
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WHAT MAKES A GOOD TIME-SERIES FORECASTING
MODEL? A CAUSAL PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Generalization is a long-standing challenge in multivariate time series forecasting
(MTSF) tasks. Current approaches typically assume correlations among all vari-
ables. Consequently, every variable is incorporated into the training process for
prediction tasks. From a causal perspective, this reliance on correlated variables
can compromise the model’s generalization. To address this, we aim to explore
the role of causal relationships in enhancing the generalization of multivariate time
series models. We examine how graphical causal models, through conditional in-
dependence constraints, can narrow down the hypothesis space, thereby improv-
ing generalization. Building on this foundation, we propose a novel causality-
based MTSF algorithm CAusal Informed Transformer (CAIFormer). We first
construct a Directed Acyclic Graph (DAG) among variables using causal discov-
ery. Then we build the forecasting model by constructing the Markov boundary
informed by the DAG. Empirical evaluations on benchmark datasets demonstrate
that our method surpasses traditional approaches in predictive accuracy. Addition-
ally, we present the Markov boundaries derived for these datasets, underscoring
the practical applicability of our causality-driven framework in MTSF.

1 INTRODUCTION

Multivariate Time Series Forecasting (MTSF) is a fundamental problem in various fields, including
energy consumption (Bilal et al., 2022), economic planning (Hidalgo, 2009), weather prediction
(Duchon & Hale, 2012), and traffic forecasting (Li et al., 2015). It involves predicting future values
of multiple interrelated variables based on their historical data (Box et al., 2015). With the advent
of deep learning techniques (LeCun et al., 2015), numerous methods have been proposed to tackle
MTSF tasks (Zhu et al., 2024; Hu & Xiao, 2022; Bai et al., 2018; Wen et al., 2023; Guo et al., 2023).
Although these methods have achieved remarkable progress, improving their generalization ability
remains a critical challenge. There are countless models that can achieve low empirical risk but may
not generalize well to unseen data. According to prior works in Probably Approximately Correct
(PAC) learning theory (Vapnik & Chervonenkis, 1971), without proper regularization of the model
hypothesis space, models are prone to overfitting, leading to higher generalization risk (Mohri et al.,
2018; Kuznetsov & Mohri, 2014).

An essential characteristic of MTSF is that the future behavior of each variable depends not only
on its own historical data but also on the historical data of other variables. For instance, when
predicting precipitation, changes in atmospheric pressure provide valuable information alongside
historical precipitation data (Wilks, 2011). Consequently, existing methods often incorporate all
available variables as inputs when forecasting the future sequence of a particular variable (Bai et al.,
2018; Liu et al., 2023a; Zhang et al., 2024b; Zhan et al., 2023). However, indiscriminately including
all variables may not always be the most effective strategy. From a causal inference perspective, the
relationships among these variables can be intricate: for a specific variable, some variables may be
causes, some may be effects, and some may be independent (Pearl, 2009; Glymour et al., 2016). By
explicitly considering these causal relationships during model construction, we can leverage them
to constrain the hypothesis space of the model, potentially improving generalization performance.

To investigate how causal relationships affect generalization in MTSF problems, we follow prior
works by defining causal relationships using conditional independence (Dawid, 1979; Pearl & Paz,
2022; Pearl, 2009). We can conceptualize multivariate time series as a weighted representation of
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all random variables. To simplify this representation, we aim to identify a maximal set of linearly
independent variables, thereby uncovering the essential features that influence the evolution of the
series. Instead of merely learning an effective representation from the training data, we strive for the
model to possess the capability to identify the maximal set of linearly independent variables across
diverse scenarios. The subset of random variables meeting these conditions is equivalent to the
Markov boundary (Pearl, 1988; Statnikov et al., 2013a). Upon constructing the Markov boundary,
we identify that collider structures in the Markov boundary introduce additional conditional inde-
pendencies, which are frequently neglected by most MTSF methods. Furthermore, in our theoretical
analysis, we examine the impact of collider structures on MTSF tasks and demonstrate that enforcing
these conditional independencies can narrow down the hypothesis space of the forecasting model.
This constraint can effectively reduce the generalization error theoretically, thereby enhancing the
generalization performance of the model.

Based on our theoretical conclusions, we propose a novel algorithm named CAusal Informed
Transformer (CAIFormer). Specifically, we first employ causal discovery algorithms to construct
a DAG that captures the relationships among variables in an MTSF task. We then develop an al-
gorithm to extract the Markov boundary for all variables in the DAG. Subsequently, we integrate
these insights into a Transformer-based forecasting model by constraining each variable’s attention
module to focus exclusively on the variables within its Markov boundary. This approach effectively
leverages causal relationships to enhance the model’s generalization performance.

Our proposed CAIFormer achieves superior performance of the SOTA methods on a series of bench-
marks. Additionally, we conduct a series of ablation studies to assess the impact of different causal
discovery algorithms and hyperparameter settings on the effectiveness of CAIFormer. Furthermore,
we include DAGs of various MTSF datasets in the Appendix B, aiming to inspire future research.
Our contributions can be summarized as follows:

• We explore the causal relationships among variables and discover that the Markov bound-
ary is the sufficient and necessary subset of all variables in forecasting tasks.

