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ABSTRACT

Neural Architecture Search (NAS) aims to search for the best network in the pre-
defined search space. However, much work focuses on the search strategy but
little on the architecture selection process. Despite the fact that the weight-sharing
based NAS has promoted the search efficiency, we notice that the architecture
selection is quite unstable or circuitous. For instance, the differentiable NAS may
derive the suboptimal architecture due to the performance collapse caused by bi-
level optimization, or the One-shot NAS requires sampling and evaluating a large
number of candidate structures. Recently, the self-attention mechanism achieves
better performance in terms of the long-range modeling capabilities. Considering
that different operations are widely distributed in the search space, we suggest
leveraging the self-attention mechanism to extract the relationship among them
and to determine which operation is superior to others. Therefore, we integrate
Lite-Transformer into NAS for architecture selection. Specifically, we regard the
feature map of each candidate operation as distinct patches and feed them into
the Lite-Transformer module along with an additional Indicator Token (called IT).
The cross attention among various operations can be extracted by the self-attention
mechanism, and the importance of each candidate operation is then shown by
the softmax result between the query of indicator token (IT) and other values of
operational tokens. We experimentally demonstrate that our framework can select
the truly representative architecture in different search spaces and achieves 2.39%
test error on CIFAR-10 in DARTS search space, and 24.1% test error on ImageNet
in the ProxylessNAS (w/o SE module) search space, as well as the stable and
comparable performance in NAS-Bench-201 search space, S1-S4 search spaces
and NAS-Bench-1Shot1 search space.

1 INTRODUCTION

Neural Architecture Search (NAS) is emerging as a new paradigm for designing network structures.
It has been demonstrated to outperform manually designed networks in many tasks, including image
classification (Zoph & Le, 2016; Zoph et al., 2018; Guo et al., 2020), object detection (Chen et al.,
2019; Ghiasi et al., 2019), semantic segmentation (Chen et al., 2018; Liu et al., 2019) and so on. The
fundamental disadvantage of earlier NAS methods, which primarily relied on heuristic algorithms
like reinforcement learning (Baker et al., 2016; Bello et al., 2017; Zoph et al., 2018) or evolutionary
algorithms (Real et al., 2017; Liu et al., 2018a; Real et al., 2019), is the necessity to train each
architecture from scratch for validation, thereby impeding further advancement of NAS.

Fortunately, ENAS (Pham et al., 2018) proposes a weight-sharing mechanism, which greatly im-
proves search efficiency. More recently, the differentiable NAS methods (Liu et al., 2018b; Xie
et al., 2018) and the One-shot NAS methods (Guo et al., 2020; Chu et al., 2021b; You et al., 2020)
have been more popular. They both firstly train a super-network, and then derive the final architec-
ture based on different strategies. However, the differentiable approach selects the target network
with the largest architecture parameters, which cannot fully reflect the true operation strength (Wang
et al., 2021a; Xie et al., 2021b). Nevertheless, DARTS-PT requires fine-tuning after discretizing
each edge, resulting in additional selection time. The One-shot method selects the optimal one by
sampling and evaluating a large number of candidate structures, yielding the time-consuming issues
(Chen et al., 2021a). Whereas, BN-NAS is not suitable for search space without batch normaliza-
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tion layer. We are endeavoring to explore whether there is a more appropriate way for both popular
search spaces to robustly and quickly select the architecture, as has rarely been studied before.

The attention mechanism can be used to emphasize the important components of the input while ig-
noring other trivial ones. The Transformer architecture (Vaswani et al., 2017) has reignited a boom
in the field of Computer Vision (CV) (Touvron et al., 2021; Liu et al., 2021) since ViT (Dosovit-
skiy et al., 2021) achieves competitive performance compared to Convolutional Neural Networks
(CNNs). It simply slices the image into small patches and then model the cross-attention between
long sequences to locate key information, resulting in better performance. Meanwhile, Batchformer
(Hou et al., 2022) introduces a batch transformer module that is applied to the batch dimension of
each mini-batch of data to implicitly explore the sample relationships. Inspired by this, we can intu-
itively analogize the candidate operations in the NAS search space to patches, and then leverage the
self-attention mechanism to describe the interactions among different operations. As a result, the
optimal architecture can be selected according to the self-attention weights.

In summary, we suggest integrating Lite-Transformer into NAS for architecture selection. Specif-
ically, we insert the Lite-Transformer module on each edge and determine the optimal operation
associated with that edge in the cell-based search space. While in the chain-style search space,
where the network is defined by a sequence of layers containing various choice blocks, the Lite-
Transformer module is inserted on each layer to select the appropriate block. We adopt a more
broad perspective that treats candidate operations as patches. The patches are then linearly mapped
and further packed into three matrices, namely Q, K, and V. The softmax result between Q and K
is a square matrix termed the attention map, which can be regarded as the attention weight between
different candidate operations.

Furthermore, to address the issue of asymmetric attention matrix, i.e., the mutual attention value
between any two operations cannot determine which is more favorable. We introduce an additional
indicator token (called IT) to calculate the cross-attention between IT and the other operational
tokens, which is inspired by the truth claimed by EViT (Liang et al., 2022) that the class token can be
used to determine the importance of other tokens. In this way, the importance corresponding to each
operation can be represented by the row of the indicator token (IT) in the attention matrix. After the
super-network along with the Lite-Transformer module is trained to convergence, we simply need
to forward propagate once on the validation dataset in order to determine the optimal architecture
by computing the self-attention weights based on the indicator token (IT).

In general, our main contributions can be summarized as follows:

• We revisit the architecture selection process of neural architecture search (NAS) in a fresh
perspective and, to our knowledge, are the first to integrate Lite-Transformer into NAS
for architecture selection, utilizing the self-attention mechanism to explore the interaction
among different candidate operations by regarding each one as operational token.

• We introduce an additional indicator token (called IT) to compute the cross-attention be-
tween IT and the other operational tokens. In this case, the row of IT in self-attention
weights matrix can be used to establish the priority of each candidate operation.

• Experimental results show that IT-NAS achieves better performance in DARTS and Prox-
ylessNAS search space, as well as stable and comparable performance in NAS-Benches,
including S1-S4, NAS-Bench-201, and NAS-Bench-1Shot1.

