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ABSTRACT

Theory-of-Mind (ToM) enables individuals to the mental states of the others, such1

as thoughts, beliefs, and desires. To replicate this cognitive ability in machines,2

especially under complex multimodal environments, recent advances combine3

Bayesian-based state inference with deep learning models to estimate mental states,4

where the Bayesian model handles state transitions and a language model (LM)5

estimates the likelihood of intermediate states. However, while post-training an LM6

to specialise in ToM tasks improves performance, the computational cost increases7

as the LM scales, limiting the model size to 7 billion parameters. Despite this post-8

training process, smaller LMs still struggle with the physical and mental modelling9

demands of ToM due to their limited world knowledge and reasoning capacity. To10

address this, we propose a scalable solution that leverages the strengths of larger11

LMs (up to 70 and 405 billion parameters, respectively), including their vast world12

knowledge and atomic-level reasoning capabilities, without increasing post-training13

resource requirements. Our method transfers ToM-specific behaviours from a post-14

trained small LM to guide the latent reasoning of a larger LM during test time. This15

weak-to-strong control mechanism enables the larger LM to improve Bayesian16

likelihood estimation at each inference step, harnessing its reasoning power in17

ToM scenarios while reducing the need for additional training resources. Extensive18

experiments demonstrate the significant effectiveness of our scaled approach. It is19

better at inferring human mental states in complex and interactive environments,20

outperforming the state-of-the-art solution by ∼ 4.6% across multiple tasks on the21

multimodal ToM benchmark and unseen scenarios.22

1 INTRODUCTION23

A key aspect of human social cognition is Theory-of-Mind (ToM)—the ability to comprehend and24

attribute mental states such as beliefs, desires, and intentions to ourselves and others. This capacity25

allows individuals to recognize that others may have perspectives and motivations distinct from26

their own, forming the foundation of social understanding and interaction (Dennett, 1988; Gopnik &27

Wellman, 2012). Building on this concept, a critical challenge lies in enabling artificial intelligence28

(AI) to acquire human-level ToM capabilities. Equipping AI systems with such abilities could29

significantly enhance their potential for human-like interactions and unlock broader capacities for30

commonsense and context-aware reasoning (Lake et al., 2017; Wu et al., 2021; Ma et al., 2023).31

Among the ongoing efforts to advance ToM abilities in machines, two broadly classed strategies are32

the highly structured Bayesian approaches and the less structured end-to-end approaches, respectively:33

(i) Bayesian ToM models use cognitively structured probabilistic frameworks to represent causal34

relationships between the mind and the world, enabling inverse inference of mental states from sparse35

behavioral observations (Baker et al., 2017; Jara-Ettinger, 2019; Shu et al., 2021). These models are36

highly interpretable and support key ToM functions like explanation and inductive learning, excelling37

in well-defined domains with precise predictions and few-shot generalization (Shum et al., 2019;38

Zhi-Xuan et al., 2022). However, they require extensive inductive constraints (e.g., abstractions,39

priors, and causal relationships) provided by experts, limiting their scalability to complex and40

unconstrained practical environments. (ii) End-to-end models of ToM involve training deep models41

directly on ToM data (Rabinowitz et al., 2018; Shu et al., 2021; Sclar et al., 2022). These models,42

such as ToMnet (Rabinowitz et al., 2018), autonomously learn complex patterns and relationships43

from data without explicitly concepts like agents, beliefs, and goals. However, because these models44
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do not explicitly encode principles of physics or theories of psychology, they lack transparency and45

may draw conclusions that violate physical laws, logical coherence, or commonsense reasoning.46

Additionally, their data-driven nature makes them less reliable in, and adaptable to, dynamic or47

novel environments, particularly where data is sparse or unrepresentative (Sap et al., 2022; Zhi-Xuan48

et al., 2022; Ullman, 2023; Strachan et al., 2024).49

The recent interdisciplinary milestone, BIPALM (Bayesian inverse planning accelerated by language50

model), merges the strengths of Bayesian ToM models and deep learning to facilitate robust reasoning51

in complex multimodal scenarios (Jin et al., 2024). It uses a Bayesian ToM model to predict agents’52

mental states in multimodal scenarios, with a language model (LM) estimating the probabilities53

of these Bayesian intermediate states based on multimodal inputs. For accurate Bayesian ToM54

inference, the LM undergoes an additional post-training process tailored to the target multimodal55

contexts. However, this reliance on post-training significantly increases computational demands56

and limits the scalability of likelihood models, restricting the size of LMs to around seven billion57

parameters. ToM intricately intertwines open-domain world knowledge and implicit reasoning to58

ground human mental states within their corresponding physical environments. As environments and59

their associated queries evolve, reliance on smaller post-trained LMs introduces a critical trade-off:60

while smaller LMs excel in adapting to specific ToM tasks within particular environments, larger61

LMs are indispensable for harnessing broader world knowledge and advanced reasoning capabilities.62

This inherent tension poses a significant challenge, requiring us to improve the scalability of63

Bayesian ToM methods in handling dynamically evolving, multimodal ToM scenarios64

Motivated by the scalability challenge of current Bayesian ToM methods, we propose a scalable65

Bayesian inference solution that generalises to complex and dynamic environments (Tab.5 in App.A66

compares our technical contributions with other solutions). Our approach introduces a weak-to-strong67

control mechanism where post-trained smaller LMs specialise in ToM-specific tasks by capturing68

likelihood inference patterns during Bayesian ToM reasoning. These ToM behaviours are then69

transferred to larger LMs during test time, aligning the larger models’ reasoning trajectories with70

the structured requirements of Bayesian inverse planning. In this framework, the larger LM acts71

as the primary policy model, leveraging its extensive world knowledge and reasoning capabilities.72

Importantly, the reasoning trajectory of the larger LM is structured by the Bayesian framework,73

ensuring consistency, robustness, and interpretability. This design avoids additional post-training74

costs for larger LMs while enabling scalable use of large models up to 70B or 405B parameters.75

In particular, we focus on the pattern shifts observed in smaller LMs before and after ToM post-76

training, treating these shifts as ToM behaviours that guide larger LMs. This ToM-behaviour transfer77

ensures that larger LMs, redirected as aligned policy models, follow reasoning trajectories primarily78

inferenced by the Bayesian framework. The experiments demonstrate that this weak-to-strong control79

mechanism significantly enhances the generalizability of Bayesian inference, achieving a ∼ 4.6%80

improvement in accuracy over state-of-the-art methods, even in dynamic and unseen environments.81

2 METHODOLOGY: SCALED BAYESIAN REASONING ON MULTIMODAL TOM82

Our scaled Bayesian reasoning infers an agent’s mental state based on video and text inputs. While83

the extension of Bayesian methods to deep models can reverse engineer human ToM reasoning in84

multiple domains, it also includes LMs for multimodal inputs: (1) building unified representations85

about a scene, a person’s actions, and the mental state hypotheses from multimodal inputs, and (2)86

post-training an LM to conduct contextual inverse symbolic planning, based on unified symbolic87

representations (Jin et al., 2024). Then, as shown in Fig.1, the LM used in our scaled Bayesian88

reasoning is from 7B up to 405B parameters at test-time compute, avoiding additional post-training.89

2.1 DATA REPRESENTATION90

Instead of single-modality input, this study integrates both visual and textual data into a unified91

symbolic representation, enabling a more comprehensive understanding of the context and human92

behaviour: (i) One visual perception module converts visual data into symbolic representations by93

using the method from Blukis et al. (2022) to generate a voxel map and construct a scene graph for94

each video frame. (ii) For text parsing, textual information is extracted into symbolic representations95

of the initial state and subsequent actions. The parser processes the text by breaking it down into96
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Figure 1: (left) The large LM operates as a scaled policy model to estimate the likelihood of an agent’s
actions in dynamic environments, based on multimodal symbolic inputs (video and description).
(right) The latent reasoning of the large LM is guided by the ToM behaviours from post-trained
small LMs, which acts as a weak-to-strong control. Overall, Bayesian inverse planning compares
hypotheses about the agent’s goal and belief, using the large LM as a policy model to infer ToM.

components: the state of the environment, the actions taken by humans, and the question. It translates97

these into natural language descriptions, such as “the pear is inside the basket” for the environment’s98

state, “walks toward the kitchen” for action commands, and two potential goals like “to retrieve99

the pear” and beliefs such as “the pear is inside the basket” or “the pear is not inside the basket.”100

(iii) finally, in unifying multimodal information, the fusion step aligns and integrates input stream101

information by converting scene graphs from video into predicates that describe spatial relationships102

and object statuses, analogous to text-derived predicates. We create a symbolic representation of the103

initial state by combining predicates from both video and text, aligning and updating state predicates104

with new video frame information at each time step, and constructing a symbolic state and action105

sequence. This process begins from the initial state, with actions parsed from the text aligned with106

video-detected actions and divided into intervals corresponding to each action. See App.B.2 for more107

details on data preprocessing.108

2.2 INFERRING HUMAN MENTAL STATES109

To infer human mental states, we generate and evaluate hypotheses about human intentions by110

employing Bayesian inverse planning. These hypotheses are assessed through action likelihoods,111

which directly inform the posterior probabilities of different mental state explanations. To compute112

these crucial likelihoods, an LM is controlled by our weak-to-strong mechanism to serve as the policy113

model. This approach harnesses the world knowledge and reasoning capabilities of large LLMs while114

aligning their behaviour patterns to ToM tasks without extensive computational requirements.115

Behaviour modelling: a Markov decision process formulation The behaviour of an agent can be116

formulated as a forward generative model based on a Partially Observable Markov Decision Process117

(POMDP), defined by the tuple ⟨S,A, T , G,R,Ω, O, γ⟩ (Kaelbling et al., 1998; Jin et al., 2024).118

Here, st ∈ S and at ∈ A represent the state and action at time t, respectively. T (st|s, a) denotes119

the state transition probabilities. The goal g ∈ G determines the reward rt = R(st, at, g). The120

agent’s observation ot ∈ Ω is obtained via the observation function ot = O(st). The discount factor121

is γ ∈ (0, 1]. Crucially, the agent’s belief, b(s), is a probability distribution over the state. This122

belief is dynamically updated during belief evolution P (bτ | bτ−1, sτ ), where b(s) is factorized into123

probabilities over the possible locations of individual objects.124

Inverse inference: from observed behaviours to the mental states While the POMDP formulates125

a forward model of agent behaviour, the heart of this Bayesian approach is to invert this process –126

inferring the agent’s goals and beliefs from observed behaviours, i.e., actions (Baker et al., 2017).127

