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ABSTRACT

Recent work shows Tree-Sliced Optimal Transport to be an efficient and more
expressive alternative to Sliced Wasserstein (SW), improving downstream perfor-
mance. Tree-sliced metrics compare probability distributions by projecting mea-
sures onto tree metric spaces; a central example is the Tree-Sliced Wasserstein
(TSW) distance, which applies the 1-Wasserstein metric after projection. How-
ever, computing tree-based p-Wasserstein for general p is costly, largely confining
practical use to p = 1. This restriction is a significant bottleneck, as higher-order
metrics (p > 1) are preferred in gradient-based learning for their more favorable
optimization landscapes. In this work, we revisit Sobolev integral probability met-
rics (IPM) on trees to obtain a practical generalization of TSW. Building on the
insight that a suitably regularized Sobolev IPM admits a closed-form expression,
we introduce TS-Sobolev, a tree-sliced metric that aggregates regularized Sobolev
IPMs over random tree systems and remains tractable for all p > 1; for p > 1,
TS-Sobolev has the same computational complexity as TSW at p = 1. Notably,
at p = 1 it recovers TSW exactly. Consequently, TS-Sobolev serves as a drop-
in replacement for TSW in practical applications, with an additional flexibility
in changing p. Furthermore, we extend this framework to define a correspond-
ing metric for probability measures on hyperspheres. Experiments on Euclidean
and spherical datasets show that TS-Sobolev and its spherical variant improve
downstream performance in gradient flows, self-supervised learning, generative
modeling, and text topic modeling over recent SW and TSW variants.

1 INTRODUCTION

Comparing probability measures is a foundational problem in numerous scientific fields where data
are often represented as distributions. For example, documents in natural language processing can
be treated as distributions of words or topics (Sparck Jones, 1972; Kusner et al., 2015; Yurochkin
et al., 2019), and 3D shapes in computer vision are commonly modeled as point clouds, which
are discrete distributions of data points (Achlioptas et al., 2018; Hua et al., 2018; Wu et al., 2019).
Optimal Transport (OT) has emerged as a powerful framework for this purpose (Villani, 2008; Peyré
et al., 2019), as it defines a metric between distributions that inherently respects their underlying
geometry. This key advantage has driven its broad adoption in fields like machine learning (Bunne
et al., 2022; Fan et al., 2022; Takezawa et al., 2022), data valuation (Just et al., 2023; Kessler et al.,
2025), multimodal data analysis (Park et al., 2024; Luong et al., 2024), statistics (Mena & Niles-
Weed, 2019; Wang et al., 2022; Liu et al., 2022; Nietert et al., 2022), and computer vision (Lavenant
et al., 2018; Saleh et al., 2022). However, a significant drawback of Optimal Transport (OT) is its
computational complexity. For discrete measures supported by n samples, standard algorithms scale
as O(n3logn) (Peyré et al., 2019), rendering OT impractical for large datasets.

Sliced Optimal Transport. The substantial computational burden of Optimal Transport (OT) led
to the development of the Sliced Wasserstein (SW) distance as a powerful and efficient approxima-
tion (Rabin et al., 2011; Bonneel et al., 2015; Nguyen, 2025). At its core, SW simplifies the problem
by leveraging the closed-form solution of one-dimensional OT. It projects high-dimensional proba-
bility measures onto random one-dimensional subspaces, computes the simple transport cost in each
“slice”, and averages these costs. This procedure reduces the computational complexity to that of
sorting, O(nlogn) (Peyré et al., 2019), while faithfully preserving important statistical and topo-
logical properties of the original metric (Nadjahi et al., 2020; Bayraktar & Guo, 2021; Goldfeld &
Greenewald, 2021). The success of this paradigm has inspired a broad family of extensions, includ-
ing those using structured projections (Kolouri et al., 2019; Deshpande et al., 2019; Nguyen et al.,
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2020; Ohana et al., 2023; Nguyen et al., 2023) and adaptations for non-Euclidean geometries such
as spheres (Bonet et al., 2022; Quellmalz et al., 2023) and hyperbolic space (Bonet et al., 2023b).

Tree-Sliced Optimal Transport. A key limitation of classical SW, however, is that one-dimensional
projections can be insufficient for capturing complex geometric structures inherent in high-
dimensional data. This has spurred research into alternative slicing domains beyond simple lines,
with explorations across various metric spaces like Euclidean subspaces (Alvarez-Melis et al., 2018;
Paty & Cuturi, 2019; Niles-Weed & Rigollet, 2022), graphs (Le et al., 2022), and non-Euclidean
manifolds (Tran et al., 2024a; Bonet et al., 2023a; Lin et al., 2025). Among these, methods based on
tree metrics have emerged as a particularly effective approach. The Tree-Sliced Wasserstein (TSW)
distance, introduced by Tran et al. (2024b), capitalizes on closed-form OT solutions on tree metric
spaces (Le et al., 2019; Indyk & Thaper, 2003; Indyk, 2001). TSW thus achieves a compelling
balance: it maintains the computational tractability of SW while more faithfully representing the
intrinsic structure of the data. This framework has recently been extended to other domains, for
instance, to compare measures on the sphere (Tran et al., 2025b).

Sobolev Integral Probability Metric. The computational efficiency of the Tree-Sliced Wasser-
stein (TSW) distance is a direct result of the closed-form solution for the 1-Wasserstein distance
on tree metric spaces (Le et al., 2019). A significant limitation of this framework, however, is that
this analytical solution does not extend to orders p > 1, which restricts the applicability of TSW.
This restriction is problematic because higher-order metrics are often preferred in gradient-based
learning tasks. Specifically, p-Wasserstein with p > 1 offers strict convexity (Santambrogio, 2015;
Villani, 2003) and smoother gradients compared to the p = 1 case, properties that are known to fa-
cilitate more stable and efficient optimization (Peyré et al., 2019). To address this gap, we leverage
the framework of Integral Probability Metrics (IPMs), a powerful class of distances for comparing
probability measures (Miiller, 1997). IPMs function by finding a critic function from a predefined
class that maximally discriminates between two distributions, a versatile principle with numerous
applications in machine learning and statistics (Sriperumbudur et al., 2009; Gretton et al., 2012;
Liang, 2019; Uppal et al., 2019; 2020; Nadjahi et al., 2020; Kolouri et al., 2020). A theoretically
important instance is the Sobolev IPM, which constrains the critic function to a unit ball defined by
the Sobolev norm (Adams & Fournier, 2003). This specific metric has been instrumental in theo-
retical analyses, such as studying convergence rates and error bounds in generative models (Liang,
2017; 2021; Singh et al., 2018). Despite its theoretical appeal, the standard Sobolev IPM lacks a
closed-form expression, which has historically limited its practical use. A recent breakthrough by
Le et al. (2025) overcomes this challenge by introducing a regularized Sobolev IPM for probability
measures supported on a tree. This novel formulation yields a closed-form solution that is both
computationally efficient and valid for any order p > 1.

Contributions. Motivated by the expanding Tree-Sliced Wasserstein (TSW) framework and recent
advances in Sobolev IPMs on tree metric spaces (Le et al., 2025), this paper introduces a novel
family of tree-sliced distances. Our primary contribution is a scalable generalization of TSW for
probability measures in Euclidean spaces and on the sphere. By leveraging the closed-form solution
of the regularized Sobolev IPM, our proposed distance is efficiently computable for any order p > 1,
overcoming a key limitation of previous TSW variants and leveraging the optimization advantages
associated with higher-order metrics. The the paper is organized as follows:

1. In Section 2, we establish the building blocks for our method. We review the theory of
tree metric spaces and detail the closed-form solution for the regularized Sobolev IPM on
trees. We also revisit the Tree Systems framework and the Radon transform that underpin
the Tree-Sliced Wasserstein (TSW) distance.

2. In Section 3, we introduce the Tree-Sliced Sobolev IPM (TS-Sobolev) for measures on Eu-
clidean spaces and the Spherical Tree-Sliced Sobolev IPM (STS-Sobolev) for measures on
the sphere. We establish their metric properties, prove they provide a scalable generaliza-
tion of TSW for any order p > 1, and analyze their computational complexity.

3. Section 4 presents experiments on Euclidean and spherical data that validate our method’s
practical effectiveness and efficiency, followed by our conclusion in Section 5.

Supplementary materials, including detailed theoretical background, full proofs, and extended ex-
perimental results (setups, tables, and figures), are available in the Appendix.
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2 BACKGROUND ON SOBOLEV INTEGRAL PROBABILITY METRIC AND
TREE-SLICING

This section covers the two foundational concepts behind our method. We first review the Sobolev
Integral Probability Metric (Sobolev IPM) and its efficient closed-form solution on tree metric
spaces. We then describe the tree-slicing framework that projects measures from Euclidean space
onto these tree metric spaces, thereby enabling the use of the efficient Sobolev IPM.

2.1 SOBOLEV INTEGRAL PROBABILITY METRIC

Tree Metric Spaces. A tree metric space (T, dr) is
a continuous space built from a tree 7 = (V, E) with
vertices V' C R? and edges E. Each edge e € F
is assigned a non-negative length w,.. Crucially, the
space 7 includes not only the vertices V' but also
every point along the edges F. Its tree metric, de-
noted d7, is the unique path distance between any
two points on the tree (Semple & Steel, 2003b; Le
etal.,2019). The unique path between points z andy Figure 1: An illustration of a tree metric
is denoted [z, y]. This structure gives rise to a canon-  space. The tree, rooted at r, consists of nodes
ical Borel length measure, w, where the measure of ~; and edges e; with weights w,. A probabil-
any path equals its length: w([z,y]) = d7(z,y). Fi- ity distribution on the tree then assigns mass
nally, the subtree rooted at x, denoted A(z), is the to nodes. The subtree A(x) is the collection
set of all points y whose path from the root » must of all points lying along the edges in the sub-
pass through 2, i.e., A(z) = {y € T : 2 € [r,y]}. tree rooted at . For example, A(r) includes
the entire tree, A(x1) (red) includes all points
on edges es e3, and e4, and A(x9) (blue) in-
cludes all points on edges e, €11, and e15.

Comparing Measures on Trees. A central task is to
define a distance between probability measures on a
tree 7. Let P(T) denote the collection of all prob-
ability measures on 7 (i.e., those with a total mass of 1). For any two measures p,v € P(T), we
write P(u, v) for the set of all valid couplings 7 between them. A popular framework for defining a
distance is the p-Wasserstein distance:

W, (u,v) = inf / dr(z,y)Pdn(z,y) | . (D
T€P (V) JTxT

While powerful, computing this distance is generally expensive. However, for the special case of
p = 1, the distance on a tree admits a fast, closed-form solution (Le et al., 2019):

Wi () = /T (A (@) — v(A())] w(dz). @)

Crucially, for p > 1, no similar closed-form solution is known to exist. This computational bottle-
neck for higher-order Wasserstein distances on trees motivates our exploration of the Sobolev IPM,
which provides a tractable alternative for all p > 1.

Sobolev Integral Probability Metric. The Sobolev Integral Probability Metric (IPM) is a distance
between measures on a tree 7, defined using concepts from functional analysis. The metric is
situated within the Sobolev space W1P(T ,w), which consists of functions that have well-defined
tree derivatives. This space is equipped with a Sobolev norm, which in turn defines a unit ball of
functions, denoted B(p’). For a rigorous treatment of these concepts, we refer to Appendix B. The
Sobolev IPM is formally defined by finding the maximum discrepancy between two measures, u
and v, as evaluated by a critic function f constrained to this unit ball:

Sp(p,v) == sup
feBp’)

3)

/T (@) utde) /T 7(y) v(dy)

where p’ is the conjugate of p (where p’ € [1, 00| satisfies 1/p + 1/p’ = 1;if p = 1, then p’ = 00).

Regularized Sobolev Integral Probability Metric. The computational intractability of the standard
form in Equation (3) motivates the use of a Regularized Sobolev Integral Probability Metric (IPM),
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which admits a direct closed-form solution (Le et al., 2025). For continuous measures over the tree
and for any order 1 < p < o0, this solution is given by:

Splpv)? = /Tﬁ)(fﬂ)l_p u(A(2)) = v(A(@)]" w(d), )
where w(x) := 1 + w(A(z)) is a weight function.

For the practical case of discrete measures supported on the tree’s nodes V, this integral simplifies
to an efficiently computable sum over the tree’s edges E:

Sp(p ) = Belulye) = v(ve)l” (5)
ecE

where 7. := {y € T : e C [r,y]} is the set of points whose path from the root contains edge e. The
coefficient S is a pre-computable scalar, making the overall computation efficient:

log <1+1+7“:’j(7)> ifp=2,
Be = gfp _ 2—p (6)
(-t le) 0 = (1
—p

Analyzing Equation (4) shows that p > 1 yields gradients that scale with the error magnitude
|ie(A(x)) — v(A(x))|, unlike the constant gradients associated with p = 1, thereby facilitating
smoother optimization consistent with established properties of p-Wasserstein (Santambrogio, 2015;
Peyré et al., 2019). Furthermore, the term (x)! =P down-weights global gradients near the root, al-
lowing the optimization to focus on refining fine-grained local structures at the leaves. This weight-
ing constitutes a unique optimization advantage of TS-Sobolev over standard p-Wasserstein metrics.
We provide a comprehensive analysis of these optimization advantages in Appendix E.8.

2.2 THE TREE-SLICING FRAMEWORK

While the Regularized Sobolev IPM defined in Section 2.1 offers a powerful metric for measures
supported on trees, data in machine learning typically resides in Euclidean space R?. To bridge this
gap, we utilize the Tree-Slicing framework (Tran et al., 2024b). This framework provides a mecha-
nism to project probability measures from R? onto continuous tree metric spaces, thereby allowing
us to leverage the closed-form solutions of tree-based metrics for high-dimensional Euclidean data.

Tree System. A line in R? is an element of R? x S, and a system of k lines is an element of
(R4 x S=1)*, We denote a system of lines by £ = {I;}¥_,, where each line /; is defined by a source
point z; € R? and a direction vector §; € S%~!, with parameterization z; + t 6, for t € R.

A tree system is a system of lines endowed with an additional tree structure. To highlight this
structure, we write T = {li}i?:l. The ground set of this system, denoted 7, is the set of all points
on all lines in 7, formally defined as 7 = {(x,1;) € R x T | # = w; + t,0; for some t, € R}.
This ground set forms a continuous tree metric space as defined in Section 2.1. The space of tree
systems sharing a common tree structure is denoted by Tﬁ (or simply T), equipped with a probability
distribution o induced by a random sampling procedure over the lines.

Radon Transform on Tree Systems. Let C(R? x ']I‘g, Aj_1) be the set of continuous splitting maps
from R? x T{ to the (k — 1)-simplex Ay_;. For f € L'(R?), define R%-f: T — R by

o) = [ ) al Tho(t ~ (y - i 60) dy. )
R
The operator
R f e (RFf) ey
is called the Radon Transform on Tree Systems. This operator is injective.

Tree Sliced Wasserstein distance. The Tree-Sliced Wasserstein (TSW) distance is a metric between
probability measures, defined as the expected 1-Wasserstein distance between the measures after
projection onto a tree system. Recent variants include the Tree-Sliced Wasserstein Distance on
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Systems of Lines (TSW-SL) (Tran et al., 2024b) and its generalization, the Distance-based Tree-
Sliced Wasserstein Distance (Db-TSW) (Tran et al., 2025a), which we refer to collectively as TSW
in this paper. For two probability measures 1, € P(R?) with corresponding densities f,,, f,, the
TSW distance is formally defined as:

TSW (1, v) = /T Wi (RS, RES,) do(T). 8)

TSW is a valid metric on P(R¢) and can be efficiently approximated via Monte Carlo sampling,
thanks to the closed-form solution for the 1-Wasserstein distance on trees Equation (2).

It is crucial to distinguish the variants from earlier work that also uses the TSW name (Le et al.,
2019; Sato et al., 2020; Yamada et al., 2022; Takezawa et al., 2022). Those methods were primarily
designed for static-support measures where the data points are fixed. In contrast, the TSW-SL
and Db-TSW formulations are specifically built for dynamic-support measures, where the points
change during optimization. Our goal is to leverage this powerful tree-slicing framework to develop
a new Sobolev IPM-based metric suitable for these dynamic tasks that mitigates the computational
bottleneck of the p-Wasserstein distance on trees.

3 TREE-SLICED SOBOLEV IPM

In this section, we propose the Tree-Sliced Sobolev IPM (TS-Sobolev) framework for probability
distributions on Euclidean spaces and the sphere. We establish its theoretical guarantees, clarify its
connections to existing metrics, and characterize its computational complexity.

