
Under review as a conference paper at ICLR 2022

A NATURAL LANGUAGE INTERACTIVE INTERFACE
FOR SQL QUERY GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We contribute nalini, an natural-language based interactive interface for SQL
query generation. Motivated by a lack of usability of existing systems, nalini
was built with the intention of using it for complex query generation. The interface
allows users to use natural language fragments with minimal structure; users sepa-
rately describe each desired column in the output table and can optionally describe
additional filters. We evaluated nalini with a first-use study with five partici-
pants, where participants were asked to generate queries from the TPC-H decision
support benchmark. Our study showed that users were able to use nalini to
generate complex queries, including TPC-H queries which cannot be generated
by any of the leading natural-language-to-SQL tools, and points to promising ar-
eas of future work.

1 INTRODUCTION

Ever since the relational data model was pioneered decades ago (Codd, 1970), querying data in rela-
tional databases has become an increasingly common operation, with SQL emerging as the standard
query language (Li & Jagadish, 2014).

In today’s data-driven world, many new SQL users are non-experts (Li & Jagadish, 2014). SQL
queries can be difficult to write; the process typically requires expert knowledge of both the query
language and the specific data being queried. Perhaps the most obvious barrier to writing an accu-
rate SQL query is the requisite knowledge of the data: its format, its exact schema, and the precise
relationships necessary to create join paths. Also, as is necessary for any language, working with
SQL requires that the programmer understands its syntax and semantics. Although there is a stan-
dard version of SQL, no database vendor is fully compatible with the standard. Numerous dialects
of SQL are used today, each of which has its own syntax variations regarding dates and times, string
representation, column aliasing, aggregate operations, and case sensitivity (Khalil, 2022). Even an
experienced SQL user may find it challenging to write a query in a new environment.

An important goal of the database community is thus to enable non-experts to easily write accurate,
executable queries based on their specifications. There has been a lot of work in this area, including
using a combination of rule-based and deep-learning natural language approaches and programming-
by-example approaches. Some approaches include an interactive component as well. While the
advances in NLP-to-SQL research have steadily brought us closer to a fully-automated solution,
there is still a lot of work to be done. A 2020 study of 12 state-of-the-art NLP-to-SQL methods
showed that although natural language methods have performed well on specific databases or against
specific benchmarks, their performance significantly degrades when applied to complex queries
(Kim et al., 2020). These systems, including Templar (Baik et al., 2019), NSP (Guo et al., 2018),
SQLNet (Xu et al., 2017), TypeSQL (Yu et al., 2018a), SyntaxSQLNet (Yu et al., 2018b), GNN
(Chen et al., 2021), IRNet (Guo et al., 2019), and NaLIR (Li & Jagadish, 2014), use a variety of
deep learning approaches. However, they all have the same fundamental assumption that a SQL
select statement can be uttered in a single sentence. All of these sytems showed 0% accuracy when
tested against the TPC-H benchmark. In reality, many select statements are written as part of data
pipelines and generate entire tables, with complex business logic applied to many separate columns.
These specifications are not natural to express in one-sentence queries.

1

Under review as a conference paper at ICLR 2022

On the other hand, programming-by-example interfaces, such as SCYTHE (Wang et al., 2017) and
PATSQL (Takenouchi et al., 2021) have demonstrated better performance on complex queries, but
are not as easy to intuitively use. For a non-technical user, it can be extremely cumbersome to create
input/output tables to communicate the intention. Thus, we motivate the development of a tool
that combines the effectiveness of program-synthesis based work with the ease-of-use of natural-
language based solutions.

1.1 CONTRIBUTIONS

In this work, we develop nalini, a natural language interactive interface for SQL query generation.
In contrast to other natural language based SQL tools, nalini does not answer a single question
posed by the user. Instead, the interface has a query generation panel where users provide individual
natural language descriptions of each column in their desired output table as well as optional filter
descriptions.

We evaluated nalini’s efficacy through a first-use study with 5 participants. The results of the
study demonstrate nalini’s success as a proof of concept. The novel minimally-structured format
of the natural language input, along with the use of meaningful error messages enabled nalini to
achieve the following desired outcomes:

• Participants interact using natural language. After seeing a few examples of how
nalini could be used, all participants interacted with nalini using a combination of
English words and phrases, database-specific table and column names, and mathematical
expressions, without requiring specific directions or documentation.

• Participants completely and correctly generated SQL queries. Unlike any of the exist-
ing NLP-based solutions, with a limited scope and human interactive loops, users were able
to successfully generate complex queries from the TPC-H decision support benchmark.

2 NALINI

2.1 SAMPLE USE CASE

In this section, we provide a high-level overview of our technique and its implementation in nalini
through a simple motivating example. The example is loosely based on Query 7 from the TPC-H
decision support benchmark (tpc), and the data follows the TPC-H schema and constraints. See
Figure 1 for the full schema.

Our user, Michael, is a regional manager at large paper supply corporation who doesn’t have a lot
of experience with SQL. His boss expressed concern that in 1995, the company’s supply chain was
particularly inefficient because of their international shipping methods. In particular, Michael’s boss
wants him to look into the amount of international shipping that was done via trucks.

Michael decides to look into the historical data. Rather than exporting data into a spreadsheet to
do a one-time analysis, Michael explicitly wants to create a new table in his business intelligence
pipeline, so that other analysts and stakeholders can trace the inputs of his analysis and use his table
for further analysis. Michael sets out to create a table that calculates, for the calendar year 1995, the
total gross discounted revenue derived from sales that involved items being shipped from a supplier
in one country to a customer a different country, and that were shipped via trucks.

Previously, he might have requested the help of a data scientist, perhaps based out of a different
office location, to generate and execute the SQL query for him. Instead, he opens up nalini to
write the query on his own (see Figure 4).

Michael knows that he wants his output table to have three columns: customer nation,
supplier nation, and revenue. He clicks the ”Add Column” button in the Query Generation
panel twice to create a total of three columns. For the first column, he types customer nation
into the ”column name” input and types ”customer nation name” into the column description area
beside it. Similarly, he types supplier nation into the second ”column name” input and
types ”supplier nation name” into the second column description area. He names his third column
revenue, and then realizes that he actually isn’t sure how to calculate gross revenue.

2

Under review as a conference paper at ICLR 2022

Figure 1: The TPC-H schema, as specified in the original benchmark (tpc). This figure was created
by the Transaction Processing Performance Council.

After checking with a salesperson at his branch, Pam, he confirms that to calculate gross discounted
revenue, he needs to multiply the sale price of each lineitem by 1 minus the discount percentage
and then add up the discounted revenues for each lineitem to get the gross discounted revenue.
Scrolling through the columns of the lineitem table, he sees that there are in fact columns named
l extendedprice and l discount which correspond to the sale price and discount percent-
age, respectively. He types total lineitem extendedprice * (1-discount) into the
description area for the revenue column.

At present, Michael’s description will include items shipped within a single nation, so Michael clicks
the ”Add filter” button and types customer nation name is not supplier nation
name into the filter description field. He also needs to consider only lineitems that were shipped in
1995, so he adds another filter with the description ship date must be in 1995. Finally,
he realizes he needs to check that the lineitems whose revenue he is summing were shipped via truck.
He recalls that there is a column that would say ”TRUCK” if the shipping method was truck-based
delivery, but he isn’t sure what table that row is in. It would be time-consuming for him to check.
Michael knows that he can add his new filter condition as a standalone filter, like his date filter, or
as part of one of the column descriptions. In this case, he adds a description of that filter to his
description of the revenue column so that it now reads total lineitem extendedprice *
(1-discount) for lineitems with shipping method "TRUCK".

Michael clicks the ”Generate SQL!” button under his specifications, and eagerly awaits his com-
pleted query. However, nalini does not generate a query - instead, under the text field where he
specified the date filter, it reads Unable to resolve: ”ship date must be in 1995”. Michael edits his
filter description to be ship date on or after 1/1/1995 and ship date before
1/1/1996 and clicks ”Generate SQL!” once again.

This time, his completed query, detailed in Figure 2, appears in the UI. Michael examines the gen-
erated query.

The SELECT clause has three columns as expected; the customer nation and
supplier nation columns are selected as the n name columns from two different instantia-
tions of the nation table, nation1 and nation2. These two columns also appear in the GROUP

3

Under review as a conference paper at ICLR 2022

SELECT nation2.n_name AS customer_nation,
nation1.n_name AS supplier_nation,
SUM((l_extendedprice * (1 - l_discount))) AS revenue

FROM supplier
JOIN nation nation1 ON s_nationkey = nation1.n_nationkey
JOIN lineitem ON s_suppkey = l_suppkey
JOIN orders ON l_orderkey = o_orderkey
JOIN customer ON o_custkey = c_custkey
JOIN nation nation2 ON c_nationkey = nation2.n_nationkey

WHERE l_shipmode = ’TRUCK’
AND (l_shipdate >= date ’1995-1-1’)
AND (l_shipdate <= date ’1995-12-31’)
AND NOT ((nation2.n_name = nation1.n_name))

GROUP BY customer_nation,
supplier_nation

Figure 2: Demonstration: Generated Query

BY clause, as the revenue is an aggregate over these two values. The revenue column is calculated
using the correct arithmetic expression based on values from the lineitem table.