Assuming deterministic state transitions for simplicity, we jointly infer the agent’s goal and belief128

based on observed states and actions. The posterior probability of an agent’s goal g and belief bt129

given a sequence of observed states s1:t and actions a1:t−1 is expressed as:130

P (g, bt|s1:t, a1:t−1) ∝
t∏

τ=1

π(aτ |g, bτ )P (bτ |bτ−1, sτ )P (b0)P (g), (1)

where π(aτ |g, bτ ) represents the agent’s policy, which captures the probability of taking action131

aτ given a goal g and belief bτ . This reflects the agent’s decision-making process, influenced132

by its goals and the current state of its beliefs. Belief evolution is modeled as P (bτ |bτ−1, sτ ) =133
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P (sτ |bτ−1)P (bτ−1)
P (sτ ) , where P (sτ |bτ−1) is the likelihood of observing sτ given the prior belief bτ−1,134

and P (bτ−1) represents the prior belief at the previous step. This belief evolution describes how135

the belief bτ evolves from the prior belief bτ−1 after observing a new state sτ , and it follows136

Bayesian principles, ensuring that new evidence incrementally refines the agent’s understanding of137

its environment. For example, if an object is observed inside a container at time τ , the corresponding138

belief about the object’s location is updated accordingly. In practice, π(aτ |g, bτ ) and P (bτ |bτ−1, sτ )139

can be approximated using likelihood generated by a language model. P (b0) is set as a uniform140

distribution to reflect equal uncertainty about all possible object locations at the start, while P (g)141

encodes prior knowledge about the likelihood of different goals.142

To compare different hypotheses about the agent’s goals and beliefs, we evaluate their relative log-143

likelihoods from a given set of hypotheses, separating the contributions from the current time step and144

the accumulated effect of prior steps. Consider two hypotheses, H1 = ⟨g1, bt1⟩ and H2 = ⟨g2, bt2⟩,145

representing different goal-belief pairs. Their relative log-likelihoods are compared as:146

log
P (g1, b

t
1|s1:t, a1:t)

P (g2, bt2|s1:t, a1:t)
= log

π(at|g1, bt1)
π(at|g2, bt2)

+ log
P (bt1|b̂t−1, st)

P (bt2|b̂t−1, st)︸ ︷︷ ︸
Current step comparison

+

t−1∑
τ=1

log
π(aτ |g1, b̂τ )
π(aτ |g2, b̂τ )︸ ︷︷ ︸

Prior steps comparison

. (2)

The first term compares log-likelihoods of actions and belief updates at the current step, reflecting how147

each hypothesis explains the agent’s latest behavior. The second term sums log-likelihoods from prior148

steps, ensuring the entire action history informs the hypothesis evaluation. In practice, the belief149

b̂τ is not explicitly updated as a posterior distribution P (bτ | bτ−1, sτ ) . Instead, it is symbolically150

approximated as a structured hypothesis (e.g., possible object locations) that represents the agent’s151

understanding of the environment at each step. By comparing action likelihoods π(aτ | g, sτ , b̂τ )152

across hypotheses, beliefs are implicitly evaluated and updated.153

Weak-to-strong controlled large policy model When augmenting likelihood estimation with the154

guided large LM’s broad generalization capabilities, we scale up the LM used only for test-time155

computing and avoid the direct post-training on large LM. The true policy π(aτ | g, bτ ) is estimated156

through a language model (π)-estimated probability π̃(at | st, g, b̂t):157

π(aτ | g, bτ ) = π̃(at | st, g, b̂t) + ε, (3)

where ε represents the inherent approximation error. When applied to the Bayesian inverse planning158

framework equation 1, the posterior probability is expressed as:159

P (g, bt | s1:t, a1:t−1) ∝
t∏

τ=1

[π̃(aτ | sτ , g, b̂τ ) + ε] · P (bτ | bτ−1, sτ ) · P (b0)P (g). (4)

It integrates the approximation into Bayesian reasoning, considering si, bi, gi, ai updates over time.160

POST-TRAINING STAGE: TOM OPTIMIZATION To allow direct use of the LM-estimated probability,161

we aim to reduce ε via a post-training stage to align LM’s pretrained capability to current target162

situations. The initial phase of reducing ε involves refining a scenario-specific post-training policy163

πE on an action-policy experience pool. This pool D is defined as: D = {(si, bi, gi, ai)}Ni=1, where164

si, bi, gi, ai, and N denote sequences of states, beliefs, goals, actions, the number of data points165

sourced from multimodal situations. The objective function guiding post-training is:166

L(πE) = −
N∑
i=1

log πE(ai | si, bi, gi). (5)

Here, πE learns the human ToM behaviour patterns effectively, allowing the language model policy167

to adeptly learn and respond to complex ToM environments. Due to computational constraints, this168

post-training process is typically applied to smaller models.169

INFERENCE STAGE: LARGE POLICY MODEL WITH BEHAVIORAL GUIDANCE During test inference,170

we leverage the behaviour acquired by the post-trained smaller LM to guide the reasoning of a larger,171
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more capable LM. This approach dynamically adjusts the output of the large LM based on the shift172

observed between a post-trained small LM πE and a naive small LM πN . At each inference step t,173

the overall policy distribution for the redirected large model is given by:174

π̄(at | st, g, b̂t) = 1

Z̄
πL(at | st, g, b̂t) π

E(at | st, g, b̂t)
πN (at | st, g, b̂t)

, (6)

where πL(at | st, g, b̂t) represents the policy distribution from the naive large LM. The post-175

training effect to policy function is approximated through the ratio πE(at|st,g,b̂t)
πN (at|st,g,b̂t)

, offering an176

on-the-fly redirecting mechanism. The normalization factor is calculated by Z̄ =
∑

at πL(at |177

st, g, b̂t) πE(at|st,g,b̂t)
πN (at|st,g,b̂t)

. It ensures that the resulting probabilities remain a valid distribution, reflecting178

both the post-training adjustments and the foundational likelihood from the larger model. Our overall179

method facilitates ToM behaviour transfer from the post-trained small LM (πE ) to the larger LM180

(πL), scaling the capabilities of the policy model in Bayesian inference at test-time. The Theroem 1181

and its proof in the appendix C are provided for theoretical support.182

3 EXPERIMENTS183

We examine the scaling benefits of this Bayesian weak-to-strong reasoning in multimodal ToM tasks.184

For the strong component, we scale up the large LMs to 70B and 405B parameters. In contrast, for185

the weak component, we reduce the size of the small LMs from 8B to 4B parameters. First, the186

results reveal a positive correlation between model size and ToM capabilities, especially when the187

larger models are guided by the post-trained behaviours of the smaller models. Interestingly, these188

post-trained behaviours are also effectively captured by smaller LMs. We also illustrate how the large189

LMs are progressively redirected to the answer space during the Bayesian process.190

3.1 SETUP191

Datasets (i) For post-training, we use MMToM sampled from an apartment environment simulator,192

Virtual Home (Puig et al., 2018), using the procedural methods described by Jin et al. (2024). The193

dataset comprises 1,000 procedurally synthesized videos within a realistic household simulator, each194

annotated with ground-truth labels for states, goals, beliefs, and actions. These precise annotations195

are used to train our conditional prediction model for action ai given state si, belief bi, and goal gi:196

P (ai | si, bi, gi). By leveraging this synthetic dataset, the inverse symbolic planner—comprising a197

large base LM guided by a smaller, post-trained LM—acquires robust exposure to diverse scenarios.198

(ii) For evaluation, we use the MMToM-QA (Jin et al., 2024), an evaluation benchmark aimed at199

evaluating ToM reasoning over multimodal situations. The dataset consists of 134 videos, each200

showing a person searching for household objects, with an average of 1,462 frames per video201

representing approximately 36 human actions. These videos are accompanied by 600 questions202

(detailed in appendix §D.1), evenly divided between the categories of belief inference (with 1.1,203

1.2, and 1.3 subtasks) and goal inference (with 2.1, 2.2, 2.3, and 2.4 subtasks). Each question is204

paired with a video clip and a detailed textual description The questions are designed to assess the205

ability of models to infer goals and beliefs jointly, providing a richer assessment of multimodal ToM206

capabilities. It supports three setups, including multimodal, text-only, and video-only inputs.207

Baselines We include three types of baselines in our evaluation to benchmark our model’s per-208

formance on the MMToM-QA dataset. For text-only evaluation, we compare performance in the209

text-only subset of MMToM-QA using various large language models (LLMs), including GPT-4210

(OpenAI, 2023a), GPT-3.5, GPT-J-6B (Wang & Komatsuzaki, 2021), and Llama-2-7B (Touvron211

et al., 2023). Advanced prompting methods, such as SimToM (Wilf et al., 2024) and SymbolicToM212

(Sclar et al., 2023), which enhance GPT-4’s reasoning capabilities, provide additional baselines213

(e.g., SimToM with GPT-4 and SymbolicToM with GPT-4). For multimodal evaluation, we include214

GPT-4V (OpenAI, 2023a), InstructBLIP (Dai et al., 2023), Video-Llama-2 (Zhang et al., 2023), and215

LLaVA (Liu et al., 2023), BIPALM (Jin et al., 2024). These methods employ sampled frames from216

each video to evaluate their proficiency in multimodal ToM reasoning. For human, 180 participants217

answer 120 randomly sampled questions, covering all question types, as reported by Jin et al. (2024).218
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Table 1: Comparisons between humans and models across task types from 1.1 to 2.4 are provided. The
best results for each modal setting are highlighted in bold. The second best results in multimodality
are underlined. Rows of ours are highlighted in color.

method belief inference goal inference all1.1 1.2 1.3 avg. 2.1 2.2 2.3 2.4 avg.