• More comprehensive experiments demonstrate the robustness and effectiveness of IT-NAS
in selecting architectures. We also theoretically and empirically analyze why the self-
attention mechanism can effectively select optimal architectures, proving the priority of
our proposed method.

2 RELATED WORKS

Neural Architecture Search. Neural Architecture Search (NAS) aims to select the optimal architec-
ture in the pre-defined search space. Earlier NAS approaches (Baker et al., 2016; Zoph et al., 2018;
Real et al., 2017; 2019) incurred substantial search overhead due to the requirement to train each
candidate architecture from scratch. ENAS (Pham et al., 2018) firstly proposed the weight-sharing
mechanism such that weights can be shared among different sub-structures in the super-network,
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greatly reducing the validation time. Based on the mechanism, differentiable NAS and One-shot
NAS became the two most mainstream paradigms. Thereafter, a series of subsequent works focused
on the design of search strategies and the improvement of super-network training.

The differentiable NAS (Liu et al., 2018b) introduced architecture parameters which are mainly
trained alternately with the network weights. However, the search process is very unstable and
suffers from the performance collapse issue. To improve the robustness of the search process, Ro-
bustDARTS (Zela et al., 2020) and SDARTS (Chen & Hsieh, 2020) analyzed and fixed optimization
errors from a mathematical point of view. To reduce the discretization gap of architecture selection,
SNAS (Xie et al., 2018), GDAS (Dong & Yang, 2019), DATA (Chang et al., 2019) leveraged repa-
rameterization techniques, and FairDARTS (Chu et al., 2020) introduced auxiliary loss, all with the
aim of optimizing architecture parameters to approximate discrete forms. These prior methods select
target network based on architecture parameters, but recent work Wang et al. (2021a) pointed out
that the operation associated with the largest magnitude of architecture parameters does not neces-
sarily result in the highest validation accuracy after discretization. It proposed a perturbation-based
architecture selection strategy, which, however, requires fine-tuning after discretizing each edge,
leading to substantial computation costs.

The One-shot NAS methods (Guo et al., 2020) focused on the super-network training. SPOS (Guo
et al., 2020) proposed to sample and train single-path sub-network uniformly; FairNAS (Chu et al.,
2021b) guaranteed all paths are sampled each time for fairness; RLNAS (Zhang et al., 2021) focused
on training with random labels. These methods then select the optimal substructure by sampling
many sub-networks based on the evolutionary algorithm to evaluate their performance, which is very
time-consuming. BN-NAS (Chen et al., 2021a) proposed to train only BN layers and then select
the architecture according to the parameters of BN layer. But it is obvious that this method may not
be effective for some networks lacking BN layer in the search space, which limits its application.

Vision Transformer. Transformer (Vaswani et al., 2017) has drawn much attention to computer
vision recently due to its strong capability of modeling long-range relations. ViT (Dosovitskiy
et al., 2021) firstly introduced the pure Transformer Encoder without any convolutional layers and
achieved comparable performance to CNNs. From then on, many works attempted to modify the
ViT architecture to image classification (Yuan et al., 2021; Zhou et al., 2021), object detection
(Carion et al., 2020; Zhu et al., 2020; Liu et al., 2021), and semantic segmentation (Wang et al.,
2021b; Xie et al., 2021a; Chu et al., 2021a).

To further improve the performance of Transformer-like network, some works combine with NAS
to automatically discover better architecture. For example, AutoFormer (Chen et al., 2021c) firstly
aimed to search ViT. GLiT (Chen et al., 2021b) introduced locality modules into the search space
and searched ViT from both global and local levels. ViT-ResNAS (Liao et al., 2021) proposed
to search for multi-stage ViT architecture. Besides, other approaches make ViT more efficient by
reducing the number of tokens. DynamicViT (Rao et al., 2021) introduced an additional learnable
neural network to reduce the tokens of a fully trained ViT, TokenLearner (Ryoo et al., 2021) aggre-
gated the entire feature map weighted by a dynamic attention map, and EViT (Liang et al., 2022)
focused on the progressive selection of informative tokens during training.

Unlike searching the ViT network, we leverage Transformer to boost NAS. Inspired by the fact that
the number of tokens can be reduced with little impact on performance, we analogize the candidate
operations to tokens, and then use self-attention mechanism to select the truly important operations.

3 METHODOLOGY

3.1 NAS OVERVIEW

Differentiable NAS. In the traditional cell-based search space, each cell is defined as a directed
acyclic graph (DAG) with N nodes, and each edge (i, j) between every node is associated with
mixed operation ō(i,j) that is parameterized as architecture parameters α(i,j) by using softmax re-
laxation. The differentiable architecture search can be formulated as a bi-level optimization problem:

min
α

Lval(w
∗(α), α)

s.t. w∗(α) = argminwLtrain(w,α)
(1)
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Figure 1: The main framework of IT-NAS. Specifically, the candidate operations on each searchable
layer are regarded as operational tokens, added position encoding, and fed into the Lite-Transformer
module. The Indicator Token (IT) is then introduced to extract the relationship between different
operations and assign attention weights to them for selecting the optimal architecture.

The optimal cell architecture is selected according to the architecture parameters α by discretizing
each edge. In this way, the differentiable NAS methods argue that the optimized architecture param-
eters can represent the true importance of the candidate operation, which is unfortunately not the
case (Wang et al., 2021a; Xie et al., 2021b).

One-shot NAS. In the chain-style search space, One-shot NAS methods mainly focus on super-
network training, which is expressed as:

w∗(a) = argminwEa∼ALtrain(w, a) (2)

Compared to Eq.(1), the continuous architecture parameters are discarded, and only network weights
are optimized. So the architecture selection process needs to sample a large number of sub-networks
by evolution algorithm and evaluate each of them by sharing the super-network weights, resulting
in the time-consuming issues (Guo et al., 2020; Chen et al., 2021a).

No matter in the cell-based search space or the chain-style search space, any two network layers are
composed of all candidate operations, with the goal of selecting out the optimal one from them. We
take a new perspective for architecture selection, that is, neither using architecture parameters nor
sampling sub-networks, but leveraging the self-attention mechanism to evaluate which operation is
superior, and this has never been studied in NAS before.