The FROM clause includes many joins; although perhaps not written the way an experience data sci-
entist would have written it, it provides the correct outcome. The clause starts with the supplier
table, which is joined with both the nation table to get the supplier nation and with the lineitem
table to get all lineitems for all sales that were shipped from a supplier in the supplier nation. The
revenue is calculated based on these lineitems after the filters have been applied. The lineitem
table is then joined with the order table to get the corresponding order, which is joined with the
customer table, which is then joined with the nation table to finally get the customer nation for
each lineitem.

The WHERE clause contains a filter stating that l shipmode must be equal to TRUCK - after a
quick inspection of the lineitem table, Michael verifies that this was, in fact, the column he was
looking for. There are two filters to ensure that the date is in 1995, as well as a final filter to ensure
that the customer and supplier nations do not have the same name. Note that in practice, the final
filter could have been replaced with an equivalent but more efficient check that the two keys are
different.

After quickly verifying the SQL, Michael types itnl truck shipping into the ”table name”
field and clicks the ”Execute Query” to create a new table in the database based on this query. He
scrolls to the bottom of the web page to view his new table.

2.2 OVERVIEW

Now that we’ve seen an example of nalini in action, we’ll describe our novel technique and im-
plementation. At a high level, the system consists of two components: the interactive web interface,
which the user interacts with, and the engine, which is implemented as an API.

The web interface is the bridge between the user and the database. Most of the supported database
interactions are simple functions that rely only on basic SQL query execution. Once the web inter-
face is initially configured to connect to a database, the user can use the interface to view previews
of all database tables. If the table was created using a SQL SELECT query, the user can edit the
backing SQL and re-execute the query. The user may also delete tables and create new tables by
writing new SQL queries from scratch.

The web interface also allows the user to interact with the nalini engine. The engine API takes
as input a list of one or more column specifications and a list of zero or more filter specifications.
Every column specification consists of an optional column name which, if specified, must consist
only of alphanumeric characters and underscores, and required column description, which can be
any plaintext string. Every filter specification contains only a plaintext string description. Note that
in order to use the query generation engine, the user is expected to view and modify information in

4

Under review as a conference paper at ICLR 2022

the ”Table Relationships” section of the table to keep the database schema up-to-date as tables are
generated and modified.

The engine API generates a SQL query from the input through a series of stages detailed in Section
2.3. If the engine is unable to synthesize a query, the web interface surfaces the uninterpretable
phrases to the user. Otherwise, the web interface displays the complete query, which the user can
make edits to (if desired) and execute. The remainder of the chapter explains the algorithms and
implementation of nalini in further detail.

2.3 QUERY SYNTHESIS ENGINE

The query synthesis engine consists of several independent components which work together to
generate a complete SQL query. In this section, we explain the high-level steps of the process
and then go into detail about each of the constituent functions using our motivating example for
guidance. The algorithm for the general synthesis approach can be found in Algorithm 1.

Algorithm 1 General synthesis methodology
1: procedure SQLSYNTHESIZE(C,F ,Γ, γ)
2: Input: natural language column descriptions C, natural language filter descriptions F , type

environment Γ, confidence threshold γ
3: Output: the top-ranked synthesized SQL query

▷ Sketch Generation
4: Column Sketches := SEMANTICPARSE(C)
5: Filter Sketches := SEMANTICPARSE(F)

▷ Dependency Resolution
6: Resolved Hints, Uninterpretable Hints :=

RESOLVEDEPENDENCIES(Column Sketches, Filter Sketches, Γ, γ)
▷ Error Propagation

7: if LENGTH(Uninterpretable Hints) > 0 then
8: return Uninterpretable Hints

▷ Table Graph Synthesis
9: Table Graph, Dependency Lookup :=

SYNTHESIZEJOINS(Column Sketches, Filter Sketches, Resolved Hints, Γ)
▷ SQL Rendering

10: SQL Query :=
RENDERSQL(Column Sketches, Filter Sketches, Table Graph, Dependency Lookup)

11: return SQL Query

The input to the query synthesis engine consists of a set of columns C, each of which consists
of a column description and optional column name, a set of filters F , each of which consists of
a filter description, a type environment Γ, which contains information about the database and its
schema, and a confidence threshold γ. The confidence threshold γ is used as a cut-off for each
natural language hint to determine if it can be resolved to a database reference, or if the user needs
to provide additional or more clear information.

The first step of the algorithm is to run the natural language descriptions through nalini’s semantic
parser, which we detail further in Section 2.3.1. The parser, which we built from scratch using the
SEMPRE framework (Berant et al., 2013) uses standard semantic parsing techniques to translate
English descriptions into sketches of SQL columns and filters respectively. The column and filter
sketches specify the shapes of the output SQL fragments (e.g. as a tree of operations) rather than
specifying a complete SQL fragment. Where the eventual query will contain references to database
columns or values, the parsed sketch will contain a hole annotated with the corresponding fragment
of the English description. As a result, the semantic parser can operate without any knowledge of
the database schema or values. The database-agnostic nature of the semantic parser is extremely
valuable, as it means that the semantic parser does not have to be fine-tuned or retrained every time
the user wishes to query a new database.

Once all column and filter descriptions have been parsed into column and filter sketches, respec-
tively, our technique employs program synthesis to fill in all of the holes with proper references

5

Under review as a conference paper at ICLR 2022

to database columns (see Section 2.3.2). Our program synthesis does not make use of types. For
each hole, in order to choose the best-fitting dependency completion out of the many possible com-
pletions, our approach defines confidence scores based on the schema of the database. Given that
nalini is intended to be a simple, lightweight proof of concept, the confidence scores do not make
any use of the actual contents of the database tables.

In the case that no likely dependency match was found for one or more holes, the nalini engine
will return a response at this point in the process. The response contains the original input as well
as annotations indicating which fragments of the descriptions could not be interpreted as references
to database columns. Upon receiving a response with this structure, the web interface will display it
to the user so that the user can modify their inputs and try to generate their query again.

If all holes can be interpreted as database references, the engine will then move on to the next step,
which is to synthesize the tree representing the FROM and JOIN clauses of the SQL query. We
detail this algorithm in Section 2.3.3. At a high level, the tree of table relationships is synthesized by
running each dependency through a depth-first search on schema edges and then running a simple
algorithm to combine the dependencies from all columns and filters into one tree.

The last step of the synthesis process is to actually render the SQL query from all of the synthesized
data structures, which we detail in Section 2.3.4. This is a deterministic process where the syntax of
the SQL dialect actually comes into play. The engine then returns the completed query.

There is one notable caveat we have not yet mentioned: the semantic parser framework we used
to build nalini’s parser relies on an unconfigurable tokenizer that converts all input phrases to
lowercase and splits on some tokens, even if the value is enclosed by quotation marks. For example,
the phrase "Customer#0001" will be tokenized as ["customer", "#", "0001"] rather
than remaining together as a single string. To bypass this limitation, we include a pre-processing
step before calling the semantic parser to save the original input queries, and convert exact quotes
back to their original forms before displaying them back to the user as uninterpretable hints or in a
rendered SQL query.

2.3.1 SEMANTIC PARSING

Inspired by the technique used to build SQLIZER (Yaghmazadeh et al., 2017), nalini relies on a
custom semantic parser to map natural English phrases to sketches of SQL query fragments. This
strategy enables the generation of high-quality intermediate representations of the user’s desired out-
put columns and filters without any database-specific schema information or training data. The SQL
column and filter sketches generated by our semantic parser, like all outputs of semantic parsers,
are logical forms, or unambiguous statements in a domain-specific language (DSL) which follow a
context-free grammar.

In order to map a sequence of tokens to a logical form, a semantic parser must have a context-
free grammar and a designated root non-terminal symbol. The parser specifies a list of rules that
can be used to derive non-terminals from the input token sequence, and can define any number of
intermediate non-terminal symbols to use as part of those rules. The process of tokenization poses its
own challenges; for instance, a multi-word phrase such as ”January 1st 1995” should be recognized
as a single token representing a date. To handle named entity recognition during tokenization, as
well as enable more sophisticated rule-generation based on part-of-speech tags and other attributes,
most semantic parsers make use of a linguistic processing module. The other major objective of a
semantic parser is to distinguish between the many possible logical forms that can be derived from a
single natural language utterance. Typically, this is done via statistical methods that assign a score,
or probability, to each candidate logical form based on a set of (utterance, logical form) pairs used as
training examples. The parser either returns the top value by likelihood or a ranked list of possible
candidates.