te
xt

on
ly

Human 96.0 95.8 81.3 91.0 85.8 76.7 65.0 68.3 74.0 82.5
GPT-4 97.0 12.0 77.0 62.0 48.0 42.7 2.7 42.7 34.0 48.0
GPT-3.5 81.0 11.0 39.0 43.7 46.7 16.0 21.3 48.0 33.0 38.3
GPT-J-6B 56.0 53.0 38.0 49.0 52.0 50.7 50.7 56.0 52.3 50.7
Llama-2-7B 64.0 55.0 50.0 56.3 49.3 48.0 41.3 38.7 44.3 50.3
SimToM w/ GPT-4 96.0 15.0 82.0 64.3 61.3 44.0 2.7 54.7 40.7 52.5
SymbolicToM w/ GPT-4 100 61.0 74.0 78.3 73.3 66.7 0.0 50.7 47.7 63.0
BIPALM w/ GPT-J-6B 88.0 69.0 88.0 81.7 77.3 68.0 30.7 70.7 61.7 71.7
BIPALM w/ Llama-2-7B 89.0 68.0 90.0 82.3 54.7 66.7 50.7 62.7 58.7 70.5

vi
de

o
on

ly

Human 69.1 64.3 86.4 73.3 58.5 60.0 76.7 63.3 64.6 68.9
InstructBLIP-13B 56.0 50.0 42.0 49.3 56.0 45.3 54.7 53.3 52.3 50.8
Video-Llama-2-13B 24.0 32.0 67.0 41.0 50.7 45.3 56.0 52.0 51.0 46.0
LLaVA-7B 33.0 15.0 69.0 39.0 44.0 24.0 56.0 57.3 45.3 42.2
GPT-4V 64.0 34.0 39.0 45.7 54.7 26.7 48.0 56.0 46.3 46.0
BIPALM w/ GPT-J-6B 63.0 57.0 72.0 64.0 45.3 62.7 50.7 62.7 55.3 59.7
BIPALM w/ Llama-2-7B 69.0 63.0 60.0 64.0 62.7 54.7 53.3 62.7 58.3 61.2

m
ul

tim
od

al

Human 95.8 96.7 100 97.5 90.0 91.7 83.3 88.9 88.5 93.0
InstructBLIP-13B 62.0 52.0 32.0 48.7 46.7 29.3 42.7 60.0 44.7 46.7
Video-Llama-2-13B 36.0 38.0 52.0 42.0 36.0 41.3 30.7 45.3 38.3 40.2
LLaVA-7B 46.0 14.0 69.0 43.0 65.3 22.7 40.0 48.0 44.0 43.5
GPT-4V 94.0 13.0 59.0 55.3 56.0 26.7 4.0 52.0 34.7 44.0
BIPALM w/ GPT-J-6B 90.0 69.0 86.0 81.7 68.0 78.7 56.0 73.3 69.0 75.3
BIPALM w/ Llama-2-7B 88.0 68.0 85.0 80.3 62.7 77.3 72.0 80.0 73.3 76.7
Ours (w/ Llama-3.1-405B) 92.0 76.0 93.0 87.0 73.3 80.0 76.0 78.7 77.0 81.3

Post-training We post-train Llama (Touvron et al., 2023; Dubey et al., 2024) as a policy model219

in our Bayesian framework with LoRA (Hu et al., 2022), as outlined in Tab.6. Following the setup220

recommended by Jin et al. (2024), we use a learning rate of 1e-3 over 3 epochs. LoRA is configured221

with a rank of 16 and an alpha value of 32 for the 7B and 8B LMs. For 70B, we use a lower rank of 8222

and an alpha of 16. They are carefully tuned to optimize performance across varying LM sizes.223

3.2 MAIN RESULTS224

Tab.1 uses human performance as the gold standard. Humans clearly outperform all models (with225

93.0% accuracy) when provided with multimodal input. This result highlights the critical role226

of integrating both visual and textual modalities in achieving an immersive and context-aware227

perception of the ToM situation. Accordingly, our ToM method also incorporates multimodal inputs.228

In belief inference, which is strongly linked to world knowledge, models like GPT-4 and GPT-3.5229

perform exceptionally well, particularly on task 1.1, where GPT-4 achieves an accuracy of 94%. This230

result underscores the importance of large-scale models in capturing and applying vast amounts of231

pretrained world knowledge. However, despite their impressive performance in belief inference, these232

models do not perform as effectively on goal inference, where adaptation to specific ToM contexts233

and dynamic environments is crucial. This highlights the need for models to be better aligned234

with the specific requirements of ToM scenarios. Models with smaller scales, such as those with235

6B, 7B, and 13B parameters, face inherent capability limitations, which restrict their performance on236

belief inference tasks, particularly when compared to larger models like GPT-4 on task 1.1. However,237

these smaller models, such as BIPALM w/ GPT-J-6B and Llama-2-7B, benefit from post-training238

specifically designed for ToM scenarios. This allows them to perform better on goal inference239

tasks, where understanding and adapting to scenario-specific environmental dynamics is essential.240

Despite their size constraints, these models demonstrate the value of targeted post-training in241

compensating for the lack of large-scale pretrained knowledge. Our approach goes beyond seesaw242

effects in prior methods and has both strengths: while its strong component leverages the extensive243

world knowledge embedded in large pretrained models, also its weak component incorporates post-244

6



Under review as a conference paper at ICLR 2025

Table 2: Scaling-up performance on strong component (large LMs) in weak-to-strong control.

L
M config belief inference goal inference all1.1 1.2 1.3 avg. 2.1 2.2 2.3 2.4 avg.

L
la

m
a-

2

7B-zero-shot 44.00 37.00 84.00 55.00 64.00 65.33 62.67 64.00 64.00 60.14
7B-post-trained 80.00 60.00 89.00 76.33 74.67 60.00 78.67 66.67 70.00 72.71
70B-zero-shot 64.00 47.00 93.00 68.00 56.00 72.00 25.33 70.67 56.00 61.14
70B-post-trained 90.00 70.00 87.00 82.33 78.67 76.00 61.33 72.00 72.00 76.43
70B-ours 89.00 70.00 90.00 83.00 73.33 74.67 76.00 73.33 74.33 78.05

L
la

m
a-

3

8B-zero-shot 88.00 72.00 91.00 83.67 65.33 57.33 13.33 53.33 47.33 62.90
8B-post-trained 92.00 72.00 83.00 82.33 77.33 73.33 72.00 70.67 73.33 77.19
70B-zero-shot 69.00 67.00 95.00 77.00 42.67 70.67 16.00 52.00 45.33 58.90
70B-post-trained 91.00 70.00 89.00 83.33 73.33 74.67 44.00 69.33 65.33 73.05
70B-ours 91.00 75.00 92.00 86.00 68.00 72.00 74.67 78.67 73.33 78.76

L
la

m
a-

3.
1

8B-zero-shot 88.00 72.00 91.00 83.67 65.33 62.67 22.67 54.67 51.33 65.19
8B-post-trained 90.00 71.00 93.00 84.67 69.33 72.00 62.67 72.00 69.00 75.71
70B-zero-shot 85.00 63.00 93.00 80.33 72.00 76.00 16.00 61.33 56.33 66.62
70B-post-trained 91.00 69.00 95.00 85.00 69.33 80.00 29.33 69.33 62.00 71.86
405B-zero-shot 86.00 70.00 90.00 82.00 73.33 78.67 21.33 66.67 60.00 69.43
70B-ours 90.00 74.00 93.00 85.67 74.67 77.33 70.67 76.00 74.67 79.38
405B-ours 92.00 76.00 93.00 87.00 73.33 80.00 76.00 78.67 77.00 81.29

training to the ToM contexts and environmental dynamics required. This dual advantage allows245

a balanced performance across both task types (belief & goal inference), with an overall 81.3%246

accuracy on multimodal tasks and exhibits a 4.6% improvement over the existing best baseline.247

3.3 STRONGER LARGE LMS ENHANCE LIKELIHOOD ESTIMATION IN BAYESIAN INFERENCE248

In the Bayesian framework, we explore the role of LMs in likelihood estimation and examine how249

their scale and post-training affect performance across various ToM tasks. According to Tab.2, (i)250

our results demonstrate a positive correlation between LM size and ToM task performance.251

For instance, in the zero-shot setting of Llama-3.1, the 405B model achieves an accuracy of 69.43%,252

outperforming both the 8B model (65.19%) and the 70B model (66.62%). Notably, the performance253

of the 405B model approaches that of the post-trained Llama2-7B. Furthermore, the improvement254

from 70B to 405B suggests that the benefits of scaling have not yet reached saturation, indicating255

potential for further gains with larger models. (ii) Post-training significantly enhances LMs’256

performance on ToM tasks, even when Larger LMs already perform well in zero-shot scenarios.257

This effect is consistent across model sizes, from smaller models such as 7B/8B to larger models up to258

70B, regardless of the specific version (Llama-2, Llama-3, or Llama-3.1). For belief inference tasks,259

which are closely tied to world knowledge, post-training helps align the large models’ knowledge260

more precisely with the input questions. For goal inference tasks, which are linked to environmental261

dynamics, post-training refines the models’ atomic-level reasoning (i.e., predicting a based on s, b, g),262

resulting in greater improvements compared to belief inference. This suggests that post-training263

provides a more substantial benefit for tasks that require dynamic reasoning. (iii) Our weak-to-strong264

control approach approximates the benefits of direct post-training in Bayesian inference. When265

comparing models such as Llama-2, Llama-3, and Llama-3.1, we find that direct post-training on the266

70B model, even with adjusted hyperparameters from the 8B model (e.g., reducing the alpha value267

from 32 to 16), does not produce results as robust as our method. We attribute this to the difficulty of268

finding optimal hyperparameters for larger models, which require more extensive tuning. In contrast,269

our weak-to-strong control, which uses a well-trained smaller LM to guide the larger LMs, allows for270

more consistent improvements without the need for extensive hyperparameter trials.271

3.4 DOWNSIZED SMALL LMS KEEP EFFECTIVENESS IN WEAK-TO-STRONG CONTROL272

In the Bayesian framework, prior experiments show that post-trained behaviours from small LMs can273

effectively guide the pretrained capabilities of larger LMs during test time. To further study the role274

of post-training to weak-to-strong control, Tab.3 investigates whether post-trained behaviours can be275

learned effectively with reduced computational resources, while the pretrained capabilities of larger276

LMs are still available. Specifically, we examine whether downsized smaller LMs can effectively277
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Table 3: Scaling-down effect on weak part (small LMs) in weak-to-strong controlled Bayesian
reasoning. All models are based on Llama3.1. Rows of our method are highlighted in color.

L
M config belief inference goal inference all1.1 1.2 1.3 avg. 2.1 2.2 2.3 2.4 avg.