• We demonstrate that the collider structure within the Markov boundary contains additional
conditional independence, which enables us to constrain the hypothesis space of the fore-
casting model, ultimately improving the generalization ability of the model.

• We propose a novel algorithm, CAusal Informed Transformer (CAIFormer), which inte-
grates causal relationships into a Transformer-based model. CAIFormer constrains each
variable’s attention module to focus solely on the variables within its Markov boundary.

• We demonstrate that CAIFormer outperforms SOTA methods on multiple benchmarks. The
ablation studies showcase the correctness of our proposed method.

2 RELATED WORK

Multivariate time series forecasting aims to predict future values of multiple, potentially inter-
related variables based on historical data (Box et al., 2015; Lim & Zohren, 2021; Zhang et al.,
2024a). Traditional MTSF methods often employ autoregressive models (Box et al., 2015), exponen-
tial smoothing (Gardner Jr, 1985; Winters, 1960), or structural time series models (Harvey, 1990).
With the advancement of deep learning, various methods including CNNs (Zhan et al., 2023; Bai
et al., 2018), RNN (Hewamalage et al., 2021; Tang et al., 2021), and MLP-based (Zeng et al., 2023;
Li et al., 2023; Zhang et al., 2024b) methods were proposed. In addition, there are Transformer-
based models that utilize a self-attention mechanism to compute relationships between variables,
while applying causal inference to restrict the calculations to variables with causal connections.

Generalization Analysis in Time Series Forecasting. The generalization problem refers to a
model’s ability to maintain performance on unseen data (Mohri et al., 2018). Given a finite num-
ber of training samples, the Probably Approximately Correct (PAC) learning framework ensures
the model’s generalization error remains below a predetermined threshold with high probability
(Valiant, 1984). The threshold, which is generally called generalization bound, depends on the com-
plexity of the model’s hypothesis space (Koltchinskii, 2001; Vapnik & Chervonenkis, 1971). In
time series forecasting, early works assume stationarity and suitable mixing conditions (Doukhan &
Doukhan, 1994). For instance, Yu Yu (1994) established VC-dimension bounds for binary classifi-
cation under the assumptions of stationarity and β-mixing. (Kuznetsov & Mohri, 2015) proposed
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generalization bounds based on sequential Rademacher complexity (Rakhlin et al., 2010). In this pa-
per, we extract the Markov boundary which is derived from causal relationships between variables,
enabling explicit constraints on the hypothesis in MTSF.

Causal Inference and Causal Discovery. Causal inference seeks to deduce causal relationships
among variables from observational data (Glymour et al., 2016; Pearl, 2009), typically represented
by Directed Acyclic Graphs (DAGs) (Lauritzen & Wermuth, 1989). The Inductive Causation (IC)
algorithm, introduced by (Verma & Pearl, 1990), constructs DAGs using conditional independence
tests (CITs) to identify dependencies between variables. Based on this, (Spirtes & Glymour, 1991)
developed the Peter-Clark (PC) algorithm, which has been refined to reduce the computational com-
plexity(Spirtes et al., 2001; Spirtes, 2001). In time series data, causal discovery methods such as
tsFCI (Entner & Hoyer, 2010) apply the Fast Causal Inference (FCI) algorithm, while Granger
causality (Granger, 1969) explores temporal cause-effect relationships. Recent works have inte-
grated causal knowledge to enhance forecasting models: (Li et al., 2021) proposed a hidden causal
Markov model to reduce spurious correlations, and (Liu et al., 2023a) used proxy variables to un-
cover complete causal structures. Unlike previous approaches, we leverage DAGs from causal dis-
covery to constrain model parameters, significantly improving the generalization in MTSF.

3 PRELIMINARY

In this section, we first introduce the problem setting of MTSF (Section 3.1). Next, we provide the
background in causality with multiple definitions (Section 3.2).

3.1 MULTIVARIATE TIME-SERIES FORECASTING

Multivariate time series forecasting (MTSF) is a sequence-to-sequence problem. Let X1:T =
{x1

1:T , x
2
1:T , . . . , x

D
1:T } ∈ RT×D represent the historical sequence with T time steps and D vari-

ables. At any timestamp t, the state of the variables is represented as Xt = {x1
t , x

2
t , . . . , x

D
t } ∈ RD.

MTSF aims to predict the future sequence XT+1:T+S = {x1
T+1:T+S , x

2
T+1:T+S , . . . , x

D
T+1:T+S} ∈

RS×D by maximizing the following conditional distribution:

P (XT+1:T+S | X1:T ; θ), (1)

where θ represents the learnable parameters. Given a training dataset Dtrain =
{(Xi

1:T , X
i
T+1:T+S)}mi=1, the learning objective of MTSF can be formalized as learning a parame-

terized function f̂θ that estimates the optimal predictor f∗, where f∗(X1:T ) = XT+1:T+S , from the
hypothesis space F by solving the empirical risk minimization problem:

f̂θ = argmin
f∈F

m∑
i=1

L(Xi
T+1:T+S , f(X

i
1:T )), (2)

where L denotes the loss function. Note that in Equation 1, without additional constraints, the future
value of each variable depends on all other variables.

