
Under review as a conference paper at ICLR 2023

LESS IS MORE: IDENTIFYING THE CHERRY ON THE
CAKE FOR DYNAMIC NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Dynamic networks, e.g., Dynamic Convolution (DY-Conv) and the Mixture of
Experts (MoE), have been extensively explored as they can considerably improve
the model’s representation power with acceptable computational cost. The common
practice in implementing dynamic networks is to convert given static layers into
fully dynamic ones where all parameters are dynamic (at least within a single layer)
and vary with the input. Recent studies empirically show the trend that the more
dynamic layers contribute to ever-increasing performance. However, such a fully
dynamic setting 1) may cause redundant parameters and high deployment costs,
limiting the applicability of dynamic networks to a broader range of tasks and mod-
els, and more importantly, 2) contradicts the previous discovery in the human brain
that when human brains process an attention-demanding task, only partial neurons
in the task-specific areas are activated by the input, while the rest neurons leave in
a baseline state. Critically, there is no effort to understand and resolve the above
contradictory finding, leaving the primal question – to make the computational
parameters fully dynamic or not? – unanswered. The main contributions of our
work are challenging the basic commonsense in dynamic networks, and, proposing
and validating the CHERRY HYPOTHESIS – A fully dynamic network contains a
subset of dynamic parameters that when transforming other dynamic parameters
into static ones, can maintain or even exceed the performance of the original net-
work. Technically, we propose a brain-inspired partially dynamic network, namely
PAD-Net, to transform the redundant dynamic parameters into static ones. Also,
we further design Iterative Mode Partition to partition the dynamic- and static-
subnet, which alleviates the redundancy in traditional fully dynamic networks. Our
hypothesis and method are comprehensively supported by large-scale experiments
with two typical advanced dynamic methods, i.e., DY-Conv and MoE, on both
image classification and GLUE benchmarks. Encouragingly, we surpass the fully
dynamic networks by +0.7% top-1 acc with only 30% dynamic parameters for
ResNet-50 and +1.9% average score in language understanding tasks with only
50% dynamic parameters for BERT-base.

1 INTRODUCTION

In past years, deep neural networks have been continuously pushing the state-of-the-art performance
in the tasks of computer vision (Chauvin, 1988; Girshick et al., 2014) and natural language process-
ing (Dai & Le, 2015; Brunet et al., 2019). However, most prevalent architectures perform inference
in a static manner where both the computational graph and network parameters are fixed once after
training, which limits the representation power. Dynamic networks (Han et al., 2021), as opposed
to static ones, adapt their parameters or architectures to each specific input, improving the model
representation power with acceptable computational cost, e.g., Switch Transformers (Fedus et al.,
2021). The common practice of implementing dynamic networks is transforming static networks (or
modules) with counterpart dynamic ones, for example, Dynamic Convolution (Chen et al., 2020b)
replaces traditional convolution by adopting k additive convolutional kernels; Mixture of Experts
(Shazeer et al., 2017) replaces a fully connected layer with multiple feed-forward neural networks
(FFNs) in parallel.

Previous works (Chen et al., 2020b; Li et al., 2021a) show that dynamic networks often outperform
their static counterpart, and using more dynamic layers intriguingly leads to ever-increasing perfor-

1



Under review as a conference paper at ICLR 2023

mance. For instance, dynamic convolution increasingly promotes the performance on the ImageNet
when more static convolution layers turn into dynamic ones. However, these basic settings in dynamic
networks contradict the phenomenon that neuroscience researchers observed in human brains. A
notable amount of neuroscience research efforts (Hamilton et al., 2011; Raichle, 2015) has been
conducted to reveal that a subnetwork of the human brain remains in a baseline state (like static net-
works) instead of being activated when people tackle attention-demanding tasks like watching movies
(Hasson et al., 2008) or reading books (Lerner et al., 2011), which are named as the task-negative
network (TNN) (Raichle et al., 2001) in neuroscience. Whilst another subnetwork that is activated by
the input (like dynamic networks) is named the task-positive network (TPN) (Ptak, 2012). This raises
a seemingly counterintuitive contradiction that the discovery in the human brain is inapplicable to the
dynamic networks. Critically, there is no effort to understand and resolve this seeming contradiction.
Consequently, for practitioners, it remains unclear whether to make the computational parameters
dynamic and to what extent if yes.

We answer the above questions by meticulously revisiting the properties of dynamic networks.
Existing dynamic networks often follow a fully dynamic manner, where all parameters are dynamic
(at least within a single layer) and vary with the input. Such a fully dynamic manner is resource
expensive and may cause redundancy, limiting the applicability of dynamic networks. For instance,
the total parameters of ResNet-50 equipped with dynamic convolution are ~100.9M (with 4 kernels)
compared to only ~23.5M for vanilla ResNet-50. It seems more is better when transforming static
layers into dynamic ones, but how about the dynamic parameters within a dynamic network: Are all
of them cherries that lead to the promotion? This urges us to reflect (1) Whether there exist redundant
dynamic parameters, in the fully dynamic network layers? In addition, other studies (Fox et al.,
2005; Damoiseaux et al., 2006) reveal that TPN and TNN intermingle and coexist in regions of the
brain, including the temporal lobe and prefrontal lobe, and angular convolution, making us reflect (2)
Whether the coexistence of dynamic and static parameters brings better effects for the fully dynamic
network layers? Based on the above scrutinization, we assume that less can compete with more for
dynamic parameters in fully dynamic networks.

Formally, we cautiously propose the Cherry Hypothesis: A fully dynamic network contains a
subset of dynamic parameters that when transforming other dynamic parameters into static ones,
can maintain or even exceed the performance of the original network.

With this hypothesis, we propose the Iterative Mode Partition (IMP) algorithm to transform less
important dynamic parameters into static ones step by step, expecting competitive performance with
higher efficiency. Given a fully dynamic network initialized with all parameters in dynamic mode,
we attempt to partition a subset of static mode parameters out from them. Specifically, we iteratively
transform dynamic parameters and measure the influence on the loss values. If the transformation of
the i-th element of the dynamic parameters only causes a minimal difference in the loss values, we
can safely transform this parameter into a static one. Given the desired dynamic ratio (the proportion
of dynamic parameters), we can balance the trade-off between dynamic and static parameters. After
mode partition, for a few dynamic parameters to reserve and generate, we can prune out redundant
parameters and obtain a light-weight architecture, namely Partially Dynamic Networks (PAD-Net),
which contains two modes of parameters (dynamic parameters that vary with specific inputs and
static parameters that is fixed during inference).

Empirically, we extensively validate the cherry hypothesis and our proposed PAD-Net, including
visual image classification (Deng et al., 2009) for dynamic convolution and GLUE benchmark (Wang
et al., 2018a) for MoE. Experiment results reveal that we succeed in transforming redundant dynamic
parameters into static ones and our proposed model PAD-Net achieves the highest performance
in all tasks with lightweight architectures. Given the superiority of PAD-Net in both effectiveness
and efficiency, we show that less dynamic is more efficient in fully dynamic networks, successfully
verifying the cherry hypothesis. The inspiration of partially dynamic can be extended to other
dynamic networks and even inform future efficient architectures designation.

In short, our contributions are threefold:

• We give the brain-inspired Cherry Hypothesis for the existing dynamic networks to identify
the subnetwork that maintains or exceeds the representation power of the original fully
dynamic networks.

2



Under review as a conference paper at ICLR 2023

• Following our hypothesis, we propose the novel PAD-Net to achieve the mode partition,
where a Iterative Mode Partition (IMP) algorithm is designed to partition the parameters
into two modes.

• We empirically validate our hypothesis and PAD-Net on both CV and NLP tasks across two
representative dynamic networks, including Dynamic Convolution and Mixture of Experts.

2 RELATED WORK

Dynamic Networks. The dynamic neural network is an emerging research topic in deep learning,
which adapts structures or parameters to different inputs, leading to notable advantages in terms
of accuracy, and computational efficiency. Han et al. (2021) classify dynamic networks into two
categories: dynamic architecture networks and dynamic parameter networks. Dynamic architecture
networks perform inference with specific architectures conditioned on each sample. Specifically,
they adaptively adjust the network depth (Wang et al., 2018b), width (Mullapudi et al., 2018), or
route based on the input (Huang et al., 2018). Instead of changing the model architecture, dynamic
parameter networks boost representation power by adapting parameters or activation functions to
the input (Yang et al., 2020; Liu et al., 2021). Existing works often transform various types of static
parameters into dynamic versions (Chen et al., 2020b). Among them, dynamic convolution is the
typical example that aggregates multiple convolution parameters dynamically based on the input,
leading to significant improvement with negligible computational cost.

The Task-Negative Network. Neural networks originate from the success of the human brain in
neuroscience (Eslami et al., 2016; Higgins et al., 2016). Recent studies (Di & Biswal, 2014; Cheng
et al., 2020) reveal that a mature brain works as a unified system involving various functionally
specialized networks that deal with an array of particular functions called functional networks,
including the task-negative network (TNN) and the task-positive network (TPN) (Hamilton et al.,
2011). TNN shows decreased activity (or static) during the performance of attention-demanding tasks,
while TPN exhibits increased activity (or dynamic) during the execution of an attention-demanding
task (Fransson, 2005). Our motivation for adopting two subnets of parameters to fully dynamic
networks is to borrow the functionality of TPN (while leaving the rest as TNN) in neuroscience.

Network Pruning. Past works in network pruning have explored effective techniques to find efficient
subnetworks (Lee et al., 2018; Evci et al., 2020) and zero out redundant parameters. According to
the LTH pioneered by Frankle (Frankle & Carbin, 2019), dense, randomly initialized, feed-forward
networks contain the subnetwork (winning tickets) that maintains comparable test performance of the
original network after training for the same iterations. This hypothesis inspires a series of following
works in network pruning. However, these methods always sacrifice performance because of pruned
parameters. Instead of directly pruning the dynamic parameters in dynamic networks, we considered
changing them to static ones. In Section 5.3, we show that our approach significantly and consistently
outperforms fully dynamic networks in the GLUE benchmark (Wang et al., 2018a), while the pruned
model performed worse than the original network.

3 PRELIMINARIES: REVIEW OF FULLY DYNAMIC NETWORKS

Basic Concept. Dynamic networks adopt an indirect way to compute with the input, where the
network first adjust the computational parameters and then utilizes them to compute with the input,
instead of directly taking the intrinsic parameters as computational parameters. In fully dynamic
networks, intrinsic parameters are used as dynamic factors that participate in the generation of
computational parameters, and the computational parameters Θ̂ are based on two parts: the input
x and the intrinsic parameters Θ. Let us denote W as the dynamic function for producing the
computational parameters and the computational parameters can be written as Θ̂ =W(x,Θ). Given
an input sample x, the output of a conventional network with static parameters can be y = F(x,Θ).
In dynamic networks, this equation can be reformulated as y = F(x, Θ̂|x), where the difference lies
in whether the computational parameters are based on the input.

Although using different dynamic functions, existing dynamic networks often follow a fully dynamic
manner: Networks take all intrinsic parameters to generate the computational parameters where all
elements are dynamic and vary with the input. We call such networks fully dynamic networks and,

3



Under review as a conference paper at ICLR 2023

in the following, introduce instantiations coming from dynamic parameter networks, i.e., Dynamic
Convolution, and dynamic architecture networks, i.e., Mixture of Experts, respectively.

Dynamic Convolution. As a typical example of dynamic parameter networks, Dynamic Con-
volution (Chen et al., 2020b) prepares k parallel static kernels Θ(i)(i = 1, 2, . . . , k) as intrinsic
parameters and utilizes the linear combination of them as the aggregated kernel. The linear scale is
aggregated dynamically via a channel-wise attention block (Hu et al., 2018) denoted as Attention,
so the dynamic function of dynamic convolution can be written as:

W(x,Θ) =

k∑
i=1

πi(x) ·Θ(i), where π(x) = Attention(x). (1)

Mixture of Experts. We talk about dynamic architecture networks by taking the Mixture of Experts
(MoE) (Jacobs et al., 1991; Shazeer et al., 2017) as an instantiation. MoE prepares m parallel static
experts Θ(i)(i = 1, 2, . . . , k) and only selects n(n < m) experts with the highest scores. Given a
specific input, we denote G(x) as the output scores of gating and T as the indices of the selected
experts. For the i-th selected expert, we denote the combination of the score G(x)Ti and parameters
Θ(Ti) as w(Ti) =

{
GTi

(x),Θ(Ti)
}

. The dynamic function of MoE can be represented as:

W(x,Θ) = {w(T1), . . . , w(Tn)}, where w(Ti) = {GTi(x),Θ
(Ti)}. (2)

Limitation Discussions. Mainstream dynamic networks usually replace static layers with fully
dynamic layers. In these layers, all elements of dynamic parameters require counterpart dynamic
factors co-working with the input sample. However, this situation may cause redundant parameters
and high deployment costs, limiting the applicability of dynamic networks to a border range of
resource-constrained situations and large-scale models. For this fully dynamic manner, we raise two
questions: (1) Is it necessary to pay the cost of enormous parameters and computations, to aggregate
the dynamic parameters? (2) Is it necessary to make all computational parameters dynamic to
maintain the slight performance improvement? Inspired by the co-working of task-negative networks
(TNN) and task-positive networks (TPN), we propose the Partially Dynamic Network (PAD-Net) that
mixes dynamic parameters and static parameters to answer the above questions.

4 METHODOLOGY

To overcome the aforementioned challenges and limitations, we propose a novel network architecture,
Partially Dynamic Network (PAD-Net). We also devise a new algorithm Iterative Mode Partition
(IMP) to build this model efficiently.

4.1 PAD-NET: PARTIALLY DYNAMIC NETWORK

In response to the limitation of fully dynamic networks, we question whether it is necessary to make all
parameters dynamic. To this end, we try to detect the less important dynamic parameters and transform
them into input-agnostic static parameters. Specifically, we utilize a mask Mi(i = 1, 2, . . . ,m) to
indicate whether the i-th element of Θ̂ is in dynamic or static mode: Mi = 1 means the i-th element
of Θ̂ is dynamic and vice versa. Considering two modes of parameters in our model, We use Θ̃ ∈ Rm

to denote the dynamic parameters and adopt additional parameters Θ̄ ∈ Rm to represent the static
parameters, then the computational parameters Θ̂ can be formulated as:

Θ̂i =

{
Θ̃i =Wi(x,Θ)i if M = 1

Θ̄i otherwise
, (3)

where Θ̂i(i = 1, 2, . . . ,m) represents the i-th element of Θ̂, and Θ denotes the dynamic factors. In
our model, intrinsic parameters include dynamic factors Θ and static parameters Θ̄. Note that M
partitions the computational parameters into two non-overlapping parts, forming a network with
only a part of the parameters dynamic, i.e., Partially Dynamic Network (PAD-Net). Details of the
procedure of generating the computational parameters from intrinsic are visualized in Figure 1.

According to Raichle et al. (2001), when doing cognitive tasks, the activity of the task-negative
network and that of the task-positive network antagonizes each other, with one intense while the other

4



Under review as a conference paper at ICLR 2023

DY-Conv MoE

Dynamic Mode Dynamic Methods

W(x,Θ)

Dynamic Factors Θ Dynamic Parameters ෩Θ
DY-Conv MoE

Stimulus

Intrinsic Parameters {Θ,ഥΘ} Computational Parameters Θ

Static Mode

Static Parameters ഥΘ

Figure 1: The procedure of generating the computational parameters in PAD-Net, with DY-
Conv and MoE as instantiations. The intrinsic parameters include static parameters and dynamic
factors. Given an input, dynamic factors activate and aggregate into dynamic parameters, which are
then integrated with static parameters. As a result, computational parameters contain two modes of
parameters, which is consistent with the map created through examination of spontaneous fluctuations
in the functional MRI blood oxygen level-dependent signal in the human brain after a stimulus (Fox
et al., 2005), where the task-positive network (warm color) activates while the task-negative network
(cold color) remains the baseline state.

weak (Cheng et al., 2020; Anticevic et al., 2012). Therefore, we set two scale factors to describe
the intensity of these subnetworks separately, namely λs and λd. With the above scale factors, our
method can be factorized into a more general formulation:

Θ̂i =

{
λd · Θ̃i if Mi = 1

λs · Θ̄i otherwise
, (4)

where we constrain λs + λd = 2 to simulates the antagonism effect, and Equation 3 is the special
situation when both λs and λd are equal to 1. Similar to the constraint

∑k
i=1 πi in dynamic

convolution, the constraint of summation compresses the parameters space and significantly simplifies
the learning of λs and λd when joint optimizing scale factors and the counterpart parameters.

4.2 IDENTIFYING THE CHERRY ON THE CAKE: ITERATIVE MODE PARTITION

In the above section, we present the architecture of PAN-Net, which includes partly dynamic
parameters and counterpart static parameters. In this part, we discuss how to generate the indicator
mask that partition dynamic mode and static mode. Let us first formulate this partition as an
optimization problem, where our goal is to find an appropriate indicator mask M to minimize loss L.
Given a dataset D = {(xi,yi)}ni=1 and a desired dynamic ratio κ of M, we represent mode partition
as the following constrained optimization problem:

min
M

L(Θ̂,M;D) = min
M

1

n

n∑
i=1

`(Θ̂,M; (xi,yi)),

s.t. M ∈ {0, 1}m, ‖M‖0 ≤ κ ·m,

(5)

where `(·) denotes the standard loss function (e.g., cross-entropy loss), Θ̂ is the set of computational
parameters of the neural network, ‖ · ‖0 is the standard L0 norm, m is the total number of parameters.
The conventional approach to optimize the above problem is adding sparsity enforcing penalty term
to constrain the binary mask M (Carreira-Perpinán & Idelbayev, 2018), but it often requires heavily
tuned hyperparameter settings and several trials. On the other hand, LTH-based (Chen et al., 2020a;
Evci et al., 2020) methods can be borrowed to find the mask by several iterations, but it is prohibitively
time-consuming. Also, considering the large model size of dynamic networks, the deployment of
redundant parameters that will be pruned is unnecessary.

5



Under review as a conference paper at ICLR 2023

Parameter Pruning
Indicator Mask M

Mask Updating

Partition

Dynamic

Factors

Static

Parameters

Intrinsic Parameters

Dynamic Function

Sample Data

Feed-in

Dynamic

Parameters

Static

Parameters

Computational Parameters

Forward

Sample Data Loss L

Loss L Indicator Mask M 01 1 1 101

Importance Scores s 0.28 0.030.000.23 0.35 0.00 0.11

Threshold sκ 0.28 0.030.000.23 0.35 0.00 0.11

New Indicator Mask M’ 01 1 1 000

Forward Propagation Backward Updating Post-processing

Figure 2: Graphical illustration of Iterative Mode Partition (IMP). Left: An overview of IMP,
including forward propagation and backward updating. After IMP, the indicator mask prune the
redundant dynamic factors and static parameters (post-processing). Right: Details of mask updating.

We tend to partition the two modes before or early in training, abandoning the redundant parameters
and avoiding time-consuming training iterations. Inspired by SNIP (Lee et al., 2018) that prunes the
redundant parameters at initialization, we design an algorithm to tune excessive dynamic parameters
into static mode before training. We resort to mini-batches of training data Db = {(xi,yi)}bi=1 ∼ D
to detect redundant dynamic parameters. Specifically, if the j-th element in Θ̂ is dynamic, we
can measure its importance of being dynamic by computing the loss difference ∆Lj caused by
transforming Θ̂j into static one, which is represented by changing the value of Mj from 1 to 0:

∆Lj(M, Θ̂;Db) = L(M, Θ̂;Db)− L(M− tj , Θ̂;Db), (6)

where tj is the indicator vector of j-th element of M (i.e., zeros everywhere except at the index j
where it is one). Note that we only consider transforming redundant dynamic parameters into static
ones and the loss difference ∆Lj is zero if Θ̂j is already in static mode.

Note that computing ∆Lj for each dynamic parameter is prohibitively expensive, as it usually requires
millions of forwarding pass over the dataset, so we resort to a simple and effective approximate
alternative. Specifically, we release the binary constraints of M and make it differentiable and utilize
the derivative of L with respect to Mj to approximate ∆Lj :

∆Lj(M, Θ̂;Db) ≈ gj(Θ̂;Db) =
∂Lj(M, Θ̂;Db)

∂M

∣∣∣∣∣
t=1

= lim
δ→0

Lj(M, Θ̂;Db)− Lj(M− δtj , Θ̂;Db)

δ

∣∣∣∣∣
t=1

,

(7)
where gj(Θ̂;Db) denotes the j-th element in derivative g(Θ̂;Db). We accumulate the derivatives for
all j by one forward-backward pass using automatic differentiation. Note that if the magnitude of gj
is high, it essentially means that transforming the parameter Θ̂j into static mode has a considerable
effect on the loss, and it has to be preserved to maintain its dynamic mode. In contrast, the parameter
should be transformed into static mode if the magnitude of gj is low. Therefore, We take the
normalized magnitude of the derivatives of g as the criteria:

sj =
∣∣∣gj(Θ̂;Db)

∣∣∣/ m∑
k=1

∣∣∣gk(Θ̂;Db)
∣∣∣. (8)

Given the dynamic ratio κ, we take the sκ (the κ-th percentile of s) as the threshold and transform
the mask elements whose scores are below into zero:

M = 1 [s− sκ ≥ 0] , (9)

where 1[·] is an element-wise indicator function where the output will be 1 if the condition [·] meets
else it will be zero. Note that the indicator mask M prunes out redundant parameters in dynamic
parameters Θ̃ and static parameters Θ̄ respectively. Also, for fewer dynamic parameters to generate,
we can also utilize the binary mask to prune redundant dynamic factors. Taking MoE as an example,
M can be directly applied to parallel experts: Θ(i) ← M�Θ(i),∀i ∈ {1, 2, . . . , k}. In addition, we
can decrease the computational cost of generating based on dynamic factors.

6



Under review as a conference paper at ICLR 2023

Inspired by the success of iterative SNIP (Verdenius et al., 2020; de Jorge et al., 2021), we start from
a fully dynamic network and adopt an iterative strategy to transform dynamic parameters into static
parameters step by step, which is shown in Figure 2. The effectiveness of the mode partition and the
iterative mode partition are verified experimentally in Appendix D.

5 EMPIRICAL EVALUATION

5.1 MAIN RESULTS

Visual Image Classification. In Table 1, we compare our method to the static convolution (Krizhevsky
et al., 2012), CondConv (Yang et al., 2020) and vanilla fully Dynamic Convolution (Chen et al.,
2020b) on ImageNet (Deng et al., 2009) classification for ResNet (He et al., 2016) and MobileNetV2
(Sandler et al., 2018), by adjusting all convolution layers except the first layer. Before training,
we first partition the two modes with a given dynamic ratio κ using 10 batches of examples. Our
method improves the classification performance with significantly lighter architecture and marginally
lower FLOPs. For instance, ResNet-50 outperforms DY-Conv by 0.7% top-1 accuracy with 33.9%
parameters and 0.1G fewer FLOPs. For more compact dynamic convolution variants, e.g. DCD (Li
et al., 2021b) and ODConv Li et al. (2021a), we can see similar experimental results in Appendix C.
The details of implementation are shown in Appendix A.

Table 1: Comparison between PAD-Net and baselines for ResNet and MobileNetV2, including
CondConv and DY-Conv. The Top-1 accuracy is the averaged score for 5 runs, followed by the
deviation. V indicates the dynamic model with the fewest parameters or the fewest FLOPs (the static
model is not included), and the best results in accuracy are bold. DY-Conv and PAD-Net contain
k = 4 kernels, while CondConv contains k = 8 kernels.

Depth Model Params FLOPs Top-1(w/dev)

ResNet-10

Static 5.2M 0.89G 63.1±0.4

CondConv 36.7M 0.92G 66.9±0.2

DY-Conv 18.6M 0.91G 67.4±0.3

PAD-Net V6.9M V0.90G 68.1±0.2

ResNet-18

Static 11.1M 1.81G 70.6±0.3

CondConv 81.4M 1.89G 71.9±0.2

DY-Conv 42.7M 1.86G 72.4±0.3

PAD-Net V15.1M V1.83G 73.0±0.3

ResNet-50

Static 23.5M 3.86G 76.2±0.2

CondConv 129.9M 3.98G 76.9±0.3

DY-Conv 100.9M 3.97G 77.2±0.2

PAD-Net V33.8M V3.90G 77.9±0.2

Width Model Params FLOPs Top-1(w/dev)

×0.5
Static 2.0M 97.0M 65.7±0.3

CondConv 15.5M 113.0M 68.8±0.2

DY-Conv 4.0M 101.4M 69.6±0.1

PAD-Net V2.7M V98.3M 70.4±0.2

×0.75
Static 2.64M 209.1M 69.2±0.4

CondConv 17.51M 233.9M 72.1±0.3

DY-Conv 7.95M 220.1M 72.6±0.1

PAD-Net V5.2M V212.4M 73.5±0.2

×1.0
Static 3.5M 300.8M 72.1±0.3

CondConv 27.5M 329.0M 74.4±0.2

DY-Conv 11.1M 312.9M 74.8±0.2

PAD-Net V6.1M V304.4M 75.3±0.1

Table 2: Comparison between PAD-Net and vanilla MoE applied to four widely used large-scale
Pretrained Language Models (PLMs). Averaged scores on all tasks are underlined. The shown results
are the averaged score for 5 runs, followed by the deviation. The best results are bold. It shows that
PAD-Net yields consistent improvements across all tasks among different MoE-equipped PLMs.

Method BERT ALBERT

#Param. CoLA RTE MRPC STS-B Avg #Param. CoLA RTE MRPC STS-B Avg

Static 103.3M 54.6±0.4 66.4±0.7 84.6±0.3 85.8±0.3 72.9 11.1M 54.2±0.7 76.6±0.7 87.2±0.4 90.6±0.3 77.2
MoE 346.9M 58.0±0.9 69.3±1.2 85.0±0.4 87.1±0.2 74.9 29.2M 56.8±1.2 77.2±0.8 87.4±0.4 90.7±0.3 78.0

PAD-Net 222.0M 59.7±0.8 71.5±1.4 85.5±0.4 90.3±0.6 76.8 21.3M 57.4±1.4 77.6±0.5 88.4±0.3 90.9±0.2 78.6

Method RoBERTa ELECTRA

#Param. CoLA RTE MRPC STS-B Avg #Param. CoLA RTE MRPC STS-B Avg

Static 103.3M 62.8±1.0 77.6±1.6 90.0±0.5 91.0±0.3 80.4 104.4M 67.3±1.5 82.6±1.7 89.0±0.5 90.6±0.1 82.4
MoE 346.9M 63.6±1.1 78.0±1.4 90.2±0.4 91.0±0.2 80.7 314.3M 67.6±1.1 83.0±1.4 89.3±0.3 90.8±0.2 82.7

PAD-Net 222.0M 64.2±0.8 79.4±1.2 90.7±0.3 91.4±0.3 81.4 223.2M 68.2±1.3 84.1±1.5 89.5±0.4 91.2±0.2 83.3

Natural Language Understanding. We evaluate the performance of PAD-Net for MoE on various
datasets from the General Language Understanding Evaluation (GLUE) benchmark (Wang et al.,
2018a), including linguistic acceptability (CoLA (Warstadt et al., 2019)), natural language inference

7



Under review as a conference paper at ICLR 2023

(RTE (Bentivogli et al., 2009), QNLI (Rajpurkar et al., 2016), MNLI (Williams et al., 2017)),
paraphrase and similarity (MRPC (Dolan & Brockett, 2005), STS-B (Cer et al., 2017), QQP (Iyer
et al., 2017)), and sentiment classification (SST-2 (Socher et al., 2013)). Following the previous
works (Lee et al., 2020; Dodge et al., 2020), we fine-tune the pretrained model (BERT (Devlin et al.,
2018), ALBERT (Lan et al., 2019), RoBERTa (Liu et al., 2019), ELECTRA (Clark et al., 2020)) on
the training set and directly report results on the validation set using the last checkpoint, since the test
results are only accessible by the leaderboard with a limitation of the number of submissions.

We replace the feed-forward layers with MoE layers and initialize the dynamic and static parameters
with the pretrained parameters. In each MoE layer, we prepare 8 experts and select the top-2 experts
for each input. We execute partition at the beginning of the second epoch when experts differentiate
from each other. We set the dynamic ratio κ = 50% for it is close to the optimal ratio for performance.
For more implemental details, please refer to Appendix A. Table 2 shows that PAD-Net outperforms
MoE on the GLUE benchmark with a 0.95 average increase for four backbones. For single backbone,
PAD-Net yields an improvement of 1.9 average scores for BERT and 0.7 average scores for RoBERTa.

5.2 ABLATION STUDY

Figure 3: Impact of dynamic ratio on ResNet.

10 20 30 40 50
Dynamic Ratio (%)

0.002

0.001

0.000

0.001

0.002

0.003

0.004

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

ResNet10
ResNet18
ResNet50

Dynamic Ratio. Figure 3 shows the result of the
ablation study on the ImageNet classification ex-
periment for ResNet to investigate the impact of κ.
Inspired by Wettig et al. (2022), we investigate the
normalized performance1 under a series of ratios
(from 10% to 50%). We find that κ = 30% is the
optimal ratio to achieve high performance, while all
these models outperform fully dynamic networks.
The ablation study for MoE can be seen in Appendix
B, where the best performance is achieved when
κ = 50%. We believe that different dynamic func-
tions lead to different optimal dynamic ratios.

Table 3: The ablation study of scale factors.
Models Option CIFAR-10 ImageNet

ResNet-50

– 93.9 77.1
λs 94.3 77.2
λd 94.5 77.4

λs, λd 96.0 77.6
λs + λd = 2 96.6 77.8

Model Option RTE STS-B

BERT-base

– 69.6 87.4
λs 70.7 88.1
λd 70.9 89.6

λs, λd 71.3 89.8
λs + λd = 2 71.5 90.3

Scaled Factors. Table 3 summarizes the influence
of scale factors (λs and λd) on task performance.
We initially tried to gain scale factors from a SENet
structure (Hu et al., 2018), which did not contribute
to the improvement of performance. So we set scale
factors as trainable parameters to avoid redundant
parameters and operations. We consider three other
situations: only λs, only λd, and no scale factors.
We conduct experiments on CIFAR-10 (Krizhevsky,
2009) and ImageNet for ResNet-50, RTE, and STS-B
for BERT. The table shows that λs and λs enhance
performance substantially and their coexistence leads
to the highest performance.

We further verified the effectiveness of the summation constraint by releasing the constraint λs +
λd = 2. However, without the constraint to compress the parameter space, our model encounters
significant accuracy drop on ImageNet.

5.3 DETAILED ANALYSIS

The Difference with Model Pruning. We compare mode partition with model pruning on the GLUE
benchmark for BERT-base and show the result in Table 4. Mode partition maintains important
dynamic parameters while setting other redundant dynamic parameters in static mode, superior to
pruning methods that directly zero out redundant parameters on the performance. Among all tasks
of the GLUE benchmark, PAD-Net achieves the best performance, achieving a 1.1 higher average
score than vanilla MoE. In contrast, we discover that the pruned MoE has decreased the performance

1Normalized performance is x−x̄
x̄

where x̄ is the mean value of performance across all experiments.

8



Under review as a conference paper at ICLR 2023

significantly by 1.2 on the averaged score. Considering maintaining the performance improvement of
a fully dynamic network, transforming redundant dynamic parameters into static ones is preferable.

Table 4: Empirical comparison between our PAD-Net and model pruning on the GLEU bench-
mark. The model pruning is set with κ = 50%. We achieve the best performance, while the pruned
model "MoE-P" suffers a performance drop compared to vanilla MoE.

Models #Param. CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg

Static 103.3M 54.6±0.4 91.4±0.3 84.6±0.3 85.8±0.3 90.6±0.2 83.7±0.4 90.4±0.2 66.4±0.7 81.2
MoE 346.9M 58.0±0.9 91.7±0.2 85.0±0.4 87.1±0.2 90.8±0.1 83.8±0.2 90.4±0.1 69.3±1.2 82.0

MoE-P 222.0M 55.6±0.7 91.6±0.3 84.7±0.5 85.8±0.3 90.8±0.2 82.4±0.4 90.2±0.3 65.7±1.1 80.9
PAD-Net 59.7±0.8 92.2±0.1 85.5±0.4 90.3±0.6 90.9±0.1 84.2±0.3 91.0±0.1 71.5±1.4 83.2

Partially Dynamic Architecture. We exert a flexible fine-grained strategy to partition two modes
at the parameter level, leading to a layer-wise dynamic ratio distribution. We show the layer-wise
dynamic ratio κ distribution for Mobilenet-V2 in Figure 4a and 4b, where we consider two variables:
the overall dynamic ratio and width multiplier. Figure 4 shows similar dynamic ratio distribution
curves when changing the width multiplier or overall dynamic ratio. We can notice that a large
proportion of layers have a low dynamic ratio or even resemble static layers, which reveals the
effectiveness of our proposed Cherry Hypothesis in dynamic convolutions. For MoE’s dynamic ratio
distribution and detailed architecture, we visualize the layer-wise indicator masks in Appendix E,
which reflect the structured property of the distribution of parameters in different modes. Therefore,
we believe that IMP can be further applied to hardware-friendly structure methods.

Dynamic Property. Dynamic property refers to the variant numerical characteristics of a dynamic
network fed by different inputs. The ideal dynamic network should require two capacities: assigning
specific parameters for the input and making the output discriminating. Inspired by Li et al. (2021b),
we take two levels of variance as metrics (parameter variance and output variance) to measure the
dynamic property in Figure 5a and 5b. Static convolution, dynamic convolution, and PAD-Net
(κ = 50%) show different properties given the same test samples from ImageNet. We can see that
dynamic convolution retains a high degree of parameter flexibility, while its layer-wise outputs are
less variable. Static convolution reveals the opposite phenomenon of dynamic convolution. Our
models, with fewer dynamic parameters, show superiority in dynamic property by making the outputs
more discriminating.

0 10 20 30 40 50
Layers

0

20

40

60

80

100

Dy
na

m
ic 

Ra
tio

 (%
)

=30% =40% =50%

(a) Varing Budget

0 10 20 30 40 50
Layers

0

20

40

60

80

100

Dy
na

m
ic 

Ra
tio

 (%
)

×0.5 ×0.75 ×1.0

(b) Varing Width

Figure 4: The layer-wise sparsity.

0 10 20 30 40 50
Layers

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 V

ar
ia

nc
e

Dynamic PAD-Net Static

(a) Parameter Variance

0 10 20 30 40 50
Layers

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 V

ar
ia

nc
e

Dynamic PAD-Net Static

(b) Output Variance

Figure 5: The dynamic property calculation

6 CONCLUSION AND FUTURE WORK

In this work, we first reveal the contradiction between the human brain and dynamic networks.
To resolve this contradiction, we proposed the brain-inspired Cherry Hypothesis and assumed
that a partially dynamic network could advance the performance and efficiency of fully dynamic
networks. The proposed Partially Dynamic Network (PAD-Net) demonstrated the hypothesis in two
representative frameworks – Dynamic Convolution and Mixture of Experts. Extensive experiments on
both computer vision and natural language understanding tasks show the effectiveness and efficiency
of PAD-Net against fully dynamic networks, which significantly better performance and much fewer
dynamic parameters. We hope our proposed methods extensively integrate with other mainstream
architectures and inspire future work in efficient neural network designation and other fields.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Alan Anticevic, Michael W Cole, John D Murray, Philip R Corlett, Xiao-Jing Wang, and John H
Krystal. The role of default network deactivation in cognition and disease. Trends in cognitive
sciences, 16(12):584–592, 2012.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing
textual entailment challenge. In TAC, 2009.

Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ashton Anderson, and Richard Zemel. Understand-
ing the origins of bias in word embeddings. In ICML, pp. 803–811. PMLR, 2019.

Miguel A Carreira-Perpinán and Yerlan Idelbayev. learning-compression algorithms for neural net
pruning. In CVPR, pp. 8532–8541, 2018.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint,
2017.

Yves Chauvin. A back-propagation algorithm with optimal use of hidden units. In D. Touretzky (ed.),
Advances in Neural Information Processing Systems, volume 1. Morgan-Kaufmann, 1988.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks. Advances in neural
information processing systems, 33:15834–15846, 2020a.

Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu. Dynamic
convolution: Attention over convolution kernels, 2020b.

Xianjun Cheng, Yue Yuan, Yihong Wang, and Rubin Wang. Neural antagonistic mechanism between
default-mode and task-positive networks. Neurocomputing, 417:74–85, 2020. ISSN 0925-2312.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training text
encoders as discriminators rather than generators. ICLR, 2020.

Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/
paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf.

Jessica S Damoiseaux, SARB Rombouts, Frederik Barkhof, Philip Scheltens, Cornelis J Stam,
Stephen M Smith, and Christian F Beckmann. Consistent resting-state networks across healthy
subjects. Proceedings of the national academy of sciences, 103(37):13848–13853, 2006.

Pau de Jorge, Amartya Sanyal, Harkirat S Behl, Philip HS Torr, Gregory Rogez, and Puneet K
Dokania. Progressive skeletonization: Trimming more fat from a network at initialization. ICLR,
2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pp. 248–255. IEEE, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint, 2018.

Xin Di and Bharat B Biswal. Modulatory interactions between the default mode network and task
positive networks in resting-state. PeerJ, 2:e367, 2014.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.
arXiv preprint arXiv:2002.06305, 2020.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
IWP2005, 2005.

10

https://proceedings.neurips.cc/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf


Under review as a conference paper at ICLR 2023

SM Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E Hinton,
et al. Attend, infer, repeat: Fast scene understanding with generative models. Advances in Neural
Information Processing Systems, 29, 2016.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In ICML, pp. 2943–2952. PMLR, 2020.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

Michael D Fox, Abraham Z Snyder, Justin L Vincent, Maurizio Corbetta, David C Van Essen,
and Marcus E Raichle. The human brain is intrinsically organized into dynamic, anticorrelated
functional networks. Proceedings of the National Academy of Sciences, 102(27):9673–9678, 2005.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. ICLR, 2019.

Peter Fransson. Spontaneous low-frequency bold signal fluctuations: An fmri investigation of the
resting-state default mode of brain function hypothesis. Human brain mapping, 26(1):15–29, 2005.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In 2014 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 580–587, 2014. doi: 10.1109/CVPR.2014.81.

J Paul Hamilton, Daniella J Furman, Catie Chang, Moriah E Thomason, Emily Dennis, and Ian H
Gotlib. Default-mode and task-positive network activity in major depressive disorder: implications
for adaptive and maladaptive rumination. Biological psychiatry, 70(4):327–333, 2011.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. TPAMI, 2021.

Uri Hasson, Orit Furman, Dav Clark, Yadin Dudai, and Lila Davachi. Enhanced intersubject
correlations during movie viewing correlate with successful episodic encoding. Neuron, 57(3):
452–462, 2008.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pp. 770–778, 2016.

Irina Higgins, Loic Matthey, Xavier Glorot, Arka Pal, Benigno Uria, Charles Blundell, Shakir
Mohamed, and Alexander Lerchner. Early visual concept learning with unsupervised deep learning.
arXiv preprint, 2016.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In CVPR, pp. 7132–7141, 2018.

Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q Weinberger. Condensenet: An
efficient densenet using learned group convolutions. In CVPR, pp. 2752–2761, 2018.

Shankar Iyer, Nikhil Dandekar, and Kornel Csernai. First quora dataset
release: Question pairs, 2017. URL https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint,
2019.

11

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs


Under review as a conference paper at ICLR 2023

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang. Mixout: Effective regularization to finetune
large-scale pretrained language models. ICLR, 2020.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint, 2018.

Yulia Lerner, Christopher J Honey, Lauren J Silbert, and Uri Hasson. Topographic mapping of a
hierarchy of temporal receptive windows using a narrated story. Journal of Neuroscience, 31(8):
2906–2915, 2011.

Chao Li, Aojun Zhou, and Anbang Yao. Omni-dimensional dynamic convolution. In ICLR, 2021a.

Yunsheng Li, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Ye Yu, Lu Yuan, Zicheng
Liu, Mei Chen, and Nuno Vasconcelos. Revisiting dynamic convolution via matrix decomposition,
2021b.

Chuan Liu, Yi Gao, and Jiancheng Lv. Dynamic normalization. arXiv preprint, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint, 2019.

Ravi Teja Mullapudi, William R Mark, Noam Shazeer, and Kayvon Fatahalian. Hydranets: Special-
ized dynamic architectures for efficient inference. In CVPR, pp. 8080–8089, 2018.

Jason Phang, Thibault Févry, and Samuel R Bowman. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. arXiv preprint arXiv:1811.01088, 2018.

Radek Ptak. The frontoparietal attention network of the human brain: action, saliency, and a priority
map of the environment. The Neuroscientist, 18(5):502–515, 2012.

Marcus E Raichle. The brain’s default mode network. Annual review of neuroscience, 38:433–447,
2015.

Marcus E Raichle, Ann Mary MacLeod, Abraham Z Snyder, William J Powers, Debra A Gusnard,
and Gordon L Shulman. A default mode of brain function. Proceedings of the National Academy
of Sciences, 98(2):676–682, 2001.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint, 2016.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
Iryna Gurevych. AdapterDrop: On the efficiency of adapters in transformers. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 7930–7946,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-main.626. URL https://aclanthology.org/
2021.emnlp-main.626.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In CVPR, pp. 4510–4520, 2018.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint, 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In EMNLP, pp. 1631–1642, 2013.

Stijn Verdenius, Maarten Stol, and Patrick Forré. Pruning via iterative ranking of sensitivity statistics.
arXiv preprint, 2020.

12

https://aclanthology.org/2021.emnlp-main.626
https://aclanthology.org/2021.emnlp-main.626


Under review as a conference paper at ICLR 2023

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint,
2018a.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet: Learning dynamic
routing in convolutional networks. In ECCV, pp. 409–424, 2018b.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
TACL, 7:625–641, 2019.

Alexander Wettig, Tianyu Gao, Zexuan Zhong, and Danqi Chen. Should you mask 15% in masked
language modeling? arXiv preprint, 2022.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint, 2017.

Brandon Yang, Gabriel Bender, Quoc V. Le, and Jiquan Ngiam. Condconv: Conditionally parameter-
ized convolutions for efficient inference, 2020.

13



Under review as a conference paper at ICLR 2023

A IMPLEMENTATION DETAILS

Dynamic Convolution We use an SGD optimizer (Ruder, 2016) with 0.9 momentum, following
cosine learning rate scheduling and warmup strategy. The learning rate rises to the max learning
rate linearly in the first ten epochs and schedules to arrive at zero within a single cosine cycle. We
follow Chen et al. (2020b)’s temperature annealing strategy to avoid the unstable output values of
the softmax function in the first epochs. We train the ResNet for 100 epochs with the max learning
rate is 0.1. For the MobilenetV2, we train them for 300 epochs with the max learning rate is 0.05.
The weight decay is 1e-4 for ResNet and 4e-5 for MobilenetV2. The training batch size is 256 for all
models. To reduce variance, we shuffle the data with 5 random seeds and report both the average
performance and deviation.

Mixture of Experts We use Adam (Kingma & Ba, 2015) as the optimizer with β1, β2 = 0.9, 0.98.
For regularization, we set the weight decay as 0.1 and grid-search the learning rate from {1e-5, 2e-5,
5e-5, 1e-4, 2e-4}, where we warm up the learning rate in the first 10% steps (of the total training
steps). For different data scales, we grid-search the training epoch and batch size from {5, 10, 15, 20}
and {8, 16, 32, 64}, respectively. The maximum length is 128 for all tasks. Following most previous
works (Phang et al., 2018; Lee et al., 2020; Dodge et al., 2020), we fine-tune the pretrained model on
the downstream training set and directly report results on the dev set using the last checkpoint, since
the test results are only accessible by the leaderboard with a limitation of the number of submissions.

B ABLATION STUDY FOR DYNAMIC RATIO ON MOE

In Table 5, we investigate the effect of different dynamic ratios for MoE. We use BERT-base and
RoBERTa-base as backbones. PAD-Net outperforms the fully dynamic MoE when κ ≥ 10% and
maintained stable performance when decreasing the dynamic ratio. The best performance is achieved
when κ = 50%. Considering the better performance, we set 50% as the default dynamic ratio for
MoE in our work.

Table 5: The ablation study for dynamic ratio on MoE integrated with PAD-Net. Averaged
scores on all tasks are underlined. The shown results are the averaged score for 5 runs, followed by
the deviation. The best results are bold. Methods under the hdashline are our proposed PAD-Net,
where κ denotes the dynamic ratio.

Method #Param. CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg

BERT 103.3M 54.6 91.4 84.6 85.8 90.6 83.7 90.4 66.4 81.2
w/ MoE 346.9M 58.0 91.7 85.0 87.1 90.8 83.8 90.8 69.3 82.1
κ = 70% 258.5M 58.5 92.4 85.5 89.6 90.9 83.9 90.9 70.6 82.8
κ = 50% 222.0M 59.7 92.2 85.4 90.3 90.9 84.2 91.0 71.5 83.2
κ = 30% 185.6M 59.0 92.0 85.3 89.4 91.0 84.0 90.9 71.2 82.9
κ = 10% 149.1M 57.5 92.1 85.4 88.3 90.7 84.1 90.6 70.2 82.4
Method #Param. CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg

RoBERTa 103.3M 62.8 94.3 90.0 91.0 91.2 87.4 92.4 77.6 85.8
w/ MoE 346.9M 63.6 94.8 90.2 91.0 91.7 87.7 92.9 78.0 86.2
κ = 70% 258.5M 63.4 94.6 90.5 91.2 91.8 87.8 93.2 77.7 86.3
κ = 50% 222.0M 64.2 94.4 90.7 91.4 91.8 87.9 93.0 79.4 86.6
κ = 30% 185.6M 64.6 95.0 91.0 91.0 91.9 87.7 92.9 78.2 86.5
κ = 10% 149.1M 63.9 95.2 90.4 90.9 90.9 87.6 92.7 78.8 86.3

14



Under review as a conference paper at ICLR 2023

C EXPERIMENTAL RESULTS OF DCD AND ODCONV

We evaluate our method on DCD (Li et al., 2021b) and ODConv (Li et al., 2021a), more compact
architectures for dynamic convolution. The results are shown in Table 6 and Table 7. We set the
dynamic ratio is 30% and use the same hyperparameters setting as proposed in the papers. The result
shows that PAD-Net outperforms DCD and ODConv in both accuracy and efficiency, which reveals
the combination of dynamic mode and static mode is better than the fully dynamic setting.

Table 6: Comparison between PAD-Net and DCD on ResNet and MobileNetV2.

Depth Model Params FLOPs Top-1(w/dev)

ResNet-10 DCD 6.4M 0.96G 67.2±0.4

PAD-Net V5.6M V0.95G 67.7±0.2

ResNet-18 DCD 14.7M 1.84G 72.6±0.3

PAD-Net V12.2M V1.82G 73.0±0.2

ResNet-50 DCD 29.8M 3.94G 77.1±0.2

PAD-Net V26.8M V3.91G 77.4±0.1

Width Model Params FLOPs Top-1(w/dev)

×0.5 DCD 3.1M 105.6M 69.7±0.2

PAD-Net V2.3M V99.7M 69.9±0.3

×0.75 DCD 4.1M 222.9M 72.4±0.2

PAD-Net V3.1M V213.2M 72.8±0.1

×1.0 DCD 5.7M 318.4M 74.7±0.4

PAD-Net V4.2M V306.1M 75.1±0.3

Table 7: Comparison between PAD-Net and ODConv on ResNet and MobileNetV2.

Depth Model Params FLOPs Top-1(w/dev)

ResNet-10

ODConv(×1) 5.5M 0.90G 67.6±0.2

PAD-Net(×1) V5.4M V0.89G 67.9±0.3

ODConv(×4) 19.7M 0.93G 68.0±0.3

PAD-Net(×4) V 9.7M V0.92G 68.2±0.2

ResNet-18

ODConv(×1) 11.9M 1.84G 72.7±0.2

PAD-Net(×1) V 11.8M V1.82G 73.2±0.3

ODConv(×4) 44.9M 1.92G 73.1±0.4

PAD-Net(×4) V 21.7M V1.85G 73.4±0.2

ResNet-50

ODConv(×1) 28.6M 3.92G 77.6±0.2

PAD-Net(×1) V26.5M V3.89G 77.9±0.3

ODConv(×4) 90.7M 4.08G 78.0±0.2

PAD-Net(×4) V44.2M V3.93G 78.2±0.1

Width Model Params FLOPs Top-1(w/dev)

×0.5
ODConv(×1) 2.4M 101.8M 69.1±0.4

PAD-Net(×1) V2.1M V98.5M 69.3±0.3

ODConv(×4) 4.4M 106.4M 70.3±0.2

PAD-Net(×4) V2.7M V99.9M 70.6±0.2

×0.75
ODConv(×1) 3.5M 217.1M 72.4±0.3

PAD-Net(×1) V2.9M V211.5M 72.8±0.1

ODConv(×4) 7.5M 226.3M 73.4±0.2

PAD-Net(×4) V4.1M V214.3M 73.6±0.2

×1.0
ODConv(×1) 4.9M 311.8M 74.7±0.2

PAD-Net(×1) V3.9M V304.1M 74.9±0.1

ODConv(×4) 11.5M 327.1M 75.4±0.3

PAD-Net(×4) V5.9M V308.7M 75.5±0.2

D THE EFFECTIVENESS OF ITERATIVE MODE PARTITION

Figure 6: Comparison among partition methods.

ResNet
10

ResNet
18

ResNet
50

MobileNetV2
0.5

MobileNetV2
0.75

MobileNetV2
1.0

66.0

68.0

70.0

72.0

74.0

76.0

78.0

Ac
cu

ra
cy

 (%
)

Random
Dynamic

MP
IMP

Figure 6 shows the effectiveness of mode parti-
tion and iterative mode partition, where we made
a comparison among random partition, mode
partition, and iterative mode partition. Com-
pared to fully dynamic networks, accuracy de-
grades when we partition the two modes ran-
domly, which means this naive partition method
mistakes some important dynamic parameters.
In contrast, the mode partition that identifies the
cherry on the cake contributes to a better archi-
tecture for higher performance. And the supe-
riority of iterative mode partition demonstrates
the effectiveness of the iterative strategy.

E MASK VISUALIZATION OF MOE

We visualize the 0/1 distribution of indicator masks and show the mode mapping for dynamic modes
and static modes in Figure 7. Among layers, the visualization reflects an incremental trend of dynamic
ratios from bottom to top, which is consistent with the recent research (Rücklé et al., 2021). Within a
layer, We can see a structured property in the distribution, where the parameters of a column or a row
are mostly in the same mode. For this phenomenon, we guess partitions following a hardware-friendly
structured manner may be close the optimal, which may inform future works.

15



Under review as a conference paper at ICLR 2023

(a) BERT-Base

(b) RoBERTa-Base

Figure 7: Visualization of layer-wise indicator masks for MoE implemented in the feedforward layers
of BERT-base and RoBERTa-base. We colored dynamic areas in black and static areas in white. From
left to right, we display the masks from bottom layers to top layers and the dimension is 768× 3072
for each mask.

16


	Introduction
	Related Work
	Preliminaries: Review of Fully Dynamic Networks
	Methodology
	PAD-Net: Partially Dynamic Network
	Identifying the Cherry on the Cake: Iterative Mode Partition

	Empirical Evaluation
	Main Results
	Ablation Study
	Detailed Analysis

	Conclusion and Future Work
	Implementation Details
	Ablation study for dynamic ratio on MoE
	Experimental Results of DCD and ODConv
	The effectiveness of iterative mode partition
	Mask Visualization of MoE

