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Figure 1: Overview of SparseDFF. We introduce a novel method, SparseDFF, for distilling view-consistent 3D
Distilled Feature Field (DFF) from sparse RGBD images, readily generalizable to novel scenes without any
modifications or fine-tuning. The DFFs create dense correspondences across scenes, enabling one-shot learning
of dexterous manipulations. This approach facilitates seamless manipulation transfer to new scenes, effectively
handling variations in object poses, deformations, scene contexts, and categories.

ABSTRACT

Humans demonstrate remarkable skill in transferring manipulation abilities across
objects of varying shapes, poses, and appearances, a capability rooted in their
understanding of semantic correspondences between different instances. To equip
robots with a similar high-level comprehension, we present SparseDFF, a novel
DFF for 3D scenes utilizing large 2D vision models to extract semantic features
from sparse RGBD images, a domain where research is limited despite its relevance
to many tasks with fixed-camera setups. SparseDFF generates view-consistent 3D
DFFs, enabling efficient one-shot learning of dexterous manipulations by mapping
image features to a 3D point cloud. Central to SparseDFF is a feature refinement
network, optimized with a contrastive loss between views and a point-pruning
mechanism for feature continuity. This facilitates the minimization of feature
discrepancies w.r.t. end-effector parameters, bridging demonstrations and target
manipulations. Validated in real-world scenarios with a dexterous hand, SparseDFF
proves effective in manipulating both rigid and deformable objects, demonstrating
significant generalization capabilities across object and scene variations.

1 INTRODUCTION

Learning from demonstration is a powerful approach for quickly imparting complex skills to robots.
Although recent advancements have shown promising results in applying reinforcement learning to
dexterous manipulation tasks (Xu et al., 2023; Wan et al., 2023; Li et al., 2023a), the effectiveness
of these methods is often contingent on the availability of a carefully curated demonstration dataset
and struggles to accommodate the varied demands of different tasks. Moreover, these techniques
primarily target the manipulation of rigid objects and encounter significant obstacles in real-world
applications and in scaling to datasets beyond those they were trained on. In stark contrast, humans
demonstrate remarkable abilities to extrapolate and generalize from observed demonstrations (Lake
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& Baroni, 2023; Jiang et al., 2023; Li et al., 2024b;a; 2023b; Xie et al., 2021; Lake et al., 2015). For
instance, learning to hold a cat by watching someone do so can effortlessly extend to holding various
other cats of different breeds, sizes, and appearances or even to entirely different animals, such as
dogs, otters, or baby tigers, provided they are accessible and amenable. This exceptional capacity
for generalization stems from the ability to discern underlying similarities across different instances,
despite variations in appearance, pose, or species (Zhu et al., 2020; Fan et al., 2022).

To empower autonomous agents with human-like comprehension and generalization from demonstra-
tions, leveraging object and scene representations from large vision models proves to be effective.
Despite the prevalence of these models being trained on 2D imagery—attributed to the hurdles in
acquiring and annotating 3D data—applying them directly to complex manipulation tasks, such
as those requiring dexterous manipulation, remains a significant challenge. Recent endeavors have
introduced DFFs (Kobayashi et al., 2022), which transform dense 3D feature fields from 2D image
features, thus enhancing understanding of 3D scenes (Kerr et al., 2023) and facilitating interactions
(Shen et al., 2023; Lin et al., 2023; Rashid et al., 2023; Ze et al., 2023).

Nevertheless, the predominant methodology for constructing these feature fields in 3D vision—
often by leveraging techniques akin to NeRF—results in a heavy dependence on dense camera
views for 2D-3D distillation (Shen et al., 2023; Rashid et al., 2023). This dependency constrains
interaction scenarios to those with only sparse views available and impedes rapid training and
inference, significantly narrowing the model’s applicability. Additionally, the operations in existing
works are relatively rudimentary, typically involving a gripper handling rigid objects, which points to
the feature field’s limited effectiveness (Simeonov et al., 2022; Shen et al., 2023; Lin et al., 2023;
Rashid et al., 2023; Ze et al., 2023).

In this work, we present SparseDFF, a novel approach to generating view-consistent 3D DFFs from
sparse RGBD observations, facilitating one-shot learning of dexterous manipulations transferable to
new scenes. Our principal insight is that the main limitation for feature fields in manipulation is not a
lack of visual information or the expressive capacity of the field model, but rather the consistency
of local features. We show that a point cloud-based feature field, with enhancements in feature
consistency, can provide precise optimization for a 24 DoFs dexterous hand.

More specifically, we project image features onto a 3D point cloud, facilitating their propagation
across 3D space to form a dense feature field. At the heart of SparseDFF lies a lightweight feature
refinement network trained only based on a single demonstration, optimized using a contrastive
loss between pairwise views. Furthermore, we introduce a point-pruning strategy to improve feature
continuity within each local area. The resultant feature fields create dense correspondences across
varying scenes, enabling the establishment of an energy function on the end-effector pose from the
original demonstration to the target manipulation. This approach allows for the one-shot learning
of dexterous manipulations, adaptable to new scenes with variations in object poses, deformations,
scene settings, or even differing object categories. Our methodology is validated through real-world
experiments with a dexterous hand interacting with both rigid and deformable objects, exhibiting
strong generalizations across various objects and scene settings.

To summarize, our contributions are threefold:
• We introduce a novel framework for one-shot learning of dexterous manipulations, leveraging

semantic scene understanding distilled into 3D feature fields.
• We devise an efficient method for deriving view-consistent 3D features from 2D image models,

incorporating a lightweight feature refinement network and a point pruning mechanism. This
facilitates the application of our network to new scenes, predicting consistent features without
requiring any adjustments or fine-tuning.

• Our real-world experiments with a dexterous hand affirm our method’s effectiveness, demonstrating
its robustness and superior generalization ability in varied scenarios.

2 RELATED WORK

Implicit Fields for Manipulation The identification of point-wise correspondences facilitates the
transfer of manipulation policies across diverse objects. In contrast to methods based on key points
(Manuelli et al., 2019; Xue et al., 2023; Florence et al., 2018), recent efforts focus on developing
dense feature fields through implicit representations (Simeonov et al., 2022; Wu et al., 2023a; Ryu
et al., 2022; Dai et al., 2023; Simeonov et al., 2023; Weng et al., 2023; Urain et al., 2023; Zhao et al.,
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2022; Wu & Zhao, 2022). The integration of large vision models has propelled research towards
leveragingDFFs for enabling few-shot or one-shot policy learning, 6-DOF grasps (Shen et al., 2023),
sequential actions (Lin et al., 2023), and language-guided manipulations (Rashid et al., 2023). Yet,
these approaches either depend on dense view inputs (Shen et al., 2023; Rashid et al., 2023), requiring
extensive camera movement around the scene, or utilize single-view features (Lin et al., 2023), which
may suf�ce for parallel grippers but fall short for dexterous manipulations due to spatial complexities.

Of particular note is Ze et al. (2023), which, despite using multiple camera views to synthesize unseen
views through neural rendering and extracting features from pre-trained models like StableDiffusion,
shows advancement in connecting sparse with dense observations. Nonetheless, the processes of
synthesizing and propagating unseen views demand signi�cant effort. Moreover, these efforts are
predominantly focused on simple manipulations using parallel grippers, with intricate dexterous
manipulations largely remaining unaddressed.

Another pertinent work is by Karunratanakul et al. (2020), which employs a signed distance �eld to
illustrate interactions between human hands and objects. Our work parallels Karunratanakul et al.
(2020) in optimizing hand parameters from a 3D �eld. However, unlike their direct depiction of
hand-object distances, we construct an implicit feature �eld to de�ne energy functions for end-effector
parameters, offering a novel approach to complex dexterous manipulations.