3.2 SELF-ATTENTION MECHANISM

To model the relationship between individual different candidate operations, we first regard them as
patches and then package all candidate operations of the layer into a sequence and feed them to the
Lite-Transformer Encoder.

Let’s denote the feature maps sequence of n candidate operations on the searchable layer L as
Oi

L ∈ Rb×c×h×w(i = 1, 2, ..., n). We first flatten each feature to Oi
L ∈ Rb×1×(c∗h∗w) so that each

one can be analogized as a patch similar to ViT (Dosovitskiy et al., 2021). And then we concatenate
n feature maps in the second dimension as OL ∈ Rb×n×(c∗h∗w). For shorthand, let d = c ∗ h ∗ w
denotes the embedding dimension.

Self-Attention. A transformation layer projects each operational sequence X ∈ Rn×d to three
different sequential vectors (namely, query Q, key K, and value V ), where n and d are the length
and dimension of the input sequences, respectively. The two sequences of query and key input
scheme are referred to as cross-attention mechanism. Specifically, it explicitly aggregates the query
with the corresponding key, assigns them to the value, and updates the output vector:

SelfAttention(Q,K, V ) = Softmax(
QKT√

dq
)V (3)

where dq is the length of query vector. The result of Softmax(·) is the self-attention weight square
matrix, where each entry represents the cross-attention between any two query and key. However,
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this matrix is not symmetric as shown in Figure 1. That is, the attention weight between query Oi

and key Oj is not equal to the attention weight between query Oj and key Oi, so it is not possible
to directly measure whether Oi or Oj is more important.

Indicator Token. We introduce an additional indicator token (called IT), which aims to explicitly
indicate the importance of each candidate operation. The IT is concatenated in series in front of the
operational tokens before feeding them into the Lite-Transformer Encoder. The interaction between
IT and other operational tokens is computed by the self-attention mentioned before:

Zit = Softmax(
qitK

T√
dq

)V = a · V (4)

where qit is the query of indicator token, K and V are operational key matrix and value matrix.
So, Zit denotes the linear combination of the value vectors V = [v1, v2, ..., vn] with the attention
weights vector a = [a1, a2, ..., an]. Because vi is the linear transformation from i-th operation, the
attention weight ai therefore can be seen how importance of this operation over other operations.

3.3 ARCHITECTURE SELECTION

Supernet Training. The Lite-Transformer Encoder is simplified to repeat only once and consists of
a single-head Self-Attention (SA) and a Feed-Forward-Network (FFN). Residual connections along-
side layer normalization (LN) (Ba et al., 2016) are employed after each layer. We integrate Lite-
Transformer T into super-network N , and then train them following the settings same as DARTS
(Liu et al., 2018b) for differentiable NAS or SPOS (Guo et al., 2020) for One-shot NAS. Therefore,
Eq.(1) and Eq.(2) can be unified as follows:

W∗
N = argmin

WN
Ltrain(N (WN ), T (WT ;WN )) (5)

where WN denotes the super-network weights and WT is the Transformer wights which is optimized
together with the super-network by minimizing losses on the training dataset. As a result, we unify
the differentiable NAS and One-shot NAS into a mono-level optimization. The indicator token (IT)
can access the knowledge about the effect of different operations to the network during this period
by exploring the interaction among candidate operations.

Architecture Selection. The architecture selection process is performed after the training is com-
pleted. We propagate all images of the validation datasets to obtain the self-attention weights.
Specifically, the first row of the result of the Softmax(·) matrix, i.e., the cross-attention between the
query of the indicator token (IT) and the keys of other operational tokens, denotes the importance of
each candidate operation. In this case, we can select the optimal operation on each searchable layer
according to this importance indicator:

A∗ = argmax(a[1 :])

= argmax([a1, a2, ..., an])
(6)

Because a0 indicates the self-attention of the query of indicator token (IT) and the value of itself,
we only need to index the last n cross-attention weights a[a1, a2, ..., an], where ai represent the
importance of the i-th operations. Finally, the operation associated with the largest attention weight
for each layer is selected to construct the target network.

3.4 IN-DEPTH ANALYSIS

Fourier Analysis. The self-attention layer actually acts like low-pass filter with the aim of reducing
high-frequency signals. Given the indicator token (IT) query vector qit, a sequence of operational
token key vectors K = {k1, k2, ..., kn}, and the corresponding value vectors V = {v1, v2, ..., vn}.
The indicator token (IT) output of self-attention is:

o(qit) =
1

h(qit)

n∑
j=1

exp(qit · kj)vj (7)
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where h(qit) =
∑n

j=1 exp(qit · kj). Further, we can rewrite Eq.(7) as follows:

o(qit) =
1

h′(qit)

n∑
j=1

exp(−1

2
∥qit − kj∥2)vj

=
1

h′(qit)

∫
exp(−1

2
∥qit − k∥2)(

n∑
j=1

δ(k − kj)vj)dk

=
1

h′(qit)
G(qit; 1) ∗ S(qit;K,V )

(8)

where h′(qit) =
∑n

j=1 exp(−
1
2 ||qit−kj ||2) is the normalized factor, ∗ denotes the high-dimensional

convolution, G(·) is the Gaussian kernel, and S(·) is high-dimensional sparse signal. Because Gaus-
sian filter is low-pass, the indicator token output o(qit) contains redundant information based on
Shannon sampling theorem (Shannon, 1949). In other words, not all operational tokens are equally
important, but the one with the largest attention weight contributes most to network performance.

Table 1: Comparison of the computation com-
plexity and GPU-Memory overhead with the
baseline. The hyperparameters are all the same
for fair comparison.

Complexity GPU-Memory
IT-NAS ViT IT-NAS DARTS IT-NAS SPOS
O(d) O(n2d) 9.0GB 8.5GB 9.4GB 7.8GB

Complexity Analysis. Compared with the com-
plexity of O(n2d) in the classical ViT, our method
can be approximated to O(d) under the condition
of n2 ≪ d. Because n generally does not exceed
ten, and d can be hundreds or thousands in NAS.
Therefore, the search efficiency is not significantly
impacted by the calculation of attention. As shown
in Table 1, GPU-memory overhead is not much in-
creased than that of the baseline method.