3.1 TREE-SLICED SOBOLEV IPM

For probability measures i, v € P(R?) with respective densities f,, and f,, the Tree-Sliced Sobolev
IPM is defined as the average regularized Sobolev IPM between p and v induced by tree-metric
projections. Given a tree system 7 € T¢ and a splitting map o € C(R? x T¢, Aj._1), the Radon
transform R maps f,,, f, to densities RS f,,, RS f, on T, inducing measures 71, vy € P(T). We
then evaluate the regularized Sobolev IPM Sp(,uT, vr) as in Equation (5) and define the resulting
distance as the expectation of this quantity over T with respect to the sampling distribution o.

Definition 3.1 (Tree-Sliced Sobolev IPM). The Tree-Sliced Sobolev IPM of order p € [1,00),
denoted as TS-Sobolev,, between p, v € P(RY) is defined by:

1
p

TS-Sobolev,, (1, v) = ( /T S, (ur, vr)? do(T)) . ©)

3.2 PROPERTIES OF TREE-SLICED SOBOLEV IPM

Metricity of TS-Sobolev,. We recall the Euclidean group E(d) and state that E(d)-invariance of
the splitting map ensures that the Tree—Sliced Sobolev IPM defines a metric. Let R? be equipped
with the Euclidean norm || - ||2. The Euclidean group E(d) is the group of all distance—preserving
transformations of R?; it is the semidirect product T(d) x O(d) of the translation group T(d) =
{x = x+v: v € RY} and the orthogonal group O(d) = {Q € R¥*? . QTQ = I;}. Every
g € E(d) can be written as g = (Q,v) with @ € O(d) and v € R%, acting on y € R? by
gy = Qu + v. This action extends to the space of tree systems Tg by g7 = {gl;}%_; for lines
represented as (z;,0;), we set gl; := (Qx; + v, Q0;), which preserves the underlying tree structure.
A splitting map o € C(R? x T¢, Ay_1) is E(d)—invariant if

algz, gT) = a(z,T) forallz € R, T € TY, and g € E(d). (10)

Invariance under the Euclidean group, E(d), is a desirable property for distances between proba-
bility measures on R?. Standard metrics like the 2-Wasserstein and Sliced p-Wasserstein distances
possess this E(d)-invariance. However, for the Tree-Sliced Sobolev IPM, this property is even more
fundamental: it guarantees that TS-Sobolev is a valid metric on P(R%).

Theorem 3.2. TS-Sobolev is an E(d)-invariant metric on P(R%).
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The proof for Theorem 3.2 is presented in Appendix D.1.

Connections to TSW. The Tree-Sliced Sobolev IPM serves as a natural generalization of the Tree-
Sliced Wasserstein (TSW) distance. Notably, for the order p = 1, the TS-Sobolev IPM recovers the
TSW distance exactly. For any order p € [1, 00), it is upper-bounded by the TSW distance.

Theorem 3.3. For any j,v € P(RY) and p € [1,00): TS-Sobolev,, (11, V)P < TSW(u,v), where
equality holds for, i.e., TS-Sobolevy (u, V) = TSW(u, v).

The proof for Theorem 3.3 appear in Appendix D.2.

Remark 3.4. We note that the values of TS-Sobolev, and TSW depends on the choice of tree system
(T), sampling distribution (o), and splitting map («). In this paper, we utilize the specific choices
established in the Distance-based TSW (Db-TSW) framework (Tran et al., 2025a). Therefore, the
TSW we analyze is precisely Db-TSW. To maintain readability, these dependencies are suppressed in
the notation for TS-Sobolev,,, with a detailed description of the framework available in Appendix C.

Computation of Tree-Sliced Sobolev IPM. The intractable integral in Equation (9) is approxi-
mated using a Monte Carlo estimate:

L
— 1 A
TS-Sobolev,, (u, v) = (L E Sp(pr, 1/7;)p> : (11)
i=1

where we sample L tree systems {7;}%_; from a distribution o. Let y and v be discrete measures
with n and m support points, respectively, and assume n >> m. The overall computational complex-
ity is O(Lknlogn + Lkdn), where k is the number of lines per tree and d is the data dimension.
This is identical to the complexity of TSW variants like Db-TSW (Tran et al., 2025a), as the extra
step of computing the coefficients 3. per Equation (6) adds a negligible O(Lkn) cost.

A key advantage is that this complexity holds for any order p € [1, 00), resolving the computational
intractability of higher-order TSW. Empirically, the runtime of TS-Sobolev is nearly identical to that
of the first-order Db-TSW, confirming its efficiency. A runtime analysis is provided in Appendix F.1.

The practical application of TS-Sobolev depends on its hyperparameters: the number of trees L,
lines per tree k, and the order p. Prior work (Tran et al., 2025a) shows that using multiple lines
(k > 1) is crucial for capturing complex data topology. This creates a natural trade-off between
increasing k for expressiveness and increasing L to improve the precision of the Monte Carlo esti-
mate by reducing its variance. The convergence rate of this estimate with respect to L is formalized
in Theorem 3.5. A detailed sensitivity analysis for the tree parameters L and k is presented in
Appendix F.6, while the influence of the order p is analyzed in Appendix F.7.

Theorem 3.5. The approximation error of TS-Sobolev decreases at a rate of O(L~1/2).

We defer the proof for Theorem 3.5 to Appendix D.3.

3.3 EXTENSION TO THE SPHERICAL SETTING

The TS-Sobolev,, framework extends to measures on the hypersphere, 1, v € P(S%), by using
spherical tree systems (Tran et al., 2025b). We provide a brief derivation of the resulting metric
below, deferring a complete treatment to Appendix E. The core idea is to use the spherical Radon
transform on spherical tree systems to map the densities of p and v onto a given tree 7, which
induces the projected measures p7 and vy

Definition 3.6 (Spherical Tree-Sliced Sobolev IPM). The Spherical Tree-Sliced Sobolev IPM of
order p € [1, 00), denoted as STS-Sobolev,,, between y, v € P(S?) is defined by

STS-Sobolev,, (u, v) = </1r S, (ur, vr)? da(T)) ’ . (12)

A detailed derivation of STS-Sobolev,, along with a full analysis of its properties, is provided in
Appendices E.2 and E.3, respectively. Notably, for the p = 1 case, STS-Sobolev; recovers the
Spherical Tree-Sliced Wasserstein (STSW) distance exactly, as our implementation adopts the spe-
cific splitting map and tree sampling methodology from Tran et al. (2025b).
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Table 1: Average Wasserstein distance (multiplied by 10~! for Gaussian 30d) between source and
target distributions of 10 runs. All methods use 100 projecting directions.

8 Gaussians Gaussian 30d

Methods Iteration Iteration

500 1000 1500 2000 2500 500 1000 1500 2000 2500
SW 397e-2 6.48e-3 1.08e-3 1.09e-3 1.08e-3 293 287 280 272 264
MaxSW 4.66e-2 3.53e-2 2.74e-2 2.33e-2 2.08e-2 224 253 268 268 264
SWGG 7.57e-3  7.00e-5 5.80e-5 5.68e-5 5.7le-5 272 274 274 274 274
LCVSW 7.50e-4 5.42e-4 5.53e4 558e-4 543e4 285 271 258 245 233
TSW-SL 1.92e-2  7.42e-4 1.34e-6 1.33e-6 1.17¢e-6 248 231 216 2.04 193
Db-TSW 8.18e-5 2.51e-6 2.26e-6 224e-6 2.50e-6 244 224 207 190 1.78

TS-Sobolevy o  2.12e-2  1.95e-6 1.25e-6 1.08e-6 8.88e-7 2.38 210 1.85 1.62 1.40
TS-Sobolevy s 2.93e-2 1.17e-3  3.28e-6 2.27e-6 2.03e-6 244 225 2.02 177 151
TS-Sobolev, 3.05e-2 8.69e-3 1.43e-4 4.54e-6 3.50e-6 3.21 349 358 3.61 3.68

4 EXPERIMENTAL RESULTS

In this section, we empirically evaluate our proposed methods across a diverse range of applications
to demonstrate their effectiveness in both Euclidean and spherical settings. For the Euclidean setting,
we conduct experiments on gradient flows and generative modeling with diffusion models. For the
spherical setting, our evaluation focuses on a self-supervised learning benchmark. Additionally, we
assess our methods on a topic modeling task, for which we provide results in both domains.

4.1 EVALUATION ON EUCLIDEAN DATA

Gradient Flow on R?. In this experiment, we apply our methods to a gradient flow task, which seeks
to find a path of distributions y; that minimizes a distance D between an initial source 119 = N (0, )
and a fixed target v. The evolution of this path is governed by the update rule O;piy = —VD(put, V),
where p; is the distribution at time ¢ and VD(puy, v) is the corresponding distance gradient. Our
evaluation is conducted on the 8 Gaussians and Gaussian 30d datasets, where we benchmark our
TS-Sobolev variants (p € {1.2,1.5,2}) against a comprehensive suite of baselines. These include
Sliced-Wasserstein (SW) methods—such as vanilla SW (Bonneel et al., 2015), MaxSW (Deshpande
et al., 2019), LCVSW (Nguyen & Ho, 2023), and SWGG (Mabhey et al., 2023)—as well as recent
Tree-Sliced (TSW) distances like TSW-SL (Tran et al., 2024b), Db-TSW, and Db-TSW (Tran et al.,
2025a). We assess performance by measuring the Wasserstein distance to the target at intervals up
to 2500 iterations, with detailed results available in Table 1.

The results demonstrate that our TS-Sobolev,, methods (p € {1.2,1.5,2}) achieve better conver-
gence compared to baselines. While some SW variants perform well initially, our methods consis-
tently improve and ultimately outperform their Wasserstein-based TSW counterparts. For example,
on the 8 Gaussians dataset, TS-Sobolev; 5 achieves a final distance of 8.88 x 1077, outperform-
ing the strongest baseline, Db-TSW (2.50 x 10~%). Similarly, on the Gaussian 30d dataset, TS-
Sobolev; o has the best final distance of 1.40, surpassing both TSW-SL (1.93) and Db-TSW (1.78).

Diffusion Models. This experiment applies our proposed TS-Sobolev distance to the task of train-
ing Denoising Diffusion Generative Adversarial Networks (DDGANSs) (Xiao et al., 2021) for un-
conditional image synthesis. Following the approach of Nguyen et al. (2024), we integrate our
distance into the Augmented Generalized Mini-batch Energy (AGME) loss function. We bench-
mark TS-Sobolev against several Sliced and Tree-Sliced Wasserstein-based DDGAN variants, with
full experimental details available in Appendix F.3.

The results, summarized in Table 2, show that our methods yield notable improvements in sample
quality. Notably, both TS-Sobolev; 5-DD and TS-Sobolevs-DD surpass the strongest baseline, Db-
TSW-DD+ (Tran et al., 2025a), reducing the Fréchet Inception Distance (FID) by 0.228 and 0.253,
respectively. This gain in sample quality is achieved without a trade-off in efficiency, as our methods
have comparable training times to other Tree-Sliced variants.
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Table 2: A comparison of DDGAN mod- Table 3: Accuracy of the linear classifier on en-
els on the CIFAR-10 unconditional genera- coded (E) features and projected (P) features on S°.
tion benchmark, showing Fréchet Inception

Distance (FID) scores and per-epoch training Method Acc. E(%) T  Acc. P(%) |
times averaged over 10 runs.

Hypersphere 79.76 74.57
Model FID | Time/Epoch (s) | SimCLR 79.69 72.78
DDGAN (Xiao et al., 2021) 3.64 7
SW-DD (Nguyen et al., 2024) 2.90 74 SSW 7046 6452
DSW-DD (Nguyen et al., 2024) 2.88 498 S3W 78.54 73.84
EBSW-DD (Nguyen et al., 2024) 2.87 76
RPSW-DD (Nguzen e: al., 2024) 2.82 76 RI-S3W (5) 79.97 74.27
IWRPSW-DD (Nguyen et al., 2024) 270 77 ARI-S3W (5) 79.92 75.07
TSW-SL-DD (Tran et al., 2024b) 2.83 80
Db-TSW-DD (Tran et al., 2025a) 2.60 84 STSW 80.53 76.78
Db-TSW-DD™ (Tran et al., 2025a) 253 85 STS-Sobolev; 5 79.88 76.07
TS-Sobolevy.5-DD (ours) 2.302 £ 0.004 84 STS-SObOlCVg 80.6 77.65
TS-Sobolev2-DD (ours) 2.277 + 0.003 84

Table 4: Log of the Wasserstein distance between source and target distributions over 10 runs on a
mixture of 12 vMFs.

Methods Epoch
50 100 150 200 250

SSW -2.439 +£0.053 -2.787 £0.040 -2.909 +£0.041 -2.979 +£0.037 -3.014 +0.034
S3W -2.022 £0.036  -2.211 £0.045 -2.284 £0.056 -2.290 4 0.054 -2.289 £ 0.064
RI-S3W (1) -2.094 +£0.028 -2.488 +£0.028 -2.693 +0.025 -2.814 +£0.029 -2.900 £ 0.026
RI-S3W (5) -2433 £0.029 -2.790 £0.023 -2.939 +£0.019 -3.032 +£0.026 -3.093 £+ 0.021
ARI-S3W (30) -2.612 £0.043  -2.942 £0.029 -3.090 +0.035 -3.189 +0.039 -3.270 + 0.047
LSSOT -2.078 £0.030 -2.444 +£0.023 -2.546 £0.023 -2.582 £0.023 -2.598 £ 0.021
STSW -2.693 £0.030 -3.171 £0.041 -3.376 2 0.031 -3.488 £0.049 -3.549 4+ 0.072

STS-Sobolevy s -3.099 £0.032 -3.324 4+ 0.050 -3.427 +0.055 -3.499 £0.064 -3.540 £ 0.078
STS-Sobolevs -3.081 £0.026  -3.376 + 0.058 -3.513 +0.094 -3.578 £0.108 -3.616 £ 0.123

4.2 EVALUATION ON SPHERICAL DATA

Self-Supervised Learning (SSL). Previous work by (Wang & Isola, 2020) demonstrated that the
contrastive objective can be separated into two key components: an alignment loss, which ensures
that embeddings of similar inputs remain close, and a uniformity loss, which prevents collapse by
encouraging the representations to distribute more evenly. Building on the idea of (Bonet et al.,
2022), we substitute the Gaussian kernel used in the uniformity term with our proposed method.

L= % > |zt - 2P ||§ +% (STS-Sobolev,, (2, v) + STS-Sobolev, (=7, 1))
i=1

Alignment loss Uniformity loss

where v = U(S?) represents the uniform distribution on the unit sphere S%, 24, 25 ¢ R**(d+1)
denote the embeddings of two augmented views of the same sample and A > 0 serves as a weight
to balance the alignment and uniformity terms. Following the approach in Bonet et al. (2022); Tran
et al. (2024a; 2025b), we apply this objective to pretrain a ResNet18 He et al. (2016) encoder on
CIFAR-10 Krizhevsky et al. (2009) for 200 epochs. After pretraining, a linear classifier is trained
on top of the frozen encoder to evaluate learned features.

As shown in Table 3, our proposed STS-Sobolev variants demonstrate superior performance com-
pared to both tree-sliced and standard sliced baselines. STS-Sobolevs achieves the best overall
accuracy (80.6% Encoded / 77.65% Projected), outperforming its direct tree-based counterpart,
STSW (Tran et al., 2025b). Furthermore, our method significantly improves upon standard spherical
slicing approaches, such as SSW (Bonet et al., 2022) and S3W variants (Tran et al., 2024a).
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Table 5: Average topic coherence CV (1) on BBC and M 10 over 10 runs.

Method BBC M10
LDA (Blei et al., 2003) 0.445 + 0.023 0.330 +0.011
ProdLDA (Srivastava & Sutton, 2017)  0.675 4+ 0.015 0.494 4+ 0.011
WTM (Nan et al., 2019) 0.792 + 0.016 0.504 + 0.034
Euclidean setting

SW (Bonneel et al., 2015) 0.816 + 0.006 0.481 + 0.031
RPSW (Nguyen et al., 2024) 0.808 + 0.016 0.509 + 0.019
EBRPSW (Nguyen et al., 2024) 0.805 + 0.029 0.516 + 0.027
TSW-SL (Tran et al., 2024b) 0.807 + 0.007 0.516 +0.014
Db-TSW (Tran et al., 2025a) 0.816 +0.017 0.488 + 0.030
TS-Sobolevs (Ours) 0.822+0.015 0.531 +0.010
Spherical setting

SSW (Adhya & Sanyal, 2025) 0.789 + 0.021 0.446 + 0.012
S3W (Tran et al., 2024a) 0.785 + 0.019 0.442 +0.016
LSSOT (Liu et al., 2025) 0.793 +0.014 0.404 + 0.027
STSW (Tran et al., 2025b) 0.795 + 0.021 0.438 +0.017

STS-Soboleva (Ours)

0.804 =£0.008 0.462 £ 0.020

Gradient Flow on the sphere. In this task, our objective is to learn the target distribution v from a
source distribution ¢ by minimizing d(v, 1) where d is the distance metric such as SSW (Bonet et al.,
2022), S3W (Tran et al., 2024a), LSSOT (Liu et al., 2025) and STSW (Tran et al., 2025b). Consistent
with prior works Bonet et al. (2022); Tran et al. (2024a; 2025b), we use a mixture of 12 von Mises-
Fisher distributions (vMFs) with 2400 samples as the target distribution. Optimization is carried
out using projected gradient descent Bonet et al. (2022)on the sphere with full-batch training. We
report in Table 4 the log 2-Wasserstein distance at epochs 50, 100, 150, 200, and 250, averaged over
10 runs. Across all epochs, our proposed STS-Sobolev consistently outperforms the baselines. In
particular, while STS-Sobolev; 5 achieves the best result at epoch 50, STS-Sobolevy, demonstrates
the strongest overall performance at other epochs. At the final epoch, STS-Sobolevy achieves a
distance of —3.616 £ 0.123, surpassing its tree-sliced counterpart STSW (—3.549 £ 0.072) as well
as the sliced baselines LSSOT (—2.598 £ 0.021) and ARI-S3W (—3.270 + 0.047).

