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Abstract

Vocal timbral techniques—such as whisper, falsetto, and vocal fry scream—uniquely shape
the spectral properties of the human voice, presenting a complex challenge for converting
between them while preserving the original speaker’s identity. Traditional voice conver-
sion methods, while effective at altering speaker identity or broad timbral qualities, often
struggle to transform specialized timbral techniques without compromising speaker-specific
traits. Similarly, existing style-transfer models, which are designed to capture broad cat-
egories like emotional expressiveness or singing styles, lack the necessary granularity to
handle technique-specific variations. To address this, we propose FABYOL, a novel frame-
work for timbral technique conversion built upon FACodec. FABYOL leverages supervised
contrastive learning to generate embeddings that encode specific timbral techniques. These
embeddings are then used to modulate timbre and prosody, enabling authentic technique
conversion while preserving speaker identity. Experimental evaluation, using both tailored
objective metrics and a user study, demonstrates that FABYOL achieves promising perfor-
mance and offers significant improvements in fidelity and flexibility compared to state-of-
the-art models. To support this task, we also introduce the EMO dataset, a high-quality,
paired corpus developed with a specific focus on vocal fry scream.

Keywords: Vocal Timbral Technique, Voice Conversion

1. Introduction

Vocal timbre is fundamentally a combination of a speaker’s identity and their applied timbral
technique. These techniques are pervasive across diverse audio domains, including screaming
in heavy metal music, whisper in cinema, and falsetto in voice acting. It is important to
distinguish these techniques, which primarily alter the texture of the voice, from pitch-
related techniques such as vibrato or trills. Defined by distinct vocal fold vibration patterns
and spectral characteristics, they enhance expressiveness and convey specific artistic intent.
Developing models that can controllably convert these techniques—for instance, changing
a modal voice to a whisper—would unlock significant creative applications in the audio and
msuic industry.

As this is a nascent research direction, we pioneer the task by strategically focusing
on speech. This is because current speech corpora offer more distinct and high-contrast
timbral technique variations than available singing datasets. For example, prominent singing
datasets like VocalSet (Chou et al., 2018) or GTsinger (Hsu et al., 2024) are often limited
to more subtle distinctions, such as ”breathy” or "mixed voice”. Furthermore, dedicated
datasets for melodic screaming are non-existent. Establishing a robust speech framework is
thus a critical first step before tackling the broader challenges of the singing domain.
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However, this task remains a significant challenge. FExisting voice conversion models
reveal clear limitations for this task. Models like CosyVoice (Du et al., 2024) and FreeVC
(Li et al., 2023), which are built for cross-speaker shifts, process timbre information to
replace speaker identity, thereby discarding the original and neglecting technique control.
Similarly, FACodec (Ju et al., 2024), while capable of broader timbre adjustments, lacks
precision for techniques like scream or whisper and fails to retain speaker traits due to
its generalized timbre handling. Meanwhile, style-transfer methods (Du et al., 2021; Zhou
et al., 2021) are designed to disentangle style or emotion and overlook timbral techniques
as distinct style elements. These gaps highlight the need for an approach tailored to self-
retained timbral technique conversion that preserves speaker identity.

To address this, we propose FABYOL, a novel framework for timbral technique con-
version built upon a pre-trained, frozen FACodec (Ju et al., 2024) architecture. FABYOL
employs a BYOL-TT encoder, which uses targeted augmentation and contrastive learning to
derive robust technique-specific embeddings. These embeddings guide a dual attribute mod-
ulation, implemented via adaptive layer normalization (AdaLN) (Peebles and Xie, 2023).
This design stems from our key finding: while modulating timbre is an expected component
of conversion, we found that prosody modulation is equally critical for achieving authentic
results. This lightweight approach allows for targeted technique conversion while maintain-
ing the speaker’s core identity.

A further challenge is the evaluation of this task, given the lack of established metrics to
quantify technique similarity. Our objective evaluation therefore employs a combination of
proxy metrics from vocal analysis to assess technique-specific features and a specific protocol
to measure speaker preservation. This is supplemented by a user study measuring perceptual
authenticity across technique similarity, speaker similarity, and naturalness. To address the
scarcity of paired screaming data and facilitate future research, we also introduce the EMO
dataset, which is a one-hour paired dataset from a single speaker containing modal voice
and vocal fry scream. The contributions of this paper are as follows:

e We demonstrate that prosody modulation is also essential for effective timbral technique
conversion.

e We present FABYOL, the first model to our knowledge that performs timbral technique
conversion while preserve the speaker identity.

e We introduce the EMO dataset and the evaluation framework that specifically address
the unique challenges of assessing timbral technique conversion quality.

We encourage readers to visit our demo website! for audio samples that demonstrate
our model’s performance.

2. Related Work

With the growing interest in vocal-related research, academic studies on vocal timbral tech-
niques have gained popularity. Previous works have focused on vocal technique detection
(Yamamoto et al., 2022; Kalbag and Lerch, 2022), style-controlled voice conversion (Dai
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et al., 2025; Du et al., 2021; Zhou et al., 2021), and representation learning for various
vocal-related attributes (Ju et al., 2024; Elbanna et al., 2022; Yakura et al., 2022). These
studies have laid the foundation for our work.

Vocal Technique Detection. Detecting vocal techniques is foundational for vocal
manipulation. A previous study (Yamamoto et al., 2022) focused on detecting vocal tech-
niques of J-POP solo singers, demonstrating the ability to distinguish between pitch and
timbral techniques in J-POP singing. Moreover, the detection of harsh vocal effects such
as screaming has been studied in (Kalbag and Lerch, 2022), which used spectral features to
classify extreme timbres in heavy metal music.

Style-Controlled Voice Conversion. Singing voice conversion has progressed toward
singing technique control (e.g., falsetto, vibrato) using diffusion models (Dai et al., 2025),
yet rarely focuses on timbral techniques like whisper or scream. Speech style models (Du
et al., 2021; Zhou et al., 2021) concentrate on emotional style transfer in spoken voice. While
adept at disentangling emotional attributes, these approaches overlook timbral techniques
as style components.

Representation Learning. Several general-purpose audio representation learning ap-
proaches (Défossez et al., 2022; Saeed et al., 2021; Niizumi et al., 2022) have shown success
in various applications. Recently, specific representations for each audio source demonstrate
superiority in target domains, including speech and singing voice representation learning
(Elbanna et al., 2022; Yakura et al., 2022). Due to increasing requirements for further
control of vocals, FACodec (Ju et al., 2024) focuses on attribute disentanglement, including
timbre, prosody, and content. Though FACodec (Ju et al., 2024) demonstrates the ability
for timbre disentanglement, it falls short on isolating timbral techniques from identity or
content, limiting the further detailed control of the timbre attribute.

While prior work has made significant progress, timbral techniques remain largely unex-
plored across these domains. Our work addresses this gap by integrating technique embed-
dings into FACodec (Ju et al., 2024), enabling speaker-consistent transformation of diverse
timbral techniques.

3. Timbral Technique Extractor

In our proposed method, FABYOL, we aim to develop a conditional generator, denoted as
G(x, htech), that transforms an input audio signal x into an output y, where x and y are
temporally aligned and share the same speaker identity and linguistic content, but exhibit
different timbral techniques. The technique embedding hy.,, a learnable representation of
timbral techniques, is derived by the embedding extractor E from a reference audio signal
z, such that hiee, = E(2).

To build an effective timbral technique conversion system, we first need a representation
of vocal techniques that generalizes across speakers and linguistic content.

3.1. Contrastive Objective of Timbral Technique

BYOL framework. To derive robust timbral technique representations, we adopt Boot-
strap Your Own Latent (BYOL) (Grill et al., 2020), a self-supervised learning method that
learns from positive pairs without needing negative samples, unlike traditional contrastive
approaches such as SImCLR (Chen et al., 2020). BYOL uses two networks: the online
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network fg processes input x, while the target network f; handles an augmented version u.
A predictor gg aligns the online output to the target, with f¢’s parameters updated as an
exponential moving average of fy’s parameters, controlled by a decay rate 7 € [0,1]. The
loss minimizes the mean squared error:

Leyor = [lga(fo(x)) — fe()]]3.

Disentanglement objective. Building on this foundation, we introduce BYOL-TT (BYOL
for Timbral Techniques), which leverages BYOL-A’s audio encoder (Niizumi et al., 2022) to
disentangle vocal signals into three distinct components: timbral technique, speaker iden-
tity, and linguistic content. This disentanglement is critical for enabling accurate timbral
technique conversion while preserving speaker identity. Techniques like whisper or scream
drastically alter vocal spectra and are often entangled with speaker characteristics, mak-
ing it difficult for models to modify the technique without inadvertently changing who the
speaker sounds like.

Therefore, the effectiveness of BYOL-TT relies on constructing meaningful positive
pairs—samples that vary in speaker identity and linguistic content but share the same
timbral technique, guiding the model to treat the technique as the invariant factor and
learn robust, disentangled representations. To achieve this, we apply targeted augmenta-
tion (Yakura et al., 2022), crafting transformations that isolate timbral technique while
varying other attributes. We propose two pair-generation methods: DSP Augmentation
& Real-world Data Selection.

3.2. DSP Augmentation

Our first augmentation strategy, DSP augmentation, generates synthetic positive pairs from
a single audio sample by applying signal processing techniques that selectively modify dif-
ferent attributes of the audio while keeping the timbral technique unchanged.

We apply Sequence Perturbation (SP) (Deng et al., 2024) to change the linguistic
content of the audio. This is done by splitting the audio into several segments and shuffling
their order, which alters the content without affecting the speaker’s voice or the technique
being used. We denote the resulting audio as:

xgp = SP(x),

In parallel, we apply Vocal Tract Length Perturbation (VTLP) (Jaitly and Hinton,
2013) to simulate a different speaker identity by warping the spectral characteristics of the
voice. This changes how the speaker sounds, while preserving both the original content and
the vocal technique. The perturbed version is denoted as:

xytrp = VILP(x, ),

By pairing xsp and xyTrp, we construct a positive pair where the only shared attribute
is the timbral technique. This encourages the model to learn representations that are
invariant to speaker and content, and sensitive only to vocal technique. We apply both
pre-norm and post-norm to the embeddings and compute the BYOL-style contrastive loss:

Losp = |lgo(fo(xsp)) — fe(xvrie)|3,
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3.3. Real-world Data Selection

While DSP Augmentation offers a controllable approach, it relies on synthetic transforma-
tions that might not fully capture natural variations. This led us to explore a complementary
strategy: Real-word Data Selection.

Real-world data selection leverages our labeled dataset to create positive pairs from
distinct audio clips x; and xs that share the same timbral technique but have different
speaker identities and contain different linguistic content. By carefully selecting samples
that meet these criteria, we ensure that the model focuses on technique-specific features.
The loss for Selection is formulated as:

Lser = |lgo(fo(x1)) — fe(x2)|[3.

This approach surpasses DSP Augmentation by enhancing diversity through varied sam-
ples as tested in our experiments, exposing the model to broader speaker and content ranges,
potentially boosting the generalization of the technique embedding hieqn. It leverages the
dataset’s natural variability instead of synthetic changes, possibly yielding truer represen-
tations.

In our setup, the trained BYOL-TT encoder E = fy generates hio, = E(z) from a
reference signal z, conditioning the conversion module G(x, htecn) in FABYOL.

4. FABYOL: Timbral Technique Conversion Framework

We selected FACodec (Ju et al., 2024) as the foundation for FABYOL due to its ro-
bust attribute disentanglement and high-fidelity audio reconstruction, effectively separating
speaker identity, content, prosody, and acoustic details. FACodec employs a neural codec
with factorized vector quantization (FVQ) to decompose speech into distinct subspaces, en-
abling precise manipulation of vocal attributes. However, FACodec was originally designed
and trained for speech, not singing. In our preliminary tests, we observed that the pre-
trained model does not generalize well to singing voice. For this reason, we limit the scope
of this paper to speech-based techniques (e.g., modal speech, whisper, and non-melodic
scream), leaving the extension to singing as a direction for future work

The FACodec process is briefly outlined as follows: An input waveform x is encoded
into a latent representation h, which is then factorized into content embeddings z., acous-
tic details embