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Abstract

Bayesian reinforcement learning provides an elegant solution to addressing the explo-
ration—exploitation trade-off in Partially Observable Markov Decision Processes (POMDPs)
when the environment’s dynamics and reward function are initially unknown. By maintain-
ing a belief over these unknown components and the state, the agent can effectively learn
the environment’s dynamics and optimize their policy. However, scaling Bayesian reinforce-
ment learning methods to large problems remains to be a significant challenge. While prior
work has leveraged factored models and online sample-based planning to address this issue,
these approaches often retain unnecessarily complex models and factors within the belief
space that have minimal impact on the optimal policy. While this complexity might be nec-
essary for accurate model learning, in reinforcement learning, the primary objective is not
to recover the ground truth model but to optimize the policy for maximizing the expected
sum of rewards. Abstraction offers a way to reduce model complexity by removing factors
that are less relevant to achieving high rewards. In this work, we propose and analyze the
integration of abstraction with online planning in factored POMDPs. Our empirical results
demonstrate two key benefits. First, abstraction reduces model size, enabling faster sim-
ulations and thus more planning simulations within a fixed runtime. Second, abstraction
enhances performance even with a fixed number of simulations due to greater statistical
strength. These results underscore the potential of abstraction to improve both the scala-
bility and effectiveness of Bayesian reinforcement learning in factored POMDPs.

1 Introduction

Deep reinforcement learning methods have achieved significant milestones, such as attaining superhuman
performance on Atari games with only 100k frames (Ye et al., 2021), solving highly complex games such as
Go (Silver et al., 2016), and achieving high performance in simulated control tasks (Haarnoja et al., 2018).
Most of these achievements rely on recent function approximation advances made with the work on deep
neural networks. However, despite these advances, Reinforcement Learning (RL) still faces critical hurdles
that must be addressed to enable its application in diverse real-world scenarios. One of the most pressing
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challenges is the high sample complexity of deep RL methods, which remains problematic in real-world
applications where data collection is expensive, difficult, or dangerous. Fortunately, many such applications
offer prior knowledge that can be leveraged to reduce sample complexity. To effectively utilize this knowledge,
it is crucial to move away from the tabula rasa approaches of neural networks and incorporate domain-specific
prior knowledge into the learning process (Jonschkowski & Brock, 2015; De Bruin et al., 2018; Katt et al.,
2022).

Another critical challenge is exploration, which is strongly tied to sample complexity. Effective exploration
of unknown and interesting parts of the environment is essential in almost every application. A better
exploration strategy means faster learning and improved sample efficiency. Importantly, in RL, an agent
must balance exploration (i.e., learning) with exploitation (i.e., maximizing reward). Most deep RL methods
rely on heuristics for exploration, which can perform poorly in complex domains (Osband et al., 2016).
These challenges are particularly pronounced in partially observable environments, where agents must make
decisions based on limited information.

Model-based Bayesian RL (BRL) (Ross et al., 2011) offers a principled approach to addressing the
exploration-exploitation trade-off by maintaining a belief over the environment’s state and dynamics. This
belief enables the agent to balance the exploration—exploitation trade-off effectively. In this work, we build on
the Factored Bayes-Adaptive POMDP (FBA-POMDP) framework (Katt et al., 2017; 2019), a model-based
BRL approach that combines partial observability and structured factored models. FBA-POMDPs incorpo-
rate factorized representations of the environment’s dynamics, allowing agents to exploit problem structure
for improved scalability. Additionally, thanks to its Bayesian nature, prior knowledge can be incorporated
into FBA-POMDPs in a principled way via Bayesian priors, further improving sample efficiency.

Despite its advantages, the FBA-POMDP framework faces significant challenges. While factorization en-
ables better generalization, the inclusion of irrelevant state factors in the model can lead to unnecessarily
large model spaces. This increases computational demands during planning and reduces statistical strength
by hypothesizing dependencies that are irrelevant to maximizing rewards. For instance, in a cluttered envi-
ronment, an agent may only need to consider the positions of objects to navigate effectively, while features
such as their colors or shapes are irrelevant for the reward. Abstracting away such unnecessary details can
simplify the model space, improve computational efficiency, and enhance learning performance. Previous
studies have demonstrated that even lossy abstractions can improve performance in planning (He et al.,
2020; Chitnis et al., 2021). This is because simplified models can generate more simulations within a fixed
runtime, potentially leading to better results in sampling-based online planning. Motivated by this insight,
we propose incorporating abstraction into the FBA-POMDP framework to improve scalability and learning
efficiency.

We focus on discrete Factored POMDPs (F-POMDPs) and explore the application of abstraction within
the FBA-POMDPs framework to enhance planning efficiency, scalability, and learning performance. To
achieve this, we augment Factored Bayes-Adaptive Partially Observable Monte-Carlo Planning (FBA-
POMCP) (Katt et al., 2017; 2019), an established online planning and learning algorithm for FBA-POMDPs,
to incorporate multiple levels of abstraction. This contribution addresses abstraction discovery in the par-
tially observable reinforcement learning setting, where the lack of access to the true model and the complexity
of dealing with partial observability make the creation and utilization of abstractions both important and
challenging.

We base ourselves on a previous abstraction method for planning in fully observable factored Markov decision
processs (MDPs) (Dearden & Boutilier, 1997). It creates abstractions automatically based on the problem’s
structure, enabling agents to plan and learn more effectively. Our approach extends this idea to a partially
observable learning setting, where the underlying dynamics are not known beforehand, introducing additional
complexities. In this setting, the combination of an unknown model, partial observability, and inherent
inexactness of approximate abstractions makes it difficult to evaluate abstractions in advance, making the
ability to dynamically update abstract models during learning crucial. To address this challenge, we propose
to automatically construct abstractions based on the hypothesized connectivity of state factors to the reward
function and leverage the Bayes-adaptive framework to adapt the abstract model over time. A key feature
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of our approach is its ability to maintain a belief over multiple candidate structures and their corresponding
abstract models, ensuring consistent belief updates of the (abstract) models.

Our work represents a novel step toward combining abstraction with BRL in F-POMDPs. Empirically,
we demonstrate that abstraction improves performance in two critical ways: (1) by reducing model size,
allowing for more simulations within a given computation time, and (2) by simplifying the learning problem,
leading to faster learning and improved performance in fewer episodes. These findings highlight the potential
of abstraction to address key challenges in BRL for F-POMDPs and open a promising direction for future
research into leveraging abstractions to improve scalability, exploration, and decision-making in complex,
real-world environments.

2 Background

In this section, we introduce the rich body of literature that our work builds upon. In particular, section 2.1
introduces the POMDP as the general mathematical model for sequential decision-making. We then describe
(model-based) Bayesian reinforcement learning in factored POMDPs in section 2.2, which is a (belief-space)
Partially-observable Markov decision process itself. Lastly, we discuss algorithmic approaches for solving
these decision problems in section 2.3.

2.1 POMDPs and Factorization

Sequential decision-making in stochastic domains with hidden states can be formalized as a
POMDP (Boutilier & Poole, 1996; Kaelbling et al., 1998). The POMDP is defined by the tuple
(S,A,0,D,R,v,H), where S, A, and O are the (discrete) set of states, actions, and observations, respec-
tively. The dynamics D specify the system’s transition probabilities D € D: (S x A) = A(S x O), and R:
(S x A xS) — R is the reward function. The (maximum) number of time steps in an episode is the horizon
H € Z, and « € [0,1] is the discount factor.

The goal of the agent is to maximize the discounted return, >, v'r;. To do so, it can use the observable
action (a € A) and observation (o € Q) history h; = (ag,01,...,a:-1,0¢), or it can use the belief as a
sufficient statistic. The belief is the probability distribution over the current state b € B: AS, which can
be updated with Bayes’ rule: V'(s") = 7(b,a,0)(s") o< >, D(s",0[s,a)b(s). However, in most problems, the
computation of the belief update is intractable. Section 2.3 will cover how to find a solution.

Running Example As a simple intuitive example, consider the Corridor domain shown in fig. la. The
agent starts at the “Start” location and its goal is to reach the “Reward” location. As depicted in the figure,
there is also a “Boots” location and a “Button” location. To reach the reward the “Door” must be open.
There is also always a “Person” present in the environment. There are 8 different persons, with exactly one
present during each episode. The probability of the person opening the door at some point during an episode
varies depending on which person is present, but this probability is generally very low, ranging from about
1.25% to 10%. The agent cannot interact with the person.

The state consists of the location of the agent, the person present and the binary statuses of the boots,
button, and door. The agent has four actions: move left or right, put on boots, push button, and lock pick
the door. Moving left or right succeeds 30% of the time without boots and 95% of the time with boots. The
probability of success for both put on boots and push button is 90%, provided the agent is in the correct
location. When the button is pressed, there is a 100% chance that the door opens. The lock pick action
only has an effect when the agent is standing next to the door and has a 40% chance of success. The agent
can also open the door by “bashing” into it, specifically by using the move right action to collide with the
door. This method is not very effective and has only a 5% chance of opening the door. The state is not fully
observable to the agent; instead, it receives a noisy observation, which will be explained later.

Factorization The dynamics of POMDPs can often be captured efficiently through factorization and
graphical models, such as Dynamic Bayes networks (DBNs) (Boutilier et al., 1999; Murphy, 2002). Through-
out this work, the graphical model we rely on is specifically a two-stage DBN (Boutilier et al., 1999). Such



Published in Transactions on Machine Learning Research (06/2025)

Start | Boots [Button Goal
0) 4
(@)
DBN of the true Corridor environment Abstracted models (kp, ky and ko),
constructed from the true Corridor DBN.

TN\ //'A N VR ko TN\

( X X ) ( X )

" - N4 N
N\ —\
( Boots | Boots |

N ;/ Reward
O\ 7 O\
| Button f Button |
\k 4 \__
)\ A
\\ Door Door |
N _
—~ \
(Person | {Person |
\_/ _/
(b)
DBN of a particle representing the belief Abstracted models (kj, k; and ko) used for planning,
P P 9 constructed from the particle DBN.
TN ko TN

[ x X )
N N2

(e)

Figure 1: a) The Corridor domain. b) ground truth graph representing the dynamics of the Corridor
domain for the action right. All the factors are partially observable, the agent gets an independent but
noisy observation of each state factor. ¢) The abstract models for different levels of abstraction (denoted
by ko, k1, k2), constructed from the true Corridor DBN for the action right. d) We use particle filters to
represent the belief, each particle contains a DBN of the corridor, this is an example of such a DBN, and e)
the abstract models constructed from this example DBN.

models represent random variables by their features (also referred to as factors) and provide the ability to
capture independence between these features. We assume that the full set of state factors and their (discrete)
set of possible values is known.