Topic Modeling. Topic modeling task (Blei et al., 2003) seeks to automatically extract distinct
themes from collections of text documents, revealing the underlying structure of a corpus. Recent
neural approaches typically employ a variational autoencoder (VAE) setup, in which the optimiza-
tion balances accurate document reconstruction with a regularization that encourages the inferred
topic distributions to resemble a chosen prior (Srivastava & Sutton, 2017). Inspired by Nan et al.
(2019); Adhya & Sanyal (2025), we propose replacing the conventional KL-divergence regularizer
with a Wasserstein-based alternative. This leads to the following objective:

Lni ]Ep(x)Eqw(ﬂx) [CE(X, )A()} + A STS—Sobolevp(qq,(H),p(@)),

where CE represents the cross-entropy between the input document x (in bag-of-words represen-
tation) and its reconstruction x. The variational posterior ¢, (6|x) is generated by encoder ¢, and
the decoder 1) maps topic mixtures 6 back to word distributions to form x. The encoder ¢ can be
adapted to output 6 in either R? or S, which allows for a direct evaluation of our methods in both
the Euclidean and spherical settings.

We evaluate our proposed TS-Sobolevy and STS-Sobolev,y topic models against a comprehensive
set of baselines, with all results summarized in Table 5. In the Euclidean setting, our model is
benchmarked against several modern Sliced Wasserstein (SW) and Tree-Sliced Wasserstein (TSW)
variants from recent works (Bonneel et al., 2015; Nguyen et al., 2024; Tran et al., 2024b; 2025a). In
the spherical setting, we compare against recent spherical slicing methods, specifically SSW (Adhya
& Sanyal, 2025), STSW (Tran et al., 2025b), S3W (Tran et al., 2024a), and LSSOT (Liu et al.,
2025). To provide a broader context, we also include results from three foundational topic models:
LDA (Blei et al., 2003), ProdLLDA (Srivastava & Sutton, 2017), and WTM (Nan et al., 2019).
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To assess the quality of the discovered topics, we use the standard coherence metric Cy (Roder et al.,
2015), where higher values indicate better topic quality. The results, summarized in Table 5, show
that our proposed methods consistently achieve the highest topic coherence scores in all settings.
In the Euclidean setting, our TS-Soboleve model obtains a top score of 0.822 on the BBC dataset,
surpassing the best baseline score of 0.816. On the M 10 dataset, it also leads with a score of 0.531
compared to the baseline best of 0.516. This strong performance extends to the spherical setting,
where our STS-Sobolevs model attains scores of 0.804 on BBC and 0.462 on M10, outperforming
the strongest respective baselines (0.795 and 0.446). Full details on the experimental setup are
provided in Appendix F.5.

5 CONCLUSION

This paper introduced the Tree-Sliced Sobolev Integral Probability Metric (TS-Sobolev) and its
spherical variant, STS-Sobolev, as novel approaches for comparing probability measures. Our work
generalizes the Tree-Sliced Wasserstein (TSW) framework by leveraging a regularized Sobolev IPM,
enabling the efficient computation of tree-sliced distances for any order p > 1. We presented a for-
mal derivation of these metrics and provided comprehensive theoretical guarantees, including proofs
of metricity and the formal connection to the original TSW distance. Experimental evaluations show
that TS-Sobolev and STS-Sobolev consistently outperform state-of-the-art Sliced Wasserstein and
Tree-Sliced Wasserstein methods across various tasks, including topic modeling and training dif-
fusion models. Crucially, these performance gains are achieved with no additional computational
overhead, as our methods maintain a runtime comparable to existing TSW techniques. A limitation
of our current work is that TS-Sobolev is not designed to compare unbalanced measures, where
input measures may have different total masses. Therefore, a promising future direction is to design
an extension of our method for the unbalanced optimal transport setting.

10



Under review as a conference paper at ICLR 2026

Ethics Statement. Given the nature of the work, we do not foresee any negative societal and ethical
impacts of our work.

Reproducibility Statement. Source codes for our experiments are provided in the supplementary
materials of the paper. The details of our experimental settings and computational infrastructure are
given in Appendix F. All datasets that we used in the paper are published, and they are easy to access
in the Internet.

LLM Usage Declaration. We use large language models (LLMs) for grammar checking and cor-
rection.

REFERENCES

Panos Achlioptas, Olga Diamanti, loannis Mitliagkas, and Leonidas Guibas. Learning representa-
tions and generative models for 3D point clouds. In International conference on machine learning,
pp. 40-49. PMLR, 2018.

Robert A Adams and John JF Fournier. Sobolev spaces, volume 140. Elsevier, 2003.

Suman Adhya and Debarshi Kumar Sanyal. S2WTM: Spherical sliced-Wasserstein autoencoder
for topic modeling. In Proceedings of the 63rd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 23211-23225. Association for Computational
Linguistics, July 2025. doi: 10.18653/v1/2025.acl-long.1131.

David Alvarez-Melis, Tommi Jaakkola, and Stefanie Jegelka. Structured optimal transport. In
International Conference on Artificial Intelligence and Statistics, pp. 1771-1780. PMLR, 2018.

Erhan Bayraktar and Gaoyue Guo. Strong equivalence between metrics of Wasserstein type. Elec-
tronic Communications in Probability, 26(none):1 — 13, 2021. doi: 10.1214/21-ECP383.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of Machine
Learning Research, 3:993-1022, Jan 2003.

Clément Bonet, Paul Berg, Nicolas Courty, Frangois Septier, Lucas Drumetz, and Minh-Tan Pham.
Spherical sliced-Wasserstein. arXiv preprint arXiv:2206.08780, 2022.

Clément Bonet, Laetitia Chapel, Lucas Drumetz, and Nicolas Courty. Hyperbolic sliced-Wasserstein

via geodesic and horospherical projections. In Topological, Algebraic and Geometric Learning
Workshops 2023, pp. 334-370. PMLR, 2023a.

Clément Bonet, Laetitia Chapel, Lucas Drumetz, and Nicolas Courty. Hyperbolic sliced-Wasserstein
via geodesic and horospherical projections. In Proceedings of 2nd Annual Workshop on Topology,
Algebra, and Geometry in Machine Learning (TAG-ML), pp. 334-370. PMLR, 2023b.

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and Radon Wasserstein
barycenters of measures. Journal of Mathematical Imaging and Vision, 51:22-45, 2015.

Charlotte Bunne, Laetitia Papaxanthos, Andreas Krause, and Marco Cuturi. Proximal optimal trans-
port modeling of population dynamics. In International Conference on Artificial Intelligence and
Statistics, pp. 6511-6528. PMLR, 2022.

Ishan Deshpande, Yuan-Ting Hu, Ruoyu Sun, Ayis Pyrros, Nasir Siddiqui, Sanmi Koyejo, Zhizhen
Zhao, David Forsyth, and Alexander G Schwing. Max-sliced Wasserstein distance and its use for
GANS. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp- 10648-10656, 2019.

Jiaojiao Fan, Isabel Haasler, Johan Karlsson, and Yongxin Chen. On the complexity of the optimal
transport problem with graph-structured cost. In International Conference on Artificial Intelli-
gence and Statistics, pp. 9147-9165. PMLR, 2022.

Ziv Goldfeld and Kristjan Greenewald. Sliced mutual information: A scalable measure of statistical
dependence. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 17567-17578. Curran
Associates, Inc., 2021.

11



Under review as a conference paper at ICLR 2026

Derek Greene and Padraig Cunningham. Practical solutions to the problem of diagonal dom-
inance in kernel document clustering. In Proceedings of the 23rd International Conference
on Machine Learning, ICML ’06, pp. 377-384, New York, NY, USA, 2006. Association for
Computing Machinery. ISBN 1595933832. doi: 10.1145/1143844.1143892. URL https:
//doi.org/10.1145/1143844.1143892.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Scholkopf, and Alexander Smola.
A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723-773, 2012.

Allen Hatcher. Algebraic topology. Cambridge University Press, 2005.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-

nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Pointwise convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 984-993,
2018.

Piotr Indyk. Algorithmic applications of low-distortion geometric embeddings. In Proceedings 42nd
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 10-33, 2001.

Piotr Indyk and Nitin Thaper. Fast image retrieval via embeddings. In International workshop on
statistical and computational theories of vision, volume 2, pp. 5, 2003.

Hoang Anh Just, Feiyang Kang, Tianhao Wang, Yi Zeng, Myeongseob Ko, Ming Jin, and Ruoxi Jia.
LAVA: Data valuation without pre-specified learning algorithms. In The Eleventh International
Conference on Learning Representations, 2023.

Samuel Kessler, Tam Le, and Vu Nguyen. SAVA: Scalable learning-agnostic data valuation. In The
Thirteenth International Conference on Learning Representations, 2025.

D Kinga, Jimmy Ba Adam, et al. A method for stochastic optimization. In International conference
on learning representations (ICLR), volume 5, pp. 6. San Diego, California;, 2015.

Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and Gustavo Rohde. Generalized
sliced Wasserstein distances. Advances in neural information processing systems, 32, 2019.

Soheil Kolouri, Nicholas A. Ketz, Andrea Soltoggio, and Praveen K. Pilly. Sliced Cramer synap-
tic consolidation for preserving deeply learned representations. In International Conference on
Learning Representations, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical Report, University of Toronto, 2009.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document
distances. In International conference on machine learning, pp. 957-966, 2015.

Hugo Lavenant, Sebastian Claici, Edward Chien, and Justin Solomon. Dynamical optimal transport
on discrete surfaces. In SIGGRAPH Asia 2018 Technical Papers, pp. 250. ACM, 2018.

Tam Le, Makoto Yamada, Kenji Fukumizu, and Marco Cuturi. Tree-sliced variants of wasserstein
distances. Advances in neural information processing systems, 32, 2019.

Tam Le, Truyen Nguyen, Dinh Phung, and Viet Anh Nguyen. Sobolev transport: A scalable metric
for probability measures with graph metrics. In International Conference on Artificial Intelligence
and Statistics, pp. 9844-9868. PMLR, 2022.

Tam Le, Truyen Nguyen, and Kenji Fukumizu. Scalable unbalanced Sobolev transport for measures
on a graph. In International Conference on Artificial Intelligence and Statistics, pp. 8521-8560.
PMLR, 2023.

12


https://doi.org/10.1145/1143844.1143892
https://doi.org/10.1145/1143844.1143892

Under review as a conference paper at ICLR 2026

Tam Le, Truyen Nguyen, and Kenji Fukumizu. Generalized sobolev transport for probability mea-
sures on a graph. In Forty-first International Conference on Machine Learning, 2024.

Tam Le, Truyen Nguyen, Hideitsu Hino, and Kenji Fukumizu. Scalable sobolev IPM for probability
measures on a graph. In Forty-second International Conference on Machine Learning, 2025.
URL https://openreview.net/forum?id=VhEpf2HFr0.

Tengyuan Liang. How well can generative adversarial networks learn densities: A nonparametric
view. arXiv preprint, 2017.

Tengyuan Liang. Estimating certain integral probability metric (IPM) is as hard as estimating under
the IPM. arXiv preprint, 2019.

Tengyuan Liang. How well generative adversarial networks learn distributions. Journal of Machine
Learning Research, 22(228):1-41, 2021.

Ya-Wei Eileen Lin, Ronald R. Coifman, Gal Mishne, and Ronen Talmon. Tree-Wasserstein dis-
tance for high dimensional data with a latent feature hierarchy. In The Thirteenth International
Conference on Learning Representations, 2025.

Lang Liu, Soumik Pal, and Zaid Harchaoui. Entropy regularized optimal transport independence
criterion. In International Conference on Artificial Intelligence and Statistics, pp. 11247—-11279.
PMLR, 2022.

Xinran Liu, Yikun Bai, Rocio Diaz Martin, Kaiwen Shi, Ashkan Shahbazi, Bennett Allan Landman,
Catie Chang, and Soheil Kolouri. Linear spherical sliced optimal transport: A fast metric for com-
paring spherical data. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=fqUFZAxXywX.

Manh Luong, Khai Nguyen, Nhat Ho, Reza Haf, Dinh Phung, and Lizhen Qu. Revisiting deep
audio-text retrieval through the lens of transportation. arXiv preprint arXiv:2405.10084, 2024.

Guillaume Mabhey, Laetitia Chapel, Gilles Gasso, Clément Bonet, and Nicolas Courty. Fast optimal
transport through sliced generalized wasserstein geodesics. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. URL https://openreview.net/forum?id=
n3XuYdvhNW.

Gonzalo Mena and Jonathan Niles-Weed. Statistical bounds for entropic optimal transport: sample
complexity and the central limit theorem. In Advances in Neural Information Processing Systems,
pp. 4541-4551, 2019.

Alfred Miiller. Integral probability metrics and their generating classes of functions. Advances in
Applied Probability, 29(2):429-443, 1997.

Kimia Nadjahi, Alain Durmus, Lénaic Chizat, Soheil Kolouri, Shahin Shahrampour, and Umut
Simsekli. Statistical and topological properties of sliced probability divergences. Advances in
Neural Information Processing Systems, 33:20802-20812, 2020.

Feng Nan, Ran Ding, Ramesh Nallapati, and Bing Xiang. Topic modeling with Wasserstein
autoencoders. In Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 6345-6381. Association for Computational Linguistics, July 2019. doi:
10.18653/v1/P19-1640. URL https://aclanthology.org/P19-1640/.

Khai Nguyen. An introduction to sliced optimal transport, 2025. URL https://arxiv.org/
abs/2508.125109.

Khai Nguyen and Nhat Ho. Sliced Wasserstein estimation with control variates. arXiv preprint
arXiv:2305.00402, 2023.

Khai Nguyen, Nhat Ho, Tung Pham, and Hung Bui. Distributional sliced-Wasserstein and applica-
tions to generative modeling. arXiv preprint arXiv:2002.07367, 2020.

Khai Nguyen, Tongzheng Ren, Huy Nguyen, Litu Rout, Tan Minh Nguyen, and Nhat Ho. Hi-
erarchical sliced Wasserstein distance. In The Eleventh International Conference on Learning
Representations, 2023.

13


https://openreview.net/forum?id=VhEpf2HFr0
https://openreview.net/forum?id=fgUFZAxywx
https://openreview.net/forum?id=n3XuYdvhNW
https://openreview.net/forum?id=n3XuYdvhNW
https://aclanthology.org/P19-1640/
https://arxiv.org/abs/2508.12519
https://arxiv.org/abs/2508.12519

Under review as a conference paper at ICLR 2026

Khai Nguyen, Shujian Zhang, Tam Le, and Nhat Ho. Sliced Wasserstein with random-path project-
ing directions. arXiv preprint arXiv:2401.15889, 2024.

Sloan Nietert, Ziv Goldfeld, and Rachel Cummings. Outlier-robust optimal transport: Duality, struc-
ture, and statistical analysis. In International Conference on Artificial Intelligence and Statistics,
pp- 11691-11719. PMLR, 2022.

Jonathan Niles-Weed and Philippe Rigollet. Estimation of Wasserstein distances in the spiked trans-
port model. Bernoulli, 28(4):2663-2688, 2022.

Ruben Ohana, Kimia Nadjahi, Alain Rakotomamonjy, and Liva Ralaivola. Shedding a PAC-
Bayesian light on adaptive sliced-Wasserstein distances. In Proceedings of the 40th International
Conference on Machine Learning, 2023.

Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. Tri-party deep network repre-
sentation. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelli-
gence, IJCAT’ 16, pp. 1895-1901. AAAI Press, 2016. ISBN 9781577357704.

Jungin Park, Jiyoung Lee, and Kwanghoon Sohn. Bridging vision and language spaces with assign-
ment prediction. arXiv preprint arXiv:2404.09632, 2024.

Francois-Pierre Paty and Marco Cuturi. Subspace robust Wasserstein distances. In Proceedings of
the 36th International Conference on Machine Learning, pp. 5072-5081, 2019.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355-607, 2019.