3.2 BACKGROUND IN CAUSALITY

Causality examines how changes in one random variable influence another based on their probabilis-
tic relationships Pearl (2009). One of the core concepts of causality is the conditional independence,
which we provide the definition as follows:

Definition 1 (Conditional Independence Dawid (1979)) Let V = {V1, V2, ...} be a finite set of
variables, P (·) be a joint probability function over the variables in V , and X , Y , Z stand for any
three subsets of variables in V . Then, X and Y are said to be conditionally independent given Z if

P (X|Y, Z) = P (X|Z) whenever P (Y, Z) > 0. (3)

In words, learning the value of Y does not provide additional information about X , once we know
Z. We will use the X ⊥⊥ Y |Z to represent the conditional independence of X and Y given Z.

3
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Figure 1: An example of the Causal Graph Model.
The Markov boundary of Vi is highlighted in red,
and the variable outside the Markov boundary is
highlighted in blue.

Conditional independence relationships among
variables form the basis of causal graph mod-
els. In these models, a Directed Acyclic Graph
(DAG), denoted as G = (V,E), is typi-
cally used to represent the relationships be-
tween variables, where the node set V =
{V1, V2, . . . } corresponds to random variables,
and the edge set E = {(V1, V2), (V2, V3), . . . }
represents causal relationships. Causal graph
models are built upon three fundamental struc-
tures: Chain, Fork, and Collider. Any model
containing at least three variables incorporates
these key structures. Figure 1 illustrates exam-
ples of these structures.

Definition 2 (Chain) A chain Vp → Vi → Vc

is a graphical structure involving three variables Vp, Vi, and Vc in graph G, where Vp has a directed
edge to Vi and Vi has a directed edge to Vc. Here, Vp causally influences Vi, and Vi causally
influences Vc, making Vi a mediator.

In a chain structure, Vp and Vc are conditionally independent given Vi, formally, Vp ⊥⊥ Vc | Vi. This
is because once the mediator Vi is accounted for, knowing Vp provides no additional information
about Vc beyond what is already conveyed through Vi.

Definition 3 (Fork) A fork Vb ← Vp → Vi is a graphical structure involving Vb, Vp, and Vi, where
Vp is a common parent of both Vb and Vi. Here, Vp causally influences Vb and Vi.

Here, Vb and Vi are conditionally independent given the common parent Vp. It means that once Vp

is known, Vb provides no additional information about Vi, and vice versa, i.e., Vb ⊥⊥ Vi | Vp.

Definition 4 (Collider/V-Structure) A collider, also known as a V-structure, Vi → Vc ← Vs, is a
graphical structure involving three variables Vi, Vc, and Vs, where Vc is a common child of both Vi

and Vs, Vi and Vs are not directly connected. Here, Vi and Vs causally influence Vc

In a collider or V-structure, Vi and Vs are marginally independent; knowing Vi does not provide
information about Vs and vice versa. However, when conditioning on the collider Vc, this indepen-
dence is broken, making Vi and Vs dependent. Formally, Vi ⊥⊥ Vs and Vi ̸⊥⊥ Vs | Vc.

These conditional independence relationships are fundamental for understanding the dependencies
and independencies implied by a causal graph, thereby facilitating tasks such as causal discovery
and inference in multivariate time series forecasting.

4 THEORETICAL ANALYSIS

In this section, we start by reviewing the concept of Markov boundaries and how it is used for MTSF.
We then show that incorporating probabilistic inductive bias from a collider structure into an MTSF
problem provides guarantees of improved generalization error. For the sake of clarity, our exposition
focuses on the simple causal structure in Figure 1.

4.1 MARKOV BOUNDARY AND CONDITIONAL INDEPENDENCE

Without loss of generality, multivariate time series forecasting can be regarded as an auto-regressive
problem (Box et al., 2015). That is, suppose that there are k random variables contained in a mul-
tivariate time series Y . From the perspective of linear algebra, the series Y can be represented as a
weighted sum of all random variables X = {Xi}ki=1. Due to the correlation between these random
variables, there must be a subset within the set of variables such that the time series can be repre-
sented by, and only by, all the variables in that subset. In other words, there exists a maximal linearly
independent group X∗ = {Xm}lm=1, (l < k) such that conditional independence Y ⊥⊥ X \X∗|X∗

is maintained. Therefore, we can discard X \X∗ from the total set without any loss of probabilistic

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

information for auto-regression. The set X∗ that satisfies conditional independence is also known
as the Markov boundary (Statnikov et al., 2013b) of Y .

Moreover, the presence of collider structures within the Markov boundary provides additional inde-
pendence relationships, thus improving the auto-regression, which is essentially a conditional dis-
tribution with the form of P (Y |X). The following proposition shows that the presence of a collider
is not only a sufficient condition but also necessary.