A Bayes network (BN) is defined by a topology and conditional probability tables (CPTs). The topology
G € G describes the structure of the nodes in the graph, whether there is a dependency between pairs
of nodes, where G is the set of all possible edge configurations. These directed edges define the parents
Pa(z}; G) of each node z) as the set of incoming nodes (where we typically drop the dependency on the
topology G in the notation). The CPTs 6 € © govern the conditional probability distribution of a node
given the full set of nodes z : p(x}|zr) = p(z|Pa(z}; G);6;).! In discrete environments, for example, these
typically are categorical distributions; one for each parent value combination for each node. The Dynamic
BN (DBN) restricts the space of graph topologies by allowing only directed edges from variables at one time

1Here, = denotes the full set of nodes, and Pa(z;; @) C z is the subset that directly influences z;
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step to variables at the next. This is convenient for (Markovian) dynamic systems, where random variables
change over time. The Factored POMDP (F-POMDP) factorizes the state and observation space into nodes
and describes the dynamics with a DBN for each action (Boutilier & Poole, 1996) (e.g., see fig. 1 as a DBN
of the running example). In this work, we propose to learn abstract models that remove factors from the
graph based on the reward node’s dependency on them.

Bayesian inference over DBNs When the parameters of a model are not given, the Bayesian approach
is to assume a prior (to compute posteriors) instead. The DBN is defined by — and thus a prior must
describe a probability distribution over — its topology and CPTs. The prior over the topology assigns a
(prior) probability to each graph structure: the probability that a next state and observation factor depends
on a current state factor. The CPTs are categorical distributions and, hence, the Dirichlet distribution is a
natural prior (Frigyik et al., 2010). Dirichlet distributions are parameterized by a collection of conditional
count tables (CCCT), with one conditional count table (CCT) x € X for each unique set of parent values
for each node.

Given initial counts specified by a prior and data from a categorical distribution, the posterior is again a
Dirichlet (with new counts CCCT). In particular, given a topology G, prior CCCT and a new data point
(z,2'), the Bayesian posterior is computed by incrementing the count x.: .[pa(2;) of each node z; that is
associated with its parent’s values z[Pa(z’)]. This incrementing operation on POMDP transitions will be used
frequently and we denote updating counts x € X given a transition (s, a, s’,0) withU: (X xSx AxSx Q) —
X. Note that there is no closed-form solution to the posterior over topologies.

2.2 Factored BA-POMDPs

If the state transitions were not hidden, one could simply maintain a set of the counts CCTs associated
with each transition and over time converge to the true dynamics. This is the case under full observability
(MDPs), and is called the Bayes-Adaptive MDP (BA-MDP) (Duff, 2002). Unfortunately, this is not the case
in partially observable environments?, and hence, there is uncertainty over these counts x.

The Factored Bayes-Adaptive POMDP (FBA-POMDP) (Katt et al., 2019) captures this uncertainty by using
the POMDP formalism. In particular, this Bayes-adaptive model is a POMDP whose state space consists of
both the state and the dynamics of the original POMDP (Ross et al., 2011). Formally, the FBA-POMDP is
a tuple (S,A,Q,D, R, v, H), where S is the augmented state space: S =S x G x X. Le., each (hyper-)state
$ € S contains a domain state s, a topology G, and a CCCT x: § = (s,G,x).% The action and observation
spaces, the horizon, and the discount factor are taken directly from the original POMDP. Similarly, the
reward function relies on the underlying system: R($,a,$') = R(s,a,s’). Note that, while this function is
typically assumed known in BRL, we also conduct experiments in which this too is uncertain. Lastly, the
dynamics D dictate how augmented states transition:

D =p(s',0,G,X'|s,a,G, X) (1)
= p(sla 0|57 a; Ga X)HG(G/)]IX’ (U(X7 S, a, 8/70))? (2)

where p(s’,0ls,a; G, x) can be written as:
p(s's0ls, a; G, x) = p(s's, a; G, X)p(ola, §'; G, X). (3)

In equation 2 the term p(s’,0|s, a; G, x) shows that the model (G, x) in state $ determines the probabilities
of the next state s’ and observation o. The 1.(-) is the indicator function, and encodes that there is only one
non-zero transition, namely where the next topology equals the previous G’ = G and the next counts are
increments of the previous according to . Since the POMDP is fully specified, the original learning problem
is cast to a planning problem with known dynamics, given a prior pp. Most importantly, the exact solution

2In an MDP we see the whole transition (s,a,s’), so we can update the count x(s, a,s’). In contrast, both s and s’ are hidden
in the partially observable case. So we have to update x(s,a,s’) based on our belief resulting from the action-observation
history rather than the real transitions.

3In Section 3, we extend these hyperstates to incorporate an abstract model, comprising an abstract topology G and a
corresponding abstract set of counts x.
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to this planning problem yields the optimal policy, in terms of exploration-exploitation, with respect to the
prior (Ross et al., 2011). Now we can apply our standard POMDP planning tools (e.g., particle filtering,
planning) to FBA-POMDPs, as anytime solvers provide good approximations which converge to the exact
solution in the limit of infinite compute (Silver & Veness, 2010; Katt et al., 2017; 2019).

2.3 Solving FBA-POMDPs

Unfortunately, FBA-POMDPs are very large, and naive applications of planning techniques will fail. Specifi-
cally, methods that require exact belief updates cannot be directly applied, as these updates are only feasible
with a finite POMDP representation, which is impractical for large problems. This limitation makes it diffi-
cult to apply traditional POMDP planning methods without significant modifications. We give a high-level
description of how solutions for FBA-POMDPs can be found, and refer to the original work (Katt et al.,
2017; 2019) for details. Just like in any other POMDP, a planning solution requires two components: belief
tracking and action selection.

Belief tracking in the FBA-POMDP The belief, the posterior over the current state, is a probability
distribution over the POMDP state and its distribution b € A(S x D) given the observed history h; =
(ag,01,...,at—1,0¢). Unfortunately, the computation of the belief update is intractable in most problems.
Thus, the belief is often approximated with particles instead (Thrun, 1999). A particle filter represents a
distribution through particles, which in this case represent FBA-POMDP states, specifically each particle
is a weighted FBA-POMDP state (w, s, G, x) with (unnormalized) weight w € R*. There are numerous
sampling mechanisms for updating the belief given a new action-observation pair (Thrun, 1999), but in this
work we applied sequential importance sampling and re-invigorate the belief with a Metropolis-Hastings-
within-Gibbs sampling procedure (Katt et al., 2019) when necessary (details in appendix A). The initial
particles are sampled from a prior belief, which may encode varying degrees of domain knowledge. Across
experiments, we consider different settings in which parts of the DBN structure or certain CPTs are assumed
to be known, while others are learned from data. Details on the prior knowledge used in the experiments
can be found in section 4 and appendix D.

Action selection in the FBA-POMDP Even with approximated belief updates, the belief space can
be very large, especially in high-dimensional problems. Thus it is often infeasible to compute the action that
maximizes the discounted return for every possible belief the agent could end up in. As a result, we extend
the planner for FBA-POMDP (Katt et al., 2019) to pick actions online instead. Like any Monte-Carlo tree
search (MCTS) method, this method incrementally builds a look-ahead tree of simulated interactions in
the (FBA-POMDP) environment. Each iterations samples a (hyper) state (s, G, x) ~ b and simulates an
interaction in the FBA-POMDP, where actions are picked according to Upper Confidence Bounds Applied
to Trees (UCT) (Kocsis & Szepesvéri, 2006) to trade-off exploration and exploitation. For more details,
see (Browne et al., 2012) for a survey on MCTS, (Silver & Veness, 2010) for MCTS in POMDPs, and (Katt
et al., 2017; 2019) for MCTS in Bayes-Adaptive POMDPs (BA-POMDPs).

2.4 State abstraction for (factored) MDPs

State abstraction can be used to simplify complex problems by mapping the original state space to a smaller
abstract state space (Li et al., 2006). This mapping is defined by an abstraction function ¢, which maps
each state s to an abstract state s, where the bar notation indicates the abstract state space. Related to
our abstraction approach is the notion of model-similarity abstraction. This comes in both an exact form,
model-irrelevance abstraction (Li et al., 2006), and an approximate form, approximate model-similarity
abstraction (Abel et al., 2016). These abstractions are also known as (approximate) stochastic bisimula-
tion (Dean et al., 1997; Givan et al., 2003).

In the exact case, states are grouped if and only if they yield identical rewards and transition functions in
the abstract space under all actions. Formally, in a model-irrelevance abstraction, ¢(s1) = ¢(s2) if and only

4The original POMCP (Silver & Veness, 2010) implementation combined these steps to some extent, but we separate them
out.
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if
vaGA R(Sla (l) - R(527 a’)ﬂ (4)
and Vg, cg T(5'[s1,a) = T(5']s2,a), (5)

where the transition probability to an abstract state 5" is given by T'(5'|s,a) == > . T(s'[s,a). In the
approximate case, these equalities are relaxed, requiring that the reward functions and transition probabilities
to any abstract state §' differ by no more than a small parameter 7. Exact abstractions preserve optimality,
that is, a solution in the abstract MDP is an optimal solution in the original MDP. Approximate abstractions
do not preserve optimality, but have a bounded loss in value based on the value of n (Abel et al., 2016).

In Factored MDPs (F-MDPs), Dearden & Boutilier (1997) suggest leveraging the structure of the problem to
remove factors which are less relevant or irrelevant. An abstract MDP can be constructed from the remaining
factors. Such an abstraction can be viewed implicitly as a mapping function ¢, where each configuration of
the retained factors defines an abstract state, and all corresponding combinations of the removed factors are
mapped to this same abstract state.

3 Abstraction for FBA-POMCPs

FBA-POMCP is able to learn and exploit the structure in POMDPs in a Bayesian way. However, it struggles
when the number of factors grows large. On the one hand, the presence of many state factors itself slows
down sampling, potentially leading to insufficient simulations to derive adequate actions. On the other hand,
the prior belief over models with many state factors typically have low probability for models in which all
factors have a small number of parents. As a consequence, the particle filter typically contains models that
have at least a few factors with many parents. This leads to slow learning (low statistical strength) and
possibly to exploration of factors with little or no effect on the rewards. These issues are problematic because
our primary focus is on the task performance, rather than on learning the correct model itself.

A natural idea, therefore, is to explore in how far abstraction can address these two issues. While abstractions
could lead to inaccurate models, in the regular (non-Bayes adaptive) planning case, it has been demonstrated
that abstracting away factors with a weak influence can still improve the performance of online planning (He
et al., 2020). Further, without abstraction, the agent could waste time exploring the dynamics of factors
with little impact on the performance, if they are falsely believed to be influential. By removing these
factors, abstraction can reduce unnecessary exploration and focus on the factors relevant for performance.
As such, we propose to explore the impact that abstraction of state factors can have when learning in
partially observable settings, formalized as FBA-POMDPs.