4 EXPERIMENTS

We firstly search on two popular search spaces, including DARTS search space on CIFAR-10 dataset
(Krizhevsky et al., 2009), and ProxylessNAS search space on ImageNet dataset (Krizhevsky et al.,
2017). Moreover, we also evaluate the robustness and effectiveness of IT-NAS on three benchmark
of NAS-Bench-201, S1-S4 and NAS-Bench-1Shot1. Details are in Appendix A.1, A.2, A.5.

4.1 RESULTS IN DARTS SEARCH SPACE

Unlike DARTS (Liu et al., 2018b) that performs bi-level optimization by alternately updating ar-
chitecture parameters and network weights, IT-NAS only need to train the super-network along with
the Lite-Transformer module on half of the CIFAR-10 training dataset. The search process merely
elapses 6 hours in total on Tesla V100 GPU. After the training convergence, we propagate the other
half of the CIFAR-10 training dataset as validation dataset to compute the self-attention weights.
Then we derive the optimal operation on each edge of the normal cell and reduction cell according
to Eq.(6). To evaluate the performance, the target network consisting of 20 cells with initial channel
size of 36 is trained on the whole training dataset from scratch. The details of super-network training
and target network retraining settings are in Appendix A.3.

As shown in Table 2, we can see that our IT-NAS achieves state-of-the-art performance compared
with other methods in the DARTS search space. We report the average results of 3 independent
runs with different random seeds to test the effectiveness and stability of our method. Our approach
achieves the average test error of 2.41% with the standard deviation of 0.02 on CIFAT-10 dataset,
demonstrating IT-NAS is very stable. Moreover, the best result reaches the error rate of 2.39%,
outperforming all the other methods. We also transfer the cells searched on CIFAR-10 to other
datasets for evaluation. As a result, IT-NAS achieves the accuracy of 83.30%±0.06 on CIFAR-100
by validating the three searched cells in Figure 15. Moreover, IT-NAS achieves the Top-1 Accuracy
of 75.5% on ImageNet by validating the searched Cell 2 in Figure 15.

4.2 RESULTS IN PROXYLESSNAS SEARCH SPACE

We directly search on ImageNet dataset to evaluate our method in the ProxylessNAS (w/o SE mod-
ule) search space. Following PC-DARTS (Xu et al., 2019), we randomly sample two subsets from
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Table 2: Search results on DARTS search space and comparison with other state-of-the-art methods.
We report the average results for three independent runs with different initial random seeds. ‘C10’,
‘C100’, ‘IMN’ denotes CIFAR-10, CIFAR-100 and ImageNet, respectively.

Methods Test Error(%) Params(M) Search Cost Search

C10 C100 IMN C10 C100 IMN (GPU-days) Algorithm

NASNet-A (Zoph et al., 2018) 2.65 N/A 26.0 3.3 N/A 5.3 1800 RL
AmoebaNet-A (Real et al., 2019) 3.34±0.06 N/A 25.5 3.2 N/A 5.1 3150 EA
AmoebaNet-B (Real et al., 2019) 2.55±0.05 N/A 26.0 2.8 N/A 5.3 3150 EA
PNAS (Liu et al., 2018a) 3.41±0.09 N/A 25.8 3.2 N/A 5.1 225 SMBO
ENAS (Pham et al., 2018) 2.89 N/A N/A 4.6 N/A N/A 0.5 RL
DARTS (1st order) (Liu et al., 2018b) 3.00±0.14 17.76 N/A 3.3 3.3 N/A 0.4 Gradient
DARTS (2nd order) (Liu et al., 2018b) 2.76±0.09 17.54 26.7 3.3 3.3 4.7 1.0 Gradient
SNAS (Xie et al., 2018) 2.85±0.02 N/A 27.3 2.8 N/A 4.3 1.5 Gradient
GDAS (Dong & Yang, 2019) 2.93 18.38 26.0 3.4 3.4 5.3 0.21 Gradient
BayesNAS (Zhou et al., 2019) 2.81±0.04 N/A 26.5 3.4 N/A 3.9 0.2 Gradient
Robust-DARTS (Zela et al., 2020) 2.95±0.21 18.01±0.26 N/A N/A N/A N/A 1.6 Gradient
PC-DARTS (Xu et al., 2019) 2.57±0.07 N/A 25.1 3.6 N/A 5.3 0.1 Gradient
DATA (Chang et al., 2019) 2.59 N/A 24.9 3.4 N/A 5.0 1 Gradient
FairDARTS (Chu et al., 2020) 2.54±0.05 N/A 24.9 3.32±0.46 N/A 5.0 0.4 Gradient
SDARTS-ADV (Chen & Hsieh, 2020) 2.61±0.02 N/A 25.6 3.3 N/A 6.1 1.3 Gradient
DARTS+PT (Wang et al., 2021a) 2.61±0.08 N/A 25.5 3.0 N/A 4.7 0.8 Gradient
BaLeNAS (Zhang et al., 2022) 2.50±0.07 16.84 25.0 3.82 N/A N/A 0.6 Gradient
IT-NAS (avg.) 2.41±0.02 16.70±0.06 N/A 3.67±0.40 3.93±0.27 N/A 0.25 Gradient
IT-NAS (best) 2.39 16.63 24.5 3.54 3.59 5.5 0.25 Gradient

Table 3: Search results on ProxylessNAS (w/o SE module) search space and comparison with other
state-of-the-art methods. ‡ denotes the search cost includes the additional subnet searching with the
evolutionary algorithm.