We implemented nalini’s semantic parser using an existing toolkit for building semantic parsers
called SEMPRE (Berant et al., 2013), which was also used to build SQLIZER (Yaghmazadeh et al.,
2017). We drew on Stanford CoreNLP library (Manning et al., 2014) for named entity recognition.
Our implementation contains 113 rules, each of which is quite simple; we did not leverage part-of-
speech tagging or any of the other pre-trained CoreNLP models while writing rules.

6

Under review as a conference paper at ICLR 2022

columnSketch := expr (, source)? (, filterSet)?
filterSketch := filterSet (, source)?

source := ??h
filterSet := expr (, expr)*

expr := value — unaryOp, expr — binaryOp, expr, expr
value := number — string — date — ?h

columnValue := COLUMNNAME (, TABLENAME)?
date := day — month — year

unaryOp := NOT — aggOp
aggOp := SUM | COUNT | AVG | MIN | MAX

binaryOp := + | − | × | ÷ | = | > | ≥ | ≤ | < | AND | OR

Figure 3: Grammar of logical forms produced by nalini’s semantic parser. Here, h denotes a hint;
??h denotes to a table hint while ?h denotes a column hint.

To assign likelihoods to each possible derivation, the SEMPRE framework maps each derivation to
a to a feature vector θ of approximately 40 dimensions, where each feature is an indication of how
well the derivation applies to the utterance. For example, one feature corresponds to the number of
grammar rules used in the derivation. Another set of features is used to indicate how many skipped
words with each part of speech were not used in the derivation (skipping a transitive verb like ”is”
may not be problematic, but failing to include a noun like ”lineitem” may lead to a less accurate
derivation). There are also features that encode the relative simplicity of the denotation.

For a given utterance, each possible derivation is given a score proportional to their likelihood by
taking the dot product of the feature vector θ and a fixed weight vector w. In the SEMPRE framework,
the weight vector w is calculated by maximizing an objective function which rewards correct output
based on a set of (utterance, derivation) training examples (xi, yi). Our implementation uses a small
set of only fifteen hand-generated training examples to provide examples of order of operations in
arithmetic, preferences for parsing phrases as dates and quotes, and usage of overloaded/ambiguous
keywords such as ”of” and ”over.”

In nalini’s semantic parser, input sequences are English natural language phrases corresponding
to either column or filter descriptions. The logical forms correspond to SQL column and filter
sketches, respectively, where the structure of arithmetic, boolean, and aggregate operators is defined
and holes are left to represent references to columns in the database.

The grammar defining the logical form representations is given in Figure 3. In the grammar of our
DSL, the rule for columnSketch defines logical forms mapped from column descriptions, while
the rule for filterSketch defines logical forms mapped from filter descriptions.

Recall that in our running example, the user provides three column descriptions. The
first two, customer nation name and supplier nation name are parsed as
(columnSketch(expr(value(colHint[customer nation name])))) and
(columnSketch(expr(value(colHint[customer nation name])))) respec-
tively.

The third column description, total lineitem extendedprice * (1-discount)
for lineitems with shipping method "TRUCK", is parsed as a column sketch with

7

Under review as a conference paper at ICLR 2022

both a source and a filterSet as follows:
(columnSketch

(expr(SUM(

*(colHint[lineitem extendedprice])(−(1)(colHint[discount])))))
(source(tableHint[lineitems])

(filterSet[(=(colHint[shipping method])("TRUCK"))])

)

Note that if the phrase with shipping method "TRUCK" had been replaced with if type
of shipping is "TRUCK" or that have shipment vehicle "TRUCK", we would
have ended up with the same exact logical form with the exception of the hint text (which would be
type of shipping or shipment vehicle, respectively).

When parsing a filter, we define the root non-terminal to be filterSketch, so for example
customer nation name is not supplier nation name parses to:
filterSketch((filterSet[

(=(colHint[customer nation name])(colHint[supplier nation name]))

]))

and ship date on or after 1/1/1995 and ship date before 1/1/1996
parses to:

(filterSketch(filterSet[

(≥(colHint[ship date])(date(1)(1)(1995))),

(<(colHint[ship date])(date(1)(1)(1996)))

]))

Notice that both a column description and filter description can always parse to a single hint string,
the parser will always return a valid derivation, even if it is not particularly meaningful.

2.3.2 HINT RESOLUTION

The next stage of the query generation process is sketch completion, or the process of filling in the
holes left in all of the column and filter sketches. Given the column and filter sketches and the type
environment Γ, which encodes the database schema, we fill each hole with a with the most likely
reference to a column in our database table. We define a reference to a column as having three parts:
c, the column name, t, the table the column can be found in, and optionally, j, another table from
which we should arrive at t via joins. In a valid column reference, c must be the name of a column
in the schema, t must be the name of a table in the schema, j is either the name of a table in the
schema or None. Additionally, c must be a column of table t, and j cannot be equal to t. Note that
our approach is based on the assumption that for any two tables x and y in our database, there exists
at least one way to join x to y using equi-joins. We define an equi-join to be a join where every join
condition must consist of one or more equality checks. Because of our general assumption, we do
not have to impose an additional constraint that tables t and j must be connected via equi-joins.

For example, the column reference (n name, nation, customer) refers to the n name
column of the nation table, as do the column references (n name, nation, supplier)
and (n name, nation, None)—the difference is that in the first two column references, the
nation table is interpreted as a table joined to the customer and supplier tables respectively,
and in the third column reference, there is no such constraint. In Section 2.3.3, we detail how these
column references are used to put together a complete representation of a SQL query. In this sec-
tion, we explain our algorithm and heuristics for finding the most probable column reference for
each hole in the column and filter sketches.

Overall Algorithm: At a high level, for each sketch, we combine knowledge of the database
schema, namely the names of the tables and their columns, with the natural language hints provided

8

Under review as a conference paper at ICLR 2022

in the input, to generate a confidence score for each valid column reference. Algorithm 3 details this
procedure for filling holes.

Algorithm 2 Hint resolution
1: procedure RESOLVEDEPENDENCIES(cs, fs, Γ, γ)
2: Input: column sketches cs, filter sketches fs, type environment Γ, confidence threshold γ
3: Output: Resolved Hints, Uninterpretable Hints
4: resolved hints = {}
5: uninterpretable hints = {}
6: function UPDATEHINTS(hole ptr, top col)
7: if top col.SCORE ≥ γ then
8: resolved hints[hole ptr] = top col
9: else

10: uninterpretable hints[hole ptr] = top col
11: for column sketch in cs do
12: col src = cs.SOURCE if cs.SOURCE else None
13: for (hole ptr, hint str) in GETHOLES(column sketch) do
14: UPDATEHINTS(hole ptr, TOPCOL(hint str, col src, Γ))
15: for filter sketch in cs.FILTER do
16: for (hole ptr, hint str) in GETHOLES(filter sketch) do
17: UPDATEHINTS(hole ptr, TOPCOL(hint str, col src, Γ))
18: for filter sketch in fs do
19: for (hole ptr, hint str) in GETHOLES(filter sketch) do
20: fil src = fs.SOURCE if fs.SOURCE else None
21: UPDATEHINTS(hole ptr, TOPCOL(hint str, fil src, Γ))
22: return resolved hints, uninterpretable hints

Recall that our input is separated into a list of column sketches and a list of filter sketches. We iterate
through each hole independently, whether it is within a column expression, column-associated filter,
or standalone filter, and use both the column hint and the optional source hint to find the best
column by calling the TOPCOL function. For each hole, the TOPCOL function returns the most
likely column as well as a score p ∈ [0, 1]; if p < γ, the column reference is not considered
sufficiently likely, and the hint is marked as uninterpretable. After attempting to resolve the holes
in all sketches generated by the user’s natural language inputs, this phase of query synthesis either
returns the list of uninterpretable hints, which will halt execution of the synthesis engine, or will
pass the resolved hints to the next phase.

Top Column: The heuristic used to determine the most likely column reference and its score takes
three inputs: the column hint (required) col hint, the source hint (optional) source hint, and the type
environment Γ. Additionally, it makes use of two manually-tuned constants α and β which are used
to weight the relative important of matching the table hint and the join hint respectively.

This algorithm is enumerative in nature. First, the database schema is used to generate a complete
list of all possible column references An of the form (j, t, c) and (None, t, c); this list must only be
generated once per query. Then, using a heuristic, a score is calculated for each possibility, and the
column reference with the highest score is returned along with its score.

The heuristic is simple: the natural language hints are used to enumerate all likely interpreta-
tions as column references Hi, and then a similarity function GETSIMILARITY, based on word
embedding distance, is used to assign similarity scores between each interpretation Hm and each
column reference An. The score of the column reference An is equal to the maximum score
GETSIMILARITY(Hm, An) over all n.

