveness of distilling more confident knowledge. We then analyse the dynamic
mode. In Figure 2b, the green line (η = 4) has the highest accuracy for most b values. Overall, the
blue line (η = 3) is the second best, while the red line (η = 2) has the lowest accuracy. Therefore,
we conclude that a smaller η is better in both static and progressive modes.

5 Conclusion

We are investigating knowledge selection in MKD and proposing an unified framework for knowl-
edge selection called CMD. CMD improves MKD by distilling only confident knowledge to the
peer model. Extensive experiments illustrate the effectiveness of CMD empirically. In addition,
our suggested CMD outperforms comparable MKD algorithms in the presence of label noise and
achieves competitive performance in clean circumstances.

References
[1] Yuan, L., Tay, F.E., Li, G., Wang, T., Feng, J.: Revisiting knowledge distillation via label smoothing

regularization. In: CVPR. (2020)

[2] Wang, X., Hua, Y., Kodirov, E., Clifton, D.A., Robertson, N.M.: ProSelfLC: Progressive self label
correction for training robust deep neural networks. In: CVPR. (2021)

[3] Bucila, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: KDDM. (2006)

[4] Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NeurIPS Workshop.
(2015)

[5] Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: CVPR. (2018)

[6] Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: Hints for thin deep nets.
In: ICLR. (2015)

[7] Ba, J., Caruana, R.: Do deep nets really need to be deep? In: NeurIPS. (2014)

[8] Guo, Q., Wang, X., Wu, Y., Yu, Z., Liang, D., Hu, X., Luo, P.: Online knowledge distillation via
collaborative learning. In: CVPR. (2020)

[9] Wu, G., Gong, S.: Peer collaborative learning for online knowledge distillation. arXiv preprint
arXiv:2006.04147 (2020)

[10] Furlanello, T., Lipton, Z., Tschannen, M., Itti, L., Anandkumar, A.: Born again neural networks. In: ICML.
(2018)

7

[11] Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., Hinton, G.: Regularizing neural networks by penalizing
confident output distributions. In: ICLR Workshop. (2017)

[12] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for
computer vision. In: CVPR. (2016)

[13] Gal, Y.: Uncertainty in Deep Learning. PhD thesis, University of Cambridge (2016)

[14] Han, B., Yao, Q., Yu, X., Niu, G., Xu, M., Hu, W., Tsang, I., Sugiyama, M.: Co-teaching: Robust training
of deep neural networks with extremely noisy labels. In: NeurIPS. (2018)

[15] Xia, X., Liu, T., Han, B., Gong, C., Wang, N., Ge, Z., Chang, Y.: Robust early-learning: Hindering the
memorization of noisy labels. In: ICLR. (2021)

[16] Jiang, L., Zhou, Z., Leung, T., Li, L.J., Fei-Fei, L.: Mentornet: Learning data-driven curriculum for very
deep neural networks on corrupted labels. In: ICML. (2018)

[17] Chen, P., Liao, B.B., Chen, G., Zhang, S.: Understanding and utilizing deep neural networks trained with
noisy labels. In: ICML. (2019)

[18] Ma, X., Huang, H., Wang, Y., Romano, S., Erfani, S., Bailey, J.: Normalized loss functions for deep
learning with noisy labels. In: ICML. (2020)

[19] Zhang, Z., Sabuncu, M.R.: Generalized cross entropy loss for training deep neural networks with noisy
labels. In: NeurIPS. (2018)

[20] Yu, X., Han, B., Yao, J., Niu, G., Tsang, I.W., Sugiyama, M.: How does disagreement help generalization
against label corruption? In: ICML. (2019)

[21] Tanaka, D., Ikami, D., Yamasaki, T., Aizawa, K.: Joint optimization framework for learning with noisy
labels. In: CVPR. (2018)

[22] Patrini, G., Rozza, A., Menon, A.K., Nock, R., Qu, L.: Making deep neural networks robust to label noise:
A loss correction approach. In: CVPR. (2017)

[23] Xia, X., Liu, T., Wang, N., Han, B., Gong, C., Niu, G., Sugiyama, M.: Are anchor points really
indispensable in label-noise learning? In: NeurIPS. (2019)

[24] Xu, Y., Cao, P., Kong, Y., Wang, Y.: L_dmi: A novel information-theoretic loss function for training deep
nets robust to label noise. In: NeurIPS. (2019)

[25] Yao, Y., Liu, T., Han, B., Gong, M., Deng, J., Niu, G., Sugiyama, M.: Dual t: Reducing estimation error
for transition matrix in label-noise learning. In: NeurIPS. (2020)