Methods Test Err. (%) Params FLOPs Search Cost Search

Top-1 Top-5 (M) (M) (GPU-days) Algorithm
MnasNet-92 (Tan et al., 2019) 25.2 8.0 4.4 388 2000 RL
NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 564 1800 RL
AmoebaNet-C (Real et al., 2019). 24.3 7.6 6.4 570 3150 EA
PNAS (Liu et al., 2018a) 25.8 8.1 5.1 588 225 SMBO
FBNet-C (Wu et al., 2019) 25.1 7.9 4.4 375 9 Gradient
ProxylessNAS(GPU) (Cai et al., 2018) 24.9 7.5 7.1 465 8.3 Gradient
SPOS (Guo et al., 2020) 25.2 N/A 5.4 472 11‡ Evolution
FairNAS-A (Chu et al., 2021b) 24.7 7.8 4.6 388 16‡ Evolution
RLNAS (Zhang et al., 2021) 24.4 7.4 5.3 473 N/A Evolution
IT-NAS 24.1 7.3 5.2 591 4 Gradient

1.3M training dataset of ImageNet, with 10% and 2.5% images as training and validation dataset,
respectively. In particular, we train the super-network by uniformly sampling single paths follow-
ing SPOS (Guo et al., 2020) on 8 Tesla V100 GPUs with a total batch size of 512 except for 240
epochs. The training process elapses 12 hours totally. After that, the optimal sub-network is de-
rived according to the self-attention weights on each searchable layer by propagating the validation
dataset once.

We restrict the mobile setting to under 600M FLOPs for fair comparison with other methods. The
target network is retrained from scratch on the whole ImageNet training dataset for 240 epochs with
the batch size of 1024 on 8 Tesla V100 GPUs. From Table 3, we can see that IT-NAS achieves
the best performance on ImageNet. Besides, the search cost is also the lowest compared with other
evolutionary algorithm-based methods, indicating that our approach is effective and efficient. The
retrained architecture with SE module in ProxylessNAS space is summarized in Appendix A.6

4.3 RESULTS IN BENCHMARK SEARCH SPACE

S1-S4. We also conduct experiments on the reduced search spaces S1-S4 introduced by Robust-
DARTS (Zela et al., 2020). As shown in Table 4, compared with other methods to regularize
architecture parameters, IT-NAS is able to consistently select the optimal architectures with the im-
pressive performance on all three datasets of different search spaces. This once again confirms the
effectiveness of self-attention weights in indicating the importance of candidate operations.
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Table 4: Comparison in the reduced search spaces S1-S4 and 3 datasets. The results follow the
setting of RobustDARTS (Zela et al., 2020) where CIFAR-10 models have 20 layers and 36 initial
channels except that S2 and S4 have 16 initial channels, CIFAR-100 and SVHN models have 8
layers and 16 initial channels. The best is underlined and in bold face, the second best is in bold.

Benchmark DARTS R-DARTS DARTS SDARTS-RS DARTS+PT IT-NAS
DP L2 ES ADA

C10

S1 3.84 3.11 2.78 3.01 3.10 2.78 3.50 2.57
S2 4.85 3.48 3.31 3.26 3.35 3.33 N/A 3.11
S3 3.34 2.93 2.51 2.74 2.59 2.53 2.49 2.43
S4 7.20 3.58 3.56 3.71 4.84 4.84 N/A 3.36

C100

S1 29.46 25.93 24.25 28.37 24.03 23.51 24.48 23.31
S2 26.05 22.30 22.24 23.25 23.52 22.28 23.16 20.58
S3 28.90 22.36 23.99 23.73 23.37 21.09 22.03 20.76
S4 22.85 22.18 21.94 21.26 23.20 21.46 20.80 20.69

SVHN

S1 4.58 2.55 4.79 2.72 2.53 2.35 2.62 2.44
S2 3.53 2.52 2.51 2.60 2.54 2.39 2.53 2.36
S3 3.41 2.49 2.48 2.50 2.50 2.36 2.42 2.38
S4 3.05 2.61 2.50 2.51 2.46 2.46 2.42 2.34
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Figure 2: Trajectory of test accuracy in NAS-Bench-201 on (a) cifar10, (b) cifar100, (c) Imagenet-
16-120, respectively. The shaded area represents the standard deviation of six trials of experiments.

Robustness. To evaluate the robustness of IT-NAS, we track the performance of IT-NAS and
DARTS over the search epochs on NAS-Bench-201. As plotted in Figure 2, IT-NAS achieves sta-
ble and state-of-the-art results on three datasets compared to DARTS. Whereas, the performance of
DARTS is always inferior to that of our method and the standard deviation fluctuates widely as the
search epochs through different trials. Because the bi-level optimization of DARTS suffers from
performance collapse issues (Zela et al., 2020; Chen & Hsieh, 2020), the architecture selection pro-
cess is easily disturbed by the magnitude of architecture parameters. More seriously, DARTS will
downgrade the performance due to the domination of skip-connect operation at the end of the search
phase (Chu et al., 2020). On the contrary, the architecture selection of IT-NAS dominated by the
self-attention mechanism is more stable than architecture parameters. The results are in Table 5.

Effectiveness. The effectiveness of the search results can be expressed by the relationship between
the architecture selection indicator and its derived architecture performance. We conduct the ex-
periments in NAS-Bench-201 search space. We rank the selection indicator corresponding to all
candidate operations on each edge, and also rank the discretization accuracy obtained by retaining
the corresponding operation on this edge. The results are plotted in Figure 3, the higher the indica-
tor rank, the more important its corresponding operation is, and so is the accuracy ranking. We also
regress the relationship between the two rankings, from which we can see that the kendall-tau of
IT-NAS is better than DARTS on all edges, indicating that the architecture selection criteria based
on self-attention mechanism is more accurate and effective than architecture parameters.

4.4 VISUALIZATION ANALYSIS

Here we intuitively demonstrate whether the optimal operation selected by the self-attention is truly
beneficial to the network. Let’s take the super-network with six different operations on the last layer
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Figure 3: The relationship between indicator ranking and accuracy ranking of IT-NAS and DARTS
in NAS-Bench-201 on CIFAR-10 dataset.