To enumerate the likely interpretations from a column hint, the hint is separated into tokens and
consecutive tokens are interpreted as columns, tables, and join tables while preserving the hint order;
if a source hint is provided as input to the function, additional possible interpretations are considered.

The similarity between two strings is calculated as the cosine difference of the vector embeddings
of both strings in the OpenAI ada engine. The ada engine is the simplest of four large language
models released by OpenAI under the name GPT-3, with 300M parameters. We are only leveraging

9

Under review as a conference paper at ICLR 2022

the underlying word embeddings generated in training, rather than leveraging its full capabilities as
a language generation engine. We chose ada over other similar language models which also handle
multi-word phrases, such as BERT primarily because its API was free and convenient to use.

2.3.3 TABLE RELATIONSHIP DISCOVERY

Once all of the holes in column and filter sketches have been filled with the best candidate for column
resolution, the query generation engine synthesizes a tree representing the sources of those columns,
and their relationship to each other. This subroutine takes as input the column sketches cs, filter
sketches fs, resolved hints resolved hints, and the type environment Γ and uses a simple shortest
path algorithm repeatedly to build up a best guess of the table graph.

Based on the database schema, the query engine first creates a graph representation of all of the tables
in the database. Each table is a node. Edges are created when a column in one table has values that
can be equi-joined to values in a column of a different table. For instance, in the TPC-H database,
there are columns named p partkey, ps partkey, and l partkey in the part, partsupp, and
supp tables respectively, all of which contain values that are used as primary keys for parts, so
there are edges generated between each pair from the group of three tables.

Then, the resolved hints dictionary is traversed to determine which root node is most common
among all of the column and filter dependencies. The root node of a column reference is the join
table if there is a join table; otherwise, it is the table field. If there is a tie for the most common
root node, one of the most common nodes is selected at random. Since all joins are inner joins, the
starting node of the join tree can actually be an instance of any of the tables used in the final join
tree–we use the maximum rule simply because it makes intuitive sense to start from the table which
is referenced the most by the user. In our running example, we had nine holes, five of which were
filled with references to the lineitem table, so we instantiate a copy of the lineitem table as
our root node.

Then, we iterate through each of the resolved hints and generate paths to the root. Going back to our
original example, lets say we have matched the hint customer nation name to the column
reference (customer, nation, n name). Since this column reference has a join hint, our first step
is to run a DFS to determine the shortest path between customer and nation; this is a direct
link between the customer and nation tables joined on c nationkey = n nationkey. Now that we
know we want the n name column to come from a nation table joined to a customer table,
we need to synthesize the most likely (simplest) connection between our root lineitem table and
the customer table. Presumably, this is the customer of the lineitem. We call DFS once again
and determine that the shortest path joins from the lineitem table to the orders table and from
the orders table to the customer table. We instantiate all three of the tables needed in this path
(orders, customer, and nation), and update the dependency lookup table to contain a pointer
to the new nation table.

We repeat the same process for the next column reference, (supplier, nation, name), leading to
building up a new branch from lineitem to supplier and then to nation. Dependencies
based on the root, such as (None, lineitem, l shipmode) are pointed straight to the root.
Note that when we have to join paths for the same exact phrases (”customer nation name” and
”supplier nation name”) again as part of the filters, we will create duplicate branches attached to the
root. To apply the filters correctly, we introduce a final step of graph consolidation. In this step,
redundant branches are merged, and their corresponding dependency lookups are updated. Note that
this will merge multiple copies of the same table as long as they have the same parent, but that the
two instances of the nation table representing the customer and supplier nations will stay since they
come from different parent nodes.

2.3.4 SQL RENDERING

In the final step of the query generation process, the column and filter sketches, the table graph, and
the dependency lookup dictionary are used to put together a single data structure representing an
entire query. This data structure is then expressed as a query in SQL. While nalini is currently
built to write PostgreSQL queries, the final step of query rendering can easily be rewritten to support
any dialect of SQL.

10

Under review as a conference paper at ICLR 2022

Algorithm 3 Table Graph Creation
1: procedure SYNTHESIZEJOINS(cs, fs, resolved hints, Γ)
2: Input: column sketches cs, filter sketches fs, resolved hints resolved hints, type environ-

ment Γ
3: Output: table graph, dependency lookup
4: edges = GETGRAPHFROMSCHEMA(Γ)
5: root = DETERMINEROOTNODE(resolved hints)
6: table graph = root
7: for (column, table, join) in resolved hints do
8: branch path = []
9: if join then

10: branch path.append(DFS(join, table, edges))
11: branch path.append(DFS(table, root, edges))[1:]
12: new table ptr = ATTACHBRANCH(table graph, branch path, root)
13: UPDATEDEPLOOKUP(new table ptr, column)
14: consolidated graph, consolidated lookup = CONSOLIDATE(table graph, dep lookup)
15: return consolidated graph, consolidated lookup

The SELECT clause is built by filling in the column sketches with the dependencies in the lookup
dictionary. At this stage, the AS keyword will be used to add the user-inputted column aliases to the
SELECT statements.

The FROM clause, along with the JOIN statements, are generated directly from the table graph.

The filter sketches, with dependencies filled in, comprise the optional WHERE and HAVING clauses;
which clause it belongs in is determined by the presence or absence of an aggregate function.

Finally, the GROUP BY clause is synthesized by checking which column expressions contain aggre-
gate functions. If one or more synthesized column expressions contains an aggregate function, the
remaining columns are added to the GROUP BY clause (unless all columns have an aggregate, in
which case the GROUP BY clause is not rendered at all).

2.4 SCOPE

The implementation of our novel technique supports standard arithmetic operations, boolean op-
erations, and aggregate functions, enabling nalini to generate a relatively wide variety of SQL
queries. However, there are a few key assumptions made in order to bound the technical scope of
this work.

First of all, we assume all joins are inner joins, and furthermore, all joins are equi-joins, as defined
in 2.3.3. Also, the only supported operations on date and string types are comparisons.

In general, rather than supporting a wide variety of SQL syntax, we require the user to make use of
simpler syntax and functions in order to replicate certain behavior. For example, nalini cannot
directly generate nested queries, but a user can generate one or more intermediate tables to incre-
mentally build toward their target table. Complex logic such as CASE and EXISTS statements are
not directly supported, but filters that would typically be found in WHERE and HAVING clauses can
be combined with multi-step logic to reach the same outcomes.

The grammar specifying the queries that nalini can render is formalized in Figure 5. Note that
nalini is designed to work in cases where columns in different tables in the same database have
identical names. For this reason, the grammar allows for the table name to be included as part of a
column value. Although there is no formal constraint listed, database systems typically necessitate
that table names are unique within a database.

2.5 IMPLEMENTATION

We implemented nalini primarily in Python and used Django, a high-level Python web frame-
work. We configured nalini to use a local Postgres database. We wrote our custom semantic

11

Under review as a conference paper at ICLR 2022

parser as an extension to the SEMPRE semantic parsing framework: grammars and training exam-
ples are written in SEMPRE’s domain-specific language, classes are written in Java, and scripts are
executed via Ruby and Bash.

3 RELATED WORK

The work presented in this thesis is related to a broad range of prior work attributed to the natu-
ral language processing, programming languages, and database communities. In this section, we
compare the technique implemented in nalini with related approaches.

3.1 NALINI VS SQLIZER

Because our work has a lot in common with SQLIZER (Yaghmazadeh et al., 2017), we start by dif-
ferentiating the two systems. While both nalini and SQLIZER parse the natural language input
using a database-agnostic semantic parser and then fill in the holes in the query sketch using informa-
tion about the database, one key difference is the problem space that the two tools address. Whereas
SQLIZER makes the assumption that every query description is one sentence long, nalini is de-
signed to handle more complex queries by allowing the user to input individual descriptions for each
necessary column and filter. SQLIZER is intended to be fully automatic, while nalini makes use
of an interactive interface.

Both tools use the SEMPRE (Berant et al., 2013) semantic parsing framework to build the semantic
parser. Note that since the code for SQLIZER is not available, the semantic parser for nalini was
built from scratch. The SQLIZER parser is also much more sophisticated, making use of several
pre-processing steps and part-of-speech tagging.

The two tools differ significantly in how they fill in holes in query sketches. Because SQLIZER sup-
ports a much richer SQL vocabulary, it relies on a more sophisticated synthesis algorithm. Not only
does it make use of the actual database contents to assign confidence scores to various possible as-
signments, its algorithm also includes a fault-localization step. In this step, if a hole cannot be filled
with high enough confidence, it is replaced with another fragment of a SQL query that evaluates to
the same type. The entire synthesis algorithm is type-driven. In contrast, nalini’s algorithm can
be much simpler since it is given much more information about the structure of the eventual query,
since users explicitly specify their desired output columns and tables.