Specifically, we propose to perform the Partially Observable Monte-Carlo Planning (POMCP) simulations
with an abstracted FBA-POMDP model. We hypothesize that such abstraction can improve performance
by 1) increasing the number of simulations that can be done thus improving performance in online planning,
and 2) reducing unnecessary exploration of factors with little impact on the performance, and allowing to
focus exploration on the relevant factors.

We cover the combination of abstraction with FBA-POMCP in four parts. First, we give a high-level overview
of the abstraction method and how it is added to FBA-POMCP. Second, we define abstractions on different
levels, denoted by ko, k1, ..., where kg represents the coarsest abstraction. We define these through subsets of
state factors and show how to generate a subset of state factors from a graph structure for a particular level
of abstraction. Third, we show how to use the subset of state factors to construct the abstract structure and
counts. Finally, we provide theoretical support for the combination of FBA-POMCP with abstraction.

3.1 Adding Abstraction to FBA-POMCP

We propose a method to enable the FBA-POMDP framework to benefit from abstraction. Specifically, we
use abstract models for online planning with a variant of FBA-POMCP. To operationalize this, we cover the
following steps:

1. We expand the representations to include abstract states.
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Algorithm 1 Initialize Abstract Particle Filter Algorithm 2 Abstract
1: Input: pg,: prior over initial state 1: Input: k: abstraction level
n: number of desired particles $ = (s,G, x): hyper-state
k: abstraction level 2: @ + GetSubsetK(k, G)
2: fori€0,...,ndo 3 G+ G
3 (84, Gis Xi) ~ Do 4 X =X
4: (53, G4, x4) < Abstract(k, (s;, Gi, Xi)) 5: for (¢,a) € Q@ x A do
5. w; < % 6: G, X < q.MarginalizeCounts(G, ¥, Q, a)
6: end for 7: end for
7. return {s;, C_v’i,thi}?:o 8 forz e G—Q do
9:  G.remove(z) // Remove factor
10:  y.remove(x) // Remove factor
11: end for
12: return (5,G, )

2. While we do not exploit abstraction in the belief update, the abstracted belief state still needs to
be updated. We cover the necessary modifications to the belief update process.

3. Finally, we explain how FBA-POMCP can use abstracted states.

Expanding the Belief Representation When initializing the weighted particle filter in FBA-POMCP,
each particle is a hyper-state $ = (s, G, x) associated with a weight w. The hyper-state $ contains a ground
state s, a graph structure G, and a set of counts x. For the initialization we require a probability distribution
over the possible starting states, over the possible structures, and a probability distribution over the counts
given a structure. For the running example, fig. 1d shows a possible structure of a hyper-state, in this case
the factor Door is not believed to influence the x factor, and the factor Button is not believed to influence
the Door factor. When combining FBA-POMCP with abstraction, we abstract G and x and add the
resulting abstracted structure G and counts ¥ to each hyper-state 5. This leads to an abstract hyper-state:
5= (s, G, X). The particle filter thus stores both the original hyper-state $ and the abstracted structure G
and counts y. The construction of the abstract hyper-states is done during the initialization of the particle
filter, as shown in algorithm 1.

For our running example, fig. le illustrates the structure G for different levels of abstraction, corresponding
to the original structure G in fig. 1d. In algorithm 1, the function Abstract creates the abstract model from a
hyper-state §, as detailed in algorithm 2. In the following sections we elaborate on the methods for selecting
a subset based on the level of abstraction k& and on creating the abstract G and .

The Belief Update Process To ensure consistency of the belief, we use the full model (G and x) during
the belief update (Russell & Norvig, 2016; Katt et al., 2019), as described in sections 2.2 and 2.3. This means
that the belief update process remains largely the same. The main difference is that we now track and update
both the full and abstract models, as shown in algorithm 3. As in section 2.2, the graph structures of both
the full and abstract models stay the same during the update. The counts x are updated via U. Since each
state maps to exactly one abstract state, the abstract counts y can be updated through the update of the
counts x. Essentially, the (abstract) graphs remain unchanged, while the (abstract) counts are updated.

Using Abstracted States in FBA-POMCP The planning process exclusively uses abstract models.
Specifically, in Algorithm 8, the abstract representation is used to perform the environment Step function,
which is utilized during simulations and roll-outs in the look-ahead tree search. The Step function uses the
hyper-state with the abstract model and an action to sample a next abstract state by iteratively sampling
the factors. It is shown in Appendix B.

The benefit of using an abstract model is that it speeds up planning since it contains fewer state factors,
allowing for fasting sampling of the next state. When there is limited time for planning, this is one way in
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Algorithm 3 SIS with Abstraction Algorithm 4 GetSubsetK
1: Input: {$,G, X, w}?y: current (weighted) filter 1: Input: k: abstraction level
a,0: action and observation G: Graph structure.
2: fori€0,...,n do 2: @ < GetMinimumSet() // ko, the IR factors
3. st ~p(lsi,a; Gy xi) 3: if kK == 0 then
4: wh <+ w; x plo|sh, a; Gy, i) 4:  return @
5. X Uy 8iya,8;,0) 5. end if
6: X, U(Xi, 84,0, 8,,0) 6: Q'+ Q
7: end for 7. for L=1; L <k; L++ do
8: // Normalize & re-sample 8: for (¢g,a) € @ x Ado
9: return {s}, Gy, x}, Gi, Xow! ™, 9: Q' + Q' U G.getNode(q, a).parents()
10:  end for
11: Q<+ Q'
12: end for
13: return @

which abstraction can improve performance. It is important to note that the abstract models are constructed
at the beginning of the agent’s lifetime, when its belief is initialized. As a result, these abstract models are
always available.

3.2 Abstraction Via Subsets of State Factors

We introduce a method for performing abstraction in the Bayesian RL (BRL) context. Since we are interested
in understanding how abstraction impacts the learning process, we base our approach on a relatively simple
planning method for F-MDPs (Dearden & Boutilier, 1997), which is easy to understand and analyze. We
make three important adaptations: 1) we make it applicable to partially observable problems, 2) we extend
it to the RL setting, where the abstraction is not only used for planning but also for learning, and 3) we
incorporate the counts required in BRL. Our approach introduces a level of abstraction that determines the
factors to include based on the graph structure.

We define different levels of abstraction based on their connection to the reward in the graph structure. Each
abstraction level is defined by a set of state factors that is included in the model, observation factors are
always kept in the model. After abstraction, this can lead to observation factors without parents, we explain
how we deal with this in section 3.3.4. We start building abstractions from the factors directly influencing
the reward, the immediately relevant factors (IR). We first give a formal definition and then illustrate it with
an example.

Definition 1. The set of immediately relevant factors (IR) contains only the factors q € G that directly
influence the reward. Specifically, these are the factors that are parents of the reward, denoted as Pa(reward).
The smallest subset of state factors kg is equal to IR, kg = IR. The set k; is the smallest set such that the
following holds:

1. ki—l - kl
2. If q € ki—1 then Pa(q) € k;.

The set ks refers to the full model.

In the running example, we see an example of a structure in fig. 1d. In this problem, the agent only receives
a reward when it is in the goal location, i.e., z = 4. This is reflected in the graph structure where the only
parent factor of the reward is x. In this case, x is the only IR factor and the abstraction k¢ only contains x
as shown in fig. le. To construct the subset of state factors for k,,, we add the parents of the factors in k,,_1.
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So to see which factors to include in k7 in this example, we check in fig. 1d which factors are parents of x.
In this case, that is only Boots. Finally, for ko, no new factors are added since in the structure in fig. 1d the
parents of Boots do not include any factors not yet in the set of k.

The procedure to get the subset of state factors for a given level of abstraction k and a particle (or hyper-
state) $ is shown in algorithm 4. First, it initializes a set @ with the set IR, retrieved with GetMinimumSet.
For abstraction level kg, this is what is returned immediately. For higher levels, it then builds the subset
incrementally by adding the parents of the factors in Q. That is, to construct the subset of state factors k,,
it starts with k,_; and then adds the parents of these factors.

When the reward function is known, the function GetMinimumSubset directly returns the set IR. When the
reward function is unknown, the reward itself is also modeled as a state factor that takes the same value as
the reward. Uncertainty about the reward function can then be incorporated in the belief, and hyper-states
may end up with different graph structures for the reward. The IR can then be retrieved by finding the
parents of the reward state factor. We demonstrate that our method can deal with uncertainty about the
reward and IR in section 4.4.

3.3 Abstract Model Construction

After retrieving a subset of state factors, we construct the abstract model. Since the abstraction uses only
a subset of the state factors, this involves removing factors, and therefore we need to decide how to treat
factors that have missing parents as a result of this. To illustrate, when we abstract a full model such as the
one in fig. 1d to create the abstract model on level ky ( fig. 1le), we remove Boots and create a distribution
for x with only z itself as the parent factor. The question then is how we can define a CCT that does not
depend on ’Boots’ from the original one that does.

For probability distributions in known models it is logical to resort to marginalization. However, in sec-
tion 3.3.1 we show that the problem is more deeply rooted: marginalization leaves us with a term that is
difficult to specify since it depends not only on the values of its parents but also on the policy, and it can
change over time. As such there is no fundamentally right approach to do this form of abstraction. Instead,
novel ideas and approximate approaches are needed. We explore two initial ideas for this form of abstraction
in sections 3.3.2 and 3.3.3. In section 3.3.2 we make an assumption on the abstraction and show that we can
simply aggregate the counts in that case. In section 3.3.3, we motivate using approximate abstraction and
discuss potential issues that arise with the approximation.

3.3.1 Marginalization of Probability Distributions

Before considering the case of CCTs, we treat the case of probability distributions. For a probability distri-
bution, given a factor X with a set of parents Parents(X), we can marginalize out a parent Y or a set of
parents. For ease of notation, we show the marginalization for one parent, multiple parents can be removed
by repeating this process:

P(zilz) =y P(xi,y;l2) (6)

=Y Pxi | 2,y;)Ply; | 2), (7)
Yj
where z = (21, 22,...,2,) denotes the realization of Parents(X) \ Y, while z; and y, represent a specific

realization of the factors X and Y. The term P(y; | z) acts as a weight for the contribution of P(z;|z, y;)
to the marginal distribution P(z; | z).