[26] Kim, J., Hyun, M., Chung, I., Kwak, N.: Feature fusion for online mutual knowledge distillation. In: ICPR.
(2021)

[27] Chung, I., Park, S., Kim, J., Kwak, N.: Feature-map-level online adversarial knowledge distillation. In:
ICML. (2020)

[28] Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., Rabinovich, A.: Training deep neural networks
on noisy labels with bootstrapping. In: ICLR Workshop. (2015)

[29] Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242
(2016)

[30] Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged consistency targets
improve semi-supervised deep learning results. In: NeurIPS. (2017)

[31] Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. (2009)

[32] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR. (2016)

[33] Bossard, L., Guillaumin, M., Van Gool, L.: Food-101–mining discriminative components with random
forests. In: ECCV. (2014)

[34] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image
database. In: CVPR. (2009)

[35] Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual
connections on learning. In: AAAI. (2017)

8

A Related Work

A.1 Ensemble-based and Feature-map-based KD Methods

Knowledge Distillation via Collaborative Learning (KDCL) [8] treats all models as students, while
the teacher model is an ensemble of all students. Peer Collaborative Learning (PCL)[9] assembles
multiple subnetworks as a teacher model. FFL[26] integrates feature representation of multiple
models and AFD[27] transfers prediction and feature-map knowledge together.

A.2 Learning with Noisy Labels

We compare the recent methods for learning with noisy labels. For example, selecting confident
samples, Co-teaching [14] and Co-teaching+ [20] maintain two identical networks simultaneously
and transferring small-loss instances to the peer model; MentorNet [16] provides a curriculum for
StudentNet to focus on the examples with likely-correct labels. Joint [21] and Forward [22] correct
training loss through the calculation of the noise transition matrix. Sample reweighting, e.g., T-
revision [23] reweights samples based on their significance. Designing robust loss function, DMI [24]
introduces an information-theoretic loss function, and APL [18] combine two robust loss functions
that mutually boost each other. Early stopping, CDR [15] reduces the side effect of noisy labels
before early stopping. Label correction, Joint [21] and ProselfLC [2] refine noisy labels by confident
predictions. Label correction is commonly employed in settings with label noise, but it can also be
used in clean situations for regularization. More information in Section A.3

A.3 Label Correction

As mentioned in [1], the learning target modification is to replace a one-hot label representation by
its convex combination with a predicted distribution p̃: q̃ = (1− ϵ)q+ ϵp̃. ϵ measures how much
we trust the prediction, and it can be fixed in Label smoothing(LS) [12], Confidence penalty (CP)
[11], Boot-soft [28], Joint-soft [21], or adaptive by training time e.g., [2] and [1]. In Appendix B, we
also present an alternative label correction approach, MyLC, in which epsilon is updated by model
confidence. p̃ can originate from various sources, such as uniform distributions, a current model,
a model that has been pretrained, etc. By adding a uniform distribution, for example, LS reduces
the confidence in annotated label. CP reduces the credibility of annotated labels by penalizing high
confidence predictions. By incorporating a related prediction, Boot-soft, Tf-KD, and MyLC refine
the learning target.

B MyLC: An Alternative for Label Correction

MyLC is designed for demonstrating the effectiveness and extensiveness of CMD, which serves as an
alternative to label correction methods. Note that MyLC is different from ProselfLC methods in terms
of working principle. Furthermore, MyLC solves a significant drawback of ProselfLC that the model
always has to be trained from scratch, since ProselfLC relies on training time. MyLC is obviously
more suitable if we want to do fine-tuning or incremental learning tasks based on pretrained models.
Specifically, without considering training time, MyLC defines the global model confidence according
to a model’s predictive confidence w.r.t. all samples and is computed as follows:

g(r) = s(r − ρ, b1), where r = 1−
∑n

i=1 H(pi)

n ∗H(u)
. (8)

s(λ, b1) = 1/(1 + exp(−λ× b1)) is a logistic function, where b1 is a hyperparameter for controlling
the smoothness of h. This is widely used in semi-supervised learning[29, 30] and label noise learning
[2]. r represents a model’s overall certainty of all examples. A higher r implies that a model is more
reliable. Intuitively, if r is higher than a threshold ρ, we should assign more trust to the model. We
simply set ρ = 0.5 in all our experiments. Consequently, Consequently, ϵ = g(r)× l(p). And the
loss becomes:

LMyLC = H(q̃MyLC,p),where q̃MyLC = (1− ϵ)q+ ϵp. (9)

9

C Implementation Details

C.1 Datasets and Data Augmentation

• CIFAR100 [31] has 50,000 training images and 10,000 test images of 100 classes. The
image size is 32 × 32 × 3. Simple data augmentation is applied following [32], i.e., we pad
4 pixels on every side of the image and then randomly crop it with a size of 32×32.

• Food-101 [33] has 75,750 images of 101 classes. The training set contains real-world noisy
labels. In the test set, there are 25,250 images with clean labels. For data augmentation,
training images are randomly cropped with a size of 224 × 224.

• Webvision [16] has 2.4 million images crawled from the websites using the 1,000 concepts
in ImageNet ILSVRC12 [34]. For data augmentation, we first resize the training images to
320 × 320 and then randomly cropped with a size of 299 × 299.

C.2 Training Details

• On CIFAR100, we train on 90% training data (corrupted in synthetic cases) and use 10%
clean training data as a validation set to search hyperparameters, e.g., b1, b2. Finally, we
retrain a model on the entire training data and report its accuracy on the test data for a fair
comparison. We train CIFAR100 on three net architectures including ResNet34, ResNet50,
ResNet18 and ShuffleNetV2. For ResNet34, the initial learning rate is 0.1 and then divided
by 10 at the 50th and 80th epoch, respectively. The number of total epochs is 100. For
ShuffleNetV2 and ResNet28, the initial learning rate is 0.1 and then divided by 5 at the 60th,
120th, and 160th epoch, respectively. We train 200 epochs in total. For all the training, we
use an SGD optimizer with a momentum of 0.9, a weight decay of 5e-4, and a batch size of
128. For ResNet50, for a fair comparison, we use the same training settings as [15].

• On Food-101, we also separate the training data into two parts, 90% for training and 10%
for validation. We use the validation set to search hyper-parameters. Finally, we report its
accuracy on the clean test data. We train ResNet50 (initialised by a pretrained model on
ImageNet) using a batch size of 32, due to GPU memory limitation. And we use the SGD
as an optimizer with a momentum of 0.9, and a weight decay of 5e-4. The learning rate
starts at 0.01 and then is divided by 10 at the 50th and 80th epoch, respectively in total 100
epochs.

• On Webvision, we follow the “Mini” setting in [16]. We take the first 50 classes of the
Google resized image subset as the training set and the same 50 classes of the ILSVRC12
validation set as the test set and apply inception-resnet v2 [35] as training architecture with
batch size of 32. We use SGD as an optimizer with a momentum of 0.9, and a weight decay
of 5e-4. The learning rate starts at 0.01 and then is divided by 10 in each epoch after the
40th epoch with a total number of 80 epochs.

All models are trained on multiple 2080 Ti GPUs between 2 and 4, which is adjusted according to
model size and batch size.

10

D The Core Implementation of CMD Using PyTorch

class CMDWithLoss(nn.Module):
def __init__(self):

super(CMDWithLoss , self).__init__()

def forward(self , qA , qB, pA, pB , threshold):
qA , corrected label from model A
qB , corrected label from model B
pA , knowledge from model A
pB , knowledge from model B

calculate the entropy of pA
hpA = torch.sum(-pA * torch.log(pA + 1e-6), 1)
calculate the entropy of pB
hpB = torch.sum(-pB * torch.log(pB + 1e-6), 1)

threshold_l = threshold * torch.ones(len(hpA)).cuda()

select the low entropy sample from model B
indexA = (hpB < threshold_l).nonzero()
select the low entropy sample from model A
indexB = (hpA < threshold_l).nonzero()

distill knowledge from model B to model A
lossB2A = torch.sum(qB[indexA].squeeze(1) * \

(-torch.log(pA[indexA].squeeze(1) + 1e-6)), 1)
distill knowledge from model A to model B
lossA2B = torch.sum(qA[indexB].squeeze(1) * \

(-torch.log(pB[indexB].squeeze(1) + 1e-6)), 1)

lossB2A = sum(lossB2A) / len(hpA)
lossA2B = sum(lossA2B) / len(hpB)

return lossB2A , lossA2B

11

	Introduction
	Background
	Method
	Learning Objectives
	A Generic Design for Knowledge Selection

	Experiments
	CMD for Robust Learning Against Noisy Labels
	The Interaction Between CMD and Self Label Correction
	Comparison with Learning with Noisy Labels Methods

	Comparing with Recent MKD Methods
	Hyper-parameters Analysis
	Analysis of b
	Analysis of

	Conclusion
	Related Work
	Ensemble-based and Feature-map-based KD Methods
	Learning with Noisy Labels
	Label Correction

	MyLC: An Alternative for Label Correction
	Implementation Details
	Datasets and Data Augmentation
	Training Details

	The Core Implementation of CMD Using PyTorch