Michael Quellmalz, Robert Beinert, and Gabriele Steidl. Sliced optimal transport on the sphere.
Inverse Problems, 39(10):105005, 2023.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its applica-
tion to texture mixing. In International Conference on Scale Space and Variational Methods in
Computer Vision, pp. 435-446, 2011.

Michael Roder, Andreas Both, and Alexander Hinneburg. Exploring the space of topic coher-
ence measures. In Proceedings of the Eighth ACM International Conference on Web Search
and Data Mining, WSDM ’15, pp. 399408, New York, NY, USA, 2015. Association for Com-
puting Machinery. ISBN 9781450333177. doi: 10.1145/2684822.2685324. URL https:
//doi.org/10.1145/2684822.2685324.

Mahdi Saleh, Shun-Cheng Wu, Luca Cosmo, Nassir Navab, Benjamin Busam, and Federico
Tombari. Bending graphs: Hierarchical shape matching using gated optimal transport. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
11757-11767, 2022.

Tim Salimans, Han Zhang, Alec Radford, and Dimitris Metaxas. Improving gans using optimal
transport. arXiv preprint arXiv:1803.05573, 2018.

F. Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs,
and Modeling. Progress in Nonlinear Differential Equations and Their Applications. Springer
International Publishing, 2015. ISBN 9783319208282. URL https://books.google.
com.sg/books?id=UOHHCgAAQBAJ.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Fast unbalanced optimal transport on tree. In
Advances in neural information processing systems, 2020.

Charles Semple and Mike Steel. Phylogenetics. Oxford Lecture Series in Mathematics and its
Applications, 2003a.

Charles Semple and Mike Steel. Phylogenetics, volume 24. Oxford University Press, 2003b.

Shashank Singh, Ananya Uppal, Boyue Li, Chun-Liang Li, Manzil Zaheer, and Barnabas P6czos.
Nonparametric density estimation under adversarial losses. Advances in Neural Information Pro-
cessing Systems, 31, 2018.

14


https://doi.org/10.1145/2684822.2685324
https://doi.org/10.1145/2684822.2685324
https://books.google.com.sg/books?id=UOHHCgAAQBAJ
https://books.google.com.sg/books?id=UOHHCgAAQBAJ

Under review as a conference paper at ICLR 2026

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256-2265. PMLR, 2015.

Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval.
Journal of documentation, 28(1):11-21, 1972.

Bharath K Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Scholkopf, and Gert RG
Lanckriet. On integral probability metrics, ¢-divergences and binary classification. arXiv preprint
arXiv:0901.2698, 2009.

Akash Srivastava and Charles Sutton. Autoencoding variational inference for topic models, 2017.

Yuki Takezawa, Ryoma Sato, Zornitsa Kozareva, Sujith Ravi, and Makoto Yamada. Fixed sup-
port tree-sliced Wasserstein barycenter. In Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics, volume 151, pp. 1120-1137. PMLR, 2022.

Silvia Terragni, Elisabetta Fersini, Bruno Giovanni Galuzzi, Pietro Tropeano, and Antonio Cande-
lieri. OCTIS: Comparing and optimizing topic models is simple! In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics: System
Demonstrations, pp. 263-270. Association for Computational Linguistics, April 2021.

Hoang V. Tran, Minh-Khoi Nguyen-Nhat, Huyen Trang Pham, Thanh Chu, Tam Le, and Tan Minh
Nguyen. Distance-based tree-sliced Wasserstein distance. In The Thirteenth International Con-
ference on Learning Representations, 2025a.

Huy Tran, Yikun Bai, Abihith Kothapalli, Ashkan Shahbazi, Xinran Liu, Rocio P Diaz Martin, and
Soheil Kolouri. Stereographic spherical sliced Wasserstein distances. In Forty-first International
Conference on Machine Learning, 2024a.

Viet-Hoang Tran, Trang Pham, Tho Tran, Tam Le, and Tan M Nguyen. Tree-sliced Wasserstein
distance on a system of lines. arXiv preprint arXiv:2406.13725, 2024b.

Viet-Hoang Tran, Thanh T Chu, Khoi NM Nguyen, Trang Pham, Tam Le, and Tan M Nguyen.
Spherical tree-sliced Wasserstein distance. arXiv preprint arXiv:2503.11249, 2025b.

Ananya Uppal, Shashank Singh, and Barnabds Péczos. Nonparametric density estimation & con-
vergence rates for GANs under Besov IPM losses. Advances in neural information processing
systems, 32, 2019.

Ananya Uppal, Shashank Singh, and Barnabas Péczos. Robust density estimation under Besov IPM
losses. Advances in Neural Information Processing Systems, 33:5345-5355, 2020.

C. Villani. Optimal Transport: Old and New, volume 338. Springer Science & Business Media,
2008.

Cédric Villani. Topics in Optimal Transportation. American Mathematical Society, 2003.

Jie Wang, Rui Gao, and Yao Xie. Two-sample test with kernel projected Wasserstein distance. In
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, volume
151, pp. 8022-8055. PMLR, 2022.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International conference on machine learning, pp.
9929-9939. PMLR, 2020.

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3D point
clouds. In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition,
pp. 9621-9630, 2019.

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with

denoising diffusion gans. arXiv preprint arXiv:2112.07804, 2021.

15



Under review as a conference paper at ICLR 2026

Makoto Yamada, Yuki Takezawa, Ryoma Sato, Han Bao, Zornitsa Kozareva, and Sujith Ravi. Ap-
proximating 1-Wasserstein distance with trees. Transactions on Machine Learning Research,
2022. ISSN 2835-8856.

Mikhail Yurochkin, Sebastian Claici, Edward Chien, Farzaneh Mirzazadeh, and Justin M Solomon.
Hierarchical optimal transport for document representation. Advances in neural information pro-
cessing systems, 32, 2019.

16



Under review as a conference paper at ICLR 2026

TABLE OF NOTATION

Rd

- 12
Sd—l
0,4

(]
LY(X)
P(X)
M(X)
8%

U(Sd_l)
C(X,Y)
d(.7 )
T(d)
O(d)

dr ()
E(d)
Wy

SW,

ST B =

[e3

b

>

k—1

SR =9 =M

d-dimensional Euclidean space

Euclidean norm

(d — 1)-dimensional hypersphere

unit vector

disjoint union

space of Lebesgue integrable functions on X
space of probability measures on X

space of measures on X

measures

1-dimensional Dirac delta function

uniform distribution on S%~1

space of continuous maps from X to Y
metric in metric space

translation group of order d

orthogonal group of order d

tree metric

Euclidean group of order d

p-Wasserstein distance

Sliced p-Wasserstein distance

(rooted) subtree

p-Sobolev Integral Probability Metric
p-Regularized Sobolev Integral Probability Metric
tree system or spherical tree system
spherical ray

number of Monte Carlo samples

number of lines in a system of lines or a tree system

Radon Transform on Systems of Lines, or Radon
Transform on Spherical Trees

(k — 1)-dimensional standard simplex

splitting map

tuning parameter

space of tree systems

distributions on (components of) space of tree systems
normal (Gaussian) distribution

uniform distribution

Dirac delta distribution

17



Under review as a conference paper at ICLR 2026

Appendix of “Tree-Sliced Sobolev IPM”’

Table of Contents

A Background on Distances on Metric Spaces with Tree Metrics

B Background on Regularized Sobolev IPM for measures on Tree
B.1 Settingand notations . . . . . . . ... e
B.2 Sobolev IPM for probability measure ontree . . . . . . . . .. ... .. ... ...
B.3 Regularized Sobolev IPM for probability measure ontree . . . . . . ... ... ..

C Background on Tree-Sliced Wasserstein Distance on Euclidean Spaces
C.l Tree System . . . . . . . o o e e e e
C.2 Radon Transform on Tree Systems . . . . . . . . ... ... ... .. .......

C.3 Tree-Sliced Wasserstein Distance for Probability Measures on Euclidean Spaces . .

D Theoretical Proofs
D.1 Proof for Theorem3.2 . . . . . . . . .. . . ... .
D.2 Proof for Theorem 3.3 . . . . . . . . . . ...
D.3 Proof for Theorem 3.5 . . . . . . . . . . ...
D.4 Proof forTheoremB.3 . . . . . . . . .. ... ...
D.5 Proof for TheoremB.S . . . . . . . . .. ...
D.6 Proof for TheoremB.6 . . . . . . .. ... ... ... ...

E Spherical Tree-Sliced Sobolev IPM
E.1 Background on Spherical Tree-Sliced Wasserstein distance . . . . . . .. ... ..
E.2 Spherical Tree-Sliced SobolevIPM . . . . . . . ... ... ... ... ......
E.3 Properties of Spherical Tree-Sliced SobolevIPM . . . . . ... ... ... ....
E.4 Theoretical Proofs for Spherical Tree-Sliced SobolevIPM . . . .. ... ... ..

F Experimental Details
F.1 Runtime and memory analysis . . . . . . . .. . ... L o
F.2 Gradient Flow on Euclidean space and on the sphere . . . . . ... .. ... ...
F3 DiffusionModels . . . . .. .. ...
F4 Self-Supervised Learning . . . . . . . . . . ...
E5 TopicModeling. . . . . . . . . . . e
F.6 Effects of the Number of Trees (L) and Lines per Tree (k) . . . . . ... ... ..
F7 EffectsoftheOrder (p) . . . . . . . . . . . . e
F.8 Analysis of Advantages of Higher Order (p >1) . . .. ... ... ... .....
FO Hardwaresettings . . . . . . . . . . . o e e e

G Broader Impacts

19

19
20
20
21

22
22
23
24

24
24
26
27
28
29
30

31
31
33
33
33

36
36
37
38
39
40
41
41
42
43

44

18



Under review as a conference paper at ICLR 2026

A BACKGROUND ON DISTANCES ON METRIC SPACES WITH TREE METRICS

We denote a tree as T = (V, E), where V and FE represent the sets of vertices and edges, respec-
tively, and let » € V be the designated root. Each edge e € FE is associated with a non-negative
weight w, that denotes its length. Following Semple & Steel (2003a), we now provide a formal
definition of the corresponding tree metric.

Definition A.1 (Tree metric). Let Q2 be a setand letd : Q x  — [0, 00) be a metric. We say that
d is a tree metric on §) if there exists a weighted tree 7 such that Q@ C V(T), and for any z,y € Q,
the distance d(x, y) is equal to the total weight of the unique path in 7 connecting x and y.

Suppose V' is a subset of a vector space, and let d7(-, -) denote the tree metric associated with 7.
For any two points z,y € T, let [z, y] represent the unique shortest path in 7 connecting them.
Consider the unique Borel (Ilength) measure w on 7 such that

w([z,y]) = dr(z,y), Vz,yeT. (13)
Additionally, given a root r € T, we define the subtree rooted at z € T as
Az)={yeT:zenyl} (14)

We denote by P(T) the set of all probability measures on 7, that is, the collection of Borel measures
on 7 with total mass equal to one. We now define the Wasserstein distanc on the space metric
following the work of Le et al. (2019).

Theorem A.2 (Wasserstein on Tree Metric Spaces). Let u,v € P(T). Then the 1-Wasserstein
distance with respect to the tree metric d can be expressed as

Wiar (1) = [ lu((e) = viAe)| (). 15)
where A(x) denotes the subtree of T rooted at x, and w is the associated length measure on T.

While the 1-Wasserstein distance (V1) on a tree has a convenient closed-form solution, this is gener-
ally not true for higher orders (p > 1). This computational challenge motivated the development of
alternatives like Sobolev Transport (ST), which provides a scalable and valid metric for comparing
probability measures on tree and graph structures (Le et al., 2022).

The key idea behind ST is to modify the constraints on the “critic” function used to differentiate
between two measures. Instead of the standard Lipschitz condition, it constrains the critic function
within a graph-based Sobolev space, primarily by limiting the LP-norm of the function’s gradi-
ent (Le et al., 2022). This approach has proven versatile, with extensions for measures of different
total masses (Le et al., 2023) and for more general geometric structures beyond the standard LP
framework (Le et al., 2024).

A closely related concept is the Sobolev Integral Probability Metric (Sobolev IPM), which is a type
of IPM where the critic function is constrained to a unit ball defined by the full Sobolev norm—a
measure that considers both the function’s values and its gradient (Adams & Fournier, 2003). The
crucial innovation is a regularized variant of this metric. By relaxing the constraint to focus only on
the gradient of the critic function, the regularized Sobolev IPM successfully admits a closed-form
solution for any order p > 1, making it a powerful and computationally efficient tool for comparing
measures on trees (Le et al., 2025).

B BACKGROUND ON REGULARIZED SOBOLEV IPM FOR MEASURES ON
TREE

In this section, we introduce the framework of regularized Sobolev integral probability metrics
(IPMs) for probability measures supported on tree structures. Specifically, we begin by review-
ing the tree setting for probability measures, including the relevant notational conventions and the
functional spaces. We then formulate the Sobolev IPM problem for measures supported on trees. Fi-
nally, we introduce the regularized variant of the Sobolev IPM, which admits a closed-form solution.
Proofs in Section closely follow that of Le et al. (2025).
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B.1 SETTING AND NOTATIONS

Let T = (V, E) be a finite rooted tree, where V' denotes the set of vertices and E the set of edges.
For each edge e € E, we associate a positive weight w, > 0, which represents the length of e.
The tree 7 is naturally equipped with a metric dr : V x V. — Ry, such that for z,y € V,
dr(®,y) = > cels,y We is the length of the unique path connecting « and y. Furthermore, given
two vertices x, z € V, we let [z, z] denote the path connecting = and z. Moreover, for each edge
e € E, we denote by v, the endpoint of e that is farther from the root of 7, and by . the subtree of
T rooted at v,.

Measures and functions. Let P(7) denote the set of all nonnegative Borel measures on a graph 7,
and let P(7 x T) denote the corresponding set of measures on the product space 7 x 7 with finite
mass. A function f : 7 — R is said to be continuous if it is continuous with respect to the topology
on 7 induced by the Euclidean distance. We write C'(7") for the space of all continuous functions
on T, and analogously C(7T x T) for continuous functions on 7 x 7. Given a nonnegative Borel
measure w on 7 and an exponent 1 < p < oo, we define the space LP (T ,w) as

LP(T,w) == {f:THR’ /Tf(x)|pw(dx) <oo}. (16)

This is a normed space equipped with the norm || f[|z» = ([ |f(2)[? w(dz)) r

In addition, let @ : T — R be a strictly positive weight function, i.e., w(x) > 0 for every x € G.
The associated weighted LP space, denoted LE (G, w), is given by

w

L5(T,w) = fTeR\/ w(da) < oo}. an

B.2 SOBOLEV IPM FOR PROBABILITY MEASURE ON TREE

Following the definition of graph-based Sobolev spaces Le et al. (2022), we define the tree-based
Sobolev space as follows.

Definition B.1 (Tree-based Sobolev). Let w be a nonnegative Borel measure on the tree 7, and let
1 < p < oco. A continuous function f : 7 — R is said to belong to the Sobolev space W1 (T, w)
if there exists a function h € LP(T,w) such that

f(@) — f(z0) = /[ By, VaeT, (18)

where z is a fixed reference vertex in 7. The function & is uniquely determined in L”(7,w) and is
referred to as the tree derivative of f with respect to the measure w. We denote the tree derivative of
feWtP(T,w)by f' € LP(T,w).

The Sobolev space WP(T,w) is endowed with the norm

1/
1 hwre = (11 + 1 W) (19)

which is referred to as the Sobolev norm (Adams & Fournier, 2003) turning W1?(7T, w) into a

normed space. We further denote the subspace W, *(T,w) = {f € W'2(T,w) : f(z) = 0},
where zj is the root of 7. The unit ball in this space is then denoted by

B(p) :={f € Wo"(T.w) : | fllwer < 1}. (20)

Definition B.2 (Tree-based Sobolev IPM). Let w be a nonnegative Borel measure on 7, and let
1 < p < oo with conjugate exponent p’ defined by % + i = 1 (with the convention p’ = oo when

p = 1). For two probability measures i, v € P(T), the Sobolev IPM is defined as

/ F(&) n(d) — /T 1(y) v(dy)

where B(p') denotes the unit ball in W, "” l (T, w).

Spl,v) = sup @1

feB(p’)
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Overall, the Sobolev IPM for probability measures on a graph can be viewed as a particular case
of the IPM, where the witness critic functions are restricted to the graph-based Sobolev space and
further constrained to lie within its unit ball. Furthermore, Notice that the quantity inside the absolute
signs is unchanged if f is replaced by f — f(zp). Thus, we can assume without loss of generality
that f(z) = 0. This is the motivation for W, ** (T ,w). Next, we introduce a weight function. Let w
be measure w on a set. We have

w(r) =14+ w(A(z)), YzeT, (22)
An example of w is when it is chosen as the length measure (Le et al., 2022), in which case w(A(z))
corresponds to the total length of the subtree A(xz). We now present a key theorem establishing that,

for any critic function f € VVO1 (T ,w), the Sobolev norm is equivalent to the weighted LP-norm of
its derivative f.

Theorem B.3. Let w be a nonnegative Borel measure onT and let 1 < p < oo. Define the constants

1
_ (min{Lw(T)P'}\? — -11)5
- < L+w(T)P o= (max{Lw(T)) P 23)
Then, for every f € I/VO1 P(T,w), the following norm equivalence holds:
ar [f'llze < Ifllwie < an|lf]e. 24

w k)

Proof of Theorem B.3 is defered to Section D.4.

B.3 REGULARIZED SOBOLEV IPM FOR PROBABILITY MEASURE ON TREE

Having established the equivalence relation in Theorem B.3, we now introduce the regularized
Sobolev IPM. Specifically, rather than constraining the critic f to lie in the unit ball B(p’) of the
Sobolev space, we instead restrict f to the unit ball B(p’, @), defined with respect to the weighted

LP -norm of its derivative f’ under the weight function . Hereafter, we define B(p', i) as

B, w) = {f e Wg(T,w) : |If' |, <1} (25)

We now formally define the regularized Sobolev IPM between two probability distributions on tree

T

Definition B.4 (Tree-base Regularized Sobolev IPM). Let w be a nonnegative Borel measure on 7
and let 1 < p < oco. For any probability measures pu, v € P(T), the regularized Sobolev IPM is
defined by

Sy = s | [ sowtan - [ f’(;z/)v(dy)‘ | 6)

feB(p’,w) |JT
where B(p’, ) denotes the unit ball in the weighted Sobolev space induced by the norm | f'| ./ ;-

Next, we show that the tree-based Sobolev IPM has a closed-form solution that is as follow

Theorem B.5 (Closed-form Expression). Let w be a nonnegative Borel measure on T, and let
1 < p < oco. Then, for any probability measures pu,v € P(T), the regularized Sobolev IPM admits
the closed-form expression

S, (u,v)P = / W(x) P |p(A(z)) — v(A(z ’p (dz), (27)
T
where A(x) denotes the subtree rooted at .

Proof of Theorem B.5 is defered to Section D.5. Additionally, when the input probability measures
are supported on nodes V of 7 and we choose the length measure on tree 7 for the nonnegative
Borel measure w, we can derive an explicit formula for Equation (26) as follow

Theorem B.6 (Explicit formula for Discrete Case). Let w denote the length measure on T, and let
1 < p < co. Suppose that i, v € P(T) are supported on the vertex set V of the tree T. Then the
regularized Sobolev IPM admits the closed-form expression

1/p
(Zﬁelu% - e|> , (28)

ecelE
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where for each edge e € F, the scalar weight B, is given by

We .
o1+ 55y e
Be = \37p _ 2-p 29)
(b elye) ™ = (w7 o,
—-D

with w. denoting the length of edge e and -y, the subtree rooted at the endpoint v., which is the
endpoint of edge e farther from the root.

Proof of Theorem B.6 is defered to Section D.6. .
Implementation of Explicit Form for Discrete Case. The regularized Sobolev IPM &,, depends
only on the graph structure (V, E') and edge weights {w. }.c g, and can therefore be applied beyond
physical graphs. For efficient computation, the sets . and coefficients 5. (cf. Equations (10)—(11))
can be precomputed once from the root zg to all vertices.

C BACKGROUND ON TREE-SLICED WASSERSTEIN DISTANCE ON
EUCLIDEAN SPACES

This section revisits the fundamental components of the Tree-Sliced Wasserstein (TSW) distance,
formulated over tree systems embedded in Euclidean spaces. For completeness, we summarize key
definitions and core mathematical formulations. The reader is referred to (Tran et al., 2024b; 2025a)
for detailed proofs and a detailed explanation.

C.1 TREE SYSTEM

o Ao

Figure 2: The construction of the tree system is illustrated in the two-dimensional plane R?, though
the approach naturally extends to higher dimensions. The procedure begins with a set of infinite lines
placed without any predefined arrangement. All pairwise intersections of these lines are determined,
though some may lie outside the visible region of the figure due to their unbounded extent. Among
these intersections, a subset is marked in red to indicate those that will be discarded. The remaining
intersections in green are preserved in order to impose a tree structure on the system—ensuring
that any two points along the lines are linked by a unique path passing only through the retained
intersections. These preserved points serve as the fundamental nodes defining the tree topology.
Once the red intersections are removed, the resulting network forms the desired tree system.

Components of Tree Systems. A line in R? is an element [ = (x,0) € R? x S?~!, where z is the
source and 0 is the direction. It is parameterized by x 4+ ¢ 6 for t € R.

Given an integer k > 1, a system of k lines in R? refers to a collection of k such lines. The
notation (R% x S4=1)¥ is abbreviated as ¢, representing the space of systems of k lines in R%. An
element in this space, commonly denoted by L, corresponds to a specific system of lines, written as
L =1{l;}}_ | where each |; = (z;,0;) € R? x S¢~1 and i indexes the lines.

A line system L is connected if the union of points lying on its individual lines is a connected subset
of R?. A tree structure can be imposed by removing selected intersection points so that any two
points in the resulting configuration are joined by a unique simple path. The resulting object is a tree
system, denoted T = {I;}¥_,. We use the term tree system to emphasize this unique-path property,
in direct analogy with trees in graph theory. Using remaining intersections, we build a topological
tree system by coherently gluing segments of R via disjoint union and quotient topology (Hatcher,
2005), resulting in a space endowed with a valid tree metric. An illustration of the construction
appears in Figure 2.
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Sampling Tree Systems. Tree system spaces admit diverse structures, but Tran et al. (2024b) high-
light chain-structured variants. A generative model for such systems is as follows: sample an initial
point 1 ~ pu; and a direction 61 ~ vq; then for each ¢ > 1, sample an offset ¢; ~ p; and a direction
0; ~ v;, and set x; = x;_1 + t;0;,_1. Each u; and v; is an independent distribution. In practice, we
take 11 = U([—1,1]9), u; = U([~1,1]) fori > 1, and v; = U(S?~1) for all 4.

In Tran et al. (2025a), a concurrent-line tree structure is introduced, where all lines {li}le share the
same source point x. The corresponding generative model is simpler: first sample the common root
x ~ u, then independently sample §; ~ v for each i = 1,..., k. Here u = U([—1,1]%) specifies
the distribution of the root, and v = U(S?~!) is the common distribution over directions.

A visualization of the two tree structures is provided in Figure 3.

Remark C.1. Recent advances in Tree-Sliced Wasserstein distance (Tran et al., 2025a;b) employ
the concurrent-line tree structure. For TS-Sobolev, we likewise adopt this structure for its simplicity.

Remark C.2. The chain-structured and concurrent sampling schemes each induce a probability
measure o over the space T of tree systems.

/ —

Figure 3: Visualizations of two popular tree structures: a chain structure (left) and a concurrent-lines
structure (right).

C.2 RADON TRANSFORM ON TREE SYSTEMS

Let L' (R?) be the space of Lebesgue—integrable functions on R?, equipped with the norm || - ||;.
Fix a tree system 7 = {/;}¥_, € T¢ with lines [; = (z;,6;), and let T denote the union of all points

on these lines. A function f : 7 — R is integrable over T if

k
Ifllr = Z/ | f(ta, )| dts < o0, (30)
i=1 7R
and the collection of such functions is denoted L' (7), the space of Lebesgue integrable functions
over the tree system 7.
The standard (k — 1)—simplex is
k
Acr = {a= (a1, ) R |20, Y ai =1} 31)
i=1

Write C(R? x T¢, Aj_1) for the set of continuous splitting maps o : R% x T¢ — Aj_4.

Given f € L*(R?) and a € C(R? x T¢, A_1), we define the projection operator that maps
f € L'(R?) to a function on T
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where (x;,0;) specifies line /; and ¢ is the Dirac delta. According to Tran et al. (2025a), R f €
LY(T) and |R%f|l7 < || f]l1, hence RS : L' (RY) — L'(T) is a well-defined operator.

Aggregating over all tree systems 7 € T¢, we define the Radon transform on tree systems by

R*: L'RY — ] L'(7). (33)
TeT
F— (RF1) rena- (34)

If « is invariant under the Euclidean group E(d), then R is injective.

C.3 TREE-SLICED WASSERSTEIN DISTANCE FOR PROBABILITY MEASURES ON EUCLIDEAN
SPACES

Consider probability measures 1,7 € P(R?). Given a tree-structured collection of lines 7 € T
and an E(d)-invariant splitting map o € C(R? x L, A;_1), the operator R transports £ and v
onto corresponding measures R§-p and RS-v supported on 7. Since each tree system 7 is endowed
with a tree metric d7, one can evaluate the 1-Wasserstein distance W, 1 between these transformed
measures. This motivates the definition of the Distance-based Tree-Sliced Wasserstein (Db-TSW)
distance Tran et al. (2025a):

Db-TSW(y, v) = / W1 (R§u, RFv) do(T), (35)
T

where o denotes a probability distribution over the space of tree systems T. The value of Db-TSW
depends on the choice of tree space T, the sampling process that induces o, and the E(d)-invariant
map «, although this dependence is suppressed in the notation for simplicity. The resulting Db-TSW
provides an E(d)-invariant metric on P(R?).

Remark C.3. When the tree systems consist of a single line, the Db-TSW distance reduces to the
standard Sliced Wasserstein distance.

Splitting Maps. Since R is injective whenever the splitting map « is E(d)-invariant, we seek
constructions that satisfy this property. For z € R? and a tree system 7 = {[;}%_; € T¢, define the
Euclidean distance from x to the line /; € T by

d(e, T = inf o=yl (36)

which is invariant under the Euclidean group E(d). Any splitting rule that depends only on the
collection {d(x, T);}¥_, therefore inherits E(d)-invariance. A practical and widely used choice is
the softmax:

afz, T); = softmax ({—¢ - d(x, T); }i_1), . (37)

where the parameter £ > 0 controls the sharpness of the distribution. This map assigns weights to the
lines in 7 according to their proximity to =, while preserving Euclidean symmetries. Empirically,
softmax-based splitting maps have been found to perform well in applications (Tran et al., 2025a).

D THEORETICAL PROOFS

In this section, we prove all results for TS-Sobolev stated in the main text and establish the properties
of Sobolev IPM introduced in Appendix B.

D.1 PROOF FOR THEOREM 3.2

Proof. We show that TS-Sobolev,, is an E(d)-invariant metric on the space of probability measures
P(R9). The definition is given by

TS-Sobolev,, (u, v) = (/T Sp(uq—, vr )P da(’T)) ’ , (38)
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where Sp is the regularized Sobolev IPM, which is a metric on the space of measures on a tree 7.
The proof relies on the injectivity of the Radon Transform R“, which holds because the splitting
map « is chosen to be E(d)-invariant (see Tran et al. (2025a)).

We now verify the three metric axioms.
Positive definiteness. It is clear that TS- Sobolevp(u p) = 0 and TS-Sobolev,(u,v) > 0. If

TS-Sobolev, (u, ) = 0, this implies [ S,(p7, v7r)Pdo(T) = 0. Since the integrand is non-

negative, this means Sp(uT, vy) = 0 for almost all 7 € T. As Sp is a metric, it follows that
wr = vy for almost all 7. By the injectivity of R, we conclude that the densities are equal,
fu = fuv,and thus p = v.

Symmetry. The symmetry of S, on each tree implies S, (u17, 7 )P = S, (v, 7)P. Therefore,
1
TS-Sobolev, (i, v) = (/ S, (ur,vr)P dJ(T)>
T
= (/ Sp(uT,uT)p da(T)) - TS-Sobolevy, (v, u). (39)
T

Triangle 1nequallty For any pu1, pg, pis € P(R?), we use the triangle inequality of Sp on each

tree, which states S (11,7, s, 7) < S o (11,75 o, 7) + S » (2,7, 3, 7). We then apply Minkowski’s
integral inequality:

1
3

TS-Sobolevy, (p1, ps) = (/ Sy (p1 75 3. 1)P dU(T))

1
P

< ([ (Ssbnrpar) + Sl ) ao(r)

([ $ymrmry dam)’l’ ([ Star oy do(r)

= TS-Sobolevy, (i1, p2) + TS-Sobolev,, (112, p3)- (40)
Thus, TS-Sobolev,, is a metric on P(RY).

E(d)-invariance. =~ We aim to show that for any g € E(d), TS-Sobolev,(y,v) =
TS-Sobolev, (gtiu, giv). Let T = {l; = (xi,0:)}F -1 be a tree system. Under the action of
g = (Q,v), we have g7 = {gl; = (Quz; + v,Q0;)}F_,. Since |det(Q)| = 1 and « is E(d)-
invariant, we compute for a line [; € T

or(98f.) (g, gls)
- /Rd(gﬁfu)() (0T 6(t0e — (0 — 20 6))

= /Rd Fulg™ ) a(y, gT)i 6 (te — (y — 2., Oq1,)) dy

=

IN

:/ fulg™ gy) algy, gT)i 0(te — (9y — g1, Og1,)) d(gy)
/ fuly T)i6(te — (9y — 2g1,, Og1,)) dy
= [ 5u0) 0. T80 = (Qu v (Qai +0). @) dy
= [ £l T (e ~ (@ =2, @8:)) dy
= [ 500w T80 = (= 0)

= R fu(a ). (41)
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This implies that the action of ¢ is an isometry, so Sp(,uT, vr) = S'p((gﬁ/i)gT, (g9tv)g7). Using
this, we compute:

TS-Sobolev, (gtu, giv)? / Sp((g8m) 7, (94v)7)P do(T)
= [ S(am)ar (g2 dota)

= / S, (7, v7)P do(T) = TS-Sobolev,, (1, v)P. (42)
T

Taking the p-th root of both sides, we conclude that TS-Sobolev,, is E(d)-invariant. O

Remark D.1. For clarity, we omit the almost-sure conditions in the proof. Verifying these condi-
tions is straightforward, and their inclusion would make the core argument harder to follow.

D.2 PROOF FOR THEOREM 3.3

Proof. We prove the theorem in two parts. First, we establish the equality for the case p = 1.
Second, we prove the general inequality for any p € [1, 00).

Part 1. We first proof equality for p = 1. By definition, the Tree-Sliced Sobolev IPM is given by:

1
TS-Sobolev,, (u, v) = (/ S‘p(,uT, vr)? da(T)) . (43)
T
For the case p = 1, this definition simplifies to the expectation of the base metric:
TS-Sobolev (p, v / Si(pr,vy)do(T). (44)

The Tree-Sliced Wasserstein distance is defined as TSW (u,v) = [, W1 (7, v7) do(T). To prove
the equality, it is sufficient to show the integrands are equal, i.e., Sy (7, v7) = W1 (ur, v7).

We analyze the discrete form of the Regularized Sobolev IPM from Equation (5) for p = 1:
Sl(:u’Ta VT) = Z Be |/1'('76) - V(’Ye)‘ : 45)
ecE
From Equation (6), the coefficient S, simplifies to 3. = w, for p = 1. Substituting this result
gives:
Si(pr,vr) =Y we |p(ve) = v(ve) - (46)
ecE

This expression is the known closed-form solution for the 1-Wasserstein distance on a tree,
Wi (ur,vr) (Le et al., 2019). Since the integrands are equal, their expectations are equal, which
proves that TS-Sobolevy (p1, v) = TSW (i, v).

Part 2. We now prove the general inequality TS-Sobolev,(u, )P < TSW(u,v). It is sufficient
to show that the integrand of the first expression is bounded by the integrand of the second on any

given tree 7. That is, we will prove Sp(#% v)P < Wi(ug, vr).
We first establish that the Sobolev coefficient 5, < w, for all p > 1 by a case analysis.

Case 1: p = 2. The coefficient is 5, = log (1 + Hgizy)) Using the inequality log(1 4 z) < z for
x > 0, we have:

We We
e = loe (1 1 +w(%)> =1 +w(ve) @7

Since w(e) > 0, the denominator is at least 1, which implies < we. Thus, 8, < w,.

1+Z€78) -
Case2: p > 1and p # 2. We apply the Mean Value Theorem. Let the function be f(x) = 22~? and
consider the interval [a, b] where a = 1 4+ w(7.) and b = 1 + w(7.) + w,. The theorem states there
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is a value ¢ € (a,b) such that f(b) — f(a) = f'(c)(b — a). The derivative is f’(c) = (2 — p)c!P.
Substituting this into the definition of J.:
Be = (1+w(ve) + w8)27p —(1+ w("/e))Qip
e — 2 _ p
1—
_ () ( ):f/(c)(b_a):(2_p)c p'wezwe.clfp. (48)
2— 2 — 2 —

Since a = 1 + w(*ye) > 1, the 1ntermed1ate value ¢ must be greater than 1. For any p > 1, the
exponent 1 — p is non-positive (< 0), which ensures ¢!=P < 1 and therefore Be < we.