However, estimating P(y; | z) for a DBN is nontrivial. In the running example, consider the probability of
moving from z = 1 to 2’ = 2 after taking the action right. The sampled model in fig. 1d only has the factors
2 and Boots as parents of z, and the abstract model kg (fig. 1e) does not include Boots. Following equation 7,
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we can obtain the marginal distribution for x by summing over the separate values of Boots:

Pright (g |2) = Z Pright (g |z, b) P (b|z). (8)
be Boots

However, while the probabilities P"9"*(z'|x,b) are well defined (e.g., P"9"(z' = 2|1,b = On) = 0.95), the
value of P(b|x) is not as clear. This probability represents the likelihood that the boots are on given a
specific location x. However, it does not depend solely on z itself. For instance, we might know that the
probability of the boots being on is 0 at the start of the episode, but this probability generally depends on
the history of actions and observations. In general, we can make the following observation:

Observation 1. Accurately estimating P(y|z) without additional information is generally not possible. This
is because y can depend on other variables, including itself, and on the policy that can change over time.

The view of P(y|z) as a weight in equation 7 is related to the concept of a weighting function in work on state
abstraction (Dearden & Boutilier, 1997; Li et al., 2006). Theoretical work shows that, for some abstractions,
a policy based on the abstract model (with any weighting function) can perform well in the real problem in
planning (Li et al., 2006; Abel et al., 2016; Congeduti & Oliehoek, 2022) and in RL (Starre et al., 2023).
For probability distributions, Dearden & Boutilier (1997) use a sort of average of the probabilities but also
remark this can lead to suboptimal solutions. The best way to approach estimating P(y|z) for the optimal
performance is still an open problem.

3.3.2 Beliefs and Aggregating Counts for Exact Abstractions

In the previous section we discussed the problem of dealing with conditional probability tables (CPTs) where
parents are abstracted, leading to dependence on the policy and history for estimating P(y|z) in equation 7.
In this section, we begin by considering a simplified setting where the abstraction is assumed to be exact.
This assumption allows us to sidestep the difficulty of estimating P(y|z) and to introduce the CCCT more
cleanly under idealized conditions. This assumption is made only in this subsection to clarify the conceptual
difference between exact and inexact abstractions. The more realistic and interesting case is when the
assumption does not hold, which we address in section 3.3.3.

One situation where abstraction makes sense is when the model is overspecified; it contains links that are
unnecessary. This is the case when the abstract model probabilistically behaves in the same way as the full
model, which is what we assume in this subsection:

Assumption 1. The abstraction is exact. That is, let Z be the set of removed parents for a factor X, let
z = (21,22,...,2n) denote a specific realization of the remaining parents Parents(X)\ Z, and let zjemoved
and z5™°v° be two different realizations of the removed parents Z. Then, for all realizations x; of X, we
assume:

P(wi|z) = P(xi|z,27"") (9)
= P(x;|z, z57moved). (10)

This assumption implies that the links between the removed parents and the corresponding child node were
obsolete. For instance, consider a change in the running example where the boots would have no effect on
x, then this would mathematically mean that P(z'|z, Boots = On) = P(2'|z, Boots = Off). We observe:

Observation 2. Under assumption 1, P(y;|z) has no influence. That is, since

P(xilz) = P(xiz,y;)P(y;]2) (equation 7) (11)
= Yyey : P(zi]2,y). (12)
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Thus, if boots had no influence, data collected with boots on and off can be used to estimate P(z’'|x). For
example, consider the conditional counts x(z’|x = 1, Boots) in table 1.

Observation 2 means that, to marginalize in the CCCT, we no longer have to be concerned about P(y,|z).
Which means that in table 1 we can aggregate the counts in the columns, formally:

X(x;|z) = ZX zi|z,y;)- (13)

For example, to determine the conditional counts in table 1, we apply equation 13 to construct the abstracted

Table 1: Initial conditional Table 2: Count table after ag- Table 3: Count table after ag-
count table, for x = 1 and ac- gregation, for x = 1 and action gregation and normalization, for
tion right. right. x = 1 and action right.
Boots | ' =1 | 2/ =2 ‘ =1 ‘ ' =2 ‘ =1 ‘ =2
On 2 8 | 246 =8 [ 8+4 =12 [ 1/2+8=4]1/2%x12=6
Off 6 4

(or marginalized) counts Y from the original counts x. This is done for every action by aggregating the counts
as follows:

>Zfr‘ight /|J3 Z Xmght ,|$ b) (14)
be Boots

Writing out equation 14 we obtain the counts Y"9"!(2/|z = 1) after aggregation:

)Zrzght(x *1|£B—1 Z szght(x —]_‘xfl b)—2+6—8 (15)
be Boots

and Y@/ =2z =1)= Y ¥ =20 =1)=8+4=12. (16)
be Boots

The resulting conditional counts are shown in table 2. Note that now the resulting row has counts ({8,12})
which are higher than the individual previous rows for Boots On ({2,8}) and Off ({6,4}). This implies that
after abstraction we are (relatively) more confident about these transitions than before. Under assumption 1
this does not have a large influence when the prior is close to the true distribution, as in that case these
estimates should be close together. However, this could be different when the abstraction is not exact or if
the prior is not close to the true distribution.

3.3.3 Aggregating Counts for Approximate Abstractions

Previously, we assumed that the abstraction was exact. Of course, this may not always be the case, or
it may not be necessary to make this assumption. There exist scenarios where one could argue for the
use of approximate abstractions (Dearden & Boutilier, 1997; Abel et al., 2016; Starre et al., 2023). For
example, in cases where a parent only has a small influence, abstracting these parents away can lead to
faster learning (Starre et al., 2023). Additionally, reducing the size of the model through abstraction can
enhance performance by facilitating faster planning (He et al., 2020).

However, when the abstraction is not exact, observation 2 no longer holds. Specifically, with an approximate
abstraction, P(x|z,y) generally varies for different instantiations of y. Consequently, P(y|z) does influence
the result. In this case, abstracting a candidate model could result in a probability distribution that deviates
significantly from the behavior of the candidate model.

As an example, consider again the running example where with Boots = On we have a probability of moving
of 95% and with Boots = Off only 30%. Table 1 shows are initial estimates where Boots is still included,
counts of {2,8} and {6,4} for Boots = On and Boots = Off, respectively. These are reasonably accurate
with, if we translate the counts to probabilities, an expected 80% and 40% chance of moving, respectively.

12
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However, when Boots is removed we see in table 2 this leads to counts of {8,12}, or an expected probability
of moving of 60%. With Boots being removed from the model the agent is highly likely to be in a state with
Boots = Off, and thus this leads to an overestimation of the probability of moving for the agent.

As alluded to in the previous section, the abstraction also increases the confidence in the resulting counts.
When the abstraction is not exact, we could say that the increased confidence in the resulting counts is
not warranted, there is overconfidence. This overconfidence can slow down learning since it will take more
experience to change the belief. For example, the change in table 1 of adding an extra observation to the row
with Boots = Off has a relatively larger effect than adding one extra observation after aggregation in table 2.

This means that the proposed aggregation in equation 13 does not work as well when assumption 1 does
not hold, since it can lead to incorrect estimations with a higher confidence. As such, we want to adapt
the aggregation method. It is still an open question what the best way to aggregate when using
approximate abstraction.

We propose a way to reduce the overconfidence in the resulting dynamics through a normalization
scheme, which should lead to quicker learning in cases where the prior and abstraction are biased. Let
Z =Y1,Ys,...,Y, denote the set of removed parents. To normalize, we multiply each entry by

1
Hyez |dom(Y)[’

where |dom(Y")| represents the number of values that the parent Y can take. For example, in the case of the
position x from the running example, we have |dom(z)| = 5.

(17)

Using x to represent normalized counts, applying the normalization factor equation 17 to equation 13 results
in:

. 1
X(@ilz) = m Z x(@ilz, y1, 92, - -, Yn)- (18)
Yez (1,92, Yn) EYI X Va2 X X Yy

Intuitively, the proposed normalization scheme reduces the counts proportionally to the amount of rows that
is removed during aggregation. Applying equation 18 to the example where we remove Boots this leads to:

, 1 , 1
VM =1 =1) = e > (@ = 1r=1,b) = =(2+6) =4 19
e l==1) |d0m(Boot5)|beBootsX (= v =1.0) 2< +6) =4, (19)

, 1 , 1
A =20 =1)= ————< > Y@ =2r=1b)=-(8+4) =6 20
and X = ) |d0m(300t8)|beBootsX (@ = b) 2( +4) ’ (20)

also shown in table 3.

By applying the normalization of equation 17 the amount of counts in the table after aggregation is equal to
the average amount of counts in the initial prior. For example, in table 1 the counts in the rows both sum
up to 10, and the counts after the aggregation and normalization also sum up to 10 (table 3).

The proposed normalization provides a robustness against mistakes in the prior and approximate abstrac-
tion, by lowering the impact that the prior has on the learning. In our experiments, we investigate this
normalization scheme, showing that this can significantly speed up learning.

3.3.4 The Observation Space for Abstract Models

Since we remove state factors from the model in the abstraction, a natural question is how we deal with the
observation factors. We can consider two cases, 1) where a part of the parents is removed, and 2) when all
the parents are removed.

In the first case, we simply perform the aggregation in the same way as for the state factors. It is the second
state that poses a problem, as it leaves us with no parents for the observation factor. Since in this case the
observation would provide no actual information about the underlying state, we enhance the observation
space of the abstract model by including an observation “not observed” for all observation factors. For
observation factors where all parents are removed the observation function simply returns “not observed”.
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3.4 Theoretical Support

Here we will show how the combination of FBA-POMCP with the abstraction method can lead to near-
optimal performance when the abstraction is good. We first show that transforming the original FBA-
POMDP with the abstraction method results in another FBA-POMDP. Because of this, the theoretical
guarantees of FBA-POMCP apply to the abstracted problem. Then we give a definition for the quality of
the abstraction that gives a guarantee on the performance in the original FBA-POMDP. Together this shows
that abstractions leads to near-optimal solutions with FBA-POMCP, when a good abstraction is used.

First, we note that the abstraction results in another FBA-POMDP:

Lemma 1. The result of applying the abstraction method, as described in algorithm 2 and section 3.3, to
the original FBA-POMDEP results in another FBA-POMDP, the abstract FBA-POMDP.

In appendix C, we present a constructive proof. In essence, abstraction reduces the state space and marginal-
ization produces a dynamics function for the resulting state space. Lemma 1 implies that we can use POMCP
to find a near-optimal solution with respect to the belief in the abstract FBA-POMDP, due to the following
result:

Theorem 1 (Katt et al., 2019 ). Given a belief b(s, G, x), FBA-POMCP converges to an e-optimal value
function of a FBA-POMDP: V (b,a) £ V*(b,a) — e.

The bias of the value function, €, can be made arbitrarily small by increasing the maximum search depth.
If there is no limit on the search depth, the bias € is O(%) in the limit of the number of simulations n
starting from the belief b (Silver & Veness, 2010).

The question that remains is, how good is the solution for the abstract FBA-POMDP in the original FBA-
POMDP? In general, the quality of a solution when using abstraction depends on the type and quality of
the abstraction (Dearden & Boutilier, 1997; Abel et al., 2016). We define the quality 7 of the abstraction
as the upper bound of the difference between optimal value function of the original FBA-POMDP and the
value function of the original FBA-POMDP under a e-optimal policy for the abstracted FBA-POMDP:

Definition 2. An abstraction has a quality n, s.t. every e-optimal solution w of the abstract FBA-POMDP
applied to the original FBA-POMDP has suboptimality bounded by € + n:

V(b,a) € Bx A: |V*(bya) — V7™ (ba)| <e+n. (21)

This definition is based on existing suboptimality bounds for abstract models such as the approximate model-
similarity abstraction (Dearden & Boutilier, 1997; Abel et al., 2016), discussed in section 2.4. Informative
bounds can be derived, for instance, by assessing how well the abstract model can approximate the original
model (Dearden & Boutilier, 1997; Starre et al., 2023). In the case of approximate model-similarity abstrac-
tion, the parameter 7 is small when the grouped states have similar transition and reward functions. Recent
work shows that, in the context of learning with abstraction in MDPs, this type of abstraction can yield
such bounds (Starre et al., 2023). Analogously, in POMDPs, similar results could be expected to hold if the
dynamics of the abstract model closely resemble those of the true model. Extending the findings in the fully
observable to the partially observable setting could be feasible by incorporating learning of the observation
function and applying a simulation lemma for POMDPs (Lee et al., 2023).

When combined with Theorem 1, definition 2 implies that combining FBA-POMCP with abstraction leads to
a near-optimal solution for the original FBA-POMDP, particularly when the abstraction effectively captures
the dynamics of the original problem (i.e., when 7 is small):

Corollary 1. Given a belief b(s,G,x) and an abstraction, assuming there exists an n for which equation 21
holds, FBA-POMCP combined with abstraction converges to an € + n-optimal value function of the original
FBA-POMDP: V™ (b,a) £ V*(b,a) — (e +n).

Proof. By lemma 1 the problem after abstraction is still an FBA-POMDP. By theorem 1, we can use FBA-

POMCEP to get a policy m within € of the optimal solution of this abstract FBA-POMDP. Then, by definition 2
this leads to a solution within € + 1 of the optimal solution of the original FBA-POMDP. O
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Figure 2: a) Performance in the Corridor domain. The learning behavior in the Corridor domain is shown
for different models: b) ko, ¢) k1, and d) kine. The y-axis shows the percentage of runs in which a certain
behavior or occurrence happened during each episode.

This result shows that we can reach near-optimal performance in the original problem with good abstractions,
but that better performance can be achieved in theory without abstraction when n > 0. However, in practice
abstraction could perform better through faster simulations, and it could get to a good performance more
quickly through greater statistical strength due to aggregation.

4 Experiments

We aim to investigate three questions; 1) does abstraction lead to faster simulations and enable scaling to
more complex problems, 2) does abstraction lead to faster learning by reducing unnecessary exploration, and
3) does abstraction provide these benefits when the reward function is not known? We empirically evaluated
our approach on four domains to answer these questions. The first domain is the Corridor problem from the
running example, a simple problem where the trade-off of using abstraction is shown. The second domain
is Cracky Pavement Gridworld where we show the advantage of abstraction in a very large problem, with a
state space of up to size |S| = 6 x 10%5. In addition, in this domain we show the effectiveness of the proposed
normalization step for abstraction, equation 17, in the kg model. The third domain is an adjusted version of
Collision Avoidance (Katt et al., 2019; Luo et al., 2019), made more complex to allow for more abstraction.
The final domain is Room Configuration, where the agent must learn the reward function. For further details
on the experimental setup and the domains we refer to appendix D.

4.1 Corridor

The Corridor domain is the domain described in the running example in section 2.1, where there are 8
different Persons that can be present, each with a small probability of opening the door. The agent is
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uncertain about the transition dynamics of the x-position, for the actions left and right, and the door.
We evaluate the abstractions kg, k1, and the full model kj,¢. The abstraction ky only includes the factor
x. Abstraction k; includes x and, depending on the structures included in the belief, can also include the
factors Boots, Button and Door.

Results We test the effectiveness of two levels of abstraction under a fixed number of simulations. Figure 2a
shows the simple moving average of the return per episode, and the shaded areas show the 95% confidence
interval. Figures 2b to 2d illustrate the behavior of the different models across episodes. Specifically, these
figures display how often the agent put on the boots, how often the door was opened, and through which
means the door was opened. For example, in fig. 2d, it can be seen that in the first episode, the agent rarely
lock picked the door (close to 0%), whereas after 20 episodes, the agent lock picked the door in more than
50% of the runs.

First, there is a large difference in the performances between kg and the other two models. This difference
occurs because the full model and model k; can learn to open the door through more effective means than
simply bashing against it, while kg cannot. This is due to the fact that the model kg only keeps the x factor
and does not include Door, Boots, and Button. Consequently, it does not recognize that the actions to open
the door, push the button, and put on the boots have any effect. In addition, since these actions have no
direct effect on the z-position, kg is unable to learn interactions with the environment beyond moving left
and right. It ultimately learns a strategy of just moving to the right. This strategy can still lead to reaching
the goal state, as there is a chance that the door opens when the agent bashes into it by moving right, or
when the person opens the door. This can be observed in fig. 2b, which shows that most of the time the
agent successfully opened the door by bashing into it. While this shows the agent never learns to open
the door by pushing the button, it does occasionally open the door through the lock pick action. This can
happen near the end of the episode, with just one step remaining when the agent is at location = = 3 and
the door is still closed. In such situations, the values for the different actions in the tree search will all be
zero. Since the action is then randomly chosen among those with the same value, this can lead to selecting
the lock pick action.

The k; model can effectively learn to interact with a part of the environment because it keeps not only the
x factor but also the factors that influence x. This means that if the believed model is the correct model,
the k1 model also contains Boots and Door. Consequently, k; learns to put on boots and to lock pick the
door, leading to a much better performance than ky. Due to greater statistical strength from aggregation,
k1 learns to use lock pick more quickly than the full model.

Technically, it would be possible for k1 to also open the door by pushing the button if the Button factor is
also believed to influence z. However, as shown in fig. 2c, this did not occur frequently in the experiments.
Instead, ky rapidly learns to put on boots and lock pick.

When comparing the performance of k; with the full model k¢, we can distinguish three phases. Initially,
k1 learns more quickly than k¢ because the full model ki, ¢ takes longer to learn to lock pick. Then, k¢
catches up as it learns to lock pick. Finally, ki.¢ starts to surpass k1 by learning to open the door through
pushing the button, as is visible in fig. 2d.

This experiment shows that when the abstraction is not exact, it can initially still lead to better performance
because of greater statistical strength due to aggregation. Since in this domain the abstract models cannot
learn the optimal behavior, they eventually get outperformed by the full model.

4.2 Cracky Pavement Gridworld

The Cracky Pavement Gridworld is a grid world as shown in fig. 3a. The DBN of the domain is shown
in fig. 3b. The state space is factored into the z and y locations, Rain, and 20 or 80 extra binary factors.
Ounly z, y, and Rain influence the movement of the agent, though the agent must infer this. Movement
success depends on tile type and rain conditions: movement is difficult on Trap tiles, and on the Vendor
tile when it is dry, due to the presence of a vendor. When it rains, the vendor leaves and the tile becomes
easier to traverse. The agent observes x and y noisily and does not know which factors affect transitions.
We evaluate the abstractions kg, k1, and the full model k;,¢. The abstraction kg includes only the factors x
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(4,4) Cracky Pavement GridWorld DBN Example of full model (King), Examples of abstracted models (k; and ko) used for planning,
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Figure 3: a) The Cracky Pavement Gridworld, b) ground truth graph representing the dynamics of the
Cracky Pavement Gridworld problem with 3 extra binary factors, ¢) example of a full model in the particle
filter, d) examples of two abstract models.
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Figure 4: Performance in the Cracky Pavement Gridworld domain, a) with a fixed thinking time, b) with a
fixed number of simulations.

and y since they are the ones that directly influence the reward (fig. 3b). Abstraction k; also includes the
parents of x and y.

Results First, we examine the results for one particular setting, with 80 extra binary factors and 2000
simulations. Figure 4a shows these results, where the lines represent the simple moving average of the return
per episode, and the shaded regions indicate the 95% confidence interval. Both ki and the full model kj,¢
struggle to learn a good policy, while kg outperforms both.

The primary difference between kq and the other two models is that kg retains only the x and y factor, while &k
includes any factor it believes influences z or y, such as Rain or parts of the additional binary factors, and kj,¢
retains all factors as it does not abstract. Although kg sacrifices the ability to account for Rain, it performs

Table 4: Average number of simulations in the  Table 5: Average return over the first 500 episodes

Cracky Pavement Gridworld. in the Cracky Pavement Gridworld.

Size 20 Size 80 Size 20 Size 80
Time ko k1 kine ko ky king  Time ko k1 kine ko k1 King
5ms 634 550 272 521 429 149 5ms  0.33 0.26 0.23 0.31 0.25 0.18

10ms 1324 1263 573 1097 871 240 10ms 0.39 029 0.26 0.37 0.28 0.21
15ms 1978 1658 660 2044 1726 328 15ms 0.41 031 0.27 041 0.30 0.23
20ms 2571 2145 803 2433 2360 440 20ms 0.42 0.30 0.28 0.42 0.30 0.25
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better because it simplifies learning about the trap states by only considering x and y. This leads to greater
statistical strength as it is much easier to learn P(a'|z,y) than P(z’|x,y, rain, and numerous binary factors).

While kg cannot distinguish between rain and no rain and therefore does not learn when the vendor is on
the tile, it can learn to navigate around this tile. Although this is generally not optimal, it is optimal when
rain and the vendor are not considered. The full model k;,¢ and k; can eventually outperform kg by learning
that it is better to cross the vendor tile when it is raining, as shown in appendix E. However, this takes a
considerable amount of time, and during the earlier episodes, ko performs much better earlier.

These results shows that the greater statistical strength obtained by removing information, like Rain and
extra binary factors, can result in a significant increase in performance. Additionally, fig. 4a compares
the performance of ky with and without the proposed normalization step for abstraction (equation 18),
demonstrating that the normalization step can significantly improve learning performance.

In fig. 4b, where we compare the performance with a fixed amount of thinking time instead of a fixed number
of simulations, we see that k; outperforms the full model kj,s. The main difference between ky and ki, is
that kq abstracts away all the factors that, given the graph topology, are not directly or indirectly relevant
for the reward. This means that the ki model is generally smaller than the ki, model, leading to faster
simulations. As shown in table 4, ki performs an average of 2360 simulations with 20ms of thinking time,
while the full model only reaches 440 simulations. This increase in simulation speed results in the improved
performance shown in fig. 4b.