3.2 INTERACTIVE INTERFACES FOR QUERY GENERATION

The idea of using an interactive interface for query generation is not unique to nalini. A promi-
nent SQL query generation system, NALIR (Li & Jagadish, 2014), used an interactive interface
to supplement natural-language driven query synthesis. NALIR is also based on the fundamental
assumption that the natural language query description provided by the user consists of a single sen-
tence. It uses a dependency parser to translate the user’s statement into a query tree, and then asks
the user to refine the visually-rendered generated parse tree. This study showed that interaction with
the user can be quite useful, especially in the context of a refinement loop.

In addition to natural language-based query generation, another field of study is query generation
using programming-by-example (PBE). The programming-by-example paradigm asks the user to
give the synthesis engine one or more example input/output pairs. In the context of database query
generation, this lends itself naturally to use of an interactive interface. Both PATSQL (Takenouchi
et al., 2021) and SCYTHE (Wang et al., 2017), which are recent PBE-based SQL-query generators,
make use of a refinement loop where the user can tweak their input and the desired query as much as
possible before exiting it. The demo for SCYTHE is not available. The user interface for nalini,
which has a database preview on the left and a query generation panel on the right, is inspired by
the web interface used in the PATSQL demo, although the query generation panel looks notably
different. Our implementation for nalini also borrows from PATSQL the idea that all constants
used in the final query must be supplied by the user. We chose not to explore programming-by-
example in this work because it can be quite impractical for users to specify a concise, yet fully
descriptive example when dealing with arithmetic operations and complex logic.

12

Under review as a conference paper at ICLR 2022

3.3 SKETCH-BASED SYNTHESIS

One of the most central ideas in our technique is Sketch-based synthesis, which was first explored
in the SKETCH system (Solar-Lezama et al., 2005; 2006; 2008). In the SKETCH system, a sketch-
based approach is defined by its two steps: first, the outline of a program is synthesized with holes
in place of constants, and then the holes are instantiated with the appropriate constants. The con-
cept of programming by sketching has evolved to include other types of holes; for our context, we
use columns and table names. Our particular use of sketch-based synthesis was inspired by SQL-
izer (Yaghmazadeh et al., 2017), which generates query sketches from natural language, fills in the
holes using type-driven synthesis, and then uses a fault-localization algorithm to refine the query
until reaching a certain confidence threshold. Other tools for database query generation also rely
a sketching approach, including NaLIR (Li & Jagadish, 2014), which uses natural language along
with an interactive interface, and PATSQL (Takenouchi et al., 2021) and SCYTHE (Wang et al.,
2017), which are programming-by-example interfaces.

3.4 LARGE LANGUAGE MODELS

There have been many deep-learning (Baik et al., 2019; Guo et al., 2018; Yu et al., 2018a;b; Chen
et al., 2021; Guo et al., 2019) and rule-based (Li & Jagadish, 2014; Yaghmazadeh et al., 2017)
attempts to develop text to SQL tools. All of the recent state-of-the-art methods face the fundamental
problem of understanding word similarity, and take advantage of pre-trained embedding vectors of
tokens to quantify it (Baik et al., 2019; Guo et al., 2018; Yu et al., 2018a;b; Chen et al., 2021;
Guo et al., 2019; Li & Jagadish, 2014; Yaghmazadeh et al., 2017; Kim et al., 2020). One common
set of pre-trained embedding vectors is Word2Vec (Mikolov et al., 2013), which is used by similar
systems such as SQLIZER and NALIR. However, Word2Vec embeddings are not context-aware; for
example, the word ”running” in the phrase ”running a mile” has the same embedding as the same
word in the phrase ”running for president.” In recent years, there have been advances in context-
aware word embeddings, and large language models such as ELMo (Peters et al., 2018), BERT
(Devlin et al., 2019) and OpenAI’s GPT-3 (Brown et al., 2020) have been made available to the
public. Our work uses the smallest possible version of GPT-3’s word embeddings, simply because
it is the most recently released language model and because it is easily accessible via an API.

3.5 SEMANTIC PARSING

The concept of semantic parsing has been used in a wide variety of natural-language and
programming-language related research in the past. In general, semantic parsing uses a formal, often
domain-specific, language to generate logical forms which best represent input sentences. Much of
the work done using both a neural semantic parser (Guo et al., 2018) and the SEMPRE framework
(Berant et al., 2013) has made use of semantic parsing to query databases and knowledge engines.
However, these approaches require that the parser is trained on the specific knowledge engine. We
believe that our approach, like the approach taken by SQLIZER (Yaghmazadeh et al., 2017) is much
more robust and extensible because the semantic parser only needs to be trained on the English
language, rather than on a specific database or knowledge graph.

4 EVALUATION: FIRST-USE STUDY

To evaluate nalini, we conducted a first-use study with five users, all of whom are early-career
software engineers and/or quantitative analysts with computer science degrees and industry pro-
gramming experience. All participants had some prior exposure to SQL; the average self-reported
SQL knowledge was 5.2 on a 7-point Likert scale (σ = 1.3). Participants reported having SQL
exposure in a variety of different dialects (including PostgreSQL, MySQL, Transact-SQL, PL/SQL,
SparkSQL, and PySpark) and environments (including Snowflake, Navicat, Sublime, Sequel Pro,
DBeaver, DbVisualizer, Jupyter Notebooks, Microsoft SQL Server, and Palantir Foundry).

4.1 METHODS

Due to the ongoing COVID-19 pandemic, we conducted our studies via video conference with
screen-sharing enabled. Each participant was given a private URL to access nalini, which had

13

Under review as a conference paper at ICLR 2022

Query nu
m

co
lu

m
ns

nu
m

fil
te

rs

nu
m

sr
c

ta
bl

es

ar
ith

m
et

ic

st
ri

ng
co

m
pa

ri
so

n

da
te

fil
te

r

ag
gr

eg
at

io
n

m
ul

ti-
st

ep

Q6 1 5 1 ! ! !

Q3 4 3 3 ! ! ! !

Q1 8 1 1 ! ! !

Q5 2 5 6 ! ! ! !

Q2 8 1 5 ! ! ! !

Table 1: High-level attributes of TPC-H queries participants were asked to write using nalini
during the user study.

already been connected to a Postgres database that meets the specifications for the TPC-H decision
support benchmark. For convenience, we limited the length of the generated tables.

We began each study with a 15-minute orientation to get each participant acquainted with the user
interface as well as to contextualize the data they were working with. Then, working with the
interviewer, each participant spent 15 minutes completing three short warm-up tasks. Through the
warm-up tasks, the participant was gradually introduced to multi-column table generation, filters,
join logic, and multi-step queries. We then asked participants to use nalini to write five queries.
We chose queries from the TPC-H decision support benchmark because they are designed to include
a wide variety of structures and are known to be difficult to support using existing NLP-to-SQL
methods.

Users were asked to write queries meeting the specifications for Q6, Q3, Q1, Q5, and Q2 from
the decision support benchmark; the ordering was based on how much text input was necessary to
specify the queries to nalini. Attributes of the selected queries can be found in Table 1. For
each query, we made slight modifications to the written specification to improve clarity and include
parameters. For example, instead of the original phrasing of ”all lineitems shipped in a given year”
where the parameter YEAR is later specified to have the value 1994, we might write ”all lineitems
shipped in 1994.” Given that nalini does not support sorting or complex string operations, we
removed the sorting requirements for Q1, Q2, Q3, and Q6 and replaced the string operation in Q2
that required the ’like’ operation with a similar filter that checked for an exact match. Note that
Q4 was omitted because nalini does not yet directly support the SQL ’exists’ operation, and Q2
already provided a good example of a multi-step query.

As they worked, participants were asked to explain their thought processes out loud. Participants
took 45-60 minutes to complete the five queries, and then completed a quick exit survey.

4.2 QUANTITATIVE RESULTS

4.2.1 TASK COMPLETION

In order to evaluate participants’ success on the query writing tasks, we compared the final output
table of each query they wrote with the output table of the golden query. We define table A to be
equivalent to table B as long as the tables contain the same values; row ordering, column ordering,
and column names may vary. We define a query q as equivalent to the gold query g if and only if the
table produced by q is equivalent to the table produced by g.

The participants’ performance on the query writing tasks is summarized in Table 2. All participants
were able to use nalini to execute queries equivalent to Q6 and Q1, the two queries which require
arithmetic expressions, date filters, and aggregates, and had only one source table. All participants
generated a correct query equivalent to Q3, which requires arithmetic expressions, string compari-
son, date filters, and aggregates, and also joins between multiple tables. Four participants were able

14

Under review as a conference paper at ICLR 2022

Participant Q6 Q3 Q1 Q5 Q2
P1 • • • • •
P2 • • • • •
P3 • • • • •
P4 • • • • •
P5 • • • • •

• Participant generated a table equivalent to the table produced by the gold query
• Participant generated a correct query but failed to execute it due to WiFi interruption
• Participant executed an incorrect query which differed from a correct query by one join con-

dition
• Participant failed to generate the correct table independently but was able to after being as-

sisted through the first stage of a multi-stage query.