MBE3_K3 MBE6_K3 MBE3_K5 MBE6_K5 MBE3_K7 MBE6_K7Input Image ‡

Figure 4: Visualization of the Grad-CAM (Selvaraju et al., 2017) of different candidate operations
on ImageNet images. ‡ indicates the operation selected by IT-NAS in this layer.

of the ProxylessNAS search space as an example. We map the gradient information corresponding
to each operation to the input image by using Grad-CAM technique (Selvaraju et al., 2017). The
area with higher class activation mapping represents greater responses. As shown in Figure 4, the
operation MBE3 K3 locates the object most accurately, and the operation is also selected by IT-NAS
on the last layer as shown in Figure 16. This consistency phenomenon demonstrates that the self-
attention mechanism can select the most suitable operation for object perception, that in turn proves
the effectiveness of our method from the perspective of gradient information.

5 CONCLUSION

In this paper, we propose for the first time to integrate Lite-Transformer into NAS for architecture
selection. The candidate operations are regarded as tokens, and then introduce indicator token (IT)
to explore the relationship between other operations and assign attention weights to which for se-
lecting the optimal one. Comprehensive experiments demonstrate that IT-NAS is more effective
compared with other architecture parameter-based or evolutionary-based architecture selection pro-
cesses, and we also achieve stable results in different benchmark search spaces. This work may
inspire researchers to explore more appropriate architecture selection criterion, such as borrowing
from pruning or other related research, to promote the progress of the NAS field.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V Le. Neural optimizer search with rein-
forcement learning. In ICML, 2017.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. In ICLR, 2018.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020.

Jianlong Chang, Xinbang Zhang, Yiwen Guo, Gaofeng Meng, Shiming Xiang, and Chunhong Pan.
Data: Differentiable architecture approximation. In NeurIPS, 2019.

Boyu Chen, Peixia Li, Baopu Li, Chen Lin, Chuming Li, Ming Sun, Junjie Yan, and Wanli Ouyang.
Bn-nas: Neural architecture search with batch normalization. In ICCV, 2021a.

Boyu Chen, Peixia Li, Chuming Li, Baopu Li, Lei Bai, Chen Lin, Ming Sun, Junjie Yan, and Wanli
Ouyang. Glit: Neural architecture search for global and local image transformer. In ICCV, 2021b.

Liang-Chieh Chen, Maxwell D Collins, Yukun Zhu, George Papandreou, Barret Zoph, Florian
Schroff, Hartwig Adam, and Jonathon Shlens. Searching for efficient multi-scale architectures
for dense image prediction. In NeurIPS, 2018.

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching transformers
for visual recognition. In ICCV, 2021c.

Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via perturbation-
based regularization. In ICML, 2020.

Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng, Xinyu Xiao, and Jian Sun. Detnas:
Backbone search for object detection. In NeurIPS, 2019.

Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. Fair darts: Eliminating unfair advantages
in differentiable architecture search. In ECCV, 2020.

Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, and
Chunhua Shen. Twins: Revisiting the design of spatial attention in vision transformers. In
NeurIPS, 2021a.

Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas: Rethinking evaluation fairness of weight
sharing neural architecture search. In ICCV, 2021b.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In CVPR,
2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable feature pyramid archi-
tecture for object detection. In CVPR, 2019.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In ECCV, 2020.

Zhi Hou, Baosheng Yu, and Dacheng Tao. Batchformer: Learning to explore sample relationships
for robust representation learning. In CVPR, 2022.

10



Under review as a conference paper at ICLR 2023

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In ICCV,
2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang, Xiaodan Liang, Liang Lin, and Xiaojun
Chang. Block-wisely supervised neural architecture search with knowledge distillation. In CVPR,
2020.

Changlin Li, Tao Tang, Guangrun Wang, Jiefeng Peng, Bing Wang, Xiaodan Liang, and Xiaojun
Chang. Bossnas: Exploring hybrid cnn-transformers with block-wisely self-supervised neural
architecture search. In ICCV, 2021.

Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie. Not all patches
are what you need: Expediting vision transformers via token reorganizations. In ICLR, 2022.

Yi-Lun Liao, Sertac Karaman, and Vivienne Sze. Searching for efficient multi-stage vision trans-
formers. In NeurIPS, 2021.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In ECCV,
2018a.

Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L Yuille, and Li Fei-
Fei. Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation. In
CVPR, 2019.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
ICLR, 2018b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In ICML, 2018.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. NeurIPS, 2021.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In ICML, 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In AAAI, 2019.

Michael Ryoo, AJ Piergiovanni, Anurag Arnab, Mostafa Dehghani, and Anelia Angelova. Token-
learner: Adaptive space-time tokenization for videos. NeurIPS, 2021.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In ICCV, 2017.

Claude E Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21,
1949.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In ICML, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In CVPR, 2019.

11



Under review as a conference paper at ICLR 2023

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
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A APPENDIX

A.1 DATASETS

We conduct the experiments on different image classification datasets for various search spaces.

CIFAR-10. The dataset contains 50K training images and 10K testing images with a fixed resolution
of 32x32. The training dataset is divided into two parts, one half is used for training network
weights and Lite-Transformer modules, and the other half is used as the validation dataset to forward
propagation once to obtain the self-attention weights of each candidate operation for selecting the
final network architecture.

CIFAR-100. The dataset has the same number of images as CIFAR-10 but is more categorized into
100 fine-grained classes. There are 500 training images and 100 testing images per class.

ImageNet. The dataset has 1.28M training images and 50K validation images with 1000 object
categories. We sample 10% of the training datasets to train the super-network weights as well as the
Lite-Transformer module weights, and another 2.5% training datasets to select the final architecture
based on the self-attention weights.

ImageNet-16-120. The dataset down-samples the original ILSVRC2012 ImageNet to 16x16 reso-
lution and only selects the first 120 categories.

SVHN. The dataset is a digit classification benchmark dataset that contains around 600,000 32×32
RGB images of printed digits (from 0 to 9) cropped from pictures of house number plates. SVHN
has three sets: 73257 digits for training, 26032 digits for testing and an extra set with 531,131 images
that are less difficult and can be used for helping with the training process.

A.2 SEARCH SPACES

We experiment on four popular search spaces, including DARTS search space, ProxylessNAS search
space, NAS-Bench-201 search space, and S1-S4.

DARTS Search Space. The cell-based search space aims to search for the normal cell and reduction
cell. Each cell is defined as a directed acyclic graph (DAG) consisting of an ordered sequence of N
nodes. The edge between two nodes is mixed up by the searchable candidate operations, including
{sep-conv-3×3, sep-conv-5×5, dil-conv-3×3, dil-conv-5×5, avg-pool-3×3, max-pool-3×3, identity
and none}.