Proposition 1 (Koller & Friedman, 2009) Suppose that the Markov boundary of Y is X∗, then X∗

contains a collider if and only if there exist Xi ∈ X∗ and X̃ ⊂ X∗ such that Y ⊥⊥ Xi|X̃ .

For the sake of clarity, we discuss how conditional independence helps generalize under the collider
structure in Figure 1. We claim that this simplification does not harm the generality of our work.

4.2 HYPOTHESIS AND GENERALIZATION UNDER MARKOV BOUNDARY

Let Vc, Vs, Vi be random variables following the collider structure in Figure 1. Under the auto-
regression problem with squared loss, the optimal regressor is given by the following equation:

f∗(vc, vs) = E[Vi|Vc = vc, Vs = vs]. (4)

Here, the lowercase represents the values of Vc, Vs, respectively. With the independence relationship
Vi ⊥⊥ Vs given by the collider, we have:

E[f∗(Vc, Vs)|Vs] = E[E[Vi|Vc, Vs]|Vs] = E[Vi|Vs] = E[Vi], (5)

where the second equal comes from the tower property of the conditional expectation. Without
loss of generality, we assume that E[Vi] = 0. Hence, the optimal regressor lies in the subspace of
functions with zero conditional expectation of Vs. To ensure accurate estimation, the function f̂ lies
within the same subspace where functions satisfy the zero conditional expectation constraint below.

f̂ ∈ {f ∈ F|E[f(Vc, Vs)|Vs] = 0} . (6)

Starting with the general case of square-integrable functions, we propose to show how such a
constraint hypothesis benefits generalization. Let L2(V ) denote the space of square-integrable
functions with respect to the probability measure induced by V and suppose F = L2(V ). Let
E : L2(V )→ L2(V ) denote the conditional expectation operator defined by:

Ef(vc, vs) = E[f(Vc, Vs)|Vs]. (7)

The operator E classically defines an orthogonal projection over the subspace of Vs-measurable
functions. L2(V ) thus orthogonally decomposes into its projection, denoted Range(E), and its
null-space, denoted Ker(E), as follows:

L2(V ) = Range(E)⊕Ker(E). (8)

Recall the constraint in Equation 6, we want to find the optimal regressor satisfies f̂ ∈ Ker(E).
For convenience, denote by M = Id − E the orthogonal projection onto Ker(E), then F =
Range(M) is our hypothesis space. However, in practice, it may be hard to directly constrain the
hypothesis space to be Range(M), but the solution to the auto-regression problem with the squared
loss function can orthogonally decompose within L2(V ) as follows:

f̂ = Mf̂ + Ef̂. (9)

We emphasize that discarding Ef̂ can always yield generalization benefits.

Theorem 1 Let f ∈ L2(V ) be any regressor from our hypothesis space. We have

∆(f,Mf) = ∥Ef∥2L2(V ). (10)

The generalization gap is always greater than zero. Hence, for any given regressor f̂ , we can always
improve its test performance by projecting it onto Range(P ). See the proof in Appendix A.

5
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5 THE PROPOSED METHOD

In this section, we present the framework of the CAIFormer method. We first extract causal rela-
tionships between variables from the dataset using the constraint-based Causal Discovery algorithm.
Second, we find the Markov boundary for every variable based on the casual DAG. Next, we use the
Transformer as the backbone and impose constraints on self-attention based on the Markov bound-
ary. Finally, we constrain the hypothesis space through a specific structure.

5.1 CAUSAL DISCOVERY

Embeddings

Multivariate 
Attention

LayerNorm

LayerNorm

Q K V

Projection

MB in DAG

Output

Input

MatMul

Q VK

Scale

Softmax

MatMul

Causality
Discovery

Feed-forward

Figure 2: The framework of CAIFormer.

In this section, we aim to explore the relation-
ship between different variables in the dataset.
The dataset comprises a set of random variables
V = {V1, V2, ..., VD}, where rows correspond
to timestamps, and columns represent different
variables.

To identify these relationships, we apply the
Peter-Clark (PC) algorithm, a constraint-based
Causal Discovery method, which reconstructs
a Partially Directed Acyclic Graph (PDAG) by
identifying conditional independencies. The
PDAG consists of both directed and undirected
edges. The directed edges denote definite
causal relationships, while undirected edges re-
flect no fixed direction in causal relationships.

The PC algorithm systematically searches for
separating sets Sab, removing edges from the
complete graph when separation is found. This way starts with empty sets Sab (cardinality 0), then
cardinality 1, and so on, edges are recursively removed from a complete graph as soon as separation
is found and has polynomial time in graphs of finite degree because at every stage the search for a
separating set Sab can be limited to nodes that are adjacent to a and b. We prevent the details of the
PC algorithm and visualize the resulting DAGs across different datasets in Appendix B.

Overall, by applying the causal discovery algorithm, we obtain a PDAG representing the causal
relationships between variables in the dataset. Meanwhile, we get the D × D adjacency matrix,
where Wadjm[i][j] = 0 means no edge between variable Vi, otherwise, there is an edge.

5.2 MARKOV BOUNDARY IN DAG

In Section 5.1, we utilized the causal discovery algorithm to extract the causal DAG and its adjacency
matrix from the dataset. According to the analysis in Section 4.1, causal relationships for variable
Vi exist solely with variables within its Markov boundary. Thus, we aim to identify this boundary
for every variable based on the causal graph and adjacency matrix. As illustrated in Figure 1, the
process for determining the Markov boundary of feature Vi involves two steps.

First, we identify the set of features Si
1 that are dependent of Vi:

Si
1 = {Vj |P (Vi) ̸= P (Vi|Vj), Vj ∈ V } (11)

These features are represented in the DAG as either parent nodes (e.g., Vp) or child nodes (e.g., Vc).
Parent nodes Vp have directed edges towards Vi, while child nodes have edges directed from Vi. In
the adjacency matrix, we identify the set of features connected to the Vi node:

Si
1 = {Vj |Wadjm[Vi][Vj ] ̸= 0, Vj ∈ {1, 2, · · · , n}} (12)

In the adjacency matrix Wadjm, 1 signifies incoming edges and -1 denotes outgoing edges.

Next, we determine the set Si
2 of features that remain not independent of Vi given Si

1:

Si
2 =

{
Vj |(Vi ̸⊥⊥ Vj |Si

1), Vj ∈ V \ Si
1

}
(13)

6
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Referring to Proposition 1, the elements of Si
2 correspond to collider structures. Therefore, in the

adjacency list, we locate all Vj that share common child nodes with Vi:

Si
2 = {Vj |∃Vk,Wadjm[Vi][Vk] = adjm[Vj ][Vk] = 1, Vj ∈ {1, 2, · · · , n}} (14)

which mean Vi have directed edges towards Vk and Vk have edges directed from Vj .

Finally, we combine Si
1 and Si

2 to obtain Si
Mb = Si

1 ∪ Si
2, representing the Markov boundary of

feature Vi. Using the same operation, we obtain the Markov boundary set of all variables in V and
generate Variable Attention Mask(Vmask):

Vmask[i][j] =

{
1 if Vj ∈ Si

Mb

0 if Vj /∈ Si
Mb

, ∀i ∈ (1, 2, · · · , n),∀j ∈ (1, 2, · · · , n) (15)

We visualize the mask for every dataset in Figure 3.

5.3 TRANSFORMER WITH VARIABLES MASK

Based on the above, we have got Vmask, where each element Vmask[i][j] indicates relationship
between Vi and Vj . This determines whether Vj should be considered when predicting Vi. To take
advantage of the relationships between variables, we integrate the Transformer struct as backbone.

Self-Attention of Transformer captures the relationships between different tokens of input sequence
by using each input vector as its own query, key, and value. Specifically, it begins with the input
sequence represented as a matrix of size T × D, where T is the time steps and D variates. From
this input matrix, three matrices are generated through learned linear transformations: queries Q =
X ·WQ, keys K = X ·WK , and values V = X ·WV , where WQ, WK , and WV are weight matrices.

Next, calculate the dot product of each query with all keys, resulting in a matrix of similarity scores.
To prevent the dot products from becoming excessively large, these scores are scaled by the square
root of the dimension of the keys dk. The scaled scores are then passed through the softmax function
to produce attention weights, which sum to one, ensuring a probabilistic interpretation.

Finally, these attention weights are applied to the value matrix V to obtain the output vector. This
output reflects the contextualized representation of each input element, allowing the model to fo-
cus on relevant parts of the sequence dynamically. The overall self-attention calculation can be
summarized as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (16)

The similarity score of different tokens is analogous to the weight matrix in linear models for feature
selection, such as:

y =

n∑
i=1

wixi, (17)

where W = {w1, w2, · · · , wn} play a role similar to that of the similarity score. In linear models,
if a variable xi is independent of target y, as:

P (y|X) = P (y|X \ xi), (18)

where X = {x1, x2, · · · , xn}, then xi can be discarder in the prediction of y.

Similarly, when we rely on self-attention to compute the similarity score of other variables for Vi,
we can discard independent variables of Vi. Based on the Markov boundaries obtained in Section
4.1, we can identify the causal relationships between each variable and other variables. Therefore,
we impose constraints on self-attention to focus on the causal relationships among variables and
only consider those variables within the Markov boundary. Specifically, our approach is as follows.

From Section 5.2, we derive a Variable Attention Mask, where each row indicates variables included
in the Markov boundary of the current variable. We apply the mask to the similarity scores, where
each variable acts as a token, representing the relationships between different variables. After ap-
plying the mask, for a specific variable Vi, we set the similarity scores with variables outside its
Markov boundary to zero, thus avoiding irrelevant correlations.

7
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Table 1: Multivariate time series forecasting results with prediction lengths S ∈ {96, 192, 336, 720}
and fixed lookback length T = 96. The best Forecasting results in bold and the second underlined.
The lower MSE/MAE indicates the more accurate prediction result.

