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ABSTRACT

Federated learning (FL) is a privacy-promoting framework that enables poten-
tially large number of clients to collaboratively train machine learning models. In
an FL system, a server coordinates the collaboration by collecting and aggregat-
ing clients’ model updates while the clients’ data remains local and private. A
major challenge in federated learning arises when the local data is non-iid — the
setting in which performance of the learned global model may deteriorate signif-
icantly compared to the scenario where the data is identically distributed across
the clients. In this paper we propose FedDPMS (Federated Differentially Private
Means Sharing), an FL algorithm in which clients augment local datasets with
data synthesized using differentially private information collected and communi-
cated by a trusted server. In particular, the server matches the pairs of clients
having complementary local datasets and facilitates differentially-private sharing
of the means of latent data representations; the clients then deploy variational
auto-encoders to enrich their datasets and thus ameliorate the effects of non-iid
data distribution. Our experiments on deep image classification tasks demonstrate
that FedDPMS outperforms competing state-of-the-art FL. methods specifically
developed to address the challenge of federated learning on non-iid data.

1 INTRODUCTION

The need for massive amounts of high-quality training data in deep learning (e.g., ImageNet (Deng
et al.;|2009), COCO (Lin et al.,|2014)) creates a major challenge in settings where data is distributed
across a potentially large number of users’ devices; in particular, constraints on communication
resources and users’ privacy concerns often prohibit gathering local data and training models at a
central location. In response, federated learning (FL) where users collaboratively train a global
model without revealing personal data has emerged as a privacy-promoting and communication-
efficient distributed alternative to centralized learning (Kairouz et al., |2019; |Yang et al 2019} [Li
et al.,[2020b; |/Augenstein et al., 2019b)).

In FL systems, a subset of users’ devices updates a global model by training on local data; a server
coordinates the training process by selecting the users, collecting the updates, and aggregating them
to form a new global model. The original FL algorithm, Federated Averaging (FedAvg) (McMa-
han et al., 2017), chooses users at random and updates the global model by averaging the users’
updates; the convergence analysis provided in (McMahan et al.l [2017) assumes that local datasets
are independent and identically distributed (i.i.d.). Recently, improving performance of FL systems
that deploy sophisticated ML models in a variety of practical scenarios has received considerable
amount of attention (Li et al., 2018}, Karimireddy et al.,|2019;|Zhang et al., 2020; Reddi et al.| [2020;
Li et al., 2020a; Hamer et al., |[2020; Rasouli et al ., [2020; [He et al., [2021)).

A major challenge in FL presents when the decentralized data is heterogeneous. Indeed, it is unreal-
istic to expect that the users participating in a FL system train on data generated from identical distri-
butions — instead, distributions of labels will likely differ between the participating devices. This is
particularly pronounced in setting where the training data is limited, possibly to the extent that only
a subset of classes is present in the users’ datasets. Since in such scenarios performance of FedAvg
may significantly deteriorate, a number of approaches for learning from heterogeneous distributed
data has recently been proposed (Li et al.,|2018}; |Karimireddy et al.,[2019} L1 et al.,|2021). Data het-
erogeneity in FL systems deploying deep learning networks and training on complex datasets was
studied in (Li et al.l [2021)) where a regularization term is introduced in order to impose contrastive
learning on local updates, effectively aligning those updates with the global objective. However, as



Under review as a conference paper at ICLR 2023

we illustrate in our experiments (see Section [)), this approach fails to perform well on imbalanced
data partitions. Difficulties in learning a global model under data heterogeneity have also motivated
various clustering and personalization approaches to FL including Model-Agnostic Meta-Learning
(MAML) and its variants that rely on client clustering (Fraboni et al.| 2021} |Standley et al., [2020;
Fifty et al.,|2021;|Ghosh et al., [2020; [Sattler et al., 2020; Xie et al., 2021)).

In this work we address the challenge of data heterogeneity and scarcity in learning a global model
by enabling clients to locally synthesize data using parameters acquired and shared in a privacy-
preserving manner. In particular, the proposed federated differentially-private means sharing (Fed-
DPMS) framework allows each client to locally generate synthetic data by relying on means of latent
data representations exchanged in differentially-private (DP) manner between clients matched by a
trusted server. The server coordinating the training process is assumed to be provided partial infor-
mation about the clients’ data distributions (in particular, indices of the most abundant and the least
abundant classes), and is therefore capable of matching the pairs of clients whose local datasets are
complementary. Unlike the existing data augmentation approaches to FL. which utilize Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014} [Triastcyn & Faltings| [2020a; |Augenstein
et al.| |2019a), our proposed framework relies on simple Variational Auto-Encoders (VAEs) well-
suited to the classification tasks of interest. Privacy of sharing the (noisy) means of latent represen-
tations is quantified by utilizing the differential privacy mechanism. To test the proposed FedDPMS
framework, we conduct extensive numerical studies on image classification tasks using Fashion-
MNIST (Xiao et al., [2017), CIFAR-10 and CIFAR-100 datasets. In those experiments FedDPMS
outperforms state-of-the-art approaches, particularly in settings where the local data comes from
diverse distributions.

2 RELATED WORK

2.1 FEDERATED LEARNING ON HETEROGENEOUS DATA

A training round of the FedAvg algorithm (McMahan et al.,|2017) consists of four steps. First, the
server broadcasts a global model and selects a subset of clients that will perform model update.
Second, the selected clients train on local data, in parallel, starting from the current global model.
Third, the clients send the model updates or the computed gradients to the server. Finally, the server
aggregates the received updates by averaging them to form a new global model, and starts the next
round of training. As discussed in the previous section, performance of FedAvg deteriorates when
the data at different clients is non-iid.

Approaches to FL that aim to overcome challenges of training a global model on heterogeneous data
can be broadly organized in two categories. The first category includes techniques that attempt to
improve the model aggregation step performed by the server. Examples include PFNM (Yurochkin
et al.|[2019), a Bayesian non-parametric approach for extracting layers from local models and using
them to update the corresponding layers in the global model. While PFNM targets relatively simple
architectures, FedMA (Wang et al.| 2020a) takes a step further and extends the same ideas to CNNs
and LSTMs. In (Wang et al.,[2020b), the authors present a framework for the analysis of convergence
of FL on heterogeneous data, along with a normalized averaging method, FedNova (Wang et al.,
2020Db), that aims to eliminate objective inconsistencies (i.e., prevent convergence of the global
model to a stationary point of the mismatched objectives) caused by naive aggregation of local
models. The second category of methods for FL on heterogeneous distributed data is focused on
reducing the drift in local training. To this end, FedProx (Li et al., |2018) introduces a proximal
term to the learning objective of each client with the goal of making local training aligned with the
global objective. The proximal term is defined as the /5-norm of the difference between the weights
of the global model and the local model. SCAFFOLD (Karimireddy et al.l|2019) utilizes predictive
variance reduction (Johnson & Zhang, |2013) to introduce control variates and correct local updates.
The above two studies were verified in experiments on MNIST and EMINIST with multinomial
logistic regression and fully connected two-layer networks. Recently, (Li et al.,|2021)) tested FedProx
and SCAFFOLD on more challenging tasks that involve deep learning models, showing that those
two methods unfortunately offer little to no advantage over FedAvg in the considered scenarios.
As an alternative, (Li et al.| 2021)) propose the Moon algorithm motivated by the local/global model
proximity idea of FedProx but instead of the [5-norm term, the proximity is imposed via a contrastive
term in the objective of local training. The contrastive term is defined using a similarity function
expressing preference that the output categorical vectors of the current global and local models
are close, while the previous and current local models are distant. Another study, FedDyn (Acar
et al.}2020), proposes a dynamic regularizer to promote convergence of the local loss to a stationary
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point of the global loss. Building on top of SCAFFOLD, FedDC (Gao et al., 2022) introduces an
auxiliary local drift variable which serves as a dynamic regularizer helping narrow the gap between
local models and the global model. While the above approaches utilize different loss functions,
ultimately they all deploy the same strategy of introducing a regularization term to prevent from
overfitting in local training. In this paper, we focus on the problem of learning a (single) global
model in a federated system that consists of users with heterogeneous data; study of personalized
federated learning (pFL) (Tan et al., 2022) is thus beyond the scope of this work.

2.2 DOMAIN GENERALIZATION IN FEDERATED LEARNING

Recall that the drift of local model updates is caused by differences between local class distributions;
in the most severe case, clients’ local data may be missing (different) classes. A set of methods
complementary to the techniques in Section 2.1 relies on domain generalization, a method which
aims to improve generalization ability of models by training them on data from multiple source
domains. Such techniques include FedDG (Liu et al., [2021)), a method that allows each client to
transfer its amplitude spectrum, decomposed from raw data, to a bank at the server. The server
shares the collected amplitude spectrum with all clients, enabling them to synthesize new distribu-
tion via interpolation and helping improve local training. Another study, (Hao et al.,|2021)), employs
zero-shot data augmentation and relies on the statistics of the batch normalization (BN) layers to
reduce the variance of test accuracy. FedMix (Yoon et al., 2021) presents a framework for sharing
clients’ averaged local data via Mixup (Zhang et al.| [2017)); privacy of clients in FedMix may still
be compromised since the only effort to protect it is based on averaging raw data. FedDA (Wen
et al.} 2022) utilizes the attention mechanism (Vaswani et al.,2017) to enable the server to aggregate
local per-label knowledge and create global per-label knowledge, ultimately enabling data augmen-
tation via conditional variational autoencoder (CVAE) (Sohn et al.l 2015). However, aggregation
of per-label knowledge in highly non-iid setting (e.g., only a few classes are present in the local
dataset) presents the same challenge: local per-label knowledge is drifting from the expectation of
the global per-label knowledge. FedDPMS aims to address this problem by matching pairs of client
and generating complementary data using shared mean of latent representations.

3 FEDERATED DIFFERENTIALLY PRIVATE MEAN SHARING

3.1 OVERVIEW OF THE PROPOSED SCHEME

Both existing approaches to dealing with data heterogeneity — improving model aggregation at the
server and reducing model drift in local training — struggle when the differences between local data
distributions are significant (e.g., the clients completely missing some class labels). To this end,
in this paper we propose an alternative framework that aims to provide privacy-preserving domain
generalization by enhancing and balancing local datasets. In particular, FedDPMS relies on sharing
differentially-private information needed to generate representative synthetic data — specifically, the
clients share noisy versions of averaged latent representations that their encoders extract from local
data. Since the proposed framework facilitates learning in non-iid settings by enriching the diver-
sity of clients’ data, it does not compete with the prior work in Section 2 — instead, FedDPMS is
complementary to and may potentially be combined with the existing methods for FL on non-iid
distributed data. In the upcoming discussions, for illustration purposes we will repeatedly invoke
the image classification task as a use case.

3.2 NETWORK ARCHITECTURE AND TRAINING OBJECTIVE

The global model and local models in an FL system typically share the same network structure.
In our proposed framework, the model consists of three components: an encoder, a decoder and a
classifier. The encoder learns data representation utilizing convolutional layers; in particular, data
samples are encoded into a mean p and a variance o2, and represented by a latent variable z ~
N (11, 02). Given the encoder’s architecture, a symmetric decoder is designed by relying on up-
sampling and transposed convolutions. The final component of the model is a classifier that consists
of multiple linear layers and maps the latent variable z into a categorical vector p which quantifies the
likelihood of each class. The described architecture and the principle of Variational Auto-Encoder
(VAE) are illustrated in Appendix[A.T]and[A.6]

The training starts with a preliminary step which is focused on minimizing a loss that consists
of three components: /7, the cross-entropy between a prediction and the ground truth; ¢, the
Kullback-Leibler divergence between the prior distribution p(z) and the approximated distribution
q(2) (parametrized by mean and variance in the Gaussian case); and {3, the reconstruction loss
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defined as the mean-square error between the original and reconstructed data points. Formally,
{1 = CEloss (sz (z), y) , Yo = KLDloss (i, 0,) , ¢35 = MSEloss (%, z) ,

where F,:(-) denotes the entire network with parameters w!, = and # are the input and its recon-
struction, respectively, and y denotes the ground-truth. The local training loss is formed as

=10 + /\(fz —|—€3)7

where A is a hyper-parameter. In our experiments, we fine-tune the hyper-parameter and report the
performance with the best A. The training then enters the secondary phase, where we train only the
encoder and classifier (i.e., the optimization focuses on £1). This is elaborated next.

3.3 THE PROPOSED LEARNING SCHEME — FEDDPMS

As stated in Section 2, the training of FedDPMS is organized in two stages. 1. Preliminary training.
Each client locally trains a VAE and sends the parameters of the resulting encoder and classifier to
the server; the server aggregates the received information and shares the resulting global model (en-
coder and classifier) with the clients (except in the last round of training, please see Section [3.3.1).
II. Secondary training. There are four steps in each round ¢ of the secondary training. (1) Client
matching: The server is given partial information about the selected clients’ data distributions (i.e.,
indices of the most and the least abundant classes) but has no access to raw data which remains
private; based on the received information, for each client the server identifies the most informative
latent representation statistics (specifically, the most informative means of latent representations);
(2) Data synthesis: The server communicates (noisy) means of latent representations and the global
decoder to the clients in need of certain data classes; using the global decoder and the information
received from the server, these clients synthesize samples of locally missing or underrepresented
classes and incorporate the synthesized samples into their local datasets. (3) Model training: the
selected clients locally train encoders and classifiers using augmented datasets; the updated mod-
els are collected and aggregated by the server. (4) DPMS: The selected clients who prior to the
current training round have not shared latent representation information upload the indices of their
top-n most abundant classes and differentially-private means of latent data representation to the
server. The training procedure outlined in this section is formalized as Algorithm[I] In the next two
subsections, we provide further informative details of the preliminary and secondary training.

Algorithm 1 (FedDPMS)

Input:
Local datasets from K clients, D =

:fort=0,...,7,—1do
S; < k clients selected at random
(witt witt) « PreTrain(t, wl, w!, S;)

: end for
cfort="1T,,..., T —1do

ing clients k each round; the number of pre-
liminary training rounds 7},; the number of

3
4.
{D1,Da,...Dg}; the number of participat-  5:
6
7
8

global epoches 7. : St < k clients selected at random
Output: 9:  (witt with) «
The final global model w’ 10:  SecTrain(w!, w!,S;, A, B,C, Z)
1: Server executes: 11: end for
2: randomly initialize (w?,w?), A = 0,8 = 12: return v’ = (w!, wl)
0,c=0,Z2=190
3.3.1 PRELIMINARY TRAINING

During preliminary training, each client trains a VAE capable of compressing/reconstructing data
and recognizing data labels. To curtail communication costs, only the encoder and classifier’s
weights are uploaded to the server (except in the last round of the preliminary training). Formally, at
the beginning of global round ¢, the server sends the global encoder and classifier models {w!, w’}
to the clients. The clients use {w!,w!} to initialize training VAEs on local data (decoder is not
initialized), and run several epochs of the stochastic gradient descent; by the end of those epochs,
the i*" client has obtained updates {w},,w} ., w! ,}. Finally, the server aggregates the updates
{w! ,,wl .} into the latest global model {w!™,w’*'}. In the last round of preliminary training,
each selected client is requested to upload the full update {wf’e, wt w;‘ 4} so that the server can

aggregate global decoder wq; at that point, local decoders may be deleted to free up memory.

4
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3.3.2 SECONDARY TRAINING

Recall that in this stage clients update the encoder and classifier by optimizing the cross-entropy
between a prediction and the ground truth while disregarding the divergence and reconstruction
loss; these updates are formed by training on augmented datasets. For the sake of computation
and communication efficiency, each selected client shares its means of latent data representations
and augments the local dataset only once, regardless of how many times the client is selected by
the server; as our results demonstrate, this is sufficient to improve the performance of the learned
model. To avoid repeating information sharing / dataset augmentation, the server maintains four
sets: (1) the set of clients who shared information (i.e. who encoded original data into latent repre-
sentations and shared noisy means of latent representations to the server), 4; (2) the set of clients
who benefited from the shared information (i.e., who augmented their local datasets with synthe-
sized artificial data), BB; (3) the set C = {C;|i € A}, where C; = (C},...,C!) indicates the n most
abundant classes in the local dataset of client i € A}; and (4) the set of shared latent representation
means, Z = {Z;|i € A}, where Z; = {(z},,...,Z}),...,(Z",...,2",)}, a is the number of
repeatedly generated noisy means Z¢ of the latent rei)resentatioﬁ of the (abundant) class ¢ in the
local dataset available to client ¢. These four sets are initialized as empty at the beginning of the
secondary training. The described procedure for secondary training is formalized as Algorithm [2]

Algorithm 2 SecTrain

Input: 10: the server executes: B < BU
global model w?,w?!; selected k clients S;; 11:  end if
assisting clients A; benefited clients B; 12: download wé, wf: from the server ~
abundant class C; shared means Z; local 13:  upload: (w! ;,w; ;) + Optim(w}, wf, D;)
datasets at k clients, D = {D;|i € S;}; gen-
eration quota «; standard deviation of addi- 14: if i ¢ A then

tive noise o. 15: if client 7 did not download wq then
Output: 16: download the global decoder wgq
The global model w!™, wit! 17: end if
1: R« Matching(St,A,C) 18: (Cuzz) — DPMS(’LU;Z»,UJZ’Z‘,Wd,’Di,OL,U)
2: for i € S; in parallel do 19:  end if
3:  if R # 0 AND i ¢ B then 20: end for
4: if client 7 did not download wq then 21: Server executes:
5: download the global decoder wq 22: (A,C,2) «+ (A,C, 2) Uses, (1,Ci, Z;)
6: end if 23: D' Y ics, IDi
7: d~ownload Zg, from the server 24 it Z‘es |gi| (wé . wf; )
8: D; « Synthesis(wq, ZRr,) . 1 Dr|R e '
o: D, @i UD; 25: return w

Client matching. Let S; denote the set of clients selected in training round ¢. Based on the infor-
mation about the most and least abundant classes in local datasets, the server decides for each client
who should they receive assistance from (i.e., which information in Z should they be given). The
matching is based on the distance between the clients’ data distributions; in particular, client ¢ is
scheduled to be the recipients of client j’s latent space information if the server identifies that client
7’s data distribution is such that the samples drawn from it would significantly diversify client ¢’s
data Specifically, each client i € S; still seeking to diversify local data sends indices of n classes in
its dataset with the fewest samples to the server; let 7{; denote the set of the ith client’s “data scarce”
classes. Having received H;, the server identifies client j having the set of data abundant classes C;
that intersects with #; more than any other set of data abundant classes. After matching, Z; and
the global decoder are sent to client 4. Note that client j’s means of latent data representations Z;
are sent to client ¢ by the server — there is no direct connection between clients 7 and j. In the first
round of secondary training, the server does not pursue matching since A, 3, C and Z are empty sets;
the sets are augmented with new elements in the DPMS step. While our experiments demonstrate
remarkable performance improvements of FedDPMS over competing methods despite providing a
client in need of synthetic data with the latent representation of only one of its peers, the matching
algorithm can readily be extended to identifying several “assisting” clients for a “benefitting” client.

"For convenience, we refer to client i as the “benefiting client” and to client j as the “assisting client”.
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The proposed method for client matching is formalized as Algorithm 3]in Appendix[A.3]

Data synthesis. When client ¢ receives a set of noisy means of latent data representations and the
global decoder, it utilizes the global decoder wq to generate synthetic data D;; the synthetic data is
merged with the local dataset D; to form D;. The client then proceed to perform local model update
by training on D;, and uploads the result to the server. Upon receiving the update, the server adds
index ¢ to the set of indices of clients who completed data diversification, B. Samples of synthetic
images are provided in[A.4]

Model training After generating synthetic data, each client ¢ has access to an augmented local
dataset D;. When updating the model, the client samples |D;| points uniformly at random from D;
and utilizes only the sampled points for gradient computation (| - | denotes the set cardinality). This
is to maintain the same complexity of the update step as FedAvg.

DPMS. Followmg model training at round ¢, selected client i forms updated encoder w! ; and clas-
sifier wc ;5 recall that the client received the global decoder wq which is no longer belng updated.
If the client did not share latent representation information in the previous rounds, it utilizes wt to
compute the means of latent representations for its n most abundant classes; note that in thls step
we only utilize the original (real) data to form latent representations. Let us denote the computed

1 n

means by (Zf E Ef *), where C},...,Cl" denote the indices of the most abundant classes in the

h client’s dataset. The means are then perturbed by an additive zero-mean Gaussian noise N (0, 02)
(see Figure[T). There are two benefits of adding the noise: first, it introduces diversity in the synthet-
ically generated data; and, second, it endues the shared information with differential privacy (more
on differential privacy in the next section). The noisy corruption of latent representation means,
however, may be so severe to result in unusable synthesized data; we would like to identify if this is
the case before the client communicates such means to the server. To this end, the client applies the
global decoder wgq and utilizes the (highly accurate) local classifier w! ; to attempt recognizing the
reconstructed data point. Specifically, the noisy latent representation means are formed as

PO ) (1)
where § ~ N(0,02) and j € {1,...,n}. Using the global decoder, the client reconstructs i in
the original space,

_ci cJ

T = Wd(zi )7 (2)
and then applies the local encoder/classifier to find its prediction g,
5= wei(we; (i%)). 3)

If the prediction of the classifier is correct, i.e., § = Clj , we retain the noisy latent representation

N . . . . CJ .
mean Z,* used to synthesize the classified point; otherwise, we declare that Z;” is unusable and
discard it. We continue this procedure until the number of usable noisy latent representation means

in each abundant class C/ meets a predetermined quota a (a tunable hyperparameter) Finally, each

~cl <C1'
client sends its set of noisy encoded means Z; = {( Zitsees Zi)sees (Bils e % a)} and their

corresponding labels to the serverE] Following the DPMS step, the server appends 4, C; and Z; to
A, C and Z, respectively. In future training rounds, even if sampled again (which in large-scale
systems is highly unlikely), client ¢ will not be asked to share latent representation information.
Moreover, the client can now delete the global decoder wq to free up memory; in fact, a selected
client maintains the global decoder model for at most one round and thus its impact on average
memory consumption is only minor. Further discussion of communication, computation and mem-
ory consumption can be found in Section[A.9]

It is worth pointing out that the assisting and benefiting clients each utilize their respective local
encoder and global decoder: the former (in conjunction with its local classifier and global decoder)
to learn latent data representations, the latter to synthesize artificial data. Such a strategy is desirable
for two reasons. First, the local classifier achieves performance superior to the global classifier since

2To ensure that discarding noisy latent representation means which fail the test does not affect privacy, we
empirically evaluate the standard deviation of the noise present in the perturbed means that have passed the test
and are consequently shared; in experiments, this standard deviation was verified to be virtually identical to
o in (I), implying that sub-selecting the means has no impact on the level of privacy introduced by the noise
corruption of latent representation means.
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Figure 1: FedDPMS and synthetic data generation. The four parts of the figure depict: (1) finding
latent representation of raw data via a local encoder; (2) creating noisy latent means (by adding
Gaussian noise to the means of latent data representations) and filtering out unusable ones with the
help of a local classifier; (3) uploading usable noisy latent means to the server; (4) a benefiting
client utilizing the global decoder to generate synthetic data from the received noisy latent means,
expanding its local dataset.

the latter is agglomerated from local models that may have drifted apart; therefore, local classifiers
are more trustworthy decision-makers for selecting usable noisy means. Second, we encode raw data
using the local encoder of the assisting client but decode the latent representation means with the
global decoder at the benefiting client; this helps separate the benefiting client’s synthetic data from
the assisting client’s raw data in a way that is complementary to the separation induced by averaging
latent information or adding noise. While its impact appears challenging to formalize analytically,
such a strategy intuitively helps protect the assisting client’s privacy.

3.4 PRIVACY CONCERNS

While prior work on data augmentation in federated learning relied on data averaging for privacy
protection (Liu et al.,[2021};[Yoon et al., [2021]), differential attacks may be used to extract individual
information from the averages. This motivates using concepts from differential privacy to quantify
the privacy provided by noisy perturbations that FedDPMS injects into latent means. In related prior
work, a number of methods that attempt to prevent privacy leaks from uploaded local gradients or
models have been proposed in literature (Fredrikson et al., 2015 Hitaj et al., [2017; [Triastcyn &
Faltings| 2020b; [Torkzadehmahani et al., 2019). For brevity, the definitions of differential privacy
are provided in Appendix [A.7] These methods can readily be adapted to model training and client
matching in FedDPMS. For simplicity, in this paper we limit our attention to characterizing differ-
ential privacy of sharing noisy latent means. To this end, consider m latent representations z; € R/,
where [ is the dimension of latent representation, 1 < ¢ < m; each client computes the jth element
of the latent mean z by averaging the corresponding elements of the aforementioned m vectors,
1 < 5 < 1. Since clients reveal means of latent local data representations to the server, they may
become exposed to the risk of leaking the latent representation of individual data points; this, in turn,
could potentially be exploited to attempt reconstruction of raw data. To protect individual latent rep-
resentations from a differential attack, we construct the following differential privacy mechanism.
Let us interpret the averaging operation as a deterministic function f(e), where vector e collects the
jt" elements of m latent representations. Recall the definition of .S fs

2
§3 = max (f(e) - ()’

where €’ is an adjacent input (similar to Def. [2) which matches e in m — 1 elements. Since we

use sigmoids as the activation functions of the layer generating latent representations (applied to all

models in this paper), the latent means are between [0, 1]; therefore,

- 1Te/ +1 1T¢ m—1—1T¢

fle) = f(e) <

1
Sia
m

m m—1 m(m — 1)

where 17 denotes the vector of all ones having the same dimension as €’. Thus, Sy = L. For any
e > 0and § > 0, we can always identify o needed to ensure that f(d) achieves (¢, d) differential
privacy according to Definition[2] As an illustration, for m = 100, ¢ = 0.5 and 6 = 0.01, selecting
o > 3.9 (i.e., the standard deviation of noise Syo > 0.039), we are 99% confident that the privacy is
not broken. In fact, the standard deviation of noise added to latent means in our experiments is > 1
while m > 100; thus there is abundant room for lower privacy budget ¢ or higher confidence 1 — §.
In these settings, FedDPMS is very unlikely to break the privacy of the latent data representations.

7
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4 EXPERIMENTS

4.1 DATASETS AND BASELINES

We implemented all models and ran the experiments in Pytorch (Paszke et al., [2019), using Adam
(Kingma & Ba, 2014)) optimizer with a learning rate 0.001 for all methods. The period of learning
rate decay was set to 10, while the hyper-parameter v in Adam was set to 0.5. We used the data
batch size of 64. Unless stated otherwise, the number of local epochs was set to 5, while the number
of global communication rounds was 50; none of the methods improved performance by further
increasing the number of global communication rounds. The default number of clients participating
in federated learning is 10. For simplicity and due to the relatively small number of clients, all
clients participate in all rounds of the federated learning process.

To test the performance of our proposed framework, we conduct experiments on three datasets —
Fashion-MNIST (Xiao et al., [2017)), CIFAR10, and CIFAR100 (Krizhevsky et al.). To control the
degree of imbalance in the partitioned data, we utilize Dirichlet distribution (Yoon et al.| 2021}
Yurochkin et al., 2019; [Li et al.l 2021) and generate non-iid partitions with varied concentration
parameter 3. Note that when the concentration parameter is very small, e.g. 3 = 0.5, a client
may have very few samples (possible none) in some classes, potentially rendering the partition
highly imbalanced. Examples of clients’ local dataset class distributions are shown in Appendix[A.3]
We compare the test accuracy of FedDPMS with four state-of-the-art federated learning methods
including FedAvg (McMahan et al.l 2017), FedProx (Li et al., 2018)), FedMix (Yoon et al., [2021)
and Moon (Li et al.|[2021)). The benchmarking experiments utilize VAEs and a convolutional neural
network trained to perform image classification tasks. For detailed specification of the network
architecture and hyper-parameters, please see Appendix [A.T|and [A2]

4.2 RESULTS ANALYSIS

Accuracy comparison. Table [I| compares the test accuracy of FedDPMS with the concentration
parameter 5 = 0.5 and default parameter settings against the competing methods. In such a severely
heterogeneous setting, relative improvement of FedDPMS over FedAvg is 3.3%, 4.5% and 6.6% on
FMNIST, CIFAR10 and CIFAR100, respectively; overall, FedDPMS achieves the best performance
among all approaches. As for the performance of other methods relative to each other: FedMix
has a significant advantage over FedAvg on FMNIST while closely tracking, along with FedProx,
performance of FedAvg on the other two datasets. Moon exhibits a slight improvement over FedAvg
on CIFAR100 and achieves close 2nd (behind FedDPMS) performance on CIFAR10.

Table 1: Test accuracy of DPMS and other Table 2: Test accuracy among different numbers
methods on FMNIST, CIFAR10 and CI- of clients from {10, 20,30, 40,50} with 10%-50%
FAR100 datasets with concentration param- samples of CIFAR100 with concentration parame-
eter 8 = 0.5 among 10 clients. ter 5 = 0.5.

Fmnist  Cifarl0  Cifar100 10 20 30 40 50

FedAvg 0.8476  0.6501 0.3621 FedAvg 0.1881 0.2401 0.2738 0.2842 0.3066
FedProx 0.8446  0.6553  0.3646 FedProx 0.1844 0.2408 0.2780 0.2914 0.3081
FedMix 0.8640 0.6542  0.3498 FedMix 0.1820 0.2365 0.2676 0.2877 0.3045
Moon 0.8458 0.6742 0.3715 Moon 0.1871 0.2375 0.2707 0.2912 0.3095
FedVAE 0.8452  0.6631 0.3712 FedVAE 0.1905 0.2428 0.2746 0.2858 0.3073
FedDPMS 0.8604 0.6797 0.3861 FedDPMS  0.2177 0.2677 0.2940 0.3061 0.3208

Effect of data heterogeneity. As previously stated, the concentration parameter 5 controls hetero-
geneity of the data partitions — smaller 3 leads to more severe class imbalance. We use the Dirichlet
distribution with 5 = {0.1,0.2,0.3,0.4, 0.5} to generate varying data partitions and study the effect
of heterogeneity on different methods. As the results in Fig. [2]demonstrate, FedDPMS consistently
achieves the best performance on FMNIST and CIFAR10/100. Among other methods, FedProx
closely tracks FedAvg in all experiments, while Moon is competitive on CIFAR10 yet performs
badly for 5 = 0.1. The takeaway from competitive performance of FedMix on FMNIST, but poor
on both CIFAR10 and CIFAR100, is that utilizing interpolation to synthesize samples from raw data
succeeds on simple datasets but does not on more complex ones; moreover, the approach deployed
by FedMix is risky in terms of potential privacy leaks. In all, the experiments demonstrate consis-
tently best performance of FedDPMS across different data distributions and levels of heterogeneity.
Scalability. So far, our experiments involved simulating federated learning systems with 10 clients.
To investigate the scalability of FedDPMS, we vary the number of clients in experiments on CI-
FAR100. In particular, the number of clients is varied across {10, 20, 30, 40, 50}; to maintain the
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Figure 2: Test accuracy of different approaches as the concentration parameter S takes values from
{0.1,0.2,0.3,0.4,0.5}. We run five trials with different random seeds and report the mean accuracy.
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Figure 3: Test accuracy of different approaches on FMNIST, CIFAR10 and CIFAR100. All exper-
iments are conducted with the concentration parameter 3 = 0.5 and 10 clients. We run three trials
with different random seeds and report the mean accuracy.

same amount of data per client as the number of clients grow, an increasing fraction of CIFAR100
data (10%, 20%, 30%, 40%, 50%) is partitioned and allocated to the clients in these experiments.
Meanwhile, we keep the default heterogeneity setting 5 = 0.5. The results of the experiments are
reported in Table[2] showing that FedDPMS outperforms all other approaches. For example, relative
improvement of FedDPMS over FedAvg is more than 22.3%, 15.6%, 7.3%, 7.7% and 4.6% in the
experiments involving 10, 20, 30, 40, and 50 clients, respectively.

Convergence rate. Fig. [3] shows the test accuracy of all approaches across the federated training
rounds. For FedDPMS, we further experimented by varying duration of the preliminary training
phase (15, 20 and 25). Among all methods, FedDPMS exhibits the fastest convergence rate and best
accuracy on CIFAR10 and CIFAR100. FedMix has the slowest convergence rate on CIFAR10/100
but a slightly higher accuracy than FedDPMS on FMNIST. After sharing the latent representation
means and augmenting local datasets with synthetic data, the test accuracy of each FedDPMS model
suddenly increases. The results imply that the quality of augmented data improves with the num-
ber of preliminary training rounds; however, the longer we wait, the smaller the number of rounds
to train the model on the augmented dataset. The experiments suggest that setting the number of
preliminary training rounds to 40% of the total number of allotted rounds is a suitable choice.

5 CONCLUSION

Data heterogeneity is a critical challenge hindering practical federated learning systems, potentially
causing major performance deterioration. We propose a novel framework, FedDPMS, aiming to
enable accurate and robust performance of federated deep learning models trained on heterogeneous
distributed datasets. This is accomplished by sharing differentially-private information which the
clients use to enrich local datasets and thus combat the local model drift. As our experimental results
demonstrate, FedDPMS outperforms state-of-the-art federated learning methods on image classifi-
cation tasks with varied levels of heterogeneity across clients while requiring only a minor increase
in communication cost. FedDPMS does requires additional computation and memory resources, the
amount of which depends on the specifics of the training process. In applications where the high
accuracy is imperative, FedDPMS provides an attractive and effective framework for overcoming
challenges presented by data heterogeneity.
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A APPENDIX

A.1 NETWORK ARCHITECTURE
= IROINO
Fully connected layers Reshape Prediction Ground truth
Input Transposed Convolution Output
Latent z rr
R \ |-r |
Convolution Subsamplingi 77* fiéEWI;)s’smi
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Encoder B ‘
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Figure 4: The architecture of the VAE. The KLLD, MSE and CE stand for Kullback-Leibler diver-
gence, mean-square error, and cross-entropy, respectively. The sum of the MSE loss and the KLLD
loss is weighted by the hyper-parameter A and added to the CE loss.

For FMNIST, we use a CNN network with three 3 x 3 convolutional layers connected by two 2 x 2
max pooling layers as the base encoder. For CIFAR10 and CIFAR100, we use a CNN network with
four 3 x 3 convolutional layers connected by two 2 x 2 max pooling layers as the base encoder. Both
architectures utilize two fully connected layers. Moreover, we construct a decoder of a symmetric
structure, composing a variational auto-encoder when implementing FedVAE and FedDPMS. We
set the latent dimension [ to 32 and 128 for FMNIST and CIFAR10/100, respectively. The details
are illustrated in Tables[3and

Table 3: The layers of the base networks for all approaches other than FedVAE and FedDPMS.

Layers FMNIST Layers CIFAR10/100
Tnput WX 2/ x 1 Tnput 32 %32 %3
Convolution | 3 x 3(16) | Convolution 3 x 3(32)
Maxpool 2x2 Convolution 3 x 3(32)
Convolution | 3 x 3(32) Maxpool 2x2
Maxpool 2x2 Convolution 3 x 3(64)
FC 7 x 7 x 32 | Convolution 3 x 3(64)
FC 32 Maxpool 2x2
Ouput 10 FC 8 x 8x 64
FC 128
Output 10/100

A.2 SELECTION OF HYPER-PARAMETERS

The hyper-parameter controlling the proximal term in FedProx is set to pipr0, = 0.001. For Moon,
we set the temperature parameter to 0.5, tune 4,00, across {1, 5, 10}, and report the best result. The
mixup ratio parameter in FedMix was set to A,,;, = 0.05. In FedDPMS, we set the hyper-parameter
A = 0.05. Moreover, FedDPMS’s predetermined quota for the synthetic data of each abundant class
and the standard deviation of the additive Gaussian noise in experiments on FMNIST, CIFAR10 and
CIFAR100 were set to o = {50, 200,50}, 0 = {3,4,4} respectively. To choose the values of n,
we recall that the data is generated according to the Dirichlet distribution with a small concentration
parameter (3; this implies presence of relatively few classes in each local dataset. Consequently,
for FMNIST/CIFARI10 we set n = 3, while for CIFAR100 we set n = 10. In practice, the value
of n can be chosen with the clients’ help; e.g., client ¢ reports to the server n;, the number of
the client’s data classes decidedly less abundant than the rest of the classes. The server then sets
n = min{ny,na,...,nk}. The communication cost and delay of establishing n in this way is
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Table 4: The layers for base networks of FedVAE and FedDPMS.

Layers FMNIST Layers CIFAR10/100
Input 28 x 28 x 1 Input 32x32x%x3
Convolution 3 x 3(16) Convolution 3 x 3(32)
Maxpool 2x2 Convolution 3 x 3(32)
Convolution 3 x 3(32) Maxpool 2x2
Maxpool 2x2 Convolution 3 x 3(64)
FC 7TXTx32 Convolution 3 x 3(64)
FC 32 Maxpool 2x2
FC TXxTx32 FC 8 x 8 x 64
Transposed-Con | 3 x 3(16) FC 128
Transposed-Con | 3 x 3(1) FC 8 x 8 x 64
Output 28 x 28 x 1 | Transposed-Con 3 x 3(64)
Transposed-Con 3 x 3(64)
Transposed-Con 3 x 3(32)
Transposed-Con 3 x 3(3)
Output 32%x32x%x3

negligible. Without a loss of generality, in the experiments we set the participation rate of clients
k/K to 1.

A.3 ALGORITHM 3 MATCHING

The matching algorithm aims to match pairs of clients having complementary local data; the result
of matching depends on class distribution of each client’s local dataset. One of the options is to find
the size of the intersection between “abundant classes” C; and “data scarce” classes H;, described
as Algorithm

It is worth mentioning that the information sharing may be uni-directional: if client ¢ benefits from
client j’s latent data representation, the reverse need not be true. In fact, it may be the case that one
client supplies latent representation information to several clients if the latter lack in data classes
that the former has in its local dataset. Note that while the presented framework assumes categorical
data labels, the methodology can be extended to regression tasks by relying on data binning.

Algorithm 3 Matching
Input:
the set of clients who shared information, A; the set of abundant classes at the server, C; the
selected clients, S; client’s “data scarce” classes H = {H;|i € Si}.
Output:
Receiving source R
Server executes:
if C = () then
R« 0
else
for i € S; do
R; argmaxjeA |Hz n CJ|
end for
R« {R;]i € S}
end if
return R

PRI UNRDXD 2

—_

A.4 SYNTHETIC IMAGES

Figure[5] presents examples of artificial images generated by the variational auto-encoder on FM-
NIST, CIFAR10 and CIFAR100; since the FMNIST’s representation space is relatively simple, one
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Figure 5: The class distribution of each client in non-iid data partitions generated by Dirichlet dis-
tribution with 5 = 0.5. Dark color implies more data while light color implies less data.
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Figure 6: The class distribution of each client in non-iid data partitions generated by Dirichlet dis-
tribution with 8 = 0.5. Dark color implies more data while light color implies less data.

may recognize the type of synthetic images, while the synthetic images generated to augment CI-
FAR10/100 datasets are incomprehensible. Nevertheless, even though incomprehensible to humans,
synthesized images carry information that helps FedDPMS improve local training.

A.5 VISUALIZATION OF CLASS DISTRIBUTION IN DATA PARTITIONS

Here we visualize class distributions of local clients induced by data partitioning of FMNIST, CI-
FAR10 and CIFRAR100. For example, the first column in Fig. [0 representmg the class distribution
of client 0’ on FMNIST partition, shows that client ’0’ has samples in classes ’1,2,5,7,9’ while
lacking classes ’0,3,4,6,8’. As we can observe in Fig. |0 data partitions generated by the Dirichlet
distribution may be extremely heterogeneous, becoming more so for smaller 5.

A.6 GENERATIVE MODEL

In contrast to FedDG (Liu et al, [2021)) and FedMix (Yoon et al.| 2021)) which utilize interpolation
to synthesize augmented data, FedDPMS relies on Variational Auto-Encoders (VAEs) (Kingma &

to learn latent data representation and enable data synthesis from DP-protected trans-
formations of those representations. As its conventional counterparts, a VAE consists of two main
components: an encoder and a decoder. The encoder is an approximate inference network gy (2 | x)
that maps input 2 to the latent vector z which approximates prior probability p(z). The decoder is
a generative network py(x | z) which synthesizes z from the latent vector z. The goal of the VAE
training is to maximize the likelihood of data points z, i.e., solve maxgp log py(x). This likelihood is
challenging to compute/maximize; observing that

log pe(x) > Eq,(2|e) logpe(z | 2) — Drr (qs(2 | ) | p(2)) “)
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one can instead choose to maximize F,, (.|,)logpe(x | 2), the so-called evidence lower bound
(ELBO). For convenience, we often assume that z has a Gaussian prior distribution, somewhat
limiting the expressiveness of the VAE. In applications involving images, for example, this typically
renders VAE-generated samples to be blurry. More broadly, when it comes to generating high-
resolution images VAEs may be lagging behind GANs (Goodfellow et al., |2014)), but are faster,
more reliable and theoretically better understood. Besides, for the problem studied in this paper,
the utility of generated images is not measured by their resolution but by the robustness of the
classification model trained on synthetically diversified distributed datasets.

A.7 DIFFERENTIAL PRIVACY MECHANISM
For completeness, we here define the differential privacy mechanism.

Definition 1 (Differential Privacy) A randomized mechanism M : D — R satisfies (¢, 0) differ-
ential privacy if for any two adjacent databases d,d’ € D with only one different sample, and for
any subset of the output S C R, it holds that

PrM(d) € S] < e Pr(M (d') € S] +6. ®)

The output of the random mechanism M is a random distribution; € denotes an upper bound on
the distance between distributions M(d) and M(d') and can be interpreted as the privacy budget,
while the relaxing factor 0 is the probability that the e-differential privacy is broken.

A common method for enduing a deterministic function f : D — R with differential privacy is via
the Gaussian noise mechanism, which is defined as follow:

Definition 2 (Gaussian noise mechanism) The Gaussian noise mechanism achieving (e, 9) differ-
ential privacy for function f : D — R is defined as

M(d) = f(d) + N (0,57 - 0%), (6)

cand o > \[2log 55 /e. In

other word, if we add a zero-mean Gaussian noise with variance S]%O'Q to the output of f and set the

where Sy denotes the maximum of the absolute distance |f(d) — f (d')

privacy budget €, the confidence of the resulting mechanism M is § > % exp (—(0€)?/2).

A.8 EFFECTS OF THE SYNTHETIC QUOTA o AND THE ADDITIVE GAUSSIAN NOISE

We rely on empirical studies to investigate the impact of (predetermined) synthetic data quota «
(see Section and the variance of the additive Gaussian noise o2 upon the performance of
FedDPMS; the results of the experiments conducted on CIFAR10 are shown in Table[5] As implied
by the table, when o2 is too large, the data synthesized using noisy means is unrecognizible by
the local encoder / classifier. Note that the variance of the added noise is SJ%O'Q, where S} = %
(see Section [3.4). The synthetic data quota « controls the proportion of the synthesized data in the
augmented local datasets. On the one hand, if the quota is too small, augmentation does not help
improve diversity of local data and ultimately fails to help local training; on the other hand, large
quota limits the impact of real data and in fact adversely affects accuracy of the learned models.
We experimentally find that the synthesized data should amount to approximately 10% of a local
dataset. The same value of « is used by all clients.

A.9 COMMUNICATION, COMPUTATION AND MEMORY

Here we compare communication, computation and memory consumption of FedDPMS with state-
of-the-art competing methods. To facilitate the comparison, we set FedAvg as the baseline and
summarize the information in Table. [6] For clarity, we introduce the following notations: © is the
number of parameters of the final model (encoder and classifier); [ denotes the dimension of the
latent space in FedDPMS; G is the size of a raw data point (e.g., if data is an image with width a
and height b, then G = ab); n denotes the number of abundant classes; « is the number of synthetic
samples in an abundant class; t4ug, tavg + tprozs tavg + tmoon denotes the time to update the base
model in FedAvg, FedProx and Moon methods in a round, respectively; K denotes the number of
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Table 5: Test accuracy for different generation quotas o and standard deviations o. All results are
based on 8 = 0.5. We set & = 200 when running experiments for varied o, while ¢ = 4 when
running experiments for varied .. ’-’ in the table means VAE is not generating qualified data.

o ACCURACY (a = 200) o  ACCURACY (o0 =4)
3 0.6734 50 0.6618
4 0.6797 100 0.6721
5 0.6719 150 0.6795
6 - 200 0.6824
250 0.6712
300 0.6655

clients in the system; k is the number of clients selected in a round; v = % denotes the sampling
rate; T denotes the overall number of training epochs and T}, denotes the number of preliminary
training epochs.

Communication costs. Compared to the baselines (e.g., FedProx (Li et al., 2018)) and Moon (Li
et al.l 2021))), FedDPMS requires additional communication resources for two reasons. First, to
enable diversification of local data, the server acquires noisy latent representation means from an
assisting client and shares them with a matching benefitting clients. We emphasize that each client
can assist or benefit from another at most once during the entire training process. The worst-case
scenario from the communications perspective is if every client in the system fulfills both roles.
In that case, the relative overhead introduced by transmitting the means of latent representation
is 11 = anl/O. Typically, this overhead is rather small; for instance, in our experiments with
CIFAR10, n = 3, o = 200, I = 128, © > 1000000, and thus anl/O ~ 7.68%. The second part of
the additional communication cost is due to uploading local decoder model (a single event at the end
of preliminary training) and the download of the global decoder by the clients seeking to diversify
local dataset during the secondary training phase. To compute F, the expected number of selected
clients who download the global decoder during secondary training (lasting 7" — T}, rounds), we
denote by &; an event that a client selected at round ¢ has not benefitted from latent representation
information in the previous ¢ — 1 rounds of secondary training. Clearly,

Pr(&) =1 —v) L (7)

Then, the expected number of the selected clients is found as

1-(1-)T T
E=(1-v)°++1-»)" k= Bl Gl Y (8)
v
The ratio between the communication overhead and the baseline is
EO 1—-(1=)T T
T9 = ( ) . 9)

T 2kOT wT
Ifv < 1thenry = % — QT—,:’;, implying that all of the clients selected in a secondary training round
actually download the global decoder. For large T', 5 = O(ﬁ) For convenience, we specify the

communication cost of FedDPMS in Table[6las UB = r1 + 5.

Computational cost. While FedAvg schemes deploy and train only a classifier (i.e., a single
neural network), FedDPMS relies on VAEs and in the preliminary phase requires training of en-
coder/classifier/decoder. Specifically, the computational overhead of FedDPMS relative to FedAvg
is % In our experiments, FedDPMS achieves the best performance when T),/T" = 0.4, implying
40% more computation; clearly, varying T}, /T explores the trade-off between performance and com-

putational cost. Note that when training large models, FedDPMS requires more secondary training
. T . . .
rounds and thus ratio =% becomes small, implying less computational overhead.

Memory requirements. Since FedDPMS relies on VAEs, in the preliminary training it requires
approximately twice as much memory as FedAvg schemes that deploy the same neural network
architectures. In the secondary training, each client stores the global decoder’s parameters for at
most one round, and hence the average additional memory is negligible. FedDPMS further requires
additional memory to store synthetic data; that overhead is typically negligible compared to the
total memory use. Note that among the competing methods, FedProx and Moon each introduce a
regularization term and thus they too need additional memory — the former requires twice as much
memory as FedAvg while the latter needs three times as much.
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Table 6: A comparison of the communication, computation and memory requirement for FedDPMS
and the competing methods.

SCHEME COMMUNICATION COMPUTATION MEMORY
FEDAVG 1 1 1
FEDPROX 1 14 Spree 2
FEDMIX  1+G/© 1 ’ 1
MOON 1 1+ bmoon 3
FEDDPMS 1+ UB 1+T,/T 14T,/ T
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