Now, using the universal bound 3. < w, and the fact that |(v.) — v(7.)| € [0, 1], which implies

|...]P <|...|forp > 1, we can bound the p-th power of the Sobolev IPM:
Splprvr)? =y Belu(re) = v(re)l”

ecE

<> we |plve) = v(ve)” (since B, < w,)
eclE

<3 welulre) = vive)| (since ... |" < ...])
eck

= Wy (ur, vy). (by Part 1 of this proof) (49)

This establishes the key inequality on a single tree: Sp(ﬂ% vr)P < Wi(ur,vr). Integrating
this inequality over all trees 7 € T directly yields the theorem, as the left-hand side becomes
TS-Sobolev,,(u, )P and the right-hand side becomes TSW (1, v/). This completes the proof. O

D.3 PROOF FOR THEOREM 3.5

Proof. We analyze the convergence of the Monte Carlo estimator for the TS-Sobolev, which is
defined as:

P

L
TS-Sobolev,, (1, v ( ZS LT, VT ) . (50)

Let us define the random variable X; = Sp(uﬂ VT, )p , where each X is an independent sample
drawn by sampling a tree 7; ~ o. The estimator can then be written as a function of the sample

¥ — 1Ly°L )
mean X = ¢ > .0 X,

The expected value of X is the quantity we are trying to estimate (raised to the p-th power):
px =E[X;] = /Sp(ufr, vr)?P do(T) = TS-Sobolev,, (1, v)P. (1)
T

Let the variance of X; be finite, denoted by 0% = V[X;]. By the Central Limit Theorem, the sample
mean X is asymptotically normal, and its variance is V[X] = 0% /L.

Our estimator is a function of this sample mean, specifically g(X), where g(y) = y'/?. To find the
variance of our estimator, we apply the Delta Method. The variance of g(X) can be approximated
by:

V]g(X)] = (¢ (1x))* VIX], (52)

where ¢’ (11x ) is the derivative of g evaluated at the true mean px. The derivative is ¢’ (y) = %y%_l.

Substituting this into the variance approximation, we get:

— 1 1-1\?% o2
V[TS-Sobolev,, (1, )] ~ (u;} ) TX (53)
p
The Root Mean Squared Error (RMSE) of the estimator is the square root of the variance.
— 1 (1 1
RMSE = \/V TS-Sobolev,, (u, V)| ~ — |—pu% ox. 54
[ s~ o k| ox

Since the terms px and ox are finite constants that do not depend on L, the Monte Carlo approxi-
mation error decays at the standard rate of O(L~1/?). O
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D.4 PROOF FOR THEOREM B.3

To ensure a rigorous and self-contained presentation, we now derive the result in full, adopting the
framework proposed by Le et al. (2025).

Proof. Let f € W, P(T,w). We first derive an upper bound for || f||%,, in terms of 1115 . Since
f(z0) = 0, it follows that

112, = /T @) w(de)
- / /[] 1) w(dy)
~ [ s 70 ot

Applying Jensen’s inequality, we obtain

Iz < w( )”I/T/Tl[zm(y)f’(y)l”w(dy)w(dw)-

p

w(dx)

p

w(dzx).

By Fubini’s theorem, we may interchange the order of integration, which yields

1910 < [ 1w ( / 1[20,m]<y>w<da:>) w(dy)

— (T /T ()P (T () w(dy). (55)

where we recall that I'(y) := {z € T : y € [20,2]}. Using the estimate from Equation (55), we
obtain

1
I llwre = (I + 17110

1

< <w(T)p1/T[1+w( @) ()P w(da )+/Tf'( )|’ w (dx)>p

= ([ (t+ampata)) £ @)

< (maxtt.oy=} [ 1+ o@) 1 @)
= az |||z, (56)
where w(z) = 1 + w(A(z)) and ag = (InaX{Lw(T)p*l})l/p.

=

D =

Next, we derive a corresponding lower bound for || f||y3-1.». Since || f||z» > 0, it follows that

1
I llwee = (I + 17110
> (1 f e

-(/ |f’<x>|pw<dx>)’l’

~ ([t ey ir@peta >)’1’
> (LT [ sl @l o))

-

1+ w(T)P
=ar |||z, (57)
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where

_ (min{Lw(T) 13\
“1—( 1+ w(T)P ) ' ©8)

Combining Equation (56) and Equation (57), we conclude that
a [l < Ifllwee < a2 |Ifllee, (59)

which completes the proof.

D.5 PROOF FOR THEOREM B.5

To ensure a rigorous and self-contained presentation, we now derive the result in full, adopting the
framework proposed by Le et al. (2025).

Proof. Let f € Wol’p/ (T,w). By Definition B.1, we have
f@) = 1)+ [ e, VoeT. (60)

[ZU 737]

Using Equation (60) together with the indicator function of the path [z, ], and noting that (7)) =

1, we obtain
/T £(&) () = / F(20) pldz) + / /[ 1) w(dy) pldz)

— (=) / / o)) £ () w(dy) pu(da).

Applying Fubini’s theorem to interchange the order of integration yields

[ r@utan) = 0+ [ ([ 10 nian) £ @) la)

By the definition of I'(y), this becomes

/ @) ) = f(e0) + [0 (T i) (61)
An analogous computation gives
[ r@vtan) = 1o+ [ 1)) ) (©2)
Hence, the regularized Sobolev IPM Equation (26) can be written as
Sy = s | [ 1) (uAG) = va(a) wlie) ©3)
feB(p’,w)
where
B ) = {f € Wo P (T.w) : |1l o <1} (64)
Observe that
{f' - f B0 )} ={g€ L"(T.w): gl <1} (65)

Indeed, the inclusion “C” is immediate, while the reverse direction follows by constructing f(z) :=
f[zO . w(dy) forany g € L¥' (T, w).
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Now define

fla) = “(A(x)i; A e (66)

Substituting into Equation (63), we obtain

Splp,v) = sup (67)

geL? (Tw)ilgll <1
w

- ([ ol >)1/p (©8)

= </Tﬁ)(af)1p (A=) — V(A(x))”w(dﬂf)y/pv

| i) f@) gyt
i

where Equation (68) follows from the dual norm characterization of weighted ) spaces.

Therefore,
Sp(u, V)P = / w(x)' P |M(A($)) — Z/(A(x))|pw(dx), (69)
T
which proves the claim. O

D.6 PROOF FOR THEOREM B.6

To ensure a rigorous and self-contained presentation, we now derive the result in full, adopting the
framework proposed by Le et al. (2025).

Proof. We work with the length measure w on the tree 7, so that w({z}) = 0 for all z € 7. From
Theorem B.5, it follows that

Splp, v)P = /( ) )P (A( A(2))[" w(dz). (70)

=(u,v)EE

Since p, v are supported on vertices V, for any « € (u, v) we have
n(A(@)) = v(A@)) = p(A(2) \ (u,0)) = v(A(2) \ (u,v)). (71)
Substituting this into Equation (70) yields

Slmry = Y ()P |u(A@)\ (1,0)) — v(A@) \ (w,0) | w(dr).  (72)

=(u,v)EE uu)

For any edge e = (u, v), it follows that A(x) \ (u,v) = 7. for all z € (u,v). Hence, Equation (72)
simplifies to

S =3 |utwe) - v’ / ()P w(de). (73)

e=(u,v)EE (u,v)
We now compute the integral term. Recall that w(z) = 1 + w(A(z)). Without loss of generality,
assume d7(zo,u) < dr(z0,v), i.e., v is farther from the root z9. For x € (u,v), write z =
v+ t(u — v) with ¢ € (0,1). Then
w(A(z)) = w(ve) + wet, (74)

and therefore

1
/ w(x) P w(dr) = / [1+w(ve) + wet] VP, dt. (75)
(u,v) 0
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This integral evaluates explicitly as

We
log(1+—-—1), =2,
_ g( 1+wm>> P
, PF2

/w) @) P d) = 1 0 w2 — (14 ()2
2—p

(76)

Thus, [ () w(z)! 7P w(dr) = B. (see Equation (29)). Substituting into Equation (73), we obtain

1/p
Sp(iv) = (Z Be |1(ve) — v(veﬂ”) : (77)

eckE

This proves the result. O

E SPHERICAL TREE-SLICED SOBOLEV IPM

E.1 BACKGROUND ON SPHERICAL TREE-SLICED WASSERSTEIN DISTANCE

In this section, we review the concepts of Spherical Tree Systems, the Spherical Radon Transform,
and the Spherical Tree-Sliced Wasserstein distance, as proposed by Tran et al. (2025b). These are
the spherical analogs to the Euclidean framework of Tree Systems and their corresponding Radon
Transforms (Tran et al., 2024b; 2025a). We will follow the construction of the Euclidean back-
ground, explaining the spherical components in the same order.

Hypersphere. The underlying space for these spherical constructions is the d-dimensional unit
hypersphere, denoted S. This is the set of all points in (d + 1)-dimensional Euclidean space R4+!
that are at a distance of 1 from the origin. Formally:

S = {z e R : ||z, =1} (78)

This space is a metric space equipped with the geodesic distance, which is the shortest distance
between two points along the surface of the sphere. For any two points a, b € S?, this distance is the
angle between them, calculated as:

dsa(a,b) = arccos ((a, b)ga+1) (79)

A key tool for relating the curved geometry of the sphere to flat Euclidean geometry is the stereo-
graphic projection ¢,. For a point 2 € S¢ (the "’pole” of the projection), the map ¢, projects point
y from the sphere onto the hyperplane H, that is tangent to the sphere at the antipode —x.

@w:Sd\{x}%Hw
—(z,y) 1 (80)

By convention, the map is extended to the entire sphere by defining ¢, (z) = oo, which completes
the mapping ¢, : S* — H, U {co}.

y}—)

Components of Spherical Tree Systems. The fundamental building block for a spherical tree is
the spherical ray, the analog of a straight line in Euclidean space. It is formally constructed using
the inverse stereographic projection. The intuitive idea is to first draw a straight ray on the flat
hyperplane H, and then use the inverse map ;! to trace this path back onto the curved surface of
the sphere.

Mathematically, a spherical ray with root z and direction y, denoted 7y, is defined as:

ry =, ({t-y : t>0}U{oc}) 81

Here, the set {t -y : t > 0} represents a straight ray on the hyperplane H,, and ¢ ! maps this line
back to the sphere. Each resulting spherical ray is isomorphic to the interval [0, 7] via the geodesic
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distance from its root, dsa(z, -), which allows any point on the ray to be uniquely parameterized by
its distance from x.

A spherical tree system T is formed by gluing a set of k spherical rays {7, }k_| at their common root
x. This construction ensures that any two points in the resulting configuration are joined by a unique
simple path, endowing the system with a valid tree metric, d7. The space of all such spherical trees
with k rays (or edges) in S¢ is denoted by T¢. This space is equipped with a probability distribution
o that governs the tree sampling process.

Sampling Spherical Tree Systems. To sample a spherical tree system, we employ the generative
process described in Tran et al. (2025b). The process begins by sampling a common root  from the
uniform distribution on the d-sphere, i1 = U(S%). To generate the k orthogonal direction vectors, a
second step is performed: for each direction, an initial vector is also sampled from 2/ (S?%). This vec-
tor is then projected onto the hyperplane H, (which is orthogonal to the root x) and re-normalized.

Spherical Radon Transform on Spherical Tree Systems Let L'(S?) be the space of Lebesgue-
integrable functions on the hypersphere S?. For a given spherical tree system 7 € T¢, we de-
ﬁne LY(T) as the space of integrable functions f : 7 — R such that their norm, ||f|+ =

D 1f0 | f(t,7y,)| dt, is finite.

A splitting map is a continuous function @ € C(S? x Tz, Aj_1) that assigns a weight distribution
to the rays of a tree for any given point on the sphere. Given such a map, the Spherical Radon
Transform on Spherical Trees projects a function f € L(S?) onto a function REf in LY(T). Fora
point (¢, 7y, ) on the i-th ray of the tree, the transform is defined as:

REf(¢, / fly T); - 6(t — arccos (x,y)) dy, (82)

where  is the Dirac delta. This operator is well-defined from L' (S?) to L!(T). Aggregating over
all trees, the transform R maps a function on the sphere to a collection of functions on all possible
trees. If the splitting map « is invariant under the orthogonal group O(d + 1), this transform is
injective (Tran et al., 2025b).

Spherical Tree-Sliced Wasserstein Distance For probability measures i, v € P(S?), the oper-
ator R transports them to corresponding measures on the tree, R and RSv. Since 7 has a
tree metrlc d+, we can compute the 1-Wasserstein distance between these pr0]ected measures. The
Spherical Tree-Sliced Wasserstein (STSW) distance is then defined as the expectation over all trees:

STSW(p, v / Wi (R$u, Ryv) do(T). (83)

When the splitting map « is chosen to be O(d + 1)-invariant, the STSW distance is an O(d + 1)-
invariant metric on P(S%).

Splitting Maps. The invariance of the metric relies on an O(d + 1)-invariant splitting map. The
group O(d + 1) consists of transformations on R4+ that preserve the Euclidean norm and thus
leave the sphere S? invariant. A splitting map a is O(d + 1)-invariant if a(gy, g7) = a(y, T) for
allg € O(d+1).

A practical way to construct such a map is to base it on an invariant quantity. For a point y € S¢
and a spherical tree 7, one can define an invariant “distance” $(y, 7 ); from y to each ray 4 of the
tree. A continuous and O(d + 1)-invariant choice for this map, as presented in Tran et al. (2025b),
is given by 3: S? x T¢ — R¥:

0, ify = +x,
BTy )i =\ arecos (%) T (@ y?, ify#+e. (84)
A valid splitting map « can then be constructed by applying the softmax function to these values:
aly, T): = softmax({¢ - By, T); ¥ ) - (85)

This map assigns higher weights to the rays that are “closer” to the point y, while preserving the
necessary rotational symmetries.
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E.2 SPHERICAL TREE-SLICED SOBOLEV IPM

The Tree-Sliced Sobolev IPM framework can be extended from Euclidean spaces to measures de-
fined on the d-dimensional hypersphere, i, v € P(S?). This is achieved by replacing the Eu-
clidean components with their spherical analogs. Instead of projecting onto tree systems formed
from straight lines, we project onto spherical tree systems built from spherical rays.

The projection is performed by the Spherical Radon Transform (R®), which maps the spherical
measures i, v € P(S?) to corresponding measures yi7 = R%(p) and vy := R$(v) on a given

spherical tree 7. We then compute the regularized Sobolev IPM, S, (y1, v1), between these pro-
jected measures. The final distance is the expected value of this quantity, taken over the space of
random spherical trees T with respect to a probability distribution o.

Definition E.1 (Spherical Tree-Sliced Sobolev IPM). The Spherical Tree-Sliced Sobolev IPM of
order p € [1, 00), denoted as STS-Sobolev,,, between y, v € P(S?) is defined by

STS-Sobolev, (11, v) == ( /jr S, (ur, vr)? da(T)) " (86)

E.3 PROPERTIES OF SPHERICAL TREE-SLICED SOBOLEV IPM

Metricity of STS-Sobolev,,. The metric properties of STS-Sobolev are guaranteed by the invariance
of its components under the relevant symmetry group for the sphere: the orthogonal group O(d+1).
This is the group of distance-preserving linear transformations (rotations and reflections) in R4+,
which leave the sphere S¢ invariant. An O(d + 1)-invariant splitting map ensures that the Spherical
Radon Transform is injective, which is crucial for the metric properties. Just as in the Euclidean
case, this invariance guarantees that STS-Sobolev is not only invariant but also a valid metric.

Theorem E.2. The STS-Sobolev is an O(d + 1)-invariant metric on P(S%).

The proof is analogous to that of Theorem 3.2.

Connections to STSW. The STS-Sobolev IPM is a natural generalization of the Spherical Tree-
Sliced Wasserstein (STSW) distance (Tran et al., 2025b). It recovers STSW exactly for the case
p = 1 and is bounded by it for all other orders.

Theorem E.3. For any p,v € P(S%) and p > 1: STS-Sobolev,(u, )P < STSW(pu,v), with
equality if p = 1, i.e., STS-Sobolevy (p1, v) = STSW(u, v).

The proof is analogous to its Euclidean counterpart in Theorem 3.3.

Computation of Spherical Tree-Sliced Sobolev IPM. The integral in Equation (86) is intractable

and is approximated using a Monte Carlo estimate by sampling L spherical trees:

1
P

L
STS@olevp(u,u) = (L Z S, (17 VTi)p> : (87)

The computational complexity of STS-Sobolev matches its first-order counterpart, STSW, at
O(Lnlogn + Lkdn). The additional step of computing the coefficients 5. per Equation (6) in-
troduces a negligible overhead of only O(Lkn). Crucially, key advantages are preserved: this com-
plexity holds for any order p € [1, c0), and the empirical runtime remains nearly identical to that of
STSW.

Theorem E.4. The approximation error of STS-Sobolev decreases at a rate of O(L‘l/ 2).

The proof is analogous to that of Theorem 3.5.

