
DisRnet: Discrete Relevance semantic segmentation network based on 
Discrete Data Distribution 

ABSTRACT 

In the current pixel-level semantic segmentation tasks, the 
current popular algorithm models are generally based on CNNs 
and combine contextual information to achieve semantic 
segmentation of images. However, when these algorithms extract 
features, they are all affected by the mean pooling layer or the 
maximum pooling layer, which causes the extracted features lose 
some spatial information easily. Aiming at these problems, this 
paper designs a discrete pooling layer (Dis pool) and a correlation 
pooling layer (Rel pool) by using the characteristics of discrete 
data distribution. The Dis pool can retain the spatial location 
information of features through the discrete characteristics of 
discrete data. The Rel pool can utilize the correlational 
information between the discrete data to preserve the correlation 
between the features. Then, DisRnet is designed by fusing the Dis 
pool and Rel pool on the residual structure. Finally, under the 
Cityscapes, SBD datasets and Pascal VOC dasets, compared with 
some SOTA models, it is verified that DisRnet has superior 
performance. 

Keywords: Discrete Data Analysis, Residual structure, Pool layer, 
Image features, Related Features, Discrete features. 

Index Terms: Human-centerd computing- Visualization –
Visualization empirical studies, theory 

1 INTRODUCTION 

Semantic segmentation is a hot topic in computer vision. 
Likewise, pixel-level semantic segmentation is an important and 
complex task, and feature extraction in it is also a difficult task. In 
the traditional feature extraction algorithm, the Roberts[1] and 
Prewitt operators extract the edge feature information of the 
image through the first-order difference, and the Sobel operator 
obtains the edge feature information of the image through the 
second-order difference. In image segmentation, Sobel operator is 
superior to Roberts and Prewitt operator. On the basis of the Sobel 
operator, the Robinson operator introduces convolution kernels in 
8 directions to ensure that the extracted information is more 
accurate. However, the parameters in traditional algorithms are 
fixed, so the generalization ability of these algorithms is relatively 
weak. 

On the contrary, CNNs[2-5] algorithms have achieved excellent 

results in image classification, segmentation, tracking of Kaggle[8] 
competition or AI Challenger competition. FCN[9] 
uses deconvolution for up-sampling to make the extracted 

features more detailed. U-Net[10-11] uses the network symmetric 
structure to fuse high-dimensional features and low-dimensional 
features to strengthen edge features and make the segmentation 

effect more superior. In CPFNet[12], the dilated convolution[54] can 
expand the field of the convolutional layer to extract 
more feature information, and combine the inception 

module[4] to achieve context feature fusion. Finally, CPFNet 
achieve superior results in medical datasets. STDC[13] integrates 
multiple scales on the basis of FPN[14-15], and its performance 
is superior to the CPFnet algorithm. BiseNetV2[16] adopts a 
bilateral segmentation structure on the basis of STDC, namely 
Detail Branch and Semantic Branch. Detail Branch obtains 
more low-level feature information by expanding the channel, 
and Semantic Branch expands the receptive field to obtain 
high-level feature information through a lightweight 
convolutional layer. BiseNetV2 can solve the problem of 
structural redundancy. Although the CNN-based algorithm has 
high accuracy, it is common that the extracted features will lose a 
lot of spatial information due to the pooling layer, 
which eventually happen structural redundancy, large 
computational load, and segmentation errors in the semantic 
segmentation network. 

Here we design Dis pool and Rel pool by exploiting 
the distribution properties of discrete data. The Dis pool extracts 
the discrete coefficient and the spatial position of the 
coefficient by analyzing the data distribution characteristics of the 
discrete data. Therefore, the Dis pool can retains the spatial 
position information and discreteness of image features. 
Similarly, the Rel pool extracts the correlation coefficient of 
the feature by analyzing the correlation between the data and the 
data, thereby retaining the data correlation of the feature. 
Compared with traditional pooling layers, Dis pool and Rel pool 
can effectively preserve the spatial information of features. 
Here we design the DisRnet model by introducing the residual 

structure[23] based on the Dis pool and Rel pool. Among them, 
the residual structure mainly realizes the fusion of context 
information, which makes the model more lightweight on the 
one hand, and improves the accuracy on the other hand. 

Under the datasets of Cityscapes[17], SBD[18], and PASCAL 
VOC[26], compared with the SOTA algorithm, DisRnet has 
certain advantages in accuracy and speed.  

Our main contributions are highlighted as follows: 
1. In this paper, Dis pool and Rel pool are designed using

statistical analysis methods for discrete data. 
2. Based on the Dis pool and Rel pool, the residual structure is

used to achieve context information fusion, which not only makes 
the model more lightweight, but also effectively improves the 
accuracy. 



3. DisRnet is compared with the SOTA algorithm under three
datasets. The effectiveness of DisRnet is comprehensively 
demonstrated from the four indicators. 

2 RELATED  WORK 

As we all know, an image is composed of an indeterminate 
number of pixel values according to certain rules, and the values 
is from 0 to 255. Although the rules are complex, the image data 
is discrete, so when we perform image processing, we can obtain 
some features by means of statistical analysis of discrete data. 
Traditional algorithms can use some functions to analyze the 
statistical characteristics of discrete data and extract simple 
features, such as SIFT[19], SURF[20], HOG[21], DOG, LBP[22], Haar, 
etc. However, the functions of these algorithms will use fixed 
parameters, which resulting in these algorithms having certain 
limitations in image processing and cannot be popularized. That is, 
these algorithms can only process some images with very obvious 
local features or images in a specific scene.  

In the CNNs algorithm, the convolution layer uses many 
variable parameters to perform simple inner product calculation 
on the image, and uses adaptive adjustment to adjust and optimize 
those parameters. Therefore, with the help of multiple parameters, 
the generalization ability of the convolutional layer is stronger 
than that of the traditional algorithm. The pooling layer extracts 
the maximum pixel value or the average pixel value of feature 
from sliding window. Although the pooling layer has the function 
of dimensionality reduction, a lot of information will be lost in the 
process of dimensionality reduction. The STL[26] analyzes the 
distribution of low-level texture features, and achieves an 
effective semantic segmentation effect. Then, the paper use the 
context information fusion method to achieve the segmentation 
effect on the extracted features.  

Inspired by STL[26], we extract discrete features and related 
features as important features by analyzing the statistical 
properties of discrete data. Then we fuse these extracted features 
on the structure which designed based on ResNet[25] to achieve 
contextual information fusion. Finally we design the DisRnet 
network. In terms of model size, DisRnet utilizes the network 
characteristics of ResNet to realize the lightweight of the model. 
In feature extraction, DisRnet uses Dis pool and Rel pool to 
preserve spatial information without loss, thereby improving the 
accuracy of the model. 

3 METHOD 

Figure 1: pic is a picture in the SBD dataset. average, max, sobel, 

rel, and dis are the histograms processed by their respective 

algorithms. 

Here we design a Dis pool and a Rel pool inspired by STER[24] 
and STL[26]. From the histogram in Figure 1, we can see that 
compared with the results of the max pooling layer and the mean 
pooling layer, the features extracted by the Dis pool and Rel pool 
are smoother and more uniformly distributed. Therefore, the 
features extracted by the Dis pool and Rel pool are also easy to 
calculate. 

3.1 Dis pool 

The image P with dimension H*W gets n feature maps under 
the sliding window, namely {P1, P2, P3,...Pn}. The dimension of 
these feature maps is h*w, and is same of the size of the sliding 
window, as show in Figure2. Pm obtains the corresponding 
discrete value dm and mean am under formulas 1 and 2. 

(1) 

(2) 

 Both dm and am describe the data characteristics of Pm. The 
pixel value of Pm is processed under formula 3, and the spatial 
position of discrete features can also be located, where λ is a 
hyper parameter. Pi,j

m is the value of Pm at (i,j) position. If Pi,j
m is

less than λ*am+dm, it means that the value is lower than the 
discrete value range, and then the value of this position is changed 
to 0, otherwise it is 1, finally a new feature map Cm is generated. 
All feature maps Cm in the feature group {C1, C2, C3,...Cn} that 
exist at the position (i, j) will get the values li,j of the position 
under formula 4.Then a new feature map l is also generated, 
where  ⌈ *⌉ means to take the largest integer less than *. 

(3) 

(4) 

(5) 

Figure 2: Schematic of the Dis pool. H, W represent the size of the 

input picture P. h, w is the size of the sliding window. Pm is the 

pixel data read in P by the sliding window. 

The input image P gets the feature map l through Dis pool. The 
feature map l retains the spatial position of the discrete features of 
the image. In order not to lose pixel information, the image P is 
then multiplied by l, as shown in formula 5. Therefore, the Dis 
pool has the ability to retain the spatial information of the image 
effectively, which can reduce the value of feature map, reduce the 
computational effort, and improve the computational efficiency. 
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3.2 REL POOL 

 The Dis pool can retain the spatial location information of the 
feature values in the above-mentioned manner. Here, in order to 
maintain the correlation invariance between feature values, the 
Rel pool is proposed here. From the theory of covariance and 
Pierce correlation coefficient[55], we know that there is no 
correlation and covariance between two independent discrete data, 
so we stipulate that the step size s of the sliding window should be 
smaller than the size of the window, that is (s <h,s<w). 

Figure 3:  Schematic of the Rel pool. H, W represent the size of the 

input picture P. h, w is the size of the sliding window. Pm is the 

pixel data read in P by the sliding window. s is the step size of 

the sliding window 

The input image P with dimension H*W gets n feature maps 
under the sliding window, namely {P1, P2, P3,...Pn}. Through 
formula 6, we can obtain the correlation coefficient ri,j between 
the feature maps Pm and Pm+1, which expresses the correlation 
between the two feature maps, and the larger the correlation 
coefficient, the greater the correlation. Finally, the feature values 
ri,j of the n positions form a new feature map r, which ensures the 

correlation between the feature values. 

 
(6) 

 
(7) 

 (8) 

where Pm|(i,j)represents the feature map with (i,j) as the upper 
left point, and P

__

m |(i,j) represents the mean of the feature map Pm. 
Pm+1 represents the next feature map of the Pm feature map. The 
feature map r is dot-multiplied with the data P, and finally the 
feature map R pooled by the Rel pool is obtained. 

3.3 DisRnet 

Rel pool can obtain the correlation between the feature values 
in the feature map and ensure the correlation invariance between 
the feature values. At the same time, the feature map obtained by 
Dis pool can preserve the discreteness of the feature values and 
the spatial invariance of some the feature values, thereby 
preserving the stability of edge features. Here we fuse the Rel 
pool and the Dis pool on the basis of the residual structure and 
introduce the upsampling[27-29] layer to design DisRnet. The 
DisRnet structure is shown in the Figure 4 below. The parameters 
of the DisRnet network structure are shown in Table 4 below. 

Figure 4: DisRnet's networking framework.
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Table 1. The network parameters of.DisRnet. 

Conv3/5/7/9/11/13 represent Convolution3, 

Convolution5, Convolution7, Convolution9, 

Convolution11, and Convolution3 in Figure 4, 

respectively. 

Layer Kernel/stride Parameters 

Conv1 128*11*11/4 15488 

Dis pool 3*3/1 - 

Conv3/5/7/9/11/13 

8*1*3/2 

3072 

8*3*1/2 

Rel pool 3*3/2 - 

Conv4/8/12 16*3*3/2 1152 

Conv2/6/10 64*11*11/4 61952 

Conv14 1*1*1/1 8 

The input data is multiplied by the feature map l obtained by 
Dis pool, which the purpose is to locate the spatial position of the 
edge feature through the discrete coefficient feature map l. Then, 
the result is passed to Rel pool, and finally the obtained result is 
added to the input data, which can strengthen the information of 
edge features on the one hand, and preserve the correlation 
between features on the other hand. Therefore, the dot product is 
to calibrate the spatial position of the edge features. The purpose 
of addition is to strengthen the information of the edge features 
and preserve the correlation between the features. The Resnet 
residual structure is referenced in the DisRnet structure, which can 
effectively extract edge features on the one hand, and make the 
model more lightweight on the other hand. 

4 EXPERIMENT 

4.1 DATASETS AND ENVIRONMENT 

Cityscapes contains a total of 5000 fine images, of which 2975 
are training images, 500 validation images and 1525 testing 
images. An additional 20k images with Coarse's rough 
annotations are included. And the performance of the algorithm is 
evaluated on the average precision metric of the 8 semantic 
classes of the dataset. 

The Pacal VOC (07+12) dataset is divided into 4 categories and 
20 sub-categories. There are 33k photos in total, which including 
16k train+val datasets and 16k test datasets. 

SBD belongs to the augment dataset of the VOC dataset. It 
contains 11355 labeled images in VOC. We still use the 
segmentation of the VOC dataset as an annotation to train the 
network. SBD divides the total dataset into two parts, 8498 
training images and 2857 testing images. 

We are experimenting based on the version of Keras-
1.2+TensorFlow 0.12.1. The corresponding hardware platform is 
GTX1070+CPU AMD Ryzen7.  

For network training, we choose ADAM[32] as the optimizer 
with a momentum of 0.65 and a weight decay of 2.5𝑒−4 during 
training. The initial learning rate is set to 0.8. We choose different 
batch sizes for the three datasets, 6 for Cityscapes, 12 for Pascal 
VOC, and 8 for SBD. We set the maximum training epoch to 
1000. To increase the diversity of training, we apply data 
augmentation methods. It contains random horizontal flips, mean 
subtraction on the input image. In addition, DisRnet uses a 1*1 
convolution format in the last layer, and we use the following 
function to calculate the loss function.   

 
(9) 

 (10) 

 
(11) 

In the above formula, x represents the sample, d represents the 
actual label, a represents the predicted output, and n represents the 
total number of samples. In the forward propagation of DisRnet, 
the input data a will be numerically determined by the parameter 
λ after passing through the Dis pool. Here, in order to reduce the 
difference between the predicted data and the real data, in formula 
10, let the input data a subtract the mean value of λ times, so that 
the predicted value is smoother. And formula 11 is the cross 
entropy loss function[33]. 

4.2 ABLATION EXPERIMENT 

We conduct ablation experiments under the SBD dataset to 

demonstrate the feasibility of Dis pool and Rel pool. First, we 

only extract the convolutional layer of ResNet-18 as the basic 

network skeleton, and combine the Dis pool, correlation pooling 

layer, max pooling layer and mean pooling layer respectively to 

generate a new network structure. These new network structures 

are each trained on the SBD training set for 20 epochs and then 

tested on the test set. The result is show in Figure 5 and Table 2. 

Table 2. Results of ablation experiments. ResNet-18 

represents the network structure after removing the 

pooling layer 

Model mIou(%) 

ResNet-18 40.6 

+Dis pool 44.3 

+Rel pool 42.7 

+Max pool 41.0 

+Ave pool 43.2 



pic mask max

Rel averge Dis

Figure 5: pic is a picture from the SBD dataset, and mask is the segmentation map of the picture. max, Rel, average, Dis correspond to the 

segmentation maps of the respective pooling layers in Table 2. 

It can be seen from the accuracy indicators in Table 2 that the 
results obtained by the Dis pool and the mean pooling layer have 
achieved the optimal value, but the Resnet18 without any pooling 
layer obtained the lowest value. Combined with the segmentation 
effect in Figure 5, we can intuitively see that the segmentation 
effect obtained by the Dis pool and the Rel pool is significantly 
better than the average layer and the max layer. Among them, 
when the feature extraction is performed on a target with a large 
local feature area, the Rel pool will cause some feature weight 
ratios to be too high due to the high correlation around the target, 
which will resulting in inaccurate feature segmentation and other 
problems. However, compared with the loss of pixel spatial 
information caused by the average layer and the max layer, the 
Rel pool can solve the spatial correlation information around the 
pixels well. For problems with different weight ratios of some 
features, the Rel pool can effectively weight the features through 
the convolution layer. The Dis pool can locate the specific 
position of the target edge feature through the discrete degree 
around the pixel and achieve the segmentation effect of the target. 
And then the feature from Dis pool will calibrates the correlation 
of the target feature through the Rel pool to complete the accurate 
segmentation of the target. From the accuracy comparison in 
Table 2 and the effect comparison in Figure 5, it can be concluded 
that the combination of Dis pool and Rel pool can achieve a good 
segmentation effect. 

4.3 HYPER-PARAMETER  

We use λ in the Dis pool, the main purpose is to discretely 

determine the feature values, so the λ can indirectly determine the 

accuracy of the entire network. Here we assign different values to 

λ on DisRnet and compare them under the Cityscapes dataset, as 

shown in the following Table 3 and Figure 6. 

Table 3. Accuracy for different values of λ 

λ 0.7 0.1 0.13 0.16 0.19 0.21 

MIoU(%) 0.705 0.755 0.787 0.753 0.687 0.672 

Figure 6: DisRnet’s accuracy for different values of λ 

From Figure 6, we can intuitively see that the accuracy of 
DisRnet varies with the value of a. But when λ is equal to 0.13, 
the accuracy of DisRnt achieves the best value. Then we combine 
the data in Table 3 to determine that the parameter of λ=0.13 is 
used in this paper. 

4.4 COMPARED WITH SOTA 

In order to verify the efficiency of DisRnet, we compare 

DisRnet network with SETR, STL, CLL[35], GUDA[36], CFPnet, 

Deep[34], BiseV2, DFAnet[45], ESE[42-43], STS[44], PANet[46] in 

Cityscapes dataset, PASCAL VOC dataset and SBD dataset. 

4.4.1 CITYSCAPES 

The test set of Cityscapes contains 6 categories, which in turn 

contain 33 sub-categories. From the perspective of sub-categories 

accuracy, DisRnet and SETR are optimal. Both DisRnet and 



SETR use the context information fusion method, so the accuracy 

of DisRnet and SETR is higher in urban scenes. Compared with 

the features extracted by Bisev2 and SETR, DisRnet obtains 

discrete features and related features in the image by analyzing the 

statistical characteristics of discrete data, so that making the 

features more comprehensive and covering more information, so 

the accuracy rate is also better. 

Table 4. The results of DisRnet and 13 SOTA algorithms under the Cityscapes dataset are compared. 