Distilling 2D Features into 3D The works of Zhi et al. (2021), Siddiqui et al. (2023), and Ren
et al. (2022) demonstrate the lifting of semantic information from 2D segmentation networks to 3D,
showing that averaging language embeddings over views can produce distinct 3D segmentations.
Kobayashi et al. (2022) and Tschernezki et al. (2022) delve into integrating pixel-aligned image
features from models like LSeg or DINO (Caron et al., 2021) into 3D Neural Radiance Fields (NeRF),
highlighting their impact on manipulating 3D geometry. Further, Peng et al. (2023) and Kerr et al.
(2023) explore distilling non-pixel-aligned image features, such as those from CLIP (Radford et al.,
2021), into 3D scenes without the need for �ne-tuning, yet their reliance on dense view acquisition
for 3D feature extraction poses challenges for scenarios limited to sparse camera setups.

Dexterous Grasping Dexterous manipulation, central to advanced robotic applications, necessitates
nuanced understanding and control, akin to human-like grasping capabilities (Salisbury & Craig,
1982; Dogar & Srinivasa, 2010; Andrews & Kry, 2013; Da�e et al., 2014; Kumar et al., 2016; Qi
et al., 2023; Liu et al., 2022). The �eld prioritizes dexterous grasping due to its foundational role
in hand-object interactions. Analytical approaches (Bai & Liu, 2014; Dogar & Srinivasa, 2010;
Andrews & Kry, 2013) focus on direct modeling of hand and object dynamics, offering varying
simpli�cation levels, while recent strides in learning-based methods have introduced state (Chen
et al., 2022; Christen et al., 2022; Andrychowicz et al., 2020; She et al., 2022; Wu et al., 2023b) and
vision-based strategies (Mandikal & Grauman, 2021; 2022; Li et al., 2023a; Qin et al., 2023; Xu
et al., 2023; Wan et al., 2023), targeting realistic scene comprehensions.

Despite their advances, these methods depend on large demonstration datasets for training, showing
limited generalization beyond trained scenarios. Notably, Wei et al. (2023) proposes a grasp synthesis
algorithm that generalizes within similar object shapes using minimal demonstrations, focusing on
geometric and physical constraints for functional grasping. Our approach distinguishes itself by em-
ploying semantic visual features for dexterous manipulation, facilitating cross-category generalization
from a singular demonstration, thus broadening the scope of generalization in dexterous grasping.

3 METHOD

Given a 3D point cloudX , we aim to �rst construct a continuous feature �eldf p�; X q : R3 Ñ RC

surrounding the scene, as illustrated in Fig. 2. This �eld provides semantic understandings for inter-
scene correspondences, extending beyond geometric descriptors (Secs. 3.1 and 3.2). Utilizing a
lightweight feature network, trained once on the source scene, enables direct adaptation to target
scenes without additional �ne-tuning. We then introduce a pruning method to enhance feature
continuity, akin to the classical Hough voting (Qi et al., 2019). Following this, we employ the
demonstrated end-effector pose to formulate an energy function between source and target scenes
via the feature �elds. This function facilitates the optimization of the end-effector pose in the target
scene while conforming to physical constraints (Sec. 3.3), depicted in Fig. 3.
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Figure 2:Constructing sparse-viewDFFs.(a) Starting with the aggregation of DINO features, we form an initial
3D DFF. (b) Next, a lightweight network then re�nes these features, trained solely on a single demonstration
and employing contrastive loss to improve �eld consistency. (c) Finally, a pruning algorithm assesses points
through feature similarity in their vicinity. Points with minimal votes are eliminated.

3.1 3D FEATURE DISTILLATION

In contrast to previous works (Kerr et al., 2023; Rashid et al., 2023; Ze et al., 2023) that directly
reconstruct continuous implicit feature �elds alongsideNeRFrepresentations, our method �rst distills
features onto discrete 3D points before propagating them into the surrounding space (Fig. 2a), akin
to the approach of Kerbl et al. (2023). Formally, for any given point cloud feature setF � t f i u, the
featuref at a query pointq PR3 is determined by

f �
Ņ

i � 1

wi f i ; where wi �
1{} q � x i }2

° N
j � 1 1{} q � x j }2

: (1)

Consider a 3D scene observed by several cameras positioned around it, yielding a set ofK sparsely
sampled RGBD scans. Each scan comprises a 2D image and a 2.5D point cloudX k P RN k � 3,
establishing 1 to 1 correspondences between image pixels and 3D points. Combining the point clouds
of K views produces a comprehensive 3D point cloud of the sceneX �

”
k X k PRN � 3.