Table 2: Summary of user task completion.

to successfully execute that query; one had a WiFi interruption and due to time constraints did not
re-create the query and execute it against the database. Q5, which required more complex joins and
filtering, proved to be slightly more difficult. Only one participant (P4) used nalini to generate
a correct query. All other participants used inputs to nalini that generated a correct SQL query
with the exception of a single missing join condition. Participants P1, P2, and P5 did not notice the
error and executed the incorrect query, while P3 manually added the missing condition and was able
to produce the correct result. Finally, three participants (P1, P3, and P5) were able to write queries
equivalent to Q2. The goal of Q2 is to produce a table with information about each part and the
supplier that supplies the part at the minimum cost. The gold query is a nested query which also
includes aggregation, arithmetic, and string comparisons. In order to produce the desired result, P3
used two chained queries, one of which found the minimum-cost supplier for each part and one of
which used joins to find all of the other necessary information. P1 and P5 both built two tables,
one of which contained part information (including the minimum-cost supplier), and one of which
contained supplier information, and then combined them to create a third table matching the desired
output. Two participants, P2 and P4, were unable to independently generate the desired output table.
However, once the two-step approach was explained to them, they were able to use nalini to build
the first table, update the database schema, and build the final output table using their first table.

4.2.2 POST-STUDY SURVEY RESULTS

On 7-point Likert scales, participants positively rated nalini overall (µ = 5.6, σ = 0.7). Partic-
ipants rated nalini positively for ease of use (µ = 5.6, σ = 0.9) and felt that the columns-and-
filters approach was intuitive (µ = 5.6, σ = 0.5). When asked to rate the ”naturalness” of their
inputs (as opposed to ”code-like” inputs), participants rated nalini as more natural (µ = 4.6,
σ = 1.1), and even with its bare-bones implementation and limited capabilities, participants said
that they would use nalini again as opposed to writing raw SQL (µ = 4.2, σ = 1.8).

4.3 QUALITATIVE RESULTS

Based on our observations, all participants quickly developed an understanding of what nalini is
capable of and how to use it to write the desired queries. Participants developed a common flow:
first, they read and understood the prompt. Some made additional notes in the shared document
that had the prompt. Then, they wrote natural language descriptions in the nalini web interface,
switching frequently between the text input area and scrolling through the table previews. The SQL
query generation process was iterative, with participants tweaking their natural language inputs and
generated queries until receiving the desired result and executing the query.

4.3.1 USE OF NATURAL LANGUAGE

We observed participants successfully using a wide variety of natural language constructs to generate
their desired queries.

15

Under review as a conference paper at ICLR 2022

As an example, to specify the revenue column for Q6, one participant typed
sum(l extendedprice * l discount), which is already SQL syntax, one typed total
of lineitem price times lineitem discount, which was much more natural, and
one typed sum lineitem extprice * discount, which was a mix of both. Another
participant also incorporated one of the necessary filters and typed total (extendedprice *
discount) if lineitem quantity less than 24. Similar variation was observed
for all queries.

We also observed many attempted natural language constructs that were not understood by our
semantic parser; we detail them in 4.3.4.

4.3.2 INTERACTION LOOPS

When using nalini to generate a query, we observed three types of interaction loops. First, par-
ticipants’ natural language inputs often did not lead to a generated query on the first try, so they had
to tweak their inputs. Then, when a query was generated, participants checked that the query was
correct and either edited their inputs or the SQL query itself until getting the desired query. Lastly,
though rare, after attempting to execute a SQL query, participants may have had to edit the SQL
further or start over with natural language to get their desired output table.

Generating a SQL Query: All five participants naturally encountered phrases that were not rec-
ognized and relied on the error messages to tweak their inputs. For example, a participant had to
clarify the column name p mfgr when part manufacturer did not match any columns. The
error messages were also useful when participants used phrases and syntax patterns that were not
recognized by nalini’s semantic parser (see 4.3.4).

Refining the Generated Query: Once a SQL query was generated, participants frequently made
changes before executing it. The most common issue was that a hint had been interpreted as
the incorrect column. For example, both P2 and P3 ran into an issue where the phrase nation
matched the c nationkey column from the customer table, but the intention was actually to read
the n name column from the nation table. We observed that P2 made this change by changing
their input string (in this case, nation name worked). P3, who had a bit more SQL experience,
opted to change the SQL query directly. Another scenario that occurred for multiple participants
(P1 and P2) was misinterpretation of the phrases date and lineitem date as corresponding
to the o orderdate column from the orders table and the l receiptdate column from the
lineitem table, respectively. Both participants adjusted their natural language inputs by typing
the exact intended column name, l shipdate, into the column description field.

There were other types of instances where participants directly modified SQL code, including minor
tweaks (swapping comparators, fixing typos) and more careful manipulation (for Q5, which involved
joins between six source tables, nalini generated an incomplete join clause for P1, P2, P3, and
P5—P3 noticed the error and added an additional join clause themself).

Adjustments after Query Execution: Sometimes participants wanted to make changes after ex-
ecuting the query and went back to make changes to the underlying SQL. This proved time-
consuming, since once executed, the web interface does not preserve the natural language used
to generate the query.

In certain cases, users modified the SQL directly and re-executed the query. Sometimes, users opted
to start from the beginning and type in all of the natural language inputs again. Another method
of progressing after generating an incorrect table was the generation of a new table based on the
incomplete generated table. For example, when P4 was generating Q2, they forgot to filter by region
in the second step and created a new table using the natural language interface with the same columns
and a filter applied.

Combining Interaction Loops: It is worth mentioning that while these cycles of iteration tended
to happen sequentially as participants moved between stages of the query generation process, some
users combined these interaction loops during their processes. In particular, P4 adopted a strategy of
generating a SQL query every time they added one or two columns or filters, and P1, who was the
most fluent in PostgreSQL specifically, tended to execute generated queries before inspecting them,
using both the generated output and the query syntax together to verify correctness.

16

Under review as a conference paper at ICLR 2022

4.3.3 OPTIMIZATIONS AND SHORTCUTS

Once participants discovered phrases and syntax patterns that worked, they tended to reuse them.
For example, once users saw that not all columns needed aliasing, they stopped adding unnecessary
aliases. Once they found an abbreviation that worked for a particular column (e.g. extprice for
l extendedprice), they tended to reuse the abbreviation for future queries. Some participants
began to directly copy/paste phrases from the prompt text into nalini. Those who did (P1, P2,
and P4) continued doing so for queries after the first query they copy/pasted for. Similarly, some
participants (P2, P3, P5) began to copy/paste column names and continued doing so after the first
time.

4.3.4 COMMONLY ATTEMPTED CONSTRUCTS

There were several constructs that multiple participants attempted to use which are not yet sup-
ported by nalini. Between Q6 and Q3, all participants attempted to use the keyword ”between”
(e.g. discount between 0.05 and 0.07, ship date between jan 1 1994 and
dec 31 1994) and found that it was not supported, opting instead to specify upper and lower
bounds separately. Similarly, three out of five participants tried specifying date ranges using the
”in” keyword (e.g. ship date in 1994). Two out of five participants tried to use ”and” in a
distributed manner (e.g. discount more than 0.05 and less than 0.07). Two out
of five participants tried to use ”both” in their natural language inputs (e.g. customer nation
and supplier nation both have name "ASIA"). While working on Q1, two partici-
pants also referred to a previously described column, which represented the gross discounted rev-
enue, when trying to describe a new column which represented gross discounted revenue after tax
was applied.

4.3.5 A SHIFT IN FOCUS

Several participants commented on how using nalini differs from writing SQL queries by hand.
P2 and P5 felt that using nalini allowed them to spend most of their time thinking about what
they were trying to produce, and why, rather than spending time figuring out how to write SQL to fit
their output. P4 made a comment about how ”It’s actually so nice to not have to worry about typos
and exact spelling.”

P1, P3, and P5 all noted that this required a shift in mindset, and that they kept trying to approach
problems as though they were writing SQL queries. P1, P3, and P5 all asked questions at various
points during the study about how to ensure that a certain join path was generated and then correct
themselves to think about the output in terms of columns instead. Interestingly, P1 did actually find
a way to force certain join paths by using multi-step query chaining to build up the join tree one step
at a time in a way that they could control.

P1 stated that the query prompts, which were formatted as short multi-sentence paragraphs, were
extremely comparable to the emails they receive on a daily basis from business analysts at their com-
pany, and that the columns-and-filters approach was much more aligned with the way that queries
are specified than the one-sentence prompts required by other NLP-to-SQL tools.

4.3.6 COMPARISONS TO OTHER METHODS

In addition to their ability to complete the presented tasks, participants made several verbal com-
ments that provide valuable insight into nalini’s strengths, limitations, and potential future im-
provements.

During the guided tutorial, all participants were enthusiastic and eager to test out the abilities to
nalini, using several different text inputs to generate the same desired queries. All participants
responded positively the first time they saw SQL syntax generated automatically (”This is so cool!”,
”This is awesome!”).

As they completed some of the queries, participants commented on nalini’s utility. P1 said ”this
can save so many hours of query writing, even, and perhaps especially, for folks with a solid under-
standing of databases already”. In reference to nalini producing a complex join clause, P3 said
”this thing does all the heavy lifting, all the brutal stuff”.

17

Under review as a conference paper at ICLR 2022

Participants also expressed ways in which nalini could be improved. Four of five participants
noted that the runtime was too long, with P1 commenting that they would have changed their gen-
eral strategy to include more incremental iteration if the synthesis engine ran faster. P2 and P3
expressed interest in UI improvements such as being able to click on a column name to indicate
getting information form that column and using color to indicate which natural language phrases
were mapped to which columns. P5 felt that a visualization of the joins that were constructed would
be helpful.

Usability in the Workplace: As part of the exit survey, participants were asked about how nalini
might fit into their existing processes at work.

P1 was particularly enthusiastic about being able to use it at their workplace–as a data scientist, often
burdened with requests from other people, they could use nalini to make this process self-service
or at least much faster. They also mentioned that they have to frequently switch between SQL
dialects due to the multiple tools at their workplace and frequently spent time looking up syntax,
which could be addressed by nalini.

P2, who had very little SQL experience relative to the other participants, said ”I literally would have
had to look up the syntax of every single part of this query” while working on Q5, and said that
whenever they have had to use SQL at work in the past, it was for very simple projections, filters,
aggregations that nalini is well suited to. P5 only said that their existing work processes were
easy enough to use for software engineers, perhaps indicating that they would be unlikely to prefer
using a tool like nalini.

P3 and P4 made note that joins are often confusing and difficult to write, with P3 stating that ”Nalini
covers a lot of the most tedious yet basic SQL functionality (e.g. joins) that can waste developer
time”.

P1, P3, and P4 all emphasized that runtime would have to be improved in order for them to get the
most benefit out of nalini, since they all currently write SQL in environments that allow rapid
iteration.

P1 and P3 also said better support for nested queries would be necessary for it to be useful at the data
analysis level, but that it is already useful for simple joins and cleaning steps that are key components
of most ETL (extract, transform, load) tasks.

P3, P4, and P5 all commented on the fact that nalini could identify which table a column should
come from even if there were multiple tables that had columns with the same name. P3 mentioned
that in enterprise systems, many database interfaces include a ”data dictionary” which maps column
names to natural language descriptions of the column’s contents, and suggested that since column
names themselves are often esoteric and difficult to interpret, nalini could be more useful if it
was integrated with that information

P2 indicated that most of the people they work with (who are bankers) copy data into excel to do
these types of transformations rather than creating tables in their database, which leads to a lot of
duplicated work and unnecessary file transfer. They said that something approachable like nalini
that makes working in a database environment as easy as working in Excel could reduce a lot of
unnecessary work.

5 CONCLUSION

We contribute nalini, an interactive interface for natural language-based SQL query generation. Our
goal was to address the need for an easy-to-use, user-friendly way to write SQL code, especially
given the lack of general usability of current natural language and programming-by-example tools.
We built nalini using simple and straightforward implementations of many of its constituent com-
ponents, including the semantic parser, the synthesis algorithm, the data-based word-similarity func-
tion, and the user interface, leaving a lot of space for further improvement. Our first-use study vali-
dates the hypothesis that nalini’s approach centered on natural language descriptions of columns
and filters is both intuitive for the user and descriptive enough for existing synthesis techniques to
generate SQL queries. Iterative interaction with the user enables nalini to be effective without
necessarily relying on state-of-the-art technology.

18

Under review as a conference paper at ICLR 2022

5.1 FUTURE WORK

Having built a minimal proof-of-concept to address these technological gaps, we have revealed
several areas of interest which are ripe for future research.

5.1.1 UNDERSTANDING PARTICIPANTS

Fundamentally, a tool intended to make life easier for people can only be as good as our under-
standing of the people whose needs we aim to address. Our first-use study was conducted on a very
niche set of people: young (22-25 year old) American technologists who have computer science de-
grees from nationally-recognized universities and whose work environments typically have access to
cutting-edge technology. While they have enough in common with typical SQL developers to have
valuable insights during a first-use study, there remains a larger question of what groups of people
have the most to gain by using a tool like nalini, and what features are most important for them.
For example, a fully-featured user interface may be much more valuable for non-technical users than
for engineers who are used to debugging and are comfortable with command-line interactions, and
English syntax patterns that are natural for developers in India or Nigeria may be completely unrec-
ognized by a system built for Americans. Once the big picture questions of who nalini may be
most useful for are answered, we can start to ask questions about technical details. What dialect(s)
of SQL should be supported? What functions are most important to include? What language model
is best-suited for matching hints to columns? What existing SQL-writing environment(s) should
nalini be integrated in? We emphasize that nalini functions as a proof of concept, and that
there are many factors concerning usability and accuracy that need to be addressed through broader
study.

5.1.2 SUPPORTING A RICHER SQL VOCABULARY

Our user study was based on only a small subset of TPC-H queries because many of the more
complex queries could not yet be supported. A natural area of further development for nalini is
the scope of the SQL queries that can be created. The existing system is designed such that with
minimal changes to the semantic parser and query rendering component, nalini should be able
to support additional operations such as string operations, date operations, window functions, case
statements, and the ”between” keyword.

Other operations, such as incorporating ordering and limiting, may require additional thought to the
user interface as well. Perhaps it makes sense to add another free-form text inputs, similar to the
filter text inputs, where the user can type phrases like ”sorted by revenue descending” and ”only
show top ten” to indicate their intention.

A few potential extensions to the SQL language supported by nalini that would require more in-
depth user studies and development to address: expanded support for joins, and native support for
nested queries. Our study only addressed queries where the necessary joins are inner joins. Before
building out a solution, it remains to be studied how a user might specify the need for a left, right,
or outer join: does a natural language solution make sense? Is that easiest to indicate using the
user interface? Should multiple resultant queries be presented to the user so that they can see the
possibilities and choose for themselves?

Nested queries (and ”exists” clauses) pose similar questions. Our study only included one chained
query, which showed that it is possible to use the chained-query approach, to build nested queries
using the chaining approach, but not necessarily intuitive. Is there a distinction between types of
problems where the existence of a nested query needs to be specified by the user and types of
problems when it can be inferred and generated with only the provided information? Depending on
the answer to that question, nalini not be well-suited to the problems in its current state; it could
require a change in its fundamental assumptions about query structure.

5.1.3 DEVELOPING A MORE SOPHISTICATED SEMANTIC PARSER

The general approach of always allowing for a programmatic solution and gradually building au-
tomation and NLP capabilities is good for further development, as we can theoretically have a good
understanding of the types of phrases users try to use with nalini and use it to inform future
feature development. Even with the minimal SQL grammar supported by nalini at present, there

19

Under review as a conference paper at ICLR 2022

many possible improvements to the semantic parser can be improved to generate queries with the
same structure from a much broader subset of natural language inputs.

For example, with minimal changes, the parser can support keywords that apply to non-
consecutive words, such as ”between”, ”both”, and ”and” and support keywords that
are split into multiple parts such as ”either/or”, ”same/as”, and chained comparisons
(e.g. x < y < z). Another future area of study is using part-of-speech tagging
to allow for more complex constructs which could correspond to joins. For example,
the phrase people who drive a car that was in at least one accident in
2010 in a city with population more than 1 million contains quite a few
nested relationships. If part-of-speech tagging can be employed to get meaningful parses of such
complex phrases, it makes way for the synthesis algorithm to be modified to support SQL rendering
of those inputs as well.

Another area to explore is breaking the assumption that the semantic parser must be entirely database
agnostic. Other natural language to SQL attempts (Yaghmazadeh et al., 2017; Li & Jagadish, 2014)
have made use of pre-processing and tagging steps to label phrases that might match exact table
names, column names, or database values. For example, without any knowledge of what columns the
hints might correspond to it is hard to distinguish whether the phrase [colHint] + [colHint]
should be parsed as an arithmetic operation or a string operation.

5.1.4 INCREASING CONFIDENCE IN THE SYNTHESIS ALGORITHM

Our current synthesis algorithm is relatively simple; it independently fills all holes, and then inde-
pendently uses each column dependency to contribute to the overall table graph. Other synthesis
engines (Yaghmazadeh et al., 2017; Berant et al., 2013; Guo et al., 2018) have demonstrated im-
provements in synthesis accuracy by using more holistic synthesis algorithms.