8B

zero-shot 88.00 72.00 91.00 83.67 65.33 62.67 22.67 54.67 51.33 65.19
post-trained 90.00 71.00 93.00 84.67 69.33 72.00 62.67 72.00 69.00 75.71
8B ↬ 70B 90.00 74.00 93.00 85.67 74.67 77.33 70.67 76.00 74.67 79.38

4B 1
w

id
. zero-shot 79.00 69.00 89.00 79.00 60.00 69.33 24.00 52.00 51.33 63.19

post-trained 90.00 72.00 87.00 83.00 70.67 72.00 68.00 78.67 72.33 76.90
4B-width ↬ 70B 90.00 71.00 90.00 83.67 74.67 74.67 76.00 73.33 74.67 78.52

4B 1
de

p. zero-shot 91.00 74.00 88.00 84.33 69.33 77.33 20.00 66.67 58.33 69.48
post-trained 91.00 71.00 90.00 84.00 65.33 65.33 76.00 69.33 69.00 75.43
4B-depth ↬ 70B 91.00 72.00 91.00 84.67 72.00 74.67 84.00 64.00 73.67 78.38

Table 4: Transfer performance of the Bayesian method with different scaling settings (zero-shot,
direct post-training, and our weak-to-strong control) from the apartment scenario to various unseen en-
vironments. All models are based on Llama3.1. Results are average accuracy of belief inference/goal
inference/overall for each scenario. Detailed unseen scenarios and results are in §D.8&D.9.

solution apartment (seen) Andersen tales ancient Egyptian outer space wild west medieval castle

R
aw 70B-zero-shot 80.3/56.3/66.6 83.6/60.6/70.2 83.6/60.6/69.3 84.0/58.0/69.1 82.6/57.6/68.3 82.6/57.6/68.3

70B-post-trained 85.0/62.0/71.8 84.6/66.3/74.1 84.6/66.3/75.3 83.0/66.0/73.2 81.0/65.0/71.8 81.0/65.0/71.8

O
ur

s

4B-wide ↬ 70B 83.6/74.6/78.5 84.0/75.3/79.0 83.0/75.3/79.1 82.6/75.3/78.4 84.0/74.6/78.6 84.6/73.0/78.0
4B-depth ↬ 70B 84.6/73.6/78.3 85.0/71.3/77.1 85.3/71.3/77.9 81.6/71.0/75.5 83.3/71.3/76.4 83.3/64.0/72.2
8B ↬ 70B 85.6/74.6/79.3 82.6/76.0/78.8 83.6/76.0/77.7 84.0/75.0/78.8 83.3/74.0/78.0 83.6/75.0/78.7
8B ↬ 405B 87.0/77.0/81.3 85.8/76.0/80.2 86.0/76.3/80.4 87.2/75.5/80.5 85.3/76.0/79.9 85.6/75.2/79.7

capture these post-trained behaviours and guide the pre-trained capabilities of larger LMs without278

compromising performance. We use 8B LMs as baselines in normal size, and we also downsize279

them to two 4B variants: Llama-3.1-Minitron-4B-Width, which reduces the hidden size of each280

layer; and Llama-3.1-Minitron-4B-Depth, which cuts the number of layer (Sreenivas et al., 2024).281

Despite their smaller size, they maintained comparable accuracy in weak-to-strong control. While282

the 4B-Width LM underperformed the 4B-Depth LM in zero-shot scenarios, its post-training results283

surpass the 4B-Depth, especially when controlling the 70B large LM, demonstrating its superior284

transferability. These results highlight two key points: (i) downsizing the weak component can285

still effectively guide larger LMs without a significant loss in accuracy, and (ii) reducing model286

width, rather than depth, tends to be more generalizable, as deeper models demonstrate better287

transferability—aligning with learning principles of the width-depth trade-offs in small-scale studies288

(Telgarsky, 2016; Lu et al., 2017; Raghu et al., 2017).289

3.5 TRANSFERABILITY OF SCALED BAYESIAN INFERENCE290

Although the small LMs are post-trained on the apartment, our overall framework is expected to291

be stable and generalizable across various unseen scenarios since it has the structured Bayesian292

framework and redirected larger LMs. To evaluate the transferability, Tab.4 compares our method293

with baseline models in five previously unseen scenarios: Andersen fairy tales, ancient Egyptian,294

outer space, wild west, and medieval castle. These diverse settings assess the generalisability of295

our approach beyond the post-training scenario. When scaling the strong component (i.e., the large296

controlled LMs) from 70B to 405B across these new scenarios, there are continuous improvements297

in ToM understanding. This demonstrates that the increased capacity of our scaled solution298

enhances the transferability of ToM reasoning across multiple dynamic and unseen environ-299

ments. Furthermore, when the weak controller component is reduced from 8B to 4B, performance300

remains stable, ranging between 78.0% and 79.15%. This result is comparable to the 79.05% accuracy301

achieved in the original apartment scenario and also remains close to the performance of the 8B302

LMs. This consistency suggests that downsizing the weak component does not significantly affect303

performance, even in new and diverse test environments. These results indicate that our approach304

has strong potential for continually downsizing smaller LMs as controllers since they also are305

capable of capturing the post-trained behaviours. It allows saved resources to be potentially306

allocated to stronger controlled LMs, while still keeping stable to scenarios unseen previously.307
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3.6 WEAK-TO-STRONG CONTROL REDIRECTS LARGE LM’S LATENT REASONING308

Bayesian state
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Figure 2: Likelihood change during Bayesian
inference under weak-to-strong control. Re-
sults are averaged over ten sampled cases
across five different unseen scenarios.

To quantify the influence of the weak controller dur-309

ing Bayesian inference, we analyze the changes in310

likelihood estimates before and after applying weak-311

to-strong control at each Bayesian step. As shown312

in Fig.2, we sample ten test cases from five datasets313

and average the results. It illustrates the progres-314

sively increasing magnitude of likelihood changes315

as Bayesian inference progresses: (i) At the begin-316

ning of Bayesian inference, when the large LM is317

close to a general initial state, the likelihood changes318

are minimal. This is because the general state aligns319

closely with pretrained world knowledge, requiring320

little correction from ToM-specific behaviours; (ii)321

As the model approaches a more specialized final322

hypothesis, the likelihood estimates are increasingly323

redirected. This occurs because the specialized sce-324

narios demand ToM-specific behaviours, which the325

post-trained small LMs are fine-tuned to capture. The326

post-trained small LMs are specifically fine-tuned to327

the ToM context, enabling them to model human ac-328

tions, goals, beliefs, and environmental states across329

various ToM scenarios. Overall, this analysis finds330

that the weak component progressively redirects331

the latent reasoning of larger models, guiding them toward more accurate ToM predictions332

among diverse scenarios throughout the Bayesian inference process.333

3.7 POST-TRAINING ALIGNS LARGE LM’S LIKELIHOOD ESTIMATION AT THE CONCEPT LEVEL334
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Figure 3: Likelihood estimation across different levels of concept
granularity (rooms, furniture, and items) for base small LM, post-
trained small LM, and base large LM. The Bayesian framework uses
an LM as the policy model to infer actions conditioned on states,
beliefs, and goals, where actions often refer to fine-grained item-level
concepts (e.g., wine, wine glass). It highlights the trend of how each
model allocates likelihood across these concept levels. The ToM
scenario of this case is detailed at §D.7.

Previous experiments335

demonstrated that post-336

training on small LMs337

can progressively guide338

the behaviour of large339

LMs throughout Bayesian340

inference. Now, we further341

focus on how post-trained342

small LMs influence large343

LMs’ likelihood estimation344

at the concept level. Fig.3345

shows the execution of ten346

inference trials with a tem-347

perature of 0.7. The scenario348

involves the agent James349

interacting with objects in350

an apartment, aiming to351

retrieve a bottle of wine. The352

initial state si is pear in the353

basket, no wine, the belief354

bi is wine in the cabinet, the355

goal gi is obtain a bottle of356

wine, and the action ai is357

open basket, walk to cabinet.358

The baseline small LM359

assigns lower likelihoods360

to fine-grained item-level361

concepts (e.g., wine, wine362

glass). After post-training,363
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the small LM significantly shifts its focus toward item-level concepts, aligning its predictions more364

closely with the action space. This adjustment increases the likelihood assigned to critical items like365

wine and wine glass, which are necessary for accurately predicting the agent’s goal. Consequently,366

post-training enables the small LM to better capture fine-grained details of the agent’s behaviour,367

improving ToM predictions. In contrast, the large LM distributes its likelihood more evenly across368

all levels, from rooms to items, reflecting a broad understanding of the environment. While this369

approach captures general spatial awareness—identifying key areas like the kitchen and furniture like370

the cabinet—it lacks the sharp focus on fine-grained details, such as wine and wine glass, which are371

crucial for this task. As a result, the large LM may struggle with tasks that require precise, item-level372

predictions. Overall, post-training helps the small LM focus on item-level concepts, making it more373

effective for this task. While the large LM captures a broader understanding of the environment,374

it benefits from post-trained behaviours that redirect its likelihood estimation toward fine-grained,375

item-level predictions. This finding reflects the role of post-trained small LMs in guiding large376

LMs’ concepts toward more precise ToM reasoning.377

4 RELATED WORK378

Modelling human mental states There are many studies on understanding human behaviour by379

classifying and predicting physical motion patterns (Aggarwal & Ryoo, 2011; Caba Heilbron et al.,380

2015; Choi & Savarese, 2013; Shu et al., 2015). Beyond physical behaviour, some studies focus381

specifically on modeling human mental states, i.e. ToM. ToM models have followed two broad382

approaches: Bayesian methods and end-to-end deep learning. Bayesian ToM models (Baker et al.,383

2017; Jara-Ettinger, 2019; Shu et al., 2021) rely on structured probabilistic frameworks to infer384

mental states from sparse observations of human behaviour. On the other hand, end-to-end models385

such as ToMnet (Rabinowitz et al., 2018; Shu et al., 2021; Sclar et al., 2022) have been trained386

directly on ToM tasks, learning relationships between data patterns without explicit causal models of387

mental states (Sap et al., 2022; Zhi-Xuan et al., 2022; Ullman, 2023). More recently, neurosymbolic388

reasoning systems use the neural models for feature extraction, while also incorporating probabilistic389

models for structured reasoning (Wong et al., 2023; Ying et al., 2024; 2023). They face challenges in390

dynamic and multimodal environments, where both physical and mental state reasoning are required.391