E.4 THEORETICAL PROOFS FOR SPHERICAL TREE-SLICED SOBOLEV IPM

In this section, we provide the proofs for the results stated in Appendix E.3.
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Proof for Theorem E.2

Proof. We show that STS-Sobolev,, is an O(d + 1)-invariant metric on the space of probability
measures P (S¢). The definition is given by

STS-Sobolev,, (1, v) = (/11‘ S, (ur, vr)? da('T)) ’ , (88)

where (7 and v are the projections of p and v via the Spherical Radon Transform, and Sp isa
metric on the space of measures on a spherical tree 7. The proof relies on the injectivity of the
Spherical Radon Transform R®, which holds because the splitting map « is chosen to be O(d + 1)-
invariant (Tran et al., 2025b).

We now verify the three metric axioms. First, for positive definiteness, it is clear that
STS- Sobolevp(u w) = 0 and STS-Sobolev,, (1, ) > 0. If STS-Sobolev, (i, v) = 0, this implies

fT (w7, v7)P do(T) = 0. Since the integrand is non-negative, this means Sp(p% vy) = 0 for

almost all 7 € T. As S’p is a metric, it follows that y = v for almost all 7. By the injectivity of
the Spherical Radon Transform R, we conclude that the measures are equal, ;1 = v.

Second, for symmetry, the property on each tree implies Sp(#% vy )P = S’p(w—, w7 )P. Therefore,

STS-Sobolevy, (i, v) = </T Sp(uT, vy)? do(T)) ’
= (/ S, (v, pr)? da(T)) ’ = STS-Sobolev,, (v, 11). (89)
T

Third, for the triangle inequality, we use the triangle inequality of S’p for any ji1, p2, 3 € P(S9)
and then apply Minkowski’s integral inequality:

1
STS-Sobolevy, (1, p3) = (/ Sy(pa 75 3. 1)? dO’(T))

1
P

< (/T (Sp(ulmm,ﬂ + Sp(HQ,Tvﬂ?),T))p dU(T)>

< (/T Sy, 7 p2.7)" dU(’T))ZlU n (/T S (a7 )" dJ(T))’l“

= STS-Sobolev,, (11, p2) + STS-Sobolevy, (g, f13). (90)

Thus, STS-Sobolev,, is a metric on P(S¢). For O(d + 1)-invariance, we aim to show that for any
g € O(d + 1), STS-Sobolev, (1, v) = STS-Sobolev,, (gtu, gir). Since o is O(d + 1)-invariant, the

action of g is an isometry, i.e., S'p (wr,v7) = Sp((gﬂu)gT, (gfv)g7) (Tran et al., 2025b). Using this
and a change of variables, we compute:

STS-Sobolevy, (gp, gtv)” / Sp((gt1) T, (gv)7)P do(T)
= [ Sl(atm)ar. (g20)gr ) dotaT)
= /T S, (w7, v7)P do(T) = STS-Sobolev, (1, v)?. (91)
Taking the p-th root of both sides, we conclude that STS-Sobolev,, is O(d + 1)-invariant. O

Proof for Theorem E.3

Proof. We prove the theorem in two parts. First, we establish the equality for the case p = 1, and
second, we prove the general inequality for any p € [1, 00).
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Part 1. We first prove equality for p = 1. By definition, for the case p = 1, the Spherical Tree-Sliced
Sobolev IPM is:

STS-Sobolev, (11, v / Si(pr,vr)do(T). 92)

The Spherical Tree-Sliced Wasserstein distance is defined as STSW (u1, v) = [, W1 (pr, v7) do(T).
To prove the theorem, it is sufficient to show the integrands are equal. We analyze the discrete form
of the Sobolev IPM for p = 1:

Si(prvr) = Be lnlye) = v(ve)l - (93)

eclE

For p = 1, the coefficient 3, simplifies to S, = w,. Substituting this result gives:

Sipr,vr) =Y welulye) = v(ve)l, (94)
ecE

which is the known closed-form solution for the 1-Wasserstein distance on a tree, W1 (ur, 7).
Since the integrands are equal, their expectations are equal, proving that STS-Sobolev (i, v) =
STSW (s, v).

Part 2. Next, we prove the general inequality by showing that on any given tree 7, the integrand is
bounded as S, (u7, v7)P < Wi(pr, vr).

This relies on two facts established in Appendix D.2: (1) the Sobolev coefficient 5. < w, for all
p > 1, and (2) for probability measures, |u(ve) — v(7e)| € [0, 1], which implies |...|P <|...| for
p > 1. Using these facts, we can bound the p-th power of the Sobolev IPM on a tree:

Splpr, vr)P = Belu(ve) — v(ve)l”

eckE

< we |p(ve) = v(ve)” (since B, < w,)

eckE

SZwem(*ye)—u(%H (since |...|P < |...]
eeE

= Wi(pr,vr). 95)

Integrating the inequality S‘p(;rr, vr)P < Wy(ur,vy) over all trees T € T directly yields the
theorem and completes the proof. O

Proof for Theorem E.4

Proof. The Monte Carlo estimator for STS-Sobolev is STS-/Sﬁolevp(u,u) =

1

(% Z{;l S, (7 v )p> ". Let the random variable X; = S, (u7;, v, )P, where each T; ~ o. The
expected value of X; is px = E[X;] = STS-Sobolev,(p,v)?. Let the variance of X; be finite,

0% = V[X;]. By the Central Limit Theorem, the sample mean X = %Zle X; has variance
V[X] =0%/L.
Our estimator is the function g(X) = X'/P. Applying the Delta Method, the variance of the
estimator can be approximated by V[g(X)] ~ (¢'(1x))*V[X], where the derivative is ¢'(y) =
%y%_l. The Root Mean Squared Error (RMSE) is the square root of the variance:

— 11
RMSE = \/ V[STS-Sobolev,, (1, v)] ‘ (96)
\/»
Since px and ox are finite constants independent of the number of samples L, the Monte Carlo
approximation error decays at the standard rate of O(L~1/2). O
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Table 6: Complexity Analysis of TS-Sobolev and STS-Sobolev.

Distance Operation Description Computation Memory

Sampling Random sampling concurrent-line trees O(Lkd) O(Lkd)

Projection Matrix multiplication of points and lines O(Lknd) O(Lkd + nd)
TS-Sobolev Distance-based weight Distance calculation and softmax O(Lknd) O(Lkn + Lkd + nd)

splitting

Sorting Sorting projected coordinates O(Lknlogn) O(Lkn)

Coefficient computation Computing coefficients (5.) O(Lkn) O(Lkn)

Total O(Lknd + Lknlogn + Tnd)  O(Lkn + Lkd + nd 4+ Tnd)

Sampling Random sampling spherical trees O(Lkd) O(Lkd)

Projection Matrix multiplication of points and source O(Lnd) O(Ld + nd)
STS-Sobolev Distance-based weight Distance calculation and softmax O(Lknd) O(Lkn + Lkd + nd)

splitting

Sorting Sorting projected coordinates O(Lnlogn) O(Ln)

Coefficient computation Computing coefficients (5) O(Lkn) O(Lkn)

Total O(Lknd + Lnlogn) O(Lkn + Lkd + nd)
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Figure 4: Execution time and memory usage of TS-Sobolev 5.

F EXPERIMENTAL DETAILS

F.1 RUNTIME AND MEMORY ANALYSIS

Computational and Memory Complexity. We summarize the complexity of our proposed dis-
tance measures in Table 6. The overall computational and memory costs for TS-Sobolev and STS-
Sobolev are identical to their respective counterparts, Db-TSW (Tran et al., 2025a) and STSW (Tran
et al., 2025b). This is because the additional step of computing the coefficients, as defined in Equa-
tion Equation (6), has a low complexity of O(Lkn), which is subsumed by the dominant terms of
the projection and sorting operations.

Empirical Scaling Analysis. To verify our theoretical complexity, we benchmark the runtime and
memory scaling of TS-Sobolev; 5 and TS-Sobolev, with respect to the number of support points (1)
and the data dimension (d). For these experiments, we fix the hyperparameters at L = 2500 trees
and k = 4 lines per tree, and run all tests on a single NVIDIA H100 GPU. Results are averaged over
10 runs.

As detailed in Figures 4 and 5, the results confirm our analysis. The left panel of each figure shows
that runtime exhibits a clear linear scaling with both n and d. Similarly, the right panel of each figure
shows that memory usage also scales linearly. These empirical findings are fully consistent with the
theoretical complexities presented earlier.

Runtime Comparison with Other Methods. We empirically compare the runtime of our method
against its counterparts in Figure 6. For the tree-sliced methods (Db-TSW and TS-Sobolev), we
use L = 2500 trees and k = 4 lines per tree, while for Sliced Wasserstein (SW), we use 10, 000
projections. All results are averaged over 10 independent runs. The experiment confirms that TS-
Sobolev’s runtime is nearly identical to that of Db-TSW, as the additional coefficient computation
step introduces negligible overhead.

Runtime Across Order p. As also shown in Figure 6, the runtime of TS-Sobolev remains con-
sistent across different orders of p. This is a crucial advantage of our framework, demonstrating
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Figure 6: Runtime Comparison of TS-Sobolev and other methods.

that it provides the flexibility to use higher-order metrics without incurring any performance penalty
compared to the standard p = 1 TSW.

F.2 GRADIENT FLOW ON EUCLIDEAN SPACE AND ON THE SPHERE

Euclidean Datasets. Table 1 reports the performance of our proposed methods compared with
several baselines on the 8 Gaussians and Gaussian 30d datasets. We use L = 25 trees and k = 4
lines for tree-sliced methods and L = 100 projections for other sliced methods. We train for 2500
steps using the Adam optimizer with a global learning rate of 0.005. For the TSW variant, we use a
learning rate of 0.005 for the 25 Gaussians dataset and 0.05 for the Gaussian 30d dataset, as in Tran
et al. (2025a). For TSW-SL and Db-TSW, we set p=1. Each distribution has 500 samples.

Spherical Datasets. The probability density of the von Mises-Fisher distribution with mean direc-
tion pu € S is expressed as:
f(x; u, k) = Cy(k) exp(ru’ z)
d/2—1
where x > 0 controls concentration, and Cy(k) = 5 is the normalization factor.
(27’(’)17/ Ip/2_1 (lﬁ})
Following Bonet et al. (2022); Tran et al. (2024a; 2025b), we consider a target distribution of 12
vMFs with 2400 samples (200 per vEM) where x = 50 and

H1 = (_17¢7 0)7 H2 = (17¢7O)a H3 = (_17 _¢30)7 H4 = (1a _d))O)
M5 = (07 _17¢)a He = (Ov 17¢)7 He = (Ov _]-7 _¢), Hs = (07 13 _¢)
H9 = (d)vov _1)a Hio0 = (¢70a 1)a H11 = (_¢a07 _1)7 Hi12 = (_¢7O7 1)
1++5

B .

where ¢ =
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Table 7: Average 1-Wasserstein distance (1//7) on Gaussian 30d (Euclidean)

Method Iter 500 Iter 1000 Iter 1500 Iter 2000 Iter 2500
SW 23.5 23.2 22.9 22.6 22.3
SWGG 22.6 227 22.7 22.7 22.7
LCVSW 23.1 22.5 22.0 21.4 20.8
TSW-SL 21.4 20.6 20.0 194 18.8
Db-TSW 21.1 19.8 18.6 17.3 16.1
TS-Sobolev; 21.0 19.5 18.0 16.4 14.9
TS-Sobolevy 5 20.4 18.1 14.7 10.5 6.69
TS-Sobolevsy 22.1 21.2 20.1 19.2 18.6

Table 8: Average Log 1-Wasserstein distance (I7/7) on Mixture of vMFs (Spherical)

Method Epoch 50 Epoch 100 Epoch 150 Epoch 200 Epoch 250
SSW -1.477 -1.740 -1.870 -1.951 -2.008
S3wW -1.213 -1.373 -1.451 -1.486 -1.509
RI-S3W (1) -1.225 -1.479 -1.602 -1.672 -1.722
RI-S3W (5) -1.423 -1.662 -1.782 -1.863 -1.913
ARI-S3W -1.527 -1.792 -1.950 -2.057 -2.136
STSW -1.530 -1.812 -1.969 -2.046 -2.082
STS-Sobolev; 5 -1.842 -2.051 -2.097 -2.151 -2.139
STS-Sobolevs -1.814 -2.054 -2.120 -2.150 -2.158

We fix L = 200 trees and k£ = 5 lines for tree-sliced distance while using L. = 1000 projections for
the rest. ARI-S3W (30) has 30 rotations with a pool size of 1000. RI-S3W (1) and RI-S3W (5) have
1 and 5 rotations, respectively. All methods are trained using Adam (Kinga et al., 2015) optimizer
with {7 = 0.01 over 250 epochs. For STS_Sobolev, we use a learning rate of 0.05.

Evaluation using 1/;.  To verify our performance gains, we re-evaluated the gradient flow ex-
periments using the 1-Wasserstein (117) distance. As detailed in Table 7, the proposed method
demonstrates significant improvements in the Euclidean setting under 1/} evaluation; notably, on
the high-dimensional Gaussian 30d dataset, TS-Sobolev (p = 1.5) achieves a final W, distance of
6.69, substantially outperforming the strongest baseline, Db-TSW (16.1). Furthermore, in the spher-
ical setting (Table 8), STS-Sobolev (p = 2) achieves the lowest final log W distance of -2.158,
surpassing both STSW (-2.082) and the strongest sliced baseline, ARI-S3W (-2.136).

Ablating Tree-Projection Settings. We conduct an ablation study to verify that the performance
gains of the TS-Sobolev framework translate to other tree projection settings. Theoretically, the core
advantage of our proposed method is derived from the metric formulation itself and should therefore
persist regardless of the specific tree structure or splitting map employed. To empirically validate
this, we conducted additional Gradient Flow experiments on the Gaussian 30d dataset, evaluating
the method across four distinct configurations: combinations of Chain versus Concurrent tree
sampling strategies, and Uniform versus Distance-based splitting maps.

As presented in Table 9, TS-Sobolev; 5 consistently outperforms the standard TSW; baseline across
all four settings. This consistency confirms that the performance gains are intrinsic to the regularized
Sobolev metric formulation rather than being specific to the default projection settings.

F.3 DIFFUSION MODELS

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are a class of
generative models renowned for producing high-quality samples. Their methodology is based on
a dual-process framework. The first is a fixed forward process, where data x( is progressively
corrupted over 71" timesteps by adding Gaussian noise according to a predefined variance schedule,
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Table 9: Ablation study on the Gaussian 30d dataset. We report the average Wasserstein distance
(multiplied by 10~ 1) between source and target distributions at iteration 2500 across different tree
structures and splitting maps. Results are averaged over 10 runs.

Tree Sampling  Splitting Map TSW; TS-Sobolev; s TS-Sobolevy s TS-Sobolevy

Chain Uniform 2.01 1.89 4.54 12.30
Chain Distance 1.56 1.49 1.88 5.30
Concurrent Uniform 1.93 1.83 3.37 11.10
Concurrent Distance 1.78 1.40 1.51 3.68

(. This noising cascade is defined by the transition kernel:

Q(It|517t—1) = N(It; AV 1— Biwy_1, Btl)-

The second is a learned reverse process, where a neural network, parameterized by 6, is trained to
reverse the corruption. At each timestep ¢, the model learns to predict the denoised sample x;_1
from the noisy input x,. This learned denoising step is also modeled as a Gaussian distribution:

po(zialze) = N(xe—1; po (e, 1), 07 ).
The model is trained by optimizing the Evidence Lower Bound (ELBO), which is equivalent

to minimizing the Kullback-Leibler (KL) divergence between the model’s predicted distribution
po(x¢—1|x¢) and the true posterior q(x¢—1|zy).

Denoising Diffusion GANs. A significant drawback of traditional diffusion models is their slow
sampling speed, which stems from the large number of sequential steps (1) required. Denoising
Diffusion GANs (DDGAN ) (Xiao et al., 2021) address this inefficiency by reformulating the reverse
process. Instead of a simple denoising network, DDGANs employ a conditional Generative Adver-
sarial Network (GAN) for each reverse step. This approach allows for much larger and more expres-
sive denoising transitions, drastically reducing the number of sampling steps needed—sometimes to
as few as four—and enabling over 2000x speedups without substantial loss in sample quality.

The training objective for DDGANS has also evolved. While the original work relied on a standard
adversarial loss, Nguyen et al. (2024) successfully replaced it with the Augmented Generalized Mini-
batch Energy (AGME) distance. The AGME is a sophisticated metric derived from the Generalized
Mini-batch Energy (GME) distance (Salimans et al., 2018), which quantifies the difference between
two distributions by comparing the distances between mini-batches of their samples. The GME
distance is defined as:

where Px, Py are empirical measures from mini-batches and D is a chosen base metric. The effec-
tiveness of this training scheme is highly dependent on the choice of D. In our work, we explore the

performance of Sliced Wasserstein (SW) and our proposed Tree-Sliced Wasserstein (TSW) variants
as the base metric D within this framework.