Table 5 shows that an increase in thinking time generally increases performance, most notably when in-
creasing from 5ms to 10ms, with diminishing returns for further increases. The differences between k; and
kinf are also most pronounced at lower thinking times, especially with 80 additional binary factors, where
the abstraction provides the most benefit. These findings demonstrate that augmenting FBA-POMCP with
abstraction can increase performance through computational efficiency.

Overall, these results show that abstraction can be beneficial in multiple ways. Increasing the simulation
speed leads to better performance, and simplifying the problem leads to faster learning due to greater statis-
tical strength. The improvement in simulation speed is most pronounced when many factors are abstracted
away, maximizing the difference in simulation speed between the models with and without abstraction.

4.3 Collision Avoidance

In the Collision Avoidance domain, the agent flies from one side to the other in a 10 (width) x 5 grid.
The episode ends when the agent reaches the last column, where it has to avoid colliding with a moving
obstacle. This obstacle has a 20% chance to stay stationary and otherwise randomly moves either up or
down. The agent can decide to move up, down, or stay level. We increased the complexity of the original
Collision Avoidance (Katt et al., 2019; Luo et al., 2019) by adding additional factors: Speed (slow, fast),
Traffic (low or high amount of traffic), T%me of Day (day, night), and Obstacle Type (3 types, e.g., helicopter,
plane). These influence the agent’s forward movement and the obstacle’s behavior, fig. 5 shows the resulting
dynamics. Only the obstacle’s transition function is uncertain and the agent receives noisy observations of
the obstacle. We evaluate the abstractions kg, k1, and ks, which is equivalent to the full model ki,s. The
abstraction kg includes the factors z, y, and Obstacle Y. The abstraction k; additionally includes the factors
Speed and Obstacle Type, if Obstacle Type has a connection to Obstacle Y.

Results We again test the effectiveness of two levels of abstraction under a fixed number of simulations.
One of the benefits of abstraction is a smaller and (therefore) faster model. Another benefit is an increase
in statistical strength through the removal of factors. The lines in fig. 6 show the simple moving average of
the return per episode, and the shaded areas show the 95% confidence interval.

We see that abstraction kg learns significantly faster than both k; and ki, both with a fixed number of
simulations and with a fixed thinking time. The abstraction kg allows for faster learning of the transition
function of Obstacle Y since it removes the (possible) parents Speed and Obstacle Type. When Speed and
Obstacle Type are parents of Obstacle Y in the sampled graph structure, k; retains these connections. As a
result, ky learns the transition function of Obstacle Y at a rate comparable to kiys.
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Figure 5: Ground truth graph representing the dynamics of the Collision avoidance problem.
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Figure 6: Performance in the Collision Avoidance domain, a) with a fixed thinking time, b) with a fixed
number of simulations.

In k1, Time of Day and Traffic are removed. However, since their transition functions, along with that of
Speed, are considered known, this does lead to greater statistical strength in learning Speed. The impact
of Time of Day and Traffic is also less pronounced, as they only influence z indirectly through Speed.
Nevertheless, k1 tends to perform slightly better than kj,. This is not due to faster simulations; in this
domain, any speed up is minimal, and similar results are observed even with a fixed number of simulations.
One potential advantage of removing Time of Day and Traffic is that it reduces the branching factor in the
tree, as there will be no separate observations for these factors. This focuses the tree search by eliminating
the need to consider these factors, albeit at a slight cost to model accuracy.

4.4 Room Configuration

In the Room Configuration domain, the task of the agent is to configure items in a 4 (width) x 3 grid to
satisfy a teacher’s preferences. Each tile contains a configurable item with two settings. The teacher is
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Room Configuration DBN Example of full model (kjn), Examples of abstracted models (kq, ko) used for planning,
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Figure 7: a) Ground truth graph representing the dynamics of the Room Configuration domain for the switch
action, b) example of a full model in the particle filter, ¢) examples of two abstract models.
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Figure 8: Performance in the Room Configuration domain, a) with a fixed thinking time, b) with a fixed
number of simulations.

concerned only with the configuration of three specific items, but the agent does not initially know exactly
which ones. The reward is modeled via a fully observable Happy factor, which takes on the same value as
the reward. The agent must learn which configuration factors affect Happy. Small rewards or penalties are
given when changing item settings, and a large reward is received once all desired configurations are set.
The agent receives noisy observations of its location and has imperfect knowledge of movement success. We
evaluate the abstraction k¢ and the full model k.

Results We test learning of the reward function and the advantage of abstraction when only factors that
(the agent believes) are irrelevant to the reward are abstracted away. The lines in fig. 8 show the moving
average of the return per episode, and the shaded areas show the 95% confidence interval. We can see that
the agent learns how to perform well in 10 episodes, after which the performance remains the same.

The abstraction kg performs more simulations (455) than the full model ki (365) within a fixed amount
of time (10ms). This computational advantage allows kg to outperform the full model, as shown in fig. 8b.
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Figure 8a further demonstrates that there is no performance difference between the two models when the
number of simulations is fixed. These results show that the agent can quickly learn the structure of the
reward and that abstraction can increase performance through its increased simulation speed.

5 Related Work

The FBA-POMDP is a factored version of the tabular BA-POMDP (Ross et al., 2011). The infinite-POMDP
approach (Doshi-Velez, 2009) is a non-parametric Bayesian approach. This approach requires no knowledge
of the state space. However, it assumes a hierarchical Dirichlet Process as prior, for which providing an
informative prior can be difficult. BRL in continuous POMDPs typically makes Gaussian assumptions, such
as in Dallaire et al. (2009), where Gaussian processes are the model of choice. To extend our approach to
continuous POMDPs, DBNs that work with continuous variables (Grzegorczyk & Husmeier, 2011) could be
investigated. Alternatively, constructing different levels of abstraction in a continuous domain could done
through varying levels of discretization.

The BA-MDP (Duff, 2002), and the respective solution methods (Poupart et al., 2006; Ross & Pineau, 2008;
Vien et al., 2013), are the fully observable counter-part to the (F)BA-POMDP. In this setting (BRL for
MDPs), work has been done on exploring applications of Deep RL (Hoang & Vien, 2020; Zintgraf et al.,
2021). This line of work solves the (easier) fully observable problem, and how to extend these methods to
POMDPs is unclear.

Other approaches make use of recurrent networks for dealing with partial observability to generalize deep RL
to POMDPs (Dung et al., 2008; Hausknecht & Stone, 2015; Zhu et al., 2017; Meng et al., 2021). However,
these networks are general-purpose, requiring many samples. This realization has motivated RL-specific
architectures designed to capture history efficiently (Jaderberg et al., 2019; Ma et al., 2019). Deep variational
methods are another approach that can be efficient (Igl et al., 2018; Tschiatschek et al., 2018). However,
none of these methods allow for encoding prior knowledge or tackling the exploration problem, to which the
FBA-POMDP framework provides an elegant solution.

In the last two decades, there have additionally been many different approaches to (not deep or Bayes)
learning in POMDPs, e.g., McCallum (1996); Shani et al. (2005); Azizzadenesheli et al. (2016); Liu & Zheng
(2019); Bennett & Kallus (2024). However, these also do not allow for encoding prior knowledge or tackling
the exploration problem.

Planning with abstractions has been studied before, mostly in the context of MDPs. The method by Dearden
& Boutilier (1997), that our approach is based on, applied abstraction to factored problems. We extend this
work to the partially observable BRL and planning setting and introduce a mechanism to automatically
create multiple levels of abstraction based on the structure of the problem. Another line of work has focused
on building abstractions during the tree search (Hostetler et al., 2014; Anand et al., 2016). Hostetler et al.
(2014) also provide results for doing the tree search using an abstraction function. However, this means
the simulations themselves need to be done using the full model. Chitnis et al. (2021) instead first learn
an abstraction, which they then use for planning. Rather than being given an abstraction, their goal is to
learn one. We investigate the effects of an abstraction method on learning efficiency and performance. He
et al. (2020) do planning in the partially observable setting and construct an abstract model before the tree
search. The key difference with our approach is that we do not assume access to a simulator of the real
environment. Instead, we learn abstract dynamics while acting in the real-world.

Our work is closely related to posterior sampling approaches in causal RL, particularly the work by Mutti
et al. (2024). Their method maintains a prior distribution over potential factorizations of a F-MDP and
performs posterior sampling reinforcement learning accordingly. Our approach differs significantly in several
aspects. First, we extend the methodology from fully observable scenarios (F-MDP) to partially observable
ones (F-POMDP). Their approach explicitly notes that exact solutions for the sampled F-MDPs are required,
a condition generally computationally intractable and even more prohibitive in the context of F-POMDPs.
In contrast, our method circumvents this exact-solution requirement by employing an anytime planning
algorithm (FBA-POMCP) within the “planning as learning” paradigm.

21



Published in Transactions on Machine Learning Research (06/2025)

6 Discussion

A limitation of the FBA-POMCP method is that it does not plan beyond the current episode. By not
planning for future episodes, it does not consider the value that knowledge obtained in the current episode
can have for future episodes. Approaches that quantify information gain (Zhang et al., 2020; Ambrogioni,
2021; Liu et al., 2021) and those that plan for long horizons (Grover et al., 2020) could address this limitation,
and future work could explore combining these strategies.

A difficulty of applying abstractions within FBA-POMCP lies in marginalizing the belief. As discussed
in section 3.3, when aggregating counts for approximate abstractions, it is unclear what the best solution
is, since this is generally unknown beforehand and can depend on the policy. Even for a fixed policy,
marginalization may lead to a belief that misrepresents the true (abstract) dynamics. For example, in the
corridor problem, marginalizing away the Button factor leads to misrepresented abstract dynamics because
marginalizing it away combines the situations where the button is in the non-pushed state with those where
it is in the pushed state, implicitly resulting in a belief that at each step there is a probability that the
button is in the pushed state. This is a misrepresentation since the button starts in the non-pushed state
and, since it is marginalized away, the agent will not learn to push the button, so it will always be in the
non-pushed state. Such situations can make it more difficult for the agent to learn. An idea could be to use
knowledge about the starting position and the abstracted model in the marginalization. For instance, if the
Button factor is removed from the model, we could keep the counts for when it is in the non-pushed state
and ignore the counts for the pushed state since it is always in the non-pushed state at the beginning of an
episode.

In the Corridor experiment, we aimed to make the results more interpretable by showing how the agent’s
behavior changes during learning, across the different models. This helped clarify the sources of the observed
differences in return per episode, as well as the adaptations the agent makes over time. The behavior of the
smaller abstract models is easier to understand than that of the full model, and this improved interpretability
offers an additional motivation for using abstraction and could be an interesting perspective for future
research.