Different from prior studies, our work operates in more complex and dynamic multimodal ToM392

environments, where physical actions and mental state reasoning are intertwined.393

Post-training LLMs for downstream tasks Post-training can project the pre-trained capabilities394

of LMs into downstream tasks such as dialogue generation (Ouyang et al., 2022), human value395

alignment (Bai et al., 2022), and multimodal tasks (OpenAI, 2023b; Liu et al., 2023). Previous396

approaches have also used reweighting techniques to adjust the output predictions of fine-tuned397

LLMs, interpolating the effects of fine-tuning with pre-trained knowledge to achieve human-centered398

and trustworthy text generation (Liu et al., 2021; Mitchell et al., 2024; Liu et al., 2024). More399

recently, LLMs are post-trained as large action/policy models for decision-making in embodied400

agents, allowing them to interact with and explore environments (Kim et al., 2024; Szot et al., 2024;401

Li et al., 2024). Our study differs by framing LMs as policy models in the context of Bayesian inverse402

inference, specifically to model human mental states. We address the limitations of existing ToM403

methods by scaling large policy models at test time using a likelihood redirection strategy, reasoning404

more accurately in complex ToM scenarios. See App.A.1 for additional discussions.405

5 DISCUSSION AND CONCLUSION406

This study investigates scalable Bayesian inference in complex and dynamic ToM environments.407

Existing methods based on normal-sized LMs often fail to provide sufficient reasoning capabilities408

and world knowledge, particularly when used as likelihood estimators in diverse challenging ToM409

scenarios. To overcome these limitations, we propose a method that abstracts and transfers the410

post-trained behavioral patterns of smaller LMs. This approach allows the extensive world knowledge411

of large LMs to be progressively redirected towards ToM reasoning tasks. The weak-to-strong control412

mechanism enables scalable reasoning by using small, post-trained LMs to guide large LMs at test413

time. This approach avoids additional post-training resources for large models, yet allows effective414

test-time scaling of Bayesian ToM reasoning even in dynamic and complex scenarios.415
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A COMPARISON OF METHODOLOGIES FOR TOM INFERENCE588

Table 5: Attributes of each method for ToM task.
method scalability structured reasoning world knowledge multimodality

Bayesian ToM models ✗ ✓ ✗ ✗
end-to-end ToM models ✗ ✗ ✓ ✓
ours ✓ ✓ ✓ ✓

Tab.5 provides a comparative analysis of various methodologies for ToM inference, supplementing the589

discussion in the introduction (§1). Our proposed approach differs significantly from the underlying590

philosophies of Bayesian ToM models and end-to-end models. While Bayesian models emphasize591

structured reasoning guided by principles from cognitive science, they often lack scalability and592

struggle to handle multimodal inputs. In contrast, end-to-end models incorporate extensive world593

knowledge but lack the structured reasoning capabilities essential for accurate ToM inference.594

Our method integrates these attributes: scalability (e.g., up to 405B), structured reasoning, robust595

world knowledge, and the ability to process multimodal inputs. Furthermore, our method demonstrates596

superior scalability, leveraging the stronger reasoning capabilities of large LMs at test time without597

the need for extensive post-training on large models. This allows our approach to efficiently handle598

complex and dynamic ToM scenarios.599

A.1 OUR THEORETICAL RATIONALES IN SCALED TOM INFERENCE AND RELATED WORK600

Our approach is based on a high-level principle derived from Theorem 1 and its proof, which implies601

that smaller models can approximate the scaled gradient of the loss function for larger models. This602

mechanism bypasses direct parameter updates in the larger model, capturing the primary adjustments603

needed for fine-tuning while exploiting the innate generalisation capacity of the larger model. By604

relying on the approximate knowledge provided by the smaller model, our framework reduces605

computational overhead and improves scalability.606

This principle is related with previous studies that have explored reweighting mechanisms for various607

applications (where not necessarily the same as our perspective of scaling or embodied policy model),608

including avoiding toxicity in text generation (Liu et al., 2021), mitigating harmful outputs in aligned609

models (Zhou et al., 2024), adjusting code generation (Mitchell et al., 2024), controlling sentiment610

in text (Han et al., 2024), and reducing hallucination or degeneration in neural text (Chuang et al.,611

2024; Su et al., 2022). These works demonstrate how reweighting can approximate the behaviour612

of large language models, mimicking direct fine-tuning in specific contexts. In contrast, our scaled613

ToM inference extends this principle beyond text generation tasks into the domain of social cognitive614

reasoning. Our framework uses language models to approximate policy behaviours for probability615

estimation in embodied simulators, based on the cognitive science-inspired Bayesian ToM framework.616

Unlike previous work focusing on text-based tasks such as sentiment or factuality control, our method617

addresses the unique challenges of ToM tasks, which require complex reasoning and the integration618

of world knowledge. These tasks involve multimodal scenarios that require understanding of agents’619

beliefs, goals and actions - a domain distinct from the text generation problems addressed in previous620

studies.621

B DATA FLOW AND PROCESSING IN SCALABLE BAYESIAN TOM INFERENCE622

B.1 OVERALL DATA FLOW623

For a detailed depiction of the data flow in our method, refer to Fig.4. The symbolic representation624

tools first convert video and textual descriptions into structured symbolic inputs, which are then625

processed by the Bayesian inference framework. This framework leverages a large LM as a scaled626

policy model, dynamically controlled by task-specific priors provided by a post-trained small LM,627

enabling accurate estimation of action likelihoods in dynamic scenarios.628
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Bayesian Inverse Inference
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…
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Figure 4: The data flow in our scalable Bayesian ToM inference framework. Video scenes and their
corresponding descriptions are first processed by multimodal symbolic representation tools Jin et al.
(2024), generating structured symbolic inputs (states, beliefs, goals). These symbolic representations
are then integrated into the Bayesian inference process, where a large language model (LM) operates
as a scaled policy model to estimate the likelihood of an agent’s actions in dynamic environments.
The right panel demonstrates the latent behavioral changes introduced by the post-trained small LM,
which provides task-specific priors to guide the larger LM via a control mechanism.

B.2 DATA PREPROCESSING: UNIFIED SYMBOLIC REPRESENTATIONS629

To enable Bayesian ToM inference at scale, following established methods mentioned in MMToM (Jin630

et al., 2024; Blukis et al., 2022), multimodal data (video and textual descriptions) are transformed into631

structured symbolic representations. This process involves three key components: visual perception,632

text parsing, and information fusion. Together, these components provide a unified representation633

of states, actions, and hypotheses required for ToM tasks.634

Visual Perception. The visual perception module is designed to process video frames and extract635

symbolic representations of the environment. For each frame, a scene graph is generated to capture636

the spatial and relational properties of objects and agents with the scene graph generator(Blukis et al.,637

2022). Following established methods in MMToM (Jin et al., 2024), voxel maps and 3D bounding638

boxes are utilized to infer object positions, containment relationships, and human poses. For instance,639

objects such as pear and basket are represented by predicates like In(pear, basket). These640

predicates effectively summarize the physical state of the environment, serving as critical inputs for641

subsequent reasoning steps.642

Text Parsing. To extract symbolic representations from textual descriptions, one LLM (e.g., GPT-4)643

processes the text into three distinct components: (i) the initial state of the environment, (ii) human644

actions, and (iii) the question. Each component is translated into symbolic predicates. For example:645

• The state is represented as predicates like In(pear, basket).646

• The action is represented as commands such as walk towards kitchen.647

• The question is decomposed into two hypotheses, each comprising a goal (e.g., pear) and648

a belief (e.g., In(pear, basket) or its negation, ¬In(pear, basket)).649

This symbolic parsing ensures compatibility with the structured reasoning framework.650

Fusion. The fusion module integrates symbolic information from video and text into a unified651

representation. First, predicates extracted from video inputs (e.g., spatial relationships) are aligned652

with those parsed from text to form the initial state. Next, human actions detected from the video653

are matched with text-based actions, and the video sequence is segmented into discrete time steps654

corresponding to these actions. Starting from the initial state, the symbolic representation of the655

environment is updated at each time step based on newly detected predicates. This process results in a656

sequence of symbolic states and actions, which serve as the input for Bayesian inference. Additionally,657

the parsed question provides two hypotheses—goal and belief—that guide the reasoning task.658
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C THEORETICAL RATIONALE ON SCALING BAYESIAN TOM INFERENCE659

Theorem 1. Let πL be a pretrained base model, πE and πN be smaller tunable models where660

πE is fine-tuned on the target task, and π∗ be the directly tuned base model. Suppose the logit661

adjustment ∆s(Xt|x<t) = sπE (Xt|x<t)− sπN (Xt|x<t) approximates the scaled negative gradient662

of the cross-entropy loss for logits, i.e.,663

∆s ≈ −η∇sLCE(sπL , y), (7)

where η is the learning rate. Then, the proxy-tuned model π̃, defined by664

sπ̃(Xt|x<t) = sπL(Xt|x<t) + ∆s(Xt|x<t), (8)

approximates the directly tuned base model π∗. The KL divergence between their output distributions665

has this relation:666

DKL(Pπ∗∥Pπ̃) ≤
η2

2
λmax∥∇sLCE(sπL , y)∥22 +O(η3), (9)

where λmax is the maximum eigenvalue of the Hessian of the cross-entropy loss for the logits.667

Proof. When the learning rate η is small, and the cross-entropy loss LCE is smooth and twice668

differentiable with respect to the logits s, then the logit adjustment ∆s approximates the scaled669

negative gradient of the loss as:670

∆s ≈ −η∇sLCE(sπL , y). (10)
The logits of the directly tuned base model π∗ after fine-tuning are updated using gradient descent:671

sπ∗ = sπL − η∇sLCE(sπL , y) +
η2

2
Hs(∇sLCE(sπL , y)) +O(η3), (11)

where Hs is the Hessian of LCE with respect to the logits. The logits of the proxy-tuned model π̃ are:672

sπ̃ = sπL +∆s. (12)

When ∆s ≈ −η∇sLCE(sπL , y), we have:673

sπ̃ ≈ sπL − η∇sLCE(sπL , y). (13)

The difference in logits between the directly tuned model and the proxy-tuned model is:674

ϵs = sπ∗ − sπ̃. (14)