Models CAIFormer iTransformer Crossformer TiDE TimesNet DLinear FEDformer Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.327 0.364 0.334 0.368 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.379 0.419 0.505 0.475
192 0.369 0.387 0.377 0.391 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.426 0.441 0.553 0.496
336 0.411 0.412 0.426 0.420 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.445 0.459 0.621 0.537
720 0.479 0.447 0.491 0.459 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.543 0.490 0.671 0.561

Avg 0.396 0.402 0.407 0.410 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.448 0.452 0.588 0.517

E
T

T
m

2

96 0.176 0.259 0.180 0.264 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.203 0.287 0.255 0.339
192 0.245 0.304 0.250 0.309 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.269 0.328 0.281 0.340
336 0.303 0.345 0.311 0.348 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.325 0.366 0.339 0.372
720 0.405 0.401 0.412 0.407 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.421 0.415 0.433 0.432

Avg 0.282 0.327 0.288 0.332 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.305 0.349 0.327 0.371

E
T

T
h1

96 0.382 0.399 0.386 0.405 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.376 0.419 0.449 0.459
192 0.419 0.426 0.441 0.436 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.420 0.448 0.500 0.482
336 0.474 0.445 0.487 0.458 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.459 0.465 0.521 0.496
720 0.488 0.478 0.503 0.491 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.506 0.507 0.514 0.512

Avg 0.441 0.437 0.454 0.447 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.440 0.460 0.496 0.487

E
T

T
h2

96 0.294 0.343 0.297 0.349 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.358 0.397 0.346 0.388
192 0.377 0.395 0.380 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.429 0.439 0.456 0.452
336 0.424 0.429 0.428 0.432 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 0.496 0.487 0.482 0.486
720 0.422 0.437 0.427 0.445 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 0.463 0.474 0.515 0.511

Avg 0.379 0.401 0.383 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.437 0.449 0.450 0.459

E
xc

ha
ng

e 96 0.083 0.201 0.086 0.206 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.148 0.278 0.197 0.323
192 0.173 0.295 0.177 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.271 0.315 0.300 0.369
336 0.326 0.412 0.331 0.417 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 0.460 0.427 0.509 0.524
720 0.842 0.688 0.847 0.691 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.195 0.695 1.447 0.941

Avg 0.356 0.399 0.360 0.403 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.519 0.429 0.613 0.539

W
ea

th
er

96 0.167 0.205 0.174 0.214 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.217 0.296 0.266 0.336
192 0.215 0.243 0.221 0.254 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.276 0.336 0.307 0.367
336 0.269 0.285 0.278 0.296 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.339 0.380 0.359 0.395
720 0.345 0.340 0.358 0.349 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.403 0.428 0.419 0.428

Avg 0.249 0.268 0.258 0.279 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.309 0.360 0.338 0.382

5.4 REMAINING INDEPENDENCE

According to the analysis in Section 4.1, there may not be any variable Vj in the Markov boundary
of Vi that satisfies the conditional independence Vi ⊥⊥ Vj |V \ Vj , but there may still be unused
independence conditions such as in Figure 1, Vi ⊥⊥ Vs but Vi ̸⊥⊥ Vs|Vc. Thus, it follows that
I(Vi;Vp ∪ Vc) < I(Vi;Vp ∪ Vc ∪ Vs), indicating that neglecting Vs leads to information loss.

After the above process, we get the estimate function f̂ to predict future sequence
XT+1:T+S = {x1

T+1:T+S , x
2
T+1:T+S , . . . , x

D
T+1:T+S} from the historical sequence X1:T =

{x1
1:T , x

2
1:T , . . . , x

D
1:T }. To meet the ZCE constraint in Eq 6, for any variable Vi, we subtract the

expectation given Si
2 from the predicted results of f̂ to get Mf̂ in Eq 9.

6 EXPERIMENT

In this section, we first provide the details of the implementation (Subsection 6.1). Then, we present
the comparison results on six benchmark datasets (Subsection 6.2). Next, we conduct ablation
studies to evaluate the effectiveness of each module in our method (Subsection 6.3).

6.1 IMPLEMENT DETAILS

All the experiments are implemented in PyTorch Paszke et al. (2019) and trained on NVIDIA V100
32GB GPUs. For the model architecture, we use ADAM Kingma & Ba (2015) with an initial
learning rate in {10−3, 10−4} and MSELoss for model optimization. An early stopping counter is
employed to stop the training process after three epochs if no loss degradation on the valid set is
observed. The mean square error (MSE) and mean absolute error (MAE) are used as metrics. All

8
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Figure 3: Visualization of the Markov boundaries for variables in benchmark datasets: ETTh1,
ETTh2, ETTm1, ETTm2, Exchange, and Weather. Each row represents a specific variable, and
green blocks indicate that the variable corresponding to the column is included in the Markov bound-
ary of the variable represented by the row.

experiments are repeated 3 times and the mean of the metrics is used in the final results. The batch
size is set to 4 and the number of training epochs is set to 10.