Method road wall bridge pole sky person car bus truck terrain bicyle tunnel mIou 

DisRnet 40.6 70.3 86.7 70.1 65.8 55.2 46.9 65.7 77.2 86.1 77.4 80.9 75.4 

SETR 67.7 69.6 74.8 61.9 82.9 73.6 86.5 64.5 92.3 55.2 62.4 51.1 73.4 

GUDA 60.2 65.1 73.6 86.6 44.0 57.5 48.1 63.6 83.7 69.1 70.8 45.9 68.6 

FedDG 44.3 52.1 55.3 31.2 51.5 52.4 44.0 37.7 58.7 35.2 47.9 33.7 47.2 

DPL 66.2 54.2 45.3 36.5 30.4 54.8 20.4 40.1 34.6 58.3 68.7 51.2 53.6 

CFPnet 44.3 73.2 66.2 62.1 53.4 38.6 62.5 61.7 67.6 60.2 78.7 66.3 66.8 

Deep 11.6 32.3 16.5 39.4 40.4 18.6 31.3 43.3 20.6 17.9 38.1 25.6 38.2 

Bisev2 47.4 79.1 53.5 65.9 81.0 71.5 65.1 35.2 72.6 63.8 73.5 65.6 71.5 

DFAnet 69.1 32.7 84.6 57.3 58.8 40.1 64.8 63.2 80.5 28.3 75.6 78.1 68.1 

U-Net 55.7 36.9 77.4 68.6 20.7 20.0 41.7 22.2 42.3 62.1 50.5 51.1 43.2 

PANet 48.2 48.4 78.2 30.4 31.9 53.2 53.8 42.1 32.6 66.2 72.2 67.8 46.7 

ESE 26.6 50.7 57.3 21.7 47.9 19.0 41.7 62.3 37.4 55.2 37.1 25.2 38.6 

STS 33.2 33.7 51.0 50.2 40.9 39.0 35.8 29.3 49.5 43.1 34.2 27.3 38.7 

From Table 4, we can intuitively see that under the truck 

subclass, most algorithms achieve high accuracy, while under the 

person subclass, most algorithms have low accuracy. This is 

mainly because the person is a living body, and the amplitude of 

the movement of the living body generally changes greatly, plus 

the interference of the background. Therefore, the segmentation 

accuracy of person will be low.  Under the sub-categories such as 

bridge, bus, terrain, bicycle, and tunnel, the algorithm in this 

paper has achieved the best results. In terms of structure, DisRnet, 

SETR, U-Net, and Bisev2 all use context information fusion to 

achieve pixel-level segmentation, but the DisRnet network 

achieves the best results. Therefore, it can be concluded that the 

Dis pool and Rel pool have advantages. Then, most of the 

mentioned algorithms have higher accuracy than other algorithms, 

so it can also be concluded that the algorithm based on the context 

information fusion method has superiority in pixel-level semantic 

segmentation. 

4.4.2 PASCAL VOC 

Compared with the Cityscapes dataset, Pascal VOC is a dataset 

with a more complex background and a larger amount of data, so 

the accuracy of some algorithms will be lower. Here we take the 

accuracy of the Cityscapes dataset as the benchmark, and subtract 

the accuracy of the PASCAL VOC dataset to obtain the difference 

in accuracy, as shown in Table 5 and Table 4 below. Through the 

analysis of Table 4 and Table 5, it is found that the accuracy of 

some algorithms is improved, and the accuracy of most algorithms 

is decreased. In the descending algorithm, the change in the 

accuracy of DisRnet is relatively small, and we can conclude that 

DisRnet has certain generalization ability. Through the analysis of 

Table 4 and Table 5, it can be seen that the accuracy of DisRnet 

has certain advantages compared with the compared algorithms, 

so it can be concluded that Dis pool and Rel pool have certain 

efficiency. 



Table 5. The results of DisRnet and 13 SOTA algorithms under the Pascal VOC dataset are compared 