Then we consider their expressions:675

ϵs ≈
η2

2
Hs(∇sLCE(sπL , y)) +O(η3). (15)

The KL divergence between the output distributions of π∗ and π̃ is constrained using the properties676

of the softmax function and the Lipschitz continuity of the KL divergence:677

DKL(Pπ∗∥Pπ̃) ≤
1

2
∥ϵs∥22. (16)

Using the norm of ϵs:678

∥ϵs∥22 ≈ η4

4
∥Hs(∇sLCE(sπL , y))∥22. (17)

The Hessian’s norm is constrained by its maximum eigenvalue:679

∥Hs(∇sLCE)∥2 ≤ λmax∥∇sLCE(sπL , y)∥2, (18)

which gives:680

∥ϵs∥22 ≤ η4

4
λ2
max∥∇sLCE(sπL , y)∥22. (19)

Finally, the KL divergence is:681

DKL(Pπ∗∥Pπ̃) ≤
η2

2
λmax∥∇sLCE(sπL , y)∥22 +O(η3). (20)

682
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For theoretical implications for practical applicability, this analysis demonstrates that the weak-683

to-strong control mechanism relies on the learned ∆s to approximate the scaled gradient684

−η∇ sL CE(s πL, y) with higher-order terms contributing to the residual error. Importantly, our685

method does not require the small LM (πE ) to strictly approximate the exact gradient of the cross-686

entropy loss for the large model. Instead, the large model (πL) leverages its intrinsic capacity for687

generalization and adaptation, based only on the approximate adjustment ∆s learned by the small688

LM.689

This inherent flexibility allows the large model to harness its pre-trained potential, activated by690

the weak-to-strong control mechanism, to effectively adapt to the current ToM task. Consequently,691

our method achieves stable advanced performance even in novel scenarios where the small LM692

provides only a coarse approximation of the gradient. This significantly reduces the reliance on693

strict fine-tuning and maximizes computational efficiency, ensuring the approach is both scalable and694

practical for the physical VirtualHome environment.695

D EXPERIMENTAL DETAILS696

D.1 BELIEF AND GOAL INFERENCE TYPES AND THEIR CHARACTERISTICS TO LMS697

MMToM apartment scenario questions are split into seven types, assessing ToM reasoning (Jin et al.,698

2024): Belief Inference includes 50% of questions on True Belief (Type 1.1), False Belief (Type 1.2),699

and Long-Term Belief Tracking (Type 1.3). Goal Inference covers the remaining 50% on True Belief700

(Type 2.1), False Belief (Type 2.2), Updated Belief (Type 2.3), and Future Actions (Type 2.4).701

Short-term Belief Inference relies heavily on world knowledge, making it more responsive to en-702

hancements from large LMs’ pretrained capabilities. In contrast, long-term reasoning—both for703

Belief and Goal Inference—focuses on the dynamic nature of the environment and benefits from704

post-training specifically aligned to ToM scenarios.705

D.2 POST-TRAINING CONFIGURATIONS706

Tab.6 summarizes the LoRA post-training configurations applied to Llama-2, Llama-3, and Llama-3.1707

models during policy model training. We carefully adjust α, rank, and other hyperparameters to708

optimize performance across different model sizes. Notably, following prior engineering studies, a709

higher α and rank are used for smaller models (7B and 8B), while reduced values are employed for710

the larger 70B model to ensure efficient adaptation without overfitting.711

D.2.1 FINE-TUNING PROCESS AND RESOURCES712

The fine-tuning process for smaller models (e.g., Llama-3.1-8B) was conducted using a single713

NVIDIA H100 GPU, leveraging BF16 mode to optimize memory usage and maintain GPU memory714

consumption under 60GB. This configuration enabled efficient training of policy models tailored for715

Theory of Mind (ToM) tasks. The fine-tuning process was executed with the following parameters:716

Table 6: LoRA configuration settings for Llama-2, Llama-3, and Llama-3.1 during post-training for
policy models.

configs 7B 8B 70B

bias none none none
fan-in fan-out false false false
inference mode true true true
LoRA initialization true true true
α 32 32 16
dropout 0.05 0.05 0.05
rank 16 16 8
target modules [q-proj, v-proj]
task type causal-lm
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• Batch size: 16 (achieved via a per-device batch size of 4 and gradient accumulation steps of717

4),718

• Learning rate: 5× 10−5,719

• Number of epochs: 3.720

Under this setup, the fine-tuning process required approximately 8 hours to converge.721

D.2.2 DATASET SIZE722

The training pool size N for optimizing Equation 5 was set to 20,000 data points, sourced from the723

MMToM dataset’s training split and our released data sampled from an embodied simulator. For724

tasks involving transfer to new themes, the training dataset size remained consistent at 20,000 data725

points, ensuring a fair and uniform setup across different experiments.726

D.3 COMPARISON OF FINE-TUNING METHODS ON MMTOM TASKS727

To evaluate the relative performance of full fine-tuning (FFT) and LoRA fine-tuning, we conducted728

experiments on two smaller models, GPT2-large (Radford et al., 2019) (774M parameters) and729

Gemma-2B (2B parameters) Team et al. (2024). Each model was fine-tuned using datasets of 20,000730

and 8,000 datapoints, over two epochs, on 8 NVIDIA A100 80GB GPUs. The results are summarised731

in Table 7.

Table 7: Comparison of full fine-tuning (FFT) and LoRA fine-tuning for GPT2-large and Gemma-2B
across different MMToM data sizes.

Fine-tuning Method Data Size Model Size Accuracy (%)

GPT2-large FFT 20,000 774M 63.4
GPT2-large LoRA 20,000 774M 62.4
GPT2-large FFT 8,000 774M 62.8
GPT2-large LoRA 8,000 774M 62.1
Gemma-2B FFT 20,000 2B 68.8
Gemma-2B LoRA 20,000 2B 68.5
Gemma-2B FFT 8,000 2B 67.5
Gemma-2B LoRA 8,000 2B 67.3

732

The results show several important trends. First, when sufficient training data is available (e.g.733

20,000 data points), full fine-tuning consistently outperforms LoRA, with accuracy gains of 0.9-1.2734

percentage points. This suggests that full training is better at exploiting richer data, especially for735

smaller models. Second, the performance gap between FFT and LoRA narrows for larger models.736

For example, Gemma-2B shows minimal differences between FFT and LoRA (0.3 percentage points737

on 20,000 data points), suggesting that larger models are more robust to LoRA’s parameter efficiency738

constraints. Finally, the influence of dataset size is evident: while FFT shows greater improvements739

over LoRA on smaller datasets, LoRA maintains competitive performance in resource-constrained740

scenarios, especially for larger models.741

The results show several important trends. First, when sufficient training data is available (e.g.,742

20,000 data points), full fine-tuning consistently outperforms LoRA, with accuracy gains of 0.9-1.2743

percentage points. This suggests that full training is better at exploiting richer data, especially for744

smaller models. Second, the performance gap between FFT and LoRA narrows for larger models.745

For example, Gemma-2B shows minimal differences between FFT and LoRA (0.3 percentage points746

on 20,000 data points), suggesting that larger models are more robust to LoRA’s parameter efficiency747

constraints. Finally, the influence of dataset size is evident: while FFT shows greater improvements748

over LoRA on smaller datasets, LoRA maintains competitive performance in resource-constrained749

scenarios, especially for larger models. Table 8 further demonstrates the robustness of weak-to-strong750

control when transferring ToM-specific fine-tuning knowledge from a smaller model (Minitron-4B-751

Width) to a larger model (Llama-3.1-70B). The difference in accuracy between FFT and LoRA is752

only 0.15 percentage points when weak-to-strong control is applied, indicating that the mechanism753
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Table 8: Comparison of weak-to-strong control for Llama-3.1-Minitron-4B-Width and Llama-3.1-
70B using different fine-tuning methods on the smaller model.

Fine-tuning Method Data Size Model Size Accuracy (%)

Llama-3.1-Minitron-4B-Width FFT 20,000 4B 77.00
Llama-3.1-Minitron-4B-Width LoRA 20,000 4B 76.90
Weak-to-strong control results:

4B-Width ↬ Llama-3.1-70B FFT-trained 4B 20,000 70B 78.67
4B-Width ↬ Llama-3.1-70B LoRA-trained 4B 20,000 70B 78.52

is highly effective at bridging the gap between fine-tuning methods. Importantly, this highlights754

the ability of the proposed method to scale ToM-specific behaviors efficiently, leveraging both755

computationally intensive FFT and parameter-efficient LoRA.756

Overall, these experiments highlight a trade-off between computational efficiency and performance757

gains. Full fine-tuning achieves modest but consistent improvements, particularly for smaller models758

and larger datasets. However, for larger models, LoRA provides an effective alternative with759

near-parity in performance and significantly reduced computational overhead. Furthermore, our760

weak-to-strong control mechanism demonstrates stability to fine-tuning methods, enabling scalable761

ToM-specific behavior elicitation with high accuracy in larger models.762

D.4 IMPACT OF PRE-TRAINING QUALITY ON MMTOM TASKS763

The differences in performance between the Llama-2, Llama-3 and Llama-3.1 models provide insight764

into the role of pre-training quality, especially at large model scales. Based on the experimental results765

in Table 2 and Table 3, the influence of pre-training quality diminishes primarily due to a ceiling766

effect, but this is only observed when comparing models within the same scale, such as the 70B767

parameter range. However, when comparing smaller models to larger ones, the effect of pre-training768

is more pronounced. For example, moving from Llama-2 7B to Llama-2 70B after ToM-specific769

post-training leads to a 6% improvement in belief inference accuracy (from 76.33% to 82.33%) and a770

2% improvement in goal inference accuracy (from 70% to 72%), highlighting the role of scaling in771

encoding richer representations.772

When examining why pre-training becomes less effective at larger scales, such as comparing Llama-773

2-70B (pre-trained with 2.2 trillion tokens) to Llama-3.1-70B (pre-trained with 15 trillion tokens),774

the results suggest that larger pre-training corpora improve performance primarily for tasks that rely775

heavily on world knowledge: Tasks involving belief inference, which rely on short-term reasoning and776

general world knowledge, show significant improvements due to improved representations learned777

during pre-training. For example, Llama-3.1 achieves a 3.67% improvement in belief inference778

accuracy over Llama-2 (from 83.00% to 85.67%). These tasks benefit from richer pre-training779

datasets that refine the model’s understanding of common human behaviours and object interactions.780