6.2 COMPARISON RESULTS

We thoroughly evaluate the proposed CAIFormer on various long-term time series forecasting
benchmarks. For better comparison, we follow the experiment settings of iTransformer in (Liu
et al., 2023b) the prediction lengths for both training and evaluation vary within the set S ∈
{96, 192, 336, 720}, with a fixed lookback length of T = 96.

We carefully choose 7 well-acknowledged forecasting models as our benchmark, including (1)
Transformer-based methods: iTransformer Liu et al. (2023b), Autoformer Wu et al. (2021), FED-
former Zhou et al. (2022), Crossformer Zhang & Yan (2023); (2) Linear-based methods: DLinear
Zeng et al. (2023), TiDE Das et al. (2023); and (3) TCN-based methods: TimesNet Wu et al. (2023).

Table 1 presents the results of CAIFormer in long-term multivariate forecasting with the best in
bold and the second underlined. The lower MSE/MAE indicates the more accurate prediction result.
Compared with iTransformer (Liu et al., 2023b), which uses variable attention, we improve in all
datasets for different metrics.

6.3 ABLATION STUDY

In this section, we compare the performance of two causal discovery algorithms PC and FCI, and
visualize the DAGs they generate on the ETTh1 dataset. Additionally, we validate the effectiveness
of the mask discussed in Section 5.3 and the constraint mechanism introduced in Section 5.4.

6.3.1 CAUSAL DISCOVERY ALGORITHM

In this section, we choose two causal discovery algorithms for comparison, including (1) PC algo-
rithm, which is a causal discovery method based on constraints such as conditional independence.
It determines causal relationships by examining the dependencies between variables, the details
ars prevet in Appendix B; (2) FCI, which handles potential hidden variables and circular causality
through multiple conditional independence tests based on the PC algorithm. In appendix D, we
visualize the DAG in ETTh1 dataset discovered by PC and FCI.

6.3.2 THE EFFECTIVE OF COMPONENTS

Following the setup in Section 6.2, we applied variable attention within the Transformer model
to forecast Weather and ETTh1 datasets. To evaluate performance, we set both the Variable
Attention Mask applied to the Transformer (discussed in Section 5.3) and the constraint-based
collider structures within the Markov boundary (discussed in Section 5.4) optional, comparing
their effects under different configurations. The lookback length T = 96 and prediction lengths
S ∈ {96, 192, 336, 720}, the average prediction MSE and MAE for each dataset are shown in Table
2. The application of the variable Attention mask leads to improved predictive performance, indicat-
ing that the mask successfully prevents the model from considering correlations between irrelevant

9
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Table 2: The average performance of lookback length T = 96 and prediction lengths S ∈
{ 96, 192, 336, 720} in weather and ETTh1 datasets with variable attention Transformer.

Variables Attention Mask Collider Constrain weather ETTh1

MSE MAE MSE MAE

w/o w/o 0.258 0.279 0.454 0.447
w w/o 0.251 0.272 0.445 0.440
w w 0.249 0.268 0.441 0.437

variables. Similarly, constraining the hypothesis space using colliders from the Markov boundary
enhances prediction accuracy, further validating the effectiveness of this constraint.

6.3.3 VISUALIZE VARIABLE ATTENTION MASK

For clarity, Figure 3 illustrates the Markov boundaries between variables from common multivariate
time series forecasting datasets, as discussed in Section 5.2. In the figure, green blocks highlight the
Markov boundary of the variable in the current row. The visualization reveals that while some vari-
ables are dependent, not all are interconnected. Additionally, Appendix B provides visualizations of
the DAGs for these datasets.

7 CONCLUSION

In this paper, we introduce a novel causality-based algorithm, CAusal Informed Transformer
(CAIFormer), to improve generalization in multivariate time series forecasting (MTSF) tasks. By
leveraging causal discovery techniques, we construct a Directed Acyclic Graph (DAG) among vari-
ables and derive the Markov boundary to guide the model’s attention mechanism. Our theoretical
analysis shows that the Markov boundary, especially its collider structures, provides critical con-
ditional independencies that can constrain the hypothesis space and reduce generalization error.
Empirical evaluations on benchmark datasets demonstrate the advantages of CAIFormer.

REPRODUCIBILITY STATEMENT

The theoretical results of this work are supported by well-defined assumptions, with complete proofs
included in the appendix. Additionally, the algorithm’s source code has been submitted as part of
the supplementary materials.
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APPENDIX

Appendix A presents the proof of Theorem 1. Appendix B details the implementation and results
of the PC causal discovery algorithm. Appendix C provides an overview of the datasets used in this
study. Appendix D offers an in-depth explanation of both the PC and FCI algorithms.

A PROOF OF THEOREM 1

The conditional expectation Π : Z ∈ L2(Ω) 7→ E[Z|Vs] defines an orthogonal projection onto the
space of Vs-measurable random variables with finite variance L2(Ω, σ(Vs), P ). Thus, its range and
null space are orthogonal in L2(Ω).