Method person bird cat cow dog horse sheep boat bus chair dining table mIou 

DisRnet 54.3 63.8 76.5 40.9 67.6 23.1 39.4 57.2 42.7 34.0 72.0 68.3 67.2 

SETR 53.6 41.7 14.6 23.6 36.8 44.8 26.6 58.5 45.7 53.9 45.5 41.0 50.2 

GUDA 59.1 46.7 42.1 53.2 39.8 29.1 35.9 52.0 13.6 39.0 18.3 46.7 54.6 

FedDG 71.0 49.4 48.2 20.6 74.9 23.1 57.4 26.7 50.0 46.7 37.4 59.2 52.7 

DPL 51.5 61.9 34.8 55.2 68.8 61.2 46.7 46.1 28.8 52.1 54.7 64.0 40.3 

CFPnet 72.1 65.5 73.4 37.7 47.5 77.6 21.5 22.4 72.5 66.1 63.3 55.7 60.7 

Deep 32.2 50.5 38.4 54.6 23.7 39.1 58.2 34.7 27.2 58.5 40.3 34.4 42.9 

Bisev2 51.2 32.6 51.8 50.0 45.4 61.8 47.3 31.5 46.8 59.6 53.5 60.7 60.1 

DFAnet 48.1 25.1 40.2 27.3 50.3 62.4 21.2 25.3 27.8 44.9 35.8 48.9 55.2 

U-Net 40.4 30.9 40.1 49.4 59.3 53.2 30.3 42.2 43.6 30.3 39.7 59.8 47.1 

PANet 71.1 37.2 50.0 49.7 65.1 37.2 46.1 41.2 60.8 46.3 57.7 48.0 52.2 

STS 38.0 50.2 38.3 43.2 51.6 48.7 30.5 47.2 71.9 65.3 34.7 28.5 48.1 

Table 6. Difference between Cityscapes accuracy and Pacal VOC accuracy 

Method DisRnet SETR GUDA DPL FedDG CFPnet Deep Bisev2 DFAnet 

-(%) 8.2 23.2 14.2 13.3 -5.5 6.1 -4.7 11.4 12.9 

From Table 6, it can be seen intuitively that the difference of 

SETR has the largest change, 23.2%. Deep has the smallest 

difference change, 4.7%. However, combining Table 5 and Table 

4, DisRnet has good generalization ability while ensuring high 

accuracy. 

4.4.3 SBD 

The SBD dataset is an enhanced dataset of PASCAL VOC. We 

use the model trained under PASCAL VOC as the training model, 

and then train and test it under the SBD dataset. The results are 

shown in Table 6, and the segmentation effect is shown in Figure 

7. 

Table 7. A comprehensive comparison of DisRnet and 5 SOTA algorithms under the SBD dataset. 

Network DisRnet SETR FedDG CFPnet Bisev2 DFAnet 

Size(M) 5.4 12.1 9.3 3.7 4.9 7.4 

mIoU(%) 64.3 52.6 53.4 58.4 57.2 49.8 

GFLOPs 20.3 26.8 17.6 14.7 18.6 13.4 

Fps 78.4 - - 26.2 89.2 59.2 



Figure 7: Semantic effect segmentation effect of DisRnet, Deep Snake and GUDA under SBD dataset. 

Img DisRnet Deep Snake GUDA



Under the Cityscapes dataset and the Pascal VOC dataset, we 

have done a comparative analysis of the accuracy. With the help 

of feature extraction of Dis pool and Rel pool and residual 

structure, DisRnet can achieve certain advantages. Now we 

conduct a full analysis under the SBD dataset. It can be seen from 

Table 7 that the GFLOPs of SETR are high, which mainly 

because SETR uses Transformers to obtain features, so the model 

of SETR is also larger. The models of CPFnet, Biesv2 and 

DisRnet are smaller. CPFnet uses two-channel pyramid pooling to 

extract features, which can obtain more features with less 

convolution, so the model is also smaller. And Bisev2 also 

extracts and fuses information through a dual-channel method. 

However, DisRnet adopts a residual structure in structure, which 

can effectively realize the lightweight of the model and improve 

the calculation speed at the same time.  

Finally, in the segmentation comparison effect in Figure 7, we 

can see that when the background is too complex, DisRnet can 

also achieve pixel-level segmentation through related features. 

When the target is too small, DisRnet can obtain edge information 

about the target by analysing the correlation and discreteness 

between the target and the surrounding background, and finally 

achieve pixel-level segmentation. 

5 CONCLUSION 

In this paper, we design the Dis pool and the Rel pool by 

analysing the statistical characteristics of discrete data, and then 

combine the residual structure to design DisRnet. On the extracted 

features, the features extracted by the Dis pool and the Rel pool 

not only have more expressive, but also can reduce the loss of 

feature spatial information and improve the fault tolerance rate. 

The extracted features are fused by contextual information under 

the structure of residual, so as to achieve the effect of semantic 

segmentation. In ablation experiments, we demonstrate the 

feasibility of the Dis pool and the Rel pool. Then, we conduct a 

comprehensive comparison with some SOTA algorithms under 

the SBD, Cityscapes and Pascal VOC datasets， and find that 
DsiRnet performs pretty well in both accuracy and model size. 
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