For instance, instead of only using the top parsed value for each input, the synthesizer could explore
the top-k parsed values for each input, adding robustness. While resolving hints, the synthesis engine
could also take into account context. Using type analysis, it may be obvious that an argument to a
function is more likely to be one column than another. Similarly, the way a hint is resolved could be
influenced by knowledge of the source tables of other hints in the same column or filter. Intuitively,
it may make sense to assign ratings to sets of possible dependency resolutions to choose the best
combination, rather than choosing the best match for each hole independently. During our first-
use study, we observed examples where users unsuccessfully tried to reference previous columns;
perhaps it would be helpful if columns could have dependencies on each other.

5.1.5 IMPROVING THE USER EXPERIENCE

The interactive interface used in nalini is bare-bones compared to most modern-day enterprise
software in the data engineering space. Now that we have observed that nalini’s columns and
filters approach can be intuitive, how can we continue to expand on the user experience to make it
frictionless? There are quite a few aspects to consider. How can the system be designed to minimize
the query engine’s runtime? What existing coding environments should a tool like this be embedded
in? What additional visual cues, such as color-coding table columns with the phrases they are linked
to, would be useful to the user? Is there a visual way to represent joins and table graphs that we
could explore?

REFERENCES

Tpc-h decision support benchmark. http://www.tpc.org/tpch/.

Christopher Baik, H. V. Jagadish, and Yunyao Li. Bridging the semantic gap with sql query logs in
natural language interfaces to databases. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pp. 374–385, 2019. doi: 10.1109/ICDE.2019.00041.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 1533–1544, Seattle, Washington, USA, October 2013. Association for
Computational Linguistics. URL https://aclanthology.org/D13-1160.

20

http://www.tpc.org/tpch/
https://aclanthology.org/D13-1160

Under review as a conference paper at ICLR 2022

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Zhi Chen, Lu Chen, Yanbin Zhao, Ruisheng Cao, Zihan Xu, Su Zhu, and Kai Yu. ShadowGNN:
Graph projection neural network for text-to-SQL parser. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 5567–5577, Online, June 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.naacl-main.441. URL https://aclanthology.org/2021.
naacl-main.441.

E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 13(6):377–387,
jun 1970. ISSN 0001-0782. doi: 10.1145/362384.362685. URL https://doi.org/10.
1145/362384.362685.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

Daya Guo, Yibo Sun, Duyu Tang, Nan Duan, Jian Yin, Hong Chi, James Cao, Peng Chen, and Ming
Zhou. Question generation from sql queries improves neural semantic parsing, 2018.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
Towards complex text-to-sql in cross-domain database with intermediate representation, 2019.

Mona Khalil. Sql server, postgresql, mysql... what’s the difference? where do i start?, January 2022.
URL https://www.datacamp.com/community/blog/sql-differences.

Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. Natural language to sql: Where
are we today? Proc. VLDB Endow., 13(10):1737–1750, jun 2020. ISSN 2150-8097. doi: 10.
14778/3401960.3401970. URL https://doi.org/10.14778/3401960.3401970.

Fei Li and H. V. Jagadish. Constructing an interactive natural language interface for relational
databases. Proc. VLDB Endow., 8(1):73–84, sep 2014. ISSN 2150-8097. doi: 10.14778/2735461.
2735468. URL https://doi.org/10.14778/2735461.2735468.

Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and David
McClosky. The Stanford CoreNLP natural language processing toolkit. In Proceedings of
52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
pp. 55–60, Baltimore, Maryland, June 2014. Association for Computational Linguistics. doi:
10.3115/v1/P14-5010. URL https://aclanthology.org/P14-5010.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space, 2013.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations, 2018.

Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodı́k, and Kemal Ebcioğlu. Programming by
sketching for bit-streaming programs. In Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’05, pp. 281–294, New York, NY,
USA, 2005. Association for Computing Machinery. ISBN 1595930566. doi: 10.1145/1065010.
1065045. URL https://doi.org/10.1145/1065010.1065045.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. Com-
binatorial sketching for finite programs. In Proceedings of the 12th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems, ASP-
LOS XII, pp. 404–415, New York, NY, USA, 2006. Association for Computing Machinery.
ISBN 1595934510. doi: 10.1145/1168857.1168907. URL https://doi.org/10.1145/
1168857.1168907.

21

https://aclanthology.org/2021.naacl-main.441
https://aclanthology.org/2021.naacl-main.441
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://www.datacamp.com/community/blog/sql-differences
https://doi.org/10.14778/3401960.3401970
https://doi.org/10.14778/2735461.2735468
https://aclanthology.org/P14-5010
https://doi.org/10.1145/1065010.1065045
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907

Under review as a conference paper at ICLR 2022

Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. Sketching concurrent data
structures. In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’08, pp. 136–148, New York, NY, USA, 2008. Association for
Computing Machinery. ISBN 9781595938602. doi: 10.1145/1375581.1375599. URL https:
//doi.org/10.1145/1375581.1375599.

Keita Takenouchi, Takashi Ishio, Joji Okada, and Yuji Sakata. Patsql. Proceedings of the VLDB
Endowment, 14(11):1937–1949, Jul 2021. ISSN 2150-8097. doi: 10.14778/3476249.3476253.
URL http://dx.doi.org/10.14778/3476249.3476253.

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly expressive sql queries
from input-output examples. SIGPLAN Not., 52(6):452–466, jun 2017. ISSN 0362-1340. doi:
10.1145/3140587.3062365. URL https://doi.org/10.1145/3140587.3062365.

Xiaojun Xu, Chang Liu, and Dawn Song. Sqlnet: Generating structured queries from natural lan-
guage without reinforcement learning, 2017.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. Sqlizer: Query synthesis from
natural language. Proc. ACM Program. Lang., 1(OOPSLA), oct 2017. doi: 10.1145/3133887.
URL https://doi.org/10.1145/3133887.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir Radev. Typesql: Knowledge-based type-
aware neural text-to-sql generation, 2018a.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, and Dragomir Radev.
Syntaxsqlnet: Syntax tree networks for complex and cross-domaintext-to-sql task, 2018b.

A APPENDIX

A.1 NALINI USER INTERFACE

See Figure 4.

A.2 GRAMMAR OF SQL QUERIES

See Figure 5.

22

https://doi.org/10.1145/1375581.1375599
https://doi.org/10.1145/1375581.1375599
http://dx.doi.org/10.14778/3476249.3476253
https://doi.org/10.1145/3140587.3062365
https://doi.org/10.1145/3133887

Under review as a conference paper at ICLR 2022

Figure 4: The starting screen of naliniwith a sample database matching the TPC-H specifications
loaded upon startup. A preview of each table in the database is visible in the Database Preview
section. The Query Generation panel consists of a place to input column and filter descriptions,
as well as a section for the generated SQL to appear. From there, the query can be executed to create
or edit any table in the database. The Table Relationships panel allows the user to view and edit
keys that are shared amongst tables (and thus can be used for joins).

23

Under review as a conference paper at ICLR 2022

sqlSelectQuery := sqlColumns, sqlFilters, sqlJoins

sqlJoins := TABLENAME (, (TABLENAME, joinCondition))*
joinCondition := columnValue = columnValue

sqlColumns := sqlColumn (, sqlColumn)*
sqlColumn := expr (, COLUMNALIAS)?

sqlFilters := sqlFilter (, sqlFilter)*
sqlFilter := expr

expr := value — unaryOp, expr — binaryOp, expr, expr

value := number — string — date — columnValue
columnValue := COLUMNNAME (, TABLENAME)?

date := day — month — year

unaryOp := NOT — aggOp
aggOp := SUM | COUNT | AVG | MIN | MAX

binaryOp := + | − | × | ÷ | = | > | ≥ | ≤ | < | AND | OR

Figure 5: Grammar of modified relational algebra produced by nalini query engine; each expres-
sion in this grammar can be directly rendered using SQL syntax.

24

	Introduction
	Contributions

	Nalini
	Sample Use Case
	Overview
	Query Synthesis Engine
	Semantic Parsing
	Hint Resolution
	Table Relationship Discovery
	SQL Rendering

	Scope
	Implementation

	Related Work
	nalini vs SQLizer
	Interactive Interfaces for Query Generation
	Sketch-Based Synthesis
	Large Language Models
	Semantic Parsing

	Evaluation: First-Use Study
	Methods
	Quantitative Results
	Task Completion
	Post-Study Survey Results

	Qualitative Results
	Use of Natural Language
	Interaction Loops
	Optimizations and Shortcuts
	Commonly Attempted Constructs
	A Shift in Focus
	Comparisons to Other Methods

	Conclusion
	Future Work
	Understanding Participants
	Supporting a richer SQL Vocabulary
	Developing a more sophisticated semantic parser
	Increasing confidence in the synthesis algorithm
	Improving the user experience

	Appendix
	Nalini User Interface
	Grammar of SQL Queries