Implementation Details. Our experimental configuration closely follows the setup of Nguyen
et al. (2024) and Tran et al. (2025a) for model architecture and core hyperparameters. All models
are trained for 1800 epochs.

For the tree-sliced methods, we set the number of sampled trees to L = 2500 and lines per tree
to k = 4, with a sampling standard deviation of 0.1, per (Tran et al., 2025a). In contrast, for
Sliced Wasserstein (SW) methods, we use L = 10000 projections, consistent with (Nguyen et al.,
2024). We adopt the learning rates from the same work, setting them to Iry = 1.25 x 10~ for the
discriminator and lry = 1.6 x 10~* for the generator. All runtime evaluations are conducted with
a batch size of 128 on two NVIDIA H100 GPUs. Our results for TS-Sobolev are averaged over 10
runs while other results are obtained from previous results.

F.4 SELF-SUPERVISED LEARNING

Encoder. In line with (Bonet et al., 2022; Tran et al., 2024a; 2025b), we train a ResNetl18 (He
et al., 2016) on CIFAR-10 data for 200 epochs with a batch size of 512. Training uses SGD with
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Table 10: Statistics and hyperparameters for datasets used.

Dataset statistics Hyperparameters

Dataset #Docs #Labels #Words #Projections Batchsize Dropoutrate Spherical prior

M10 8,355 10 1,696 2,000 64 0.5 Uniform
BBC 2,225 5 2,949 8,000 256 0.05 vMF

Ir = 0.05, a momentum 0.9, and a weight decay of 103, Data augmentations for creating positive
pairs are aligned with earlier studies (Wang & Isola, 2020; Bonet et al., 2022; Tran et al., 2024a),
including resizing, cropping, horizontal flipping, color jittering, and random grayscale conversion.

For tree-sliced methods, we use L = 200 trees, k = 20 lines for STSW, and A = 10. We set
L = 200 projections for all other sliced distances. We report result in Table 3 where d = 9.

Linear Classifier. We then train a linear classifier on the frozen representations produced by the
encoder. Similar to prior works Bonet et al. (2022), training runs for 100 epochs using the Adam
(Kinga et al., 2015) optimizer using a learning rate of 10~3, a weight decay of 0.2 at epochs 60 and
80.

F.5 TopriCc MODELING.

Topic modeling task (Blei et al., 2003) seeks to automatically extract distinct themes from collec-
tions of text documents, revealing the underlying structure of a corpus. Recent approaches typically
employ a variational autoencoder (VAE) setup, in which the optimization balances accurate docu-
ment reconstruction with a regularization that encourages the inferred topic distributions to resemble
a chosen prior (Srivastava & Sutton, 2017). Inspired by Nan et al. (2019); Adhya & Sanyal (2025),
we propose replacing the conventional KL-divergence regularizer with a Wasserstein-based alterna-
tive. This leads to the following objective:

3{)115) Epx)Eq, (0x) [CE(x, %)] + ATS_Sobolev(q,(0), p(9)),

where CE represents the cross-entropy between the input document x (in bag-of-words representa-
tion) and its reconstruction x. The variational posterior ¢, (#|x) is generated by encoder ¢, and the
decoder 1) maps topic mixtures # back to word distributions to form X.

Datasets. We evaluate our proposed methods on three well-known benchmark corpora used exten-
sively for topic modeling research:

* BBC (Greene & Cunningham, 2006): Comprising more than 2,000 news articles published
by the BBC, grouped into 5 topical classes.

» M10 (Pan et al., 2016): Extracted from the CiteSeer* digital library, containing over 8,000
academic papers spanning 10 distinct research fields.

Preprocessing include lowercasing, punctuation removal, lemmatization, filtering out words shorter
than three characters, and exclusion of documents with fewer than three words. Comprehensive
statistics on these datasets after preprocessing are summarized in Table 10.

Evaluation Metrics. To quantitatively measure model effectiveness, we consider topic coherence
and diversity. Topic coherence is measured using the Cy (CV) metric (Roder et al., 2015), which
correlates well with human interpretability, while topic diversity is assessed via the IRBO metric
(Terragni et al., 2021), which evaluates how distinct the topics are. Topic coherence reflects the ex-
tent to which high-probability words within topics co-occur in documents, whereas diversity reflects
how thematically different the topics are from one another.

Training Protocol. The experiments are conducted using the OCTIS framework (Terragni et al.,
2021), adhering to the setup described in (Adhya & Sanyal, 2025). Each model is trained for 100
epochs, employing a Dirichlet prior when operating in the Euclidean latent space, while parameters

40



Under review as a conference paper at ICLR 2026

Table 11: Topic diversity scores as measured by IRBO (T) on the BBC and M 10 datasets

Method BBC MI10
LDA (Blei et al., 2003) 0.934 +0.004 0.893 £ 0.025
ProdLDA (Srivastava & Sutton, 2017) 1.000 + 0.000  0.996 + 0.002
WTM (Nan et al., 2019) 0.998 £ 0.002  0.850 £ 0.065
Euclidean setting

SW-TM (Bonneel et al., 2015) 1.000 £ 0.000 0.977 + 0.002
RPSW-TM (Nguyen et al., 2024) 0.997 £0.003 0.973 £ 0.018
EBRPSW-TM (Nguyen et al., 2024) 0.997 +0.002 0.977 £0.013
TSW-SL-TM (Tran et al., 2024b) 0.996 + 0.006 0.984 £ 0.002
Db-TSW-TM (Tran et al., 2025a) 1.000 £ 0.000 0.986 = 0.007
TS-Sobolev,-TM (ours) 1.000 £ 0.000  0.980 £ 0.010

Spherical setting
S2WTM (Adhya & Sanyal, 2025; Bonet et al., 2022)  0.999 +0.02  0.961 & 0.021

STSW-TM (Tran et al., 2025b) 0.994 £0.007 0.861 & 0.069
S3W-TM (Tran et al., 2024a) 1.000 +£0.000  0.876 £ 0.021
LSSOT-TM (Liu et al., 2025) 0.974 +£0.014  0.921 £0.015
STS-Sobolev,-TM (ours) 1.000 £ 0.000  0.933 +0.016

for the spherical latent space prior are specified in Table 10. The regularization weight A is system-
atically varied between 0.5 and 10 in steps of 0.5. For approaches involving tree-based objectives,
the number of trees is fixed at 100. Additional training configurations can be found in Table 10.

Topic Diversity. The topic diversity results measured by IRBO scores T on the DBLP, M10, and
BBC datasets are displayed in Table 11. Notably, our proposed methods achieved comparable topic
diversity and superior topic coherence relative to the baselines, underscoring their practical advan-
tages.

F.6 EFFECTS OF THE NUMBER OF TREES (L) AND LINES PER TREE (k)

The computational complexity of the framework scales linearly with both the number of sampled
trees L and the number of lines per tree k, making the selection of these hyperparameters a key
practical consideration.

Number of Trees (L). The parameter L directly governs the precision of the Monte Carlo estimate.
Since the approximation error decays at a rate of O(L’l/ 2), a sufficiently large L is necessary to
ensure accuracy. Our experiments confirm this, showing that higher values of L consistently lead to
improved performance on downstream tasks.

Lines per Tree (k). The parameter k controls the geometric expressiveness of each individual tree
structure. We observe empirically that using multiple lines (k > 1) yields significantly better results
than the k¥ = 1 case (which simplifies to a standard sliced distance). This confirms that the richer
geometry of the tree structure is vital for performance.

The Trade-off between L and k. While a larger k can intuitively capture more intricate data ge-
ometries, it also dramatically expands the space of possible tree structures. This, in turn, may require
a much larger number of samples L to ensure the space of trees is adequately represented. Our ex-
periments indicate that naively increasing k to very high values does not always improve results,
likely due to this sampling challenge. Developing methods that can leverage the expressiveness
of high-k trees without requiring a prohibitively large L remains an important direction for future
research.

F.7 [EFFECTS OF THE ORDER (p)

We evaluate the sensitivity of our method to the hyperparameter p on a gradient flow task with the 25
Gaussians and Gaussian 20d datasets. For these experiments, we use L = 25 trees and k& = 4 lines,
with learning rates set to 0.005 and 0.05, respectively. Figure 7 plots the log W, distance between
the source and target distributions over 1000 steps for several choices of p.
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Figure 7: Log Wasserstein Distance between two distributions for p € {1.2,1.5,1.6,2,5,10}

The results reveal a clear trade-off. Very high values of p can lead to unstable training and diver-
gence, as the associated gradients can become excessively large. Conversely, lower values of p
generally lead to more stable training dynamics and consistently strong performance. However, a
moderately high p can also be beneficial, as the increased variance in the training dynamics can help
the model escape local optima. This is supported by our main experiments in Section 4, where a
larger p sometimes yields superior results. Based on this analysis, we recommend selecting p within
the range [1.0, 2.0] as a robust starting point for tuning.

Theoretical Analysis. Values of p > 2 introduce significant optimization challenges due to the
extreme scaling of the structural weights. The weighting term () ~? contains a negative exponent
that grows in magnitude as p increases. This creates a loss landscape where weights can shift dras-
tically based on the subtree volume: weights for edges near the root can vanish entirely (causing a
loss of global structural guidance), while weights for edges with small volumes can grow dispropor-
tionately large (if the effective weight base is small), leading to exploding gradients. This numerical
instability makes the optimization difficult to tune and prone to divergence.

The specific success of p = 2 likely stems from its unique geometric and computational balance.
Geometrically, gradients are linear with respect to the error (A2~! = A), providing the most con-
sistent and stable signal across different scales of error. Computationally, p = 2 is a special case
where the edge coefficient . takes a logarithmic form log(1 + #{7)), in contrast to the polyno-
mial form for other values. This logarithmic scaling naturally compresses the dynamic range of the
spatial weights. It prevents the bias against global structure from becoming too extreme, avoiding
the vanishing weight problem, and allows p = 2 to effectively prioritize fine-grained local details
(leaves) while retaining sufficient sensitivity to global alignment (root).

In this paper, we prioritize gradient-based optimization, which is the most critical application of
sliced distances. As detailed in E.8, setting p > 1 generally yields smoother gradients, making it
more suitable for optimization tasks. Conversely, for p = 1, the weighting function emphasizes
global discrepancies, and the transport cost follows the L.; norm. These properties render the p = 1
setting robust to local outliers and effective for estimating global changes, which can be particularly
beneficial for tasks involving noisy data.

F.8 ANALYSIS OF ADVANTAGES OF HIGHER ORDER (p > 1)

TS-Sobolev is motivated by the need for a computationally efficient metric of order p > 1. While the
standard Tree-Sliced Wasserstein distance lacks a tractable solution for orders p > 1, these higher
orders is important for gradient-based learning, as p-Wasserstein metrics offer smoother gradients
compared to the p = 1 case (Peyré et al., 2019). Beyond simply enabling tractability, our analysis re-
veals that TS-Sobolev (p > 1) introduces distinct advantages over standard p-Wasserstein. Overall,
the better performance of TS-Sobolev stems from two complementary mechanisms: the improved
optimization landscape inherent to the LP cost function and the preservation of fine-grained features
introduced by the weighting function.
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Improved Optimization Landscape. The choice of p dictates the convexity and smoothness of
the underlying optimization objective. Let L(A.) = |A.|P = |(ve) — v(7e)|P, as in Equation (5),
denote the unweighted transport loss associated with the mass discrepancy A, on a given edge.
For p = 1, the Tree-Sliced Wasserstein (TSW) distance behaves analogously to an L' loss. This
formulation lacks strict convexity, which implies that optimization problems solving for measures 1
or ¥ may admit non-unique minimizers, leading to potential instability (Santambrogio, 2015; Villani,
2003). Furthermore, the gradient magnitude for p = 1 remains constant (|VL| 1, i.e., proportional
to a constant) regardless of the proximity to the target, often leading to oscillations around the
optimum unless the learning rate is carefully annealed. In contrast, for p > 1, the cost function
becomes strictly convex, ensuring unique geodesics and well-conditioned gradient signals (Peyré
et al., 2019). Crucially, the gradient magnitude scales with the transport cost, following |V £| o
|Ac|P~. This property ensures that gradients are large when distributions are distinct and vanish
smoothly as A, — 0, facilitating stable fine-tuning and convergence.

These better optimization characteristics directly translate into improved performance in the Gradi-
ent Flow experiments across both Euclidean and Spherical benchmarks in Section 4.

Preserving Fine-Grained Structure. Beyond the optimization benefits inherent to standard ),
metrics, TS-Sobolev employs a weighting mechanism that uniquely prioritizes the preservation of
fine-grained features. As derived in Equation 4, the metric minimizes a cost weighted by the term
w(z)t=P, where w(z) = 1 + w(A(z)) represents the weight of the subtree rooted at 2. For p > 1,
this weighting factor decays as the subtree size w(A(x)) increases. Consequently, this mechanism
downscale dominant gradients arising from the root and upper levels of the tree (where w(A(x)) is
large), preventing global mass shifts from overwhelming the optimizer. Conversely, nodes deeper in
the tree (near the leaves) possess smaller subtree weights, resulting in substantially larger values for
w(z)'~P. This effectively concentrates the optimization signal on minimizing local discrepancies,
ensuring the capture and preservation of fine-grained details.

In image generation, fine-grained details correspond to high-frequency features such as intricate
textures and sharp edges. Consequently, this capacity to prioritize local feature details is a key factor
driving the enhanced sample quality and sharpness observed in our large-scale diffusion training.

To further demonstrate the ability to capture fine-grained high-frequency signals, we conducted
a controlled experiment using a 1D synthetic signal composed of distinct frequency modes. We
defined a target probability density p(x) on the domain [0, 1] as a mixture of sine waves:

p(x) o< 1+ 0.58In(27 - Kjow - ) + 0.38In(27 - kpigh - ) 7)

where kjo,, = 2 represents low-frequency signals and k4, = 20 represents high-frequency signals.
We initialized N = 10000 particles from a uniform distribution /[0, 1] and optimized their positions
via gradient flow to minimize the distance to p, comparing TSW against TS-Sobolev,. To quantify
the capture of frequency modes, we computed the Discrete Fourier Transform (DFT), denoted as
F, of both the particle density p and the target p. We calculated the relative spectral error as the
magnitude of the difference between their spectral components: low-frequency error | F(p) [kiow] —
F(P)[kiow]| and high-frequency error | F(p)[knign] — F (D) [knign]|-

The quantitative results are summarized in Table 12, and the error trajectories are visualized in
Figure 8. In the low-frequency regime, both metrics perform similarly. At final, TSW achieves a
low-frequency error of 34.68 compared to 33.94 for TS-Soboleyv, indicating both effectively capture
global structure. However, a significant disparity emerges in the high-frequency regime. While the
high-frequency error for TSW plateaus, the error for TS-Sobolevs consistently decreases, reaching
14.16 compared to 20.15 for TSW. This clear trend demonstrates that TS-Sobolevs captures high-
frequency signals significantly better than TSW, confirming our theoretical analysis regarding the
preservation of fine-grained structure.

F.9 HARDWARE SETTINGS

All experiments were conducted on a single NVIDIA A100 (40GB) GPU, with the exception of the
denoising diffusion experiments, which were executed in parallel across two NVIDIA H100 GPUs.
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Table 12: Low-Frequency and High-Frequency Error (]) over 10 runs.

Low Frequency Error High Frequency Error
Iter TSW TS-Sobolevy TSW TS-Sobolevs

250 | 48.18 =145 47.80+£1.27 | 25.24+2.06 25.29 £ 2.55
500 | 44.55£2.12 43.98+1.80 | 21.01£1.94 20.45+2.18
750 | 39.96 £2.46 39.25+2.24 | 19.24£0.90 16.05+1.50
1000 | 34.68 £2.75 33.94+2.55 | 20.15+1.39 14.16+1.15

Low Frequency Error High Frequency Error
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Figure 8: The evolution of error for low-frequency (k = 2) and high-frequency (k = 20) modes
during gradient flow. While both methods reduce low-frequency error at a similar rate, TS-Sobolev
(Orange) converges significantly better on the high-frequency component than TSW (Blue).

G BROADER IMPACTS

The ability to accurately and efficiently compute distances between complex probability distribu-
tions is a foundational challenge in many scientific and industrial fields. The TS-Sobolev frame-
work presented in this work contributes a new tool for this task, with potential for broad societal
impact. Applications span data-driven science, where more robust distributional comparison could
refine medical image analysis for diagnostics, and generative Al, where it may enable the devel-
opment of higher-fidelity models for creative content. A distinct advantage of our approach is its
suitability for dynamic-support measures, a critical capability for real-time systems in domains like
financial modeling, logistics, and environmental science. By advancing this fundamental computa-
tional primitive—the comparison of measures—our work can help foster progress across a range of
applications reliant on sophisticated data analysis.
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