As large vision models such as DINO (Caron et al., 2021; Oquab et al., 2023) have demonstrated
emergent object correspondence properties even when trained without supervision, an intuitive
approach is to directly apply DINO (Oquab et al., 2023) to RGB images and back-project to each point
cloudX k using the pixel-point correspondences, yielding per-point featuresF k PRN k � C ; integrating
the features of all views results in the point features of the entire sceneF �

”
k F k PRN � C . However,

DINO lacks strict multiview invariance, causing local feature inconsistencies.

Addressing the issue of local feature discrepancies, we devise a lightweight feature re�nement
network' , consisting of a shallow per-point MLP, as depicted in Fig. 2b. This network can (i) be
ef�ciently self-supervisedly trained on a single source scene, (ii) obtain high-quality, consistent
feature, and (iii) directly apply in new scenes without any modi�cation. The ef�cacy of this feature
re�nement is demonstrated and discussed in Sec. 4.3. Formally, given any pair of 2.5D point clouds
X k � t x kn u; X l � t x lm u from different views with per-point DINO featuresfkn ; f lm , applying'
yields the re�ned featuresf 1

kn � ' pfkn q; f 1
lm � ' pf lm q. The intuition is to ensure that neighboring

features are similar and distant ones are distinct, following Xie et al. (2020).

Computationally, we use contrastive learning (Chen et al., 2020) to optimize the weights in' . The
re�ned features are passed through a projection headg to obtain projected featuresgkn ; glm . The
contrastive learning objective is de�ned by �nding the overlapping region of the two views with pairs
of points (distance ¡1cm). In each training iteration, a minibatch ofN pairs is randomly sampled as
positive examples, with the other2pN � 1qpossible pairs of unmatched points serving as negative
examples. The contrastive loss for a positive pair of examplespx kn ; x lm qis formulated as

lnm � � log
exppsimpgkn ; glm q{� q

° 2N
i � 1 1r i � n s exppsimpgkn ; gli q{� q

; (2)

with simpu; vqas cosine similarity,1ri � n s indicatingi � n, and� as a temperature parameter. After
training on the source scene,g is removed, retaining only' for novel scenes.
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Figure 3:End-effector optimization. (a) We sample query points on the end-effector and compute their features
using the learned 3D feature �eld. Minimizing the feature differences as an energy function facilitates the transfer
of the end-effector pose from the source demonstration to the target manipulation. (b) The color gradient on the
hand indicates the optimization steps from start to end.

3.2 POINT PRUNING

To improve feature consistency within the merged point cloudX � t x i u, we introduce a pruning
mechanism akin to Hough voting (Xie et al., 2020), depicted in Fig. 2c. mechanism operates based
on the re�ned point featuresf 1, focusing on the similarity of features among neighboring points.

Speci�cally, each pointx i is evaluated within a radiusr . For every neighboring pointx j PBpx i ; r q,
we assess the feature difference betweenf 1

j andf 1
i . If the discrepancy}f 1

i � f 1
j } falls below a prede�ned

threshold� , thenx i secures a vote fromx j . The voting is formalized as:

Vpx i q � # t x j P Bpx i ; r q : } f 1
i � f 1

j }   � u; (3)

leading to the exclusion of the bottom 20% of points with the least votes.

This pruning mechanism addresses potential discontinuities between adjacent points from different
views, a common issue when integrating DINO features, which are generally continuous within the
same image but may diverge across views. By pruning points that lack consensus across views, we
enhance feature consistency and reliability across the point cloud, mitigating the impact of point
cloud noise and DINO feature imperfections.

3.3 END-EFFECTOROPTIMIZATION

For our dexterous hand end-effector, represented by the joint pose parameters� , we optimize these
parameters in the target sceneX using the feature �elds derived from both the source demonstration
sceneX̂ with hand parameterŝ� , and the target scene; please refer to Fig. 3 for visualization.