In contrast, goal inference tasks that rely on long-term reasoning, including integrating temporal781

observations and dynamically updating beliefs, show smaller gains from larger pre-training corpora.782

For example, Llama-3.1 improves goal inference accuracy by only 1.67% over Llama-2 (from 72.33%783

to 74.00%). Such tasks are more dependent on the fine-tuning stage and the use of task-specific784

reasoning frameworks, such as weak-to-strong control. These results suggest that for complex785

reasoning tasks, the primary performance bottleneck shifts from pre-training quality to the reasoning786

strategies employed during fine-tuning.787

In summary, pre-training quality has a significant impact on smaller models and tasks that rely heavily788

on world knowledge, such as belief inference. However, as models scale up to 70B parameters, the789

influence of pre-training diminishes due to ceiling effects, and logical reasoning tasks such as goal790

inference rely more on task-specific adaptations during fine-tuning.791

D.5 HOW CONSISTENT IS THEORY OF MIND ACROSS DIFFERENT PHRASINGS?792

As shown in Table 4, the “All” column across different themes (e.g. Apartment, Andersen Fairy Tales,793

etc.), there is noticeable performance variance even within models of the same scale. To quantify this,794
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we measured the range of variance for three configurations: 70B-zero-shot, 70B-post-trained and795

8B ↬ 70B: (1) For 70B-zero-shot, performance ranged from 66.62 to 70.52 across themes, yielding a796

variance range of 3.90; (2) For 70B-post-trained, the variance range of post-trained LMs is 3.47, with797

performance ranging from 71. 86% and 75.33%; (3) For our solution 8B ↬ 70B, the weak-to-strong798

control mechanism further stabilised the performance, reaching only the smallest variance range of799

1.62, with scores between 77.76% and 79.38%.800

These results suggest that specific topics have different effects on ToM skills, but our solution801

demonstrates relative stability to distributional changes caused by topic shifts. For example, 70B-802

zero-shot achieves its highest performance up to 70.52% and its lowest up to 66.62%, highlighting803

the model’s pronounced sensitivity to thematic variations in reasoning trajectories without adaptation.804

In contrast, our proposed solution, 8B ↬ 70B, significantly reduces this gap, demonstrating the805

effectiveness of the weak-to-strong control mechanism in adjusting the ToM behaviour of the larger806

model while preserving the framework’s general reasoning capacity across diverse and scenario-807

agnostic contexts.808

D.6 ON THE ROLE OF THE WEAK-TO-STRONG FRAMEWORK809

The weak-to-strong framework presented in this paper focuses on aligning the larger model’s distribu-810

tion with ToM-specific beliefs and task structures while preserving its general reasoning capabilities,811

rather than primarily relying on the smaller model’s reasoning abilities. This design enables efficient812

transfer of ToM-specific task structures without compromising the broader capabilities of the larger813

model.814

The smaller model (e.g., 4B or 8B parameters) undergoes ToM-specific post-training to encode815

task-relevant priors, such as belief states and potential goals, without requiring advanced independent816

reasoning capabilities. During inference, the smaller model functions as an assistive scaffold,817

conditioning the larger model’s likelihood estimation in a Bayesian framework. This role is formalized818

through the adjustment ratio: πE

πN , where πE is the post-trained smaller model’s task-specific policy,819

and πN is the naive pre-trained smaller model’s policy.820

The larger model (e.g., 70B parameters) integrates this adjustment ratio to refine its likelihood821

estimation dynamically. The overall policy distribution is computed as πL πE

πN , where πL is the policy822

from the larger model. This mechanism allows the larger model to retain its broad reasoning and823

world knowledge, ensuring its capacity for generalization while aligning with ToM-specific task824

structures.825

To validate this framework, we compared the performance of the 8B ↬ 70B model to the 70B-post-826

trained model across five unseen themes, including Andersen Fairy Tales, Ancient Egyptian, and Outer827

Space. As shown in Table 9, the weak-to-strong mechanism achieved consistent improvements across828

all ToM tasks, demonstrating its ability to preserve and transfer the larger model’s general reasoning829

capabilities while aligning with ToM-specific requirements. These results, combined with theoretical

Table 9: Performance of the 8B ↬ 70B model on unseen themes compared to 70B-post-trained and
70B-zero-shot models across all ToM tasks.

Unseen Theme Scale 1.1 1.2 1.3 Avg. 2.1 2.2 2.3 2.4 Avg. All
Andersen Fairy Tales 70B-zero-shot 88.00 73.00 90.00 83.67 70.67 80.00 25.33 66.67 60.67 70.52

70B-post-train 90.00 71.00 93.00 84.67 73.33 61.33 61.33 69.33 66.33 74.19
8B ↬ 70B 92.00 71.00 85.00 82.67 82.67 76.00 68.00 77.33 76.00 78.86

Ancient Egyptian 70B-zero-shot 89.00 71.00 91.00 83.67 74.67 74.67 25.33 60.00 58.67 69.38
70B-post-train 89.00 69.00 96.00 84.67 72.00 76.00 61.33 64.00 68.33 75.33
8B ↬ 70B 90.00 73.00 88.00 83.67 69.33 76.00 73.33 74.67 73.33 77.76

Outer Space 70B-zero-shot 88.00 72.00 92.00 84.00 72.00 64.00 25.33 70.67 58.00 69.38
70B-post-train 91.00 68.00 90.00 83.00 69.33 65.33 61.33 68.00 66.00 75.33
8B ↬ 70B 90.00 70.00 92.00 84.00 73.33 81.33 66.67 78.67 75.00 77.76

830
insights from Section C, demonstrate that the weak-to-strong framework effectively utilizes the831

smaller model as a task-specific lens to guide the larger model’s predictions. This collaborative832

dynamic ensures alignment with ToM-specific task requirements while preserving general reasoning833

capabilities.834
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Table 10: Detailed transfer performance of the Bayesian method with different scaling strategies
(zero-shot, direct post-training, and our weak-to-strong control) from the original apartment scenario
to various unseen environments. All models are based on Llama3.1.

Theme Scale Belief Inference Goal Inference
1.1 1.2 1.3 Avg. 2.1 2.2 2.3 2.4 Avg. All

Andersen fairy tales

70B-zeroshot 88.00 73.00 90.00 83.67 70.67 80.00 25.33 66.67 60.67 70.52
70B-post-train 90.00 71.00 93.00 84.67 73.33 61.33 61.33 69.33 66.33 74.19
8B ↬ 70B 92.00 71.00 85.00 82.67 82.67 76.00 68.00 77.33 76.00 78.86
4B-width ↬ 70B 90.00 73.00 89.00 84.00 80.00 81.33 76.00 64.00 75.33 79.05
4B-depth ↬ 70B 91.00 74.00 90.00 85.00 74.67 73.33 64.00 73.33 71.33 77.19

ancient Egyptian

70B-zeroshot 89.00 71.00 91.00 83.67 74.67 74.67 25.33 60.00 58.67 69.38
70B-post-train 89.00 69.00 96.00 84.67 72.00 76.00 61.33 64.00 68.33 75.33
8B ↬ 70B 90.00 73.00 88.00 83.67 69.33 76.00 73.33 74.67 73.33 77.76
4B-width ↬ 70B 90.00 69.00 90.00 83.00 70.67 80.00 85.33 69.33 76.33 79.19
4B-depth ↬ 70B 91.00 69.00 96.00 85.33 76.00 68.00 69.33 76.00 72.33 77.90

outer space

70B-zeroshot 88.00 72.00 92.00 84.00 72.00 64.00 25.33 70.67 58.00 69.38
70B-post-train 91.00 68.00 90.00 83.00 69.33 65.33 61.33 68.00 66.00 75.33
8B ↬ 70B 90.00 70.00 92.00 84.00 73.33 81.33 66.67 78.67 75.00 77.76
4B-width ↬ 70B 90.00 70.00 88.00 82.67 73.33 76.00 80.00 72.00 75.33 79.19
4B-depth ↬ 70B 90.00 69.00 86.00 81.67 70.67 73.33 68.00 72.00 71.00 77.90

wild west

70B-zeroshot 88.00 72.00 92.00 84.00 72.00 64.00 25.33 70.67 58.00 69.14
70B-post-train 91.00 68.00 90.00 83.00 69.33 65.33 61.33 68.00 66.00 73.29
8B ↬ 70B 90.00 70.00 92.00 84.00 73.33 81.33 66.67 78.67 75.00 78.86
4B-width ↬ 70B 90.00 70.00 88.00 82.67 73.33 76.00 80.00 72.00 75.33 78.48
4B-depth ↬ 70B 90.00 69.00 86.00 81.67 70.67 73.33 68.00 72.00 71.00 75.57

medieval castle

70B-zeroshot 88.00 71.00 89.00 82.67 62.67 74.67 20.00 73.33 57.67 68.38
70B-post-train 85.00 69.00 89.00 81.00 65.33 69.33 57.33 68.00 65.00 71.86
8B ↬ 70B 90.00 72.00 89.00 83.67 72.00 76.00 68.00 84.00 75.00 78.71
4B-width ↬ 70B 92.00 71.00 91.00 84.67 77.33 77.33 69.33 68.00 73.00 78.00
4B-depth ↬ 70B 90.00 70.00 90.00 83.33 58.67 72.00 53.33 72.00 64.00 72.29

D.7 THEORY-OF-MIND CASE STUDY: AGENT JAMES IN APARTMENT INTERACTION835

Fig.5 provides a detailed visual and language-based description of the test case described in experi-836

ment §3.7 of the experiment, where the likelihood estimation behaviour of different LMs is discussed837

across varying concept levels.838

D.8 TOM TRANSFER EFFECT ON UNSEEN SCENARIOS839

Tab.10 supplements the results in experiment §3.5, providing a detailed comparison between the840

baselines and our scalable solution across belief inference and goal inference subtasks in various841

unseen ToM scenarios. Our experimental observations are consistent with those outlined in §3.5:842

(i) The increased capacity of our scalable solution significantly improves the transferability of ToM843

reasoning across dynamic and previously unseen environments. (ii) Our approach demonstrates844

strong potential for downsizing small LMs as controllers, as they successfully capture the post-trained845

behaviours and exhibit robust performance in guiding larger models. (iii) Notably, our method846

can approximate—and in some cases outperform—the results achieved by directly post-training847

large-scale LMs (such as the 70B model). These findings underscore the flexibility and scalability of848

our approach for handling practical ToM tasks in diverse, complex environments.849

D.9 THEMATIC SCENARIO DATA FOR TOM TASK TRANSFER850

As described in §D.8, five new thematic scenarios are used for evaluation: Andersen Fairy Tales,851

Ancient Egyptian, Wild West, Outer Space and Medieval Castle. These environments are not seen852

during the post-training phase of our method and are different from the original apartment setting.853

The transfer to these scenarios demonstrates the generalisability of our solution to dynamically adapt854

to different domains, with each thematic environment presenting unique challenges and contextual855

shifts from the apartment scenario. Fig.6 provides a visual summary of these key differences,856

statistically extracted and mapped to illustrate the transformation of concept and environment across857

these themes. These distinctions are used to evaluate ToM task transfer across different dynamic858

environments.859
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What’s inside the apartment:
The apartment consists of a bedroom, a bathroom, a living room, and a kitchen. In the bedroom, there is a coffee table 
with a plate on it. The bathroom houses a cabinet, which is currently empty. The living room is furnished with a cabinet, a 
coffee table, a sofa, and a desk. The cabinet is filled with two apples, a condiment bottle, three wine glasses, two water 
glasses, a cupcake, two bags of chips, a remote control, and a bottle of wine. Both a water glass and a wine glass are 
placed on the coffee table. The kitchen is equipped with a fridge, an oven, a kitchen table, and a microwave. Inside the 
fridge, there are two apples. The oven contains a salmon. Meanwhile, the microwave houses a salmon and two cupcakes.
Actions taken by James:
James is in the kitchen. He strides towards the stove, opens it, and then shuts it. He then opens the fridge, closes it, 
opens the microwave, and closes it as well. Finally, he walks towards the living room and approaches the cabinet.

State Modelling:
(a) James has been trying to get a bottle of wine. ✅
(b) James has been trying to get an apple. ❌

𝑠!: apples in fridge, no wine

𝑏!: wine in the cabinet

𝑔!: obtain a bottle of wine

𝑎!: open fridge, walk to cabinet

ToM exemplar

Scene: … Inside the bridge, you’ll find a bottle 
of wine…
Actions: … Finally, she moves towards the 
fridge, preparing to open it.

Question: If Elizabeth has been trying to get a 
bottle of wine, which one of the following 
statements is more likely to be true?
(a)Elizabeth thinks that there is a bottle of 

wine inside the fridge.
(b)Elizabeth thinks that there isn’t any bottle of 

wine inside the fridge.

Type 1.1: True belief, short-term Type 1.2: False belief, short-term

Scene: … The living room features a cabinet… The cabinet is 
filled with a bag of chips, a remote controller, a bottle of wine, 
and a water glass. 
Actions: Jennifer is situated in the living room. She heads 
towards the cabinet and is about to open it.

Question: If Jennifer has been trying to get a cupcake, which 
one of the following statements is more likely to be true?
(a)Jennifer thinks that there isn’t a cupcake inside the cabinet.
(b)Jennifer thinks that there is a cupcake inside the 

cabinet.

Type 1.3: Belief tracking, long-term

Scene: … The kitchen is equipped with a fridge, sofa, dishwasher, eight 
cabinets, a stove, a microwave, and a kitchen table…
Actions: … He walks to the seventh kitchen cabinet, opens and closes 
it. He repeats the same action with the sixth kitchen cabinet. 
Subsequently, he moves towards the dishwasher.

Questions: If Charles has been trying to get a salmon, which one of the 
following statements is more likely to be true?
(a)Charles thinks that there is a salmon inside the fridge.
(b)Charles thinks that there isn’t any salmon inside the fridge.B
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Type 2.2: Goal given false belief Type 2.3: Goal given updated belief

Scene: … There is a water glass inside the 
seventh cabinet… The fridge stores two 
cupcakes…
Actions: Mark… advances towards the 
seventh kitchen cabinet.

Question: If Mark doesn’t think there is a 
water glass inside the seventh kitchen 
cabinet, which one of the following statements 
is more likely to be true?
(a)Mark has been trying to get a water glass.
(b)Mark has been trying to get a cupcake.

Scene: … The first cabinet, from left to right, 
contains a bag of chips. 
Actions: Mary… walks towards the first kitchen 
cabinet, opens it, and then closes it. 

Question: Which one of the following 
statements is more likely to be true?
(a)Mary has been trying to get a bag of chips.
(b)Mark has been trying to get a condiment 

bottle.

Type 2.4: Goal given future actions

Scene: … The dishwasher holds a dish bowl… 
The first cabinet from the left holds a bag of chips 
and a wine glass… The fifth cabinet has an 
apple…
Actions: Williams… advances towards the first 
kitchen cabinet, opens it, and then shuts it. He 
then moves towards the fifth kitchen cabinet.

Question: Which one of the following statements 
is more likely to be true?
(a)William has been trying to get a wine glass.
(b)William has been trying to get a dish bowl.

Type 2.1: Goal given true belief

Scene: … The living room is furnished with a 
cabinet, … The cabinet is filled with two 
apples, …, and a bottle of wine. … Inside the 
fridge, there are two apples.
Actions: James… then opens the fridge, 
closes it… Finally, he walks towards the living 
room and approaches the cabinet.

Question: Which one of the following 
statements is more likely to be true?
(a)James has been trying to get a bottle of 

wine.
(b)James has been trying to get an apple.

Figure 5: Theory-of-Mind scenario used in the main experiments §3.7, involving an agent (James)
interacting with objects in an apartment.

Andersen_fairy_tales_mappings = {
"apartment": "cottage",
"bedroom": "chamber",
"bathroom": "washroom",
"living room": "great hall",
"kitchen": "hearth",
"coffeetable": "wooden table",
"desk": "writing desk",
"kitchentable": "feasting table",
"sofa": "wooden bench",
"kitchencabinet": "pantry",
"cabinet": "cupboard",
"bathroomcabinet": "washstand",
"dishwasher": "washing basin",
"fridge": "cooling box",
"microwave": "heating stone",
"stove": "fireplace",
"apple": "apple",
"book": "tome",
"chips": "dried berries",
"condimentbottle": "spice jar",
"cupcake": "honey cake",
"dishbowl": "clay bowl",
"plate": "wooden plate",
"remotecontrol": "magic wand",
"salmon": "smoked fish",
"waterglass": "goblet",
"wine": "mead",
"wineglass": "goblet",
"kitchencabinet": "pantry shelf"}

ancient_Egyptian_mappings = {
"apartment": "palace",
"bedroom": "sleeping chamber",
"bathroom": "bathing room",
"living room": "audience hall",
"kitchen": "kitchen",
"coffeetable": "stone table",
"desk": "writing table",
"kitchentable": "dining table",
"sofa": "cushioned bench",
"kitchencabinet": "storage chest",
"cabinet": "treasure chest",
"bathroomcabinet": "washstand",
"dishwasher": "servant",
"fridge": "cool room",
"microwave": "heating pot",
"stove": "fire pit",
"apple": "fruit",
"book": "papyrus scroll",
"chips": "flatbread",
"condimentbottle": "spice jar",
"cupcake": "honey pastry",
"dishbowl": "clay bowl",
"plate": "ceramic plate",
"remotecontrol": "scepter",
"salmon": "dried fish",
"waterglass": "chalice",
"wine": "wine",
"wineglass": "goblet"}

wild_west_mappings = {
"apartment": "saloon",
"bedroom": "bunk room",
"bathroom": "outhouse",
"living room": "bar area",
"kitchen": "cooking area",
"coffeetable": "wooden table",
"desk": "writing desk",
"kitchentable": "dining table",
"sofa": "wooden bench",
"kitchencabinet": "storage shelf",
"cabinet": "supply cabinet",
"bathroomcabinet": "washstand",
"dishwasher": "wash basin",
"fridge": "icebox",
"microwave": "stove",
"stove": "wood stove",
"apple": "fresh apple",
"book": "ledger",
"chips": "corn chips",
"condimentbottle": "sauce bottle",
"cupcake": "pastry",
"dishbowl": "ceramic bowl",
"plate": "ceramic plate",
"remotecontrol": "telegraph key",
"salmon": "salted fish",
"waterglass": "glass",
"wine": "whiskey",
"wineglass": "shot glass"}

outer_space_mappings = {
"apartment": "quarters",
"bedroom": "sleeping quarters",
"bathroom": "sanitation room",
"living room": "recreation area",
"kitchen": "replicator station",
"coffeetable": "control console",
"desk": "command station",
"kitchentable": "mess table",
"sofa": "lounger",
"kitchencabinet": "storage unit",
"cabinet": "storage unit",
"bathroomcabinet": "hygiene compartment",
"dishwasher": "sterilizer unit",
"fridge": "cold storage",
"microwave": "food synthesizer",
"stove": "heating unit",
"apple": "synthesized apple",
"book": "data pad",
"chips": "nutrition chips",
"condimentbottle": "flavor vial",
"cupcake": "synthesized pastry",
"dishbowl": "serving bowl",
"plate": "serving plate",
"remotecontrol": "control pad",
"salmon": "replicated fish",
"waterglass": "hydration vessel",
"wine": "synthesized wine",
"wineglass": "drinking vessel",
"kitchencabinet": "storage unit"}

medieval_castle_mappings = {
"apartment": "saloon",
"bedroom": "bunk room",
"bathroom": "outhouse",
"living room": "bar area",
"kitchen": "cooking area",
"coffeetable": "wooden table",
"desk": "writing desk",
"kitchentable": "dining table",
"sofa": "wooden bench",
"kitchencabinet": "storage shelf",
"cabinet": "supply cabinet",
"bathroomcabinet": "washstand",
"dishwasher": "wash basin",
"fridge": "icebox",
"microwave": "stove",
"stove": "wood stove",
"apple": "fresh apple",
"book": "ledger",
"chips": "corn chips",
"condimentbottle": "sauce bottle",
"cupcake": "pastry",
"dishbowl": "ceramic bowl",
"plate": "ceramic plate",
"remotecontrol": "telegraph key",
"salmon": "salted fish",
"waterglass": "glass",
"wine": "whiskey",
"wineglass": "shot glass"}

Figure 6: Primary changes between the original apartment scenario and the five transferred thematic
environments used in our ToM experiments.
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