The Corridor experiment also shows that abstraction does not always help, and can in fact be detrimental.
When crucial information is removed, it can make learning impossible. In general, the usefulness of abstrac-
tion depends on how much value (or information) is lost. If the loss in value is too great, more simulations
will not help to achieve a better performance. On the other hand, if there is no loss in value or the loss
in value is relatively small, abstraction can help improve performance by making learning easier and by
speeding up simulations during planning.

Combining learning abstractions with guarantees is challenging. In fact, whether it was possible to bound
the value loss of model-based RL using a given n-approximate model-similarity abstraction was an open
question until recently (Starre et al., 2023). What we can say is that theoretically, for any abstraction, there
exists some 7 such that the bound in eq. (21) holds, even if this bound becomes vacuous at higher values
However, it is challenging to estimate or verify the actual value of 7 in practice. This motivates abstraction
selection (Ortner et al., 2014; Jiang et al., 2015) as an important direction for future work, allowing agents
to adaptively switch between representations over time.

Given the challenge of determining whether a specific abstraction will be beneficial, abstraction selection
could be a viable approach. This can be particularly challenging in RL, where the problem is often not fully
known. With abstraction selection, the algorithm would choose which abstraction to select during learning.
For instance, selection could be done by deriving value loss bounds for specific abstractions (Dearden &
Boutilier, 1997) and using these to make a decision. Alternatively, the problem of abstraction selection could
be viewed as a non-stationary multi-armed bandit problem, where at each episode we select a (abstract)
model. The problem is non-stationary since the models the agent learns change each episode with the
experience it obtains, and thus the policy and the expected reward can also change. Multi-armed bandit
methods that deal with such non-stationarity could be used (Garivier & Moulines, 2011; Cheung et al., 2019;
Trovo et al., 2020).
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Regarding the quality of the abstraction, represented by 7, we can consider different quantities of a problem
to determine whether 7 is small. For example, in the context of approximate abstractions in MDPs, we can
consider approximate model similarity or approximate Q* abstractions (Abel et al., 2016). In an approximate
model similarity abstraction, the size of n depends on how close the transition functions and rewards of the
grouped states are. For approximate @Q* abstractions, it depends on the maximum difference in the Q*
values of the grouped states. Extending these notions to F-POMDPs requires accounting for the observation
function and the factorization structure, making such extensions non-trivial. Nevertheless, existing work on
approximate abstractions in MDPs provides valuable insights: results indicate that 1 remains small when
little information is lost through abstraction. In our setting, this suggests that 7 is small when the abstraction
primarily removes largely irrelevant factors.

Our abstraction approach has been developed within the framework of FBA-POMDPs. However, the pro-
posed abstraction method is general and leverages only the structural properties of the problem, making it
potentially beneficial for a broader range of F-POMDP algorithms. An interesting direction is to investigate
how Thompson Sampling (Thompson, 1933), particularly its adaptation to POMDPs (Bai et al., 2014), could
be combined with factored representations and our abstraction framework. Such a combination may reduce
the dimensionality of the sampling space and further improve scalability.

7 Conclusion

We proposed combining learning and online planning for BRL for FBA-POMDPs with abstraction. We
empirically showed that this combination significantly improves learning, scalability, and performance, using
an intuitive and straightforward form of abstraction. This happens through several effects. First, we have
shown that abstraction improves performance by increasing the simulation speed. Moreover, we have shown
that abstraction improves performance even with a fixed number of simulations through greater statistical
strength. With an abstract model, the agent takes different actions since it does not need to explore the
dynamics of less relevant factors. Finally, the abstraction method allows FBA-POMCP to learn in very large
problems with a state space up to [S| = 6 x 10%°.

To the best of our knowledge, this is the first work to explore abstraction in BRL for POMDPs, representing
an initial step in investigating this combination. In the future, abstraction could also be further incorporated
into FBA-POMDP by directly maintaining a belief over which factors should be part of the model.
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Algorithm 5 Sequential Importance Sampling Algorithm 6 Initialize Particle Filter
1: Input: {$;, w;}}'_,: current (weighted) filter 1: Input: pg,: prior over initial state
a,0: action and observation n: number of desired particles
2: fori€0,...,ndo 2: fori€0,...,ndo
3 s; ~p(-|si, a; Gy, xi) 3 (8:,Gi, Xi) ~ Dag
40w < w; x p(o|s}, a; Gy, xi) 4wy
5 X UXis 84,0, 85,0) 5. end for
6: end for 6: return {s;,G;, xi, w; }1—g
7. return {s}, G;, x}, w;}7, // Normalize & re-sample

A Extension Belief tracking in the FBA-POMDP

The belief, the posterior over the current state, is a probability distribution over the POMDP state and
its distribution b € A(S x D) given the observed history h; = (ag,01,...,a1-1,0¢). Unfortunately, the
computation of the belief update is intractable in most problems. Thus, the belief is often approximated
with particles instead (Thrun, 1999). A particle filter represents a distribution through particles, which in this
case represent FBA-POMDP states, specifically each particle is a weighted FBA-POMDP state (w, s, G, x)
with (unnormalized) weight w € RT.

There are numerous sampling mechanisms for updating the belief given a new action-observation pair (Thrun,
1999). Here, we focus on sequential importance sampling (SIS). SIS consists of two operations: propagation
and re-weighting (see algorithm 5). First, the proposal distribution propagates a particle by sampling its next
value from the FBA-POMDP transition function p(§'|$,a). Then, the likelihood of the particle generating
the received observation p(o|$,a, §’) is used to re-weight the particle (recall equation 3). The initial belief
(particle filter) is initialized by sampling from the priors over the POMDP state and the DBNs describing
the dynamics (see algorithm 6).

Specific to the FBA-POMDP, the belief over the topologies can deteriorate: the number of unique graph
structures is determined (and limited) by the initial particle filter, as topologies do not get updated during
the belief updates. When that happens, Katt et al. (2019) re-invigorate the belief with a Metropolis-Hastings-
within-Gibbs sampling procedure (Murphy, 2012).

B Algorithms

Algorithm 7 shows the main loop of the FBA-POMCP algorithm (Katt et al., 2019). The Simulate that
is uses is shown in algorithm 8. The GreedyActionSelection selects the action that has the highest value.
In case of a tie, it randomly selects one of the actions with the highest value. Algorithm 9 shows the Step
function when abstractions are used.

Algorithm 7 FBA-POMCP

1: Input: B: particle filter with hyper-states $
num_sims: number of simulations to do.

2: ho < () // The empty history (i.e., now)
3: forie€1,...,num_sims do

4:  // First, we root sample a hyper-state:

5 §$~B // Sample from belief
6:  Simulate(s, 0, ho)

7: end for

8: a < GreedyActionSelection(hy).

9: return a
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Algorithm 8 Simulate

1: Input: $ = (s, G, x): hyper-state
d: search depth
h: simulated history.

2: if IsTerminal(h)||d == max_ depth then
3:  return 0

4: end if

5: a < UCTactionSelection(h)

6: R~ R(é, a)

7. §,0 + Step($,a)

8: h' < (h,a,o0)

9: if b’/ € Tree then

10:  r + R+~ Simulate($’, h’)

11: else

12:  ConstructNode(h')

13: 1< R+~ RollOut(s',h’)

14: end if

15 (...) // Update statistics in nodes
16: return r

Algorithm 9 Step (with abstraction)

1: Input: s: abstracted hyper-state
a: simulated action.

2: // Recall that 5 = (5, G, ), with $ containing a current state s.

3: s',0~pa([s,a) // Sample next state and observation from abstracted counts.
4: 8« (s,G,x)

5 5 < (5,G,X)

6: return 5,0

C Proof

We restate the Lemma from section 3.4 and give a proof sketch:

Lemma 1. The result of applying the abstraction method, as described in Algorithm 2 and Section 3.3, to
the original FBA-POMDP results in another FBA-POMDP, the abstract FBA-POMDP.

Proof. First, we define the observation space and function, followed by the state space for different levels
of abstraction. The reward function does not require changes since, during abstraction, the models in the
particles always keep the factors that are believed to be part of the IR set.

As detailed in section 3.3.4, the abstract observation space O is enhanced by including a “not observed”
option for all observation variables. This addition addresses scenarios where the observation function depends
on state factors that are abstracted away; in such cases, the observation function returns “not observed”.
Otherwise, the observation space and function remain unchanged.

For the state space, we distinguish abstraction level ky from other abstraction levels. For kg, only the factors
in the set IR are included, while higher abstraction levels can include additional factors depending on the
topology.

For level ko, the state space S is derived by aggregating states based on the distinct values of the remaining
factors. Transition functions are adjusted for the new state space through the marginalization procedure
described in section 3.3.
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Table 6: Fixed experiment settings.

Parameter Corridor  Cracky Pavement Collision Room Conf
~y 0.95 0.95 0.95 0.95

# of particles in belief 500 500 500 10000
# of episodes 100 500 500 50

# of runs 100 100 10000 1000
Horizon (H) 20 12 20 13
UCT constant 5 1 500 10
Reinvigoration Yes No No Yes
Log-likelihood threshold -1500 N/A N/A -500
State factors 5 (23, 83] 7 15

S| 320 [5x 107,6 x 10%5] 6000 196608

For higher abstraction levels, the belief specifies the factors that are relevant. For example, for abstraction
level kq, factors that directly influence the IR set are also considered relevant. Similar to kg, factors that are
never considered relevant are removed. For state factors included in only some models, the abstract state
space is enhanced by adding a “not relevant” value. This value ensures transitions default to “not relevant”
when the factor is not present in a model. Transitions are then adjusted for the new state space through
the marginalization procedure. The observation function is also adjusted to return "not observed" for factors
that return “not relevant”.

Combining these transformations, we obtain a fully specified FBA-POMDP after abstraction. O

In practice, implementing the “not relevant” value is unnecessary, as only factors included in the simulated
particle affect observations and actions during tree search.

D Extended Experiment Details

D.1 Experimental Setup

In the experiments, we investigated various levels of abstraction across different domains and considered
both a fixed amount of simulations and a fixed amount of computation time. For each level of abstraction
(including the full model) and each of the different settings, we ran a separate experiment. Due to the
stochasticity in the runs, we conducted up to 10000 runs for each experiment. In the figures, we report the
moving average of the returns over a window of 10 (%ﬁ”"*g), with the shaded areas indicating the 95%
confidence interval. To avoid cluttering the figures with markers, we placed only 5 markers per line, spaced
evenly along the x-axis.

The settings of the experiments, and some specifics of the environments, are detailed in table 6. In the
table, v denotes the discount factor, the UCT constant is the exploration constant, and the log-likelihood
threshold is the threshold below which reinvigoration is triggered. The log-likelihood is obtained during the
belief update, and a low log-likelihood can indicate the belief does not adequately represent the observed
data. The parameters were chosen to maintain a reasonable total run time. Because of this, we ran the
experiments in the Cracky Pavement Gridworld and the Collision avoidance domains without the invigoration
step. We show in appendix E that the effect of abstraction is orthogonal to the effect of reinvigoration.

We performed the experiments with a fixed number of simulations on three different machines: Intel(R)
Xeon(R) Gold 6130 CPU @ 2.10GHz with 384GB RAM, Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
with 190GB RAM, and AMD EPYC 7452 32-Core Processor CPU @ 2.0GHz with 256GB RAM. For the
experiments with a fixed amount of computation time, we used (2 cores of) an AMD EPYC 7452 32-Core
Processor CPU @ 1.5GHz with 512GB RAM. The software is written in C++.
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D.2 Domain Descriptions
D.2.1 Corridor

The Corridor domain is the domain described in the running example in section 2.1, where there are 8
different Persons that can be present. Each person has a slightly different probability of opening the door,
such that the probability that the person opens the door during an episode is approximately between 0.0125
and 0.1. In this domain, we assume prior knowledge of all observation functions and the locations of the
start, boots, button, door, and goal. In addition, we assume the structure of the transition functions of
the factors Button, Boots and Person are known, in other words, the prior includes only models where the
parents of these factors are correctly specified.

What is unknown is the structure of the transition function of the z-position, for the actions left and right.
For this transition, the prior includes the following combinations of factors as parents for the z-position
transitions, 1) x, 2) « and Boots, 3) x, Boots, and Door, and 4) x, Boots, Door, and Button. Each of these
combinations is assigned the same probability in the prior. The transition function of the door is also not
fully known, with the prior specifying a 50% chance of Button being present as a parent. The prior is
initialized optimistically, and so the agent initially overestimates its chances of success and the probability
that the person that is present will open the door. It has to learn the correct structure and transition
probabilities.

We consider the abstractions kg, k1, and the full model kj,¢. The abstraction kg only includes the factor
x. Abstraction k; includes x and, depending on the structures included in the belief, can also include the
factors Boots, Button and Door.

D.2.2 Cracky Pavement Gridworld

The Cracky Pavement Gridworld is a grid world as shown in fig. 3a. The DBN of the domain is shown
in fig. 3b. The state space is factored into the x and y locations, Rain, and several extra binary factors.
These extra factors could be global (e.g., light conditions) or local (e.g., presence of a chair in a specific
location). In reality, only x, y, and Rain influence the movement of the agent, as can be seen by the
incoming edges of z and y. The “Trap” and “Vendor” tiles depicted in fig. 3 do influence the movement of
the agent but are not included as separate factors because their dynamics are already captured by x, y, and
Rain. Their interaction is described in the next paragraph.

The agent is initially located at “Start” and is running low on battery, so it has to move to a charging station
at one of the “Goal” locations. The agent only observes its x and y location and does so with a noisy sensor.
For both z and y, the agent makes the correct observation 90% of the time. If an incorrect observation
occurs, a randomly selected adjacent location is returned. At the edges, the probability of receiving the
correct observation increases to 95%. The agent can move in all four directions, but the movements can fail.
The chances of movement failure are influenced by a global factor called Rain which represents whether the
tiles are dry or wet. The Rain factor is initialized randomly, and every timestep there is a 5% chance that
the rain condition changes. On normal tiles, actions succeed 95% of the time when there is no rain and 66%
of the time when it is raining. However, on the Trap tiles with cracked pavement, moves succeed only 10%
of the time. Additionally, when it is not raining, a vendor with a cart occupies the Vendor tile, making it
harder to move past with only a 10% success rate for moving. Conversely, during rain, the Vendor tile is
vacant and functions like a normal tile. Therefore, to behave optimally, the agent should traverse the Vendor
tile when it is raining and circumvent it when dry.

In this domain, we assume prior knowledge of all observation functions, the transition functions of Rain and
the extra binary factors, and the start and goal locations. Additionally, we assume that it is known that
the = and y factors both (at least) depend on each other. However, there is no prior knowledge of the trap
locations and the vendor locations, meaning that none of the possible count tables in the belief space specify
different movement probabilities on these locations. Some of the graph structures in the belief space include
Rain and/or extra binary factors (three in fig. 3b) as parents of x and y, implying the agent does not know
whether or not these factors influence its movement. The extra binary factors are initialized randomly and
have a 20% of changing at each step. In this problem, the agent has to learn that x, y, and Rain are the
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only relevant factors for its movement. This task is complicated by the interaction between the trap states
and several uninformative factors, as the agent may mistakenly attribute its inability to move on trap states
to the presence of some of these uninformative factors.

As shown in table 6 on page 30, we run the experiments with two different amounts of extra binary factors:
20 and 80. The total amount of state factors is 23 and 83, respectively, since both settings also have the
X,Y, and Rain factors. Scalability in the number of factors is very hard and important because the size
of the state space, and the possible graph structures, grow exponentially with the number of factors. With
20 and 80 extra binary factors this domain has a state space of approximately 5 x 107 and 6 x 10%® states,
respectively. Factored representations are needed to find solutions for problems of such sizes. Flat learning
methods like Bayes-Adaptive POMCP (Katt et al., 2017) are not feasible here, even in the simple case of 20
extra binary factors. This is because representing the transition table for just 1 action, a table of size |S|?,
requires more than 9 million GB per particle.

We consider the abstractions kg, k1, and the full model kj,¢. The abstraction kg includes only the factors x
and y since they are the ones that directly influence the reward (fig. 3b). Abstraction k; also includes the
parents of x and y. We scale the number of extra binary factors to test the speedup and to see how it affects
the performance.

D.2.3 Collision Avoidance

In the Collision Avoidance domain, the agent flies from one side to the other in a 10 (width) x 5 grid. The
episode ends when the agent reaches the last column, where it has to avoid colliding with a moving obstacle.
This obstacle has a 20% chance to stay stationary and otherwise randomly moves either up or down. The
agent can decide to move up, down, or stay level.

We increased the complexity of the original Collision Avoidance (Katt et al., 2019; Luo et al., 2019) by
adding additional factors. These additional factors influence those in the original problem. Figure 5 shows
the resulting dynamics. We added the factors Speed (slow, fast), Traffic (low or high amount of traffic),
Time of Day (day, night), and Obstacle Type (3 types, e.g., helicopter, plane). Obstacle Type and Time of
Day are fully observable and do not change during the episode. The agent receives a noisy observation of
the obstacle (accurate around 80% of the time). The agent has an 85% chance to move one cell forward. If
the Speed is high, it has a 15% chance to move forward two columns. If the Speed is low, it has a 15% chance
to stay in the same column.

The Speed is influenced by the Traffic. When the amount of Traffic is low, there is a 90% chance that the
Speed changes to (or stay at) high and a 10% chance that the Speed changes to (or stay at) low. This is
reversed when the Traffic is high. The Traffic is influenced by the Time of Day in a similar way, when it
day there is a 90% chance that the Traffic changes to (or stay at) high and a 10% chance that the Traffic
changes to (or stay at) low. This is reversed when it is night. The Time of Day is randomly chosen at the
start of an episode, with a 50% chance of either day or night.

We assume prior knowledge of all transition and observation functions, except for the transition probabilities
of the obstacle. There are four different graph structures for the obstacle transition function to which the
prior assigns a positive probability. These structures include: 1) the structure where Obstacle Y is only
influenced by itself; 2 and 3) the structures where it is influenced by itself and either Speed or Obstacle Type;
and 4) the structure where it is influenced by itself, Speed, and Obstacle Type. Each structure has a 25%
probability.

We consider the abstractions kg, k1, and ko, which is equivalent to the full model k;,¢. The abstraction kg
includes the factors z, y, and Obstacle Y. The abstraction k; additionally includes the factors Speed and
Obstacle Type, if Obstacle Type has a connection to Obstacle Y.

D.2.4 Room Configuration

In the Room Configuration domain, the task of the agent is to set up a classroom in a desirable way for a
teacher. We model this environment as a 4 (width) x 3 grid, where each tile contains a configurable item
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Cracky Pavement Gridworld, size 1, 2000 simulations
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Figure 9: Comparison with invigoration for a longer number of episodes.

with two settings. The agent can change the configuration of these items. The teacher is concerned only
with the configuration of three specific items and is happy once these are configured correctly.

The reward function is (largely) unknown to the agent in this domain, as the agent does not initially know
configuration factors that influence the reward. To address this, we model the reward with a state factor
called Happy, which takes on the same value as the reward and is fully observable. While Happy is fully
observable, the agent does not know exactly which configuration factors influence it. That is, the prior
belief assigns a non-zero probability to multiple sets of parents of Happy. Therefore, the agent must learn
which configuration factors are relevant to the reward. The Happy factor has four different states: neutral
(0 reward), slightly unhappy (—1), slightly happy (+1), and very happy (100). The agent receives a reward
when it performs the switch action, and this reward depends on its location and the status of the configurable
items. Specifically, the agent receives a small reward or penalty (£1) when it changes the configuration of
an item to the correct or incorrect setting, respectively. Once it sets the configuration of all three items the
teacher desires, it receives a large reward (100).

While the configurations of the items are fully observable, the agent receives noisy observations of its own
location. For both z and y, the agent makes the correct observation 95% of the time. If an incorrect
observation occurs, a randomly selected adjacent location is returned. At the edges, the probability of
receiving the correct observation increases to 97.5%. Movement actions have a 95% chance of moving in the
intended direction, whereas the switch action to change the item settings is always successful. The agent has
prior knowledge of the observation function and the transition function for switching. Additionally, all the
possible initial belief states underestimate the probability that the move action is successful.

We consider the abstraction kg and the full model kj,¢. The abstraction kg keeps the factors connected to
the reward. The structures in the prior belief always include x,y as parents of Happy. The prior belief is
defined such that it assigns a non-zero probability only to structures where the abstract models k; and kg
are identical. Thus, in the experiment, we only use k.

E Further Experiments

Here, we demonstrate that abstraction can improve performance when we use the invigoration step from
FBA-POMCP, and that k1 and the full model ki, can eventually outperform ky. We conducted 100 runs for
each setting and report the simple moving average of the return per episode, with the shaded areas showing
the standard error.
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We ran an experiment with invigoration over a larger number of episodes, as shown in fig. 9. Initially, kg
outperforms ki and kins. However, with enough data, the k; and kj,r models become accurate enough to

surpass kg in performance. The k1 model matches the performance of k;,¢ because the number of simulations
is fixed.

For larger problem sizes and with a fixed thinking time instead of a fixed number of simulations, ki is
expected to initially outperform ki,¢. Additionally, kg should show an even greater initial improvement over
king, and it could take even longer for ki, to surpass the performance of k.
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