ProxylessNAS Search Space. The chain-style search space defines the network macro architecture
and directly searches for appropriate operations at each layer. There are a total of 21 searchable
layers, and each layer includes 6 candidate bottleneck blocks with different kernel size {3, 5, 7}
and expansion ratio {3, 6}. Besides, the network depth can also be scaled depending on whether a
skip-connect operation is selected for each layer.

NAS-Bench-201 Search Space. It is also the cell-based search space, but it only needs to search
for the normal cell and maintain the reduction cell as a residual block with a stride of two. There
are 4 nodes in the normal cell, resulting in 6 searchable edges, each of which contains 5 candidate
operations, including {nor-conv-1×1, nor-conv-3×3, avg-pool-3×3, identity and none}.

S1-S4. The search space is the reduced original DARTS search space. Specifically, S1 is a pre-
optimized space with two different candidate operations on each edge. S2 has the candidate op-
erations of {sep-conv-3×3, identity} per edge. S3 has the candidate operations of {sep-conv-3×3,
identity, none} per edge. S4 has the candidate operations of {sep-conv-3×3, noise} per edge.

NAS-Bench-1Shot1. The Benchmark splits NAS-Bench-101 into search space 1, search space 2
and search space 3. The three search spaces contain 6240, 29160, 363648 architectures respectively.
Each architecture is consisted of three stacked blocks with max-pooling in between. Each block
contains three searchable cells, and each of cell includes nine nodes.
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Table 5: Search results on NAS-bench-201. We report the average performance for six independent
runs of searching. “Optimal” indicates the highest accuracy for each dataset on NAS-Bench-201.

Methods CIFAR-10 CIFAR-100 ImageNet-16-120
validation test validation test validation test

Optimal 91.61 94.37 73.49 73.51 46.77 47.31
RSPS 80.42±3.58 84.07±3.61 52.12±5.55 52.31±5.77 27.22±3.24 26.28±3.09
DARTS 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
GDAS 89.89±0.08 93.61±0.09 71.34±0.04 70.70±0.30 41.59±1.33 41.71±0.98
SETN 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21
ENAS 37.51±3.19 53.89±0.58 13.37±2.35 13.96±2.33 15.06±1.95 14.84±2.10
SNAS 90.10±1.04 92.77±0.83 69.69±2.39 69.34±1.98 42.84±1.79 43.16±2.64
PC-DARTS 89.96±0.15 93.41±0.30 67.12±0.39 67.48±0.89 40.83±0.08 41.31±0.22
DrNAS 91.55±0.00 94.36±0.00 73.49±0.00 73.51±0.00 46.37±0.00 46.34±0.00
IT-NAS 90.15±0.42 93.65±0.04 69.96±1.00 70.31±0.66 43.04±0.58 43.88±0.98

A.3 IMPLEMENTATION DETAILS

To train the super-network together with Lite-Transformer module on CIFAR-10 in DARTS search
space, we use the SGD optimizer with initial learning rate 0.025, momentum 0.9 and weight decay
3 × 10−4. The super-network is trained for 50 epochs with the batch size of 64. After deriving the
final architecture, the target network consisted of 20 cells with initial channel size of 36 is trained
on the whole training dataset from scratch. Specifically, we employ the SGD optimizer with initial
learning rate 0.025, momentum 0.9 and weight decay 3 × 10−4. The target network is trained for
600 epochs with the batch size of 96.

To train the super-network together with Lite-Transformer module on ImageNet in ProxylessNAS
search space, we uniform sample single path from the super-network per step. Specifically, we use 8
Tesla V100 GPUs and train it for 240 epochs with a total batch size of 512. The SGD optimizer with
initial learning rate 0.25, momentum 0.9 and weight decay 4×10−5, and the minimum learning rate
is 5 × 10−4. The derived final network is retrained from scratch on the whole ImageNet training
dataset for 240 epochs with the batch size of 1024 on 8 Tesla V100 GPUs. The SGD optimizer with
initial learning rate 0.5, momentum 0.9 and weight decay 4× 10−5.

A.4 RESULTS IN NAS-BENCH-201

NAS-Bench-201 is a benchmark for almost up-to-date NAS algorithms, and the diagnostic infor-
mation about accuracy, loss, and parameters is accessible on three datasets including CIFAR-10,
CIFAR-100, and ImageNet-16-120, respectively. We experiment with the search process on CIFAR-
10 and then index the accuracy on three different datasets. We keep the hyper-parameters the same
as DARTS and repeat the experiments six times with different random seeds. The results in Table
5 show that DrNAS has indeed achieved state-of-the-art results that are almost close to the global
optimum. Our approach achieves comparable performance with the second best on almost datasets
except obtaining the third performance on CIFAR-100.

A.5 RESULTS IN NAS-BENCH-1SHOT1

We implement IT-NAS separately in three search spaces of NAS-Bench-1Shot1. The hyper-
parameters are kept the same as DARTS. All methods, including DARTS, GDAS, PC-DARTS,
ENAS, as well as IT-NAS are independently searched three times with different seeds for fair com-
parison. As shown in Figure 5, IT-NAS achieves almost the lowest test regret in different spaces
with a smaller variance after convergence, indicating the effectiveness and robustness of IT-NAS.
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Figure 5: Comparison of IT-NAS with other One-Shot NAS methods on three different search spaces
in NAS-Bench-1shot1. The solid lines show the anytime test regret (mean ± std), while the dashed
blurred lines represent validation error (Best viewed in color).

Table 6: Comparison of the search results on ProxylessNAS (with SE module) search space on
ImageNet.

Methods Top-1(%) Top-5(%)
MobileNetV3 (Howard et al., 2019) 75.2 N/A
MnasNet-A3 (Tan et al., 2019) 76.7 93.3
EfficientNet-B0 (Tan & Le, 2019) 76.3 93.2
DNA-b (Li et al., 2020) 77.5 93.3
BossNet-M2 (Li et al., 2021) 77.4 93.6
IT-NAS 78.2 94.0

A.6 RESULTS IN PROXYLESSNAS (WITH SE MODULE) SEARCH SPACE

We compare the searched results on ProxylessNAS search space that includes Squeeze-Excitation
(SE) module. The experimental settings of retraining the search architecture are the same as DNA
Li et al. (2020). Comparing the results in Table 3, the SE module can indeed promote achieving
impressive results under the mobile setting. As shown in Table 6, IT-NAS achieves the best per-
formance when compared with other methods with SE module, demonstrating the superiority of
IT-NAS.

A.7 RANKING CONSISTENCY ANALYSIS

Instead of using the discretization accuracy at convergence that proposed in DARTS-PT Wang et al.
(2021a) to represent the accuracy ranking of an operation, here we leverage the best acc definition
proposed in Zero-Cost-PT (Xiang et al., 2021).

fbest acc(At, e) = argmax
o∈Oe

max
A|ε|∈At,e,o

V ∗(A|ε|) (9)

where V ∗ denotes validation accuracy of a network after full training, A|ε| denotes all possible
fully-discretized subnetworks, t is the discretization iteration of an edge e with operation o.

We plot the relationship between best accuracy ranking and indicator ranking of IT-NAS and
DARTS in NAS-Bench-201 on CIFAR-10 dataset. The indicator can be self-attention weights of IT-
NAS or architecture parameters of DARTS. As shown in Figure 6, we can see that IT-NAS achieves
almost positive ranking consistency except on the Edge 2( Even so, IT-NAS also obtains a better
ranking than DARTS on Edge 2.) Besides, the Kendall tau ranking is higher than DARTS on all
edges, demonstrating the effectiveness of self-attention weight in evaluating the importance of can-
didate operations.

To compare the ranking results with Zero-Cost-PT that leverage Zero-Cost proxy to predict the
performance of candidation operation, we choose to combine Zero-Cost-PT with NASWOT and
SynFlow proxy to predict the score of each operation per edge. The results are plotted in Figure
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7 and Figure 8. The results show that SynFlow obtains generally better accuracy ranking than
NASWOT when combining with Zero-Cost-PT, but IT-NAS still achieves better ranking on most
edges than Zero-PT-NASWOT and Zero-PT-SynFlow. Though zero-cost proxies are fast in assessing
the importance of operations, its accuracy is inferior to the self-attention mechanism.

A.8 MORE EMPIRICAL STUDIES ON ACCURACY RANKING

Based on A.7, we analyze the self-attention weights or architecture parameters in indicating the
best accuracy ranking. We plot the accuracy and indicator of all six edges on NAS-Bench-201 in
Figure 9-Figure 14. Taking the first edge as an example, the maximum self-attention weight and the
highest accuracy of IT-NAS are both on nor conv 3x3 operation, demonstrating the effectiveness
of self-attention weight in evaluating the importance of candidate operations. Whereas, the largest
architecture parameter of DARTS is skip connect, which does not contribute to the highest accuracy,
so that the final derived architecture according to alpha would not obtain the satisfactory accuracy.
On the other hand, the skip connect weights are always the highest across all edges, showing that
the bi-level optimization of DARTS is prone to performance collapse. The search results of IT-NAS
are more stable due to the mono-level optimization.

A.9 VISUALIZATION

Here we visualize the searched normal cells and reduction cells from three different experiments
with different initial random seeds in DARTS search space. As shown in Figure 15, the test error
and parameters of network based on (a)(b) are 2.39% and 3.54M respectively; the test error and pa-
rameters of network based on (c)(d) are 2.39% and 4.21M respectively; the test error and parameters
of network based on (e)(f) are 2.44% and 3.27M respectively.

Moreover, as shown in Figure 16, we also visualize the searched chain-style architecture in the
ProxylessNAS search space on ImageNet directly.

Figure 17, Figure 18, Figure 19 separately shows the searched cells on CIFAR-10, CIFAR-100, and
SVHN in the reduced search spaces S1-S4, respectively. The corresponding accuracy of each cell
can be seen in the Table 4.
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Figure 6: The relationship between indicator ranking and accuracy ranking of IT-NAS and DARTS
in NAS-Bench-201 on CIFAR-10 dataset.
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Figure 7: The relationship between indicator ranking and accuracy ranking of IT-NAS and Zero-
Cost-PT with NASWOT in NAS-Bench-201 on CIFAR-10 dataset.
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Figure 8: The relationship between indicator ranking and accuracy ranking of IT-NAS and Zero-
Cost-PT with SynFlow in NAS-Bench-201 on CIFAR-10 dataset.
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Figure 9: Comparison of self-attention weights and architecture parameters on measuring the im-
portance of candidate operations both on the 1st edge of the cell in NAS-Bench-201.
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Figure 10: Comparison of self-attention weights and architecture parameters on measuring the im-
portance of candidate operations both on the 2nd edge of the cell in NAS-Bench-201.
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Figure 11: Comparison of self-attention weights and architecture parameters on measuring the im-
portance of candidate operations both on the 3rd edge of the cell in NAS-Bench-201.
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Figure 12: Comparison of self-attention weights and architecture parameters on measuring the im-
portance of candidate operations both on the 4th edge of the cell in NAS-Bench-201.
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Figure 13: Comparison of self-attention weights and architecture parameters on measuring the im-
portance of candidate operations both on the 5th edge of the cell in NAS-Bench-201.
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Figure 14: Comparison of self-attention weights and architecture parameters on measuring the im-
portance of candidate operations both on the 6th edge of the cell in NAS-Bench-201.
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Figure 15: The searched normal cells and reduction cells on CIFAR-10 in DARTS search space.
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Figure 16: The searched chain-style architecture on ImageNet in ProxylessNAS search space.
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Figure 17: IT-NAS best cells (paired in normal and reduction) on CIFAR-10 in reduced search
spaces of RobustDARTS.
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Figure 18: IT-NAS best cells (paired in normal and reduction) on CIFAR-100 in reduced search
spaces of RobustDARTS.
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Figure 19: IT-NAS best cells (paired in normal and reduction) on SVHN in reduced search spaces
of RobustDARTS.
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