Starting with randomly samplingQ points on the hand surfaces in both the source and target
manipulation, we generate query point setsQ|�̂; Q|� PRQ� 3, conditioned on the hand parameters.
Prioritizing the �ngers for their crucial role in dexterous manipulation, we ensure a higher sampling
density on them than on the palm. These query points are then processed through our learned 3D
feature �elds to extract feature setsf pQ|�̂; X̂ q; f pQ|�; X q PRQ� C . The objective is to minimize the
feature disparity between the demonstration and target hand poses via anl1 loss, formulated as an
energy functionEp� |X ; X̂ ; �̂ qw.r.t. � :

Ep� |X ; X̂ ; �̂ q � | f pQ|�̂; X̂ q � f pQ|�; X q|: (4)

We integrate repulsion energy functions to prevent hand-object and self-penetrations, drawing from
Wang et al. (2023) to ensure the action's physical viability. The inter-penetration and self-penetration
energy functions are as follows:

Epenp� |X q �
¸

x PX

1rx PQsdpx; BQq; Espenp� q �
¸

p ;qPQ

1p � q maxp� � dpp; qq; 0q: (5)

Moreover, to avoid potential physical damage from extreme hand poses, a pose constraintEposep� q
penalizes out-of-limit hand pose. The overall optimization combines these terms:

E p� |X ; X̂ ; �̂ q � � penEpenp� |X q � � spenEspenp� q � � poseEposep� q: (6)

In our implementation, we set� pen � 10� 1; � spen � 10� 2; � pose � 10� 2.
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4 EXPERIMENTS

We evaluate our model through real-world experiments with a robot hand, opting for direct assessment
in real-world settings to leverage the superior stability of large vision models like DINO (Caron et al.,
2021; Oquab et al., 2023) on real images over synthetic ones.

Environment Our experimental setup features a Shadow Dexterous Hand, which has 24 Degrees
of Freedoms (DoFs). We restrict the 2DoFs at the wrist, focusing the optimization on the remaining
22DoFs. This hand is mounted on a UR10e arm, adding 6DoFs, enabling it to reach any point on
tabletops sized either 1m� 1.2m or 1m� 1m. Precautions are taken to prevent the dexterous hand from
contacting the table surface directly, and the range of motion is limited by the hand's elbow.

For RGBD scans, we use four Azure Kinect DK sensors, positioned at each corner of the table
and aimed towards its center, ensuring comprehensive capture of the scene. These sensors are pre-
calibrated and �xed at speci�c heights. Post-processing is applied to the captured scans to remove
background elements.

In single-object experiments, the object's point cloud is segmented using SAM (Kirillov et al., 2023).
For multi-object scenarios, we apply physical constraints to limit the experimental area to the tabletop
and employ RANSAC (Fischler & Bolles, 1981) to exclude the table surface from the analysis.

Tasks and evaluation Our method undergoes a quantitative evaluation centered on the grasping of
both rigid and deformable objects, with grasping providing a straightforward measure of success or
failure. Initially, for each trial, a demonstration is set up within a virtual environment on an object
scan by manually positioning a dexterous hand model on the object's point cloud using MeshLab.
After this setup, our feature network takes 20000 iterations for adaptation, roughly 300 seconds using
a single NVIDIA GeForce RTX 3090. Once trained, the network is applied unchanged to different
real-world scenes to optimize the hand pose for 300 iterations, roughly 20 seconds using a single
NVIDIA GeForce RTX 3090.

During testing, object placements are varied within the hand's reach, and our approach is tested
10 times to determine its success rate. Each trial begins with deriving an initial grasping pose by
our end-effector optimization process, succeeded by a predetermined lifting motion—either directly
upwards or a mix of upward and backward movements, depending on the object's physical properties.
A trial is deemed successful if the object is securely lifted from the table without being dropped.

Baselines We compare our approach against a naiveDFFbaseline, where DINO image features are
directly back-projected onto the point cloud following the method described in Peng et al. (2023),
with interpolation then applied to populate the 3D space. This comparison leverages the nascent �eld
of one-shot learning for dexterous manipulation, using identical end-effector optimization processes
between our method and the baseline for fair comparison. In scenarios with rigid objects, we also
benchmark against UniDexGrasp++ (Wan et al., 2023). Due to UniDexGrasp++'s vision model
instability with our real-world, noisy point clouds, we evaluate its state-based model in simulations,
conducting 100 trials per setup to gauge success rates.

4.1 RIGID OBJECTS

Our assessment of rigid object grasping is to validate the versatility of our method across different
poses, shapes, and object categories. The evaluation focuses on speci�c setups:

• Box: A demonstration with the Cheez-It box from the YCB dataset (Calli et al., 2015b; 2017;
2015a) (ID=3) is utilized for initial evaluation. The testing extends to this same box and another
cracker box, highlighting variations in geometry and appearance.

• Drill: The demonstration involves a functional grasp of the Drill from the YCB dataset (ID=35) by
its handle. The testing includes the same drill in various poses.

• Bowl: For this setup, three 3D-printed bowls are used. The demonstration shows a grasp by the rim
of Bowl1, with subsequent tests on all three bowls, each presented in different poses, including a
cat-shaped bowl with unique shape and complex geometry.

• Bowl Ñ Mug: Demonstrating the method's generalization ability, the grasp learned on Bowl1 is
transferred to three distinct 3D-printed Mugs. This setup tests the method's categorical generaliza-
tion from Bowls to Mugs, which have related functionalities but distinct geometries.
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(a)

(b) (c)
Figure 4:Qualitative results on rigid objects grasping.Each panel illustrates the initial grasping pose,
determined via our end-effector optimization, followed by a frame capturing the successful lift-off of the target
object. (a) Grasping Box1 and transferring the skill to Boxes in new poses, including a distinct box Box2. (b) A
functional grasp of a drill by its handle. (c) Transferring the learned grasp on Bowl1 to bowls with varied shapes
(top row) and cross-category generalization to Mugs (bottom row).

Table 1:Success rates on rigid object grasping.Given the instability of the
vision-based model of UniDexGrasp++ (Wan et al., 2023) with our noisy point
clouds, we evaluate its state-based model within simulation environments on
virtually replicated objects.� denotes experiments conducted in simulation.

Demo. Box1 Drill Bowl1
Target Box1 Box2 Drill Bowl1 Bowl2 CatBowl Mug FloatingMug BeerBarrel

UniDexGrasp++� 7.7% - 66.9% 37.7% 31.9% 26.3% 24.7% 25.5% 6.2%
DFF 90% 0% 100% 100% 0% 30% 0% 20% 10%
Ours 100% 100% 100% 100% 80% 60% 80% 40% 90%

Tab. 1 outlines the suc-
cess rates achieved by
our method versus the
baselines in rigid object
grasping tasks. Our ap-
proach consistently sur-
passes the baseline perfor-
mances across all con�g-
urations. While the base-
lines show promise in simpler scenarios—especially when the manipulation target closely matches
the demonstrated object—their performance signi�cantly drops as the source and target objects
become more disparate, notably in transitions like from Bowl1 to CatBowl or Bowl1 to Mugs.
Conversely, our method exhibits strong success rates even in these complex transitions.

Fig. 4 showcases our qualitative results. Speci�cally, the Boxes and Drill from the YCB dataset
are depicted in Figs. 4a and 4b, demonstrating our method's ability to generalize across rigid
transformations of object poses. The transfer from Box1 to Box2 is also illustrated in Fig. 4a,
showcasing our method's adaptability to variations in geometry and appearance. In Fig. 4c, we show
the learned grasping from a demonstration on Bowl1, extending its applicability to diverse bowls,
including the geometrically complex CatBowl (top row), as well as the cross-category generalization
from Bowls to Mugs (bottom row). Refer toSupplementary Videofor additional qualitative results.

4.2 DEFORMABLE OBJECTS

Our evaluation extends to deformable objects to showcase the method's adaptability across various
deformations, object types, and scene contexts. The setups include:

• SmallBear, BigBear, Monkey:This category involves three plush toys—two Bears of different
sizes, and a Monkey characterized by its �exibility and elongated limbs. Each toy is demonstrated
in a speci�c pose, with subsequent evaluations exploring diverse poses and levels of deformation.

• Monkey Ø SmallBear: Additionally, we explore the method's capability to transfer grasping
knowledge between the Monkey and the SmallBear. This task underscores the challenges of
adapting between different objects and their respective deformations.

• Monkey in Context: A complex scene setup features the Monkey amidst various background items,
with each trial randomizing object placements. This environment tests the method's performance in
scenarios where the Monkey may be partially obscured by surrounding objects. In comparison, the
grasp demonstration is performed with the Monkey isolated from these complicating factors.

Table 2:Success rates on deformable object grasping.

Demo. Monkey BigBear SmallBear
Target Monkey MonkeySceneSmallBear BigBear SmallBear Monkey

DFF 90% 40% 0% 20% 90% 0%
Ours 100% 100% 60% 80% 90% 50%

The success rates for the de-
formable objects are detailed in
Tab. 2. Our method markedly out-
performs the baseline, demon-
strating exceptional success rates,
especially in scenarios that re-
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(a)

(b) (c)
Figure 5:Qualitative results on deformable objects grasping.For each successful grasp, we show the initial
grasping pose and a frame demonstrating the successful lift of the object off the table. (a) Learning to grasp
SmallBear and transferring this skill to various poses and to the Monkey. (b) Learning to grasp BigBear by
the nose is challenging due to its small nose. (c) Learning to grasp the Monkey, showcasing adaptability to
signi�cant deformations and transfers to SmallBear. Additionally, a challenging scenario is presented where the
Monkey is surrounded by multiple objects, showing the capability to handle interactions and occlusions.

(a) head caressing (b) butt patting
Figure 6:Pet toy animals.(a) Head caressing is transferred from a single, lying Monkey to a scene with
the Monkey hugging the BigBear, exemplifying the method's adaptability to varying scene compositions and
interactions. (b) Butt patting is transferred from the Monkey to the SmallBear, whether the SmallBear is alone or
in different scene contexts, underlining the method's versatility across various scenarios and object interactions.

quire generalization. These �nd-
ings are consistent with the outcomes observed in the evaluations involving rigid objects.

Fig. 5 showcases our qualitative results in dealing with deformable objects. In Fig. 5a, we demonstrate
the grasp of a SmallBear toy by its body, illustrating our method's capacity for generalization across
different poses and to a Monkey toy, thereby underscoring the versatility of our approach. Fig. 5b
shows a unique instance of grasping BigBear by its nose, re�ecting our method's adaptability to the
physical characteristics of diverse objects. Fig. 5c focuses on grasping the Monkey toy, emphasizing
the method's �exibility with extensive deformations and its ability to generalize from the Monkey to
the SmallBear, across varying object forms and structures. Additionally, Fig. 5c presents a complex
test setup with the Monkey amidst a dynamic scene, requiring not just target object identi�cation
but also an intricate understanding of its pose, deformation, and relationships with surrounding
objects, even in cases of occlusion. These instances highlight our method's robustness and �exibility
in handling a range of challenging scenarios, showcasing its potential for real-world applications.
Further qualitative results and discussion can be found in theSupplementary Video.

Beyond grasping Our framework's capabilities extend beyond simple grasping to encompass a
variety of hand-object interactions. Fig. 6 depicts two distinct scenarios involving interactions with
toy animals, demonstrating our method's adaptability. In Fig. 6a, the interaction entails caressing the
head of a Monkey toy in various poses. The initial demonstration features the Monkey lying �at with
its arms outstretched, while in subsequent tests, it adapts to hugging a BigBear, seamlessly adjusting
to this new context. Fig. 6b focuses on patting the butts of the toys. This action, demonstrated on the
Monkey, is successfully generalized to the SmallBear in various settings, highlighting our method's
ability to adapt to different scenarios and object interactions.

4.3 ABLATION STUDIES

Ablations on feature re�nement Our ablation on the feature re�nement network, as discussed
in Sec. 3.1, is visualized in Fig. 7. This network plays a crucial role in enhancing the feature �eld's
consistency. The comparison highlights the energy �elds used for end-effector pose optimization,
showcasing the advantages of incorporating the re�nement network. With re�nement, we observe a
focused distribution of low-energy values at positions matching the hand demonstration, indicating
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