Let f ∈ L2(V ). We have Ef(V ) = E[f(V )|Vs] = Πf(V ) hence Ef(V ) is in the range of Π. On
the other hand,

E[Mf(V )|Vs] = E[f(V )|Vs]− E[Ef(V )|Vs] = E[f(V )|Vs]− E[f(V )|Vs] = 0. (19)

Therefore Mf(V ) is in the null space of Π. Finally, because Vi ⊥⊥ Vs we have E[Vi|Vs] = E[Vi] = 0
by assumption, therefore Vi is also in the null space of Π.

Hence, adopting this random variable view, the desired result simply follows from L2(Ω) orthogo-
nality:

∆(f,Mf) = E[(Vi − f(V ))2]− E[(Vi −Mf(V ))2] (20)

= ∥Vi − f(V )∥2L2(Ω) − ∥Vi −Mf(V )∥2L2(Ω) (21)

= ∥Vi −Mf(V )− Ef(V )∥2L2(Ω) − ∥Vi −Mf(V )∥2L2(Ω) (22)

= ∥Vi −Mf(V )∥2L2(Ω) + ∥Ef(V )∥2L2(Ω) − ∥Vi −Mf(V )∥2L2(Ω) (23)

= E[Ef(V )2] (24)

= ∥Ef∥2L2(Ω). (25)

B CAUSAL DISCOVERY VISUALIZATION

In this section, Algorithm 1 provides the pseudocode implementation of the PC algorithm, which
includes three main steps: identifying the minimal set Sab that satisfies the conditional indepen-
dence, directing edges, and finalizing the directed graph. We visualize the causal DAGs discovered
by the PC algorithm across the ETTh1, ETTh2, ETTm1, ETTm2, Exchange, and Weather datasets
in Figure 4. In these graphs, directed edges represent explicit causal relationships, while undirected
edges denote uncertainty in causal direction.

C DATASET DESCRIPTIONS

In this paper, we conducted tests using eight real-world datasets. These datasets include: (1) ETT
contains two sub-datasets: ETT1 and ETT2, collected from two electricity transformers at two sta-
tions. Each of them has two versions in different resolutions (15 minutes and 1h). ETT dataset
contains multiple series of loads and one series of oil temperatures. (2) Weather covers 21 meteoro-
logical variables recorded at 10-minute intervals throughout the year 2020. The data was collected
by the Max Planck Institute for Biogeochemistry’s Weather Station, providing valuable meteoro-
logical insights. (3) Exchange-rate, which contains daily exchange rate data spanning from 1990 to
2016 for eight countries. It offers information on the currency exchange rates across different time
periods.

We follow the same data processing and train-validation-test set split protocol used in iTransformer,
where the train, validation, and test datasets are strictly divided according to chronological order to
make sure there are no data leakage issues. The details of the datasets are provided in Table 3.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 1 Causal Discovery Algorithm-PC

Input: P̂ , a stable distribution on a set V of variables;
Output: A pattern H(P̂ ) compatible with P̂ .

1: for each pair of variables a, b ∈ V do
2: Search for a set Sab such that (a ⊥⊥ b|Sab) holds in P̂
3: if no set Sab can be found then
4: Connect vertices a and b with an edge in G
5: end if
6: end for
7: for each pair of nonadjacent variables a, b ∈ V with a common neighbor c do
8: if c /∈ Sab then
9: Add arrowheads pointing at c (i.e., a→ c← b)

10: end if
11: end for
12: Orient as many of the undirected edges as possible in the partially directed graph
13: while there exists an undirected edge that can be oriented without creating a new v-structure or

a directed cycle do
14: Orient the edge
15: end while
16: return The directed graph as a pattern H(P̂ )

(a) ETTh1 (b) ETTh2 (c) ETTm1

(d) ETTm2 (e) Exchange (f) Weather

Figure 4: Visualization DAG discovered by PC.
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Table 3: Detailed dataset descriptions. Dim denotes the variate number of each data set. Dataset
Size denotes the total number of time points in (Train, Validation, Test) split, respectively. Prediction
Length denotes the future time points to be predicted, and four prediction settings are included in
each data set. Frequency denotes the sampling interval of time points.

Dataset Dim Prediction Length Dataset Size Frequency Information
ETTh1,ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly Electricity

ETTm1,ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Electricity

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily Economy

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min Weather

D COMPARE PC WITH FCI

In the ablation study, we illustrate the differences between the PC and FCI algorithms. Figure 5
visualizes the DAGs discovered by both algorithms on the ETTh1 dataset. In the left figure, directed
edges represent explicit causal relationships, while undirected edges indicate the absence of a fixed
causal direction. In the right figure, Vi → Vj signifies that Vi causes Vj , Vi◦→ Vj indicates that Vi

is not an ancestor of Vj , Vi ◦−◦ Vj means no set d-separates Vi and Vj , and Vi ↔ Vj denotes the
existence of a latent common cause between Vi and Vj .

(a) PC (b) FCI

Figure 5: Visualization comparison PC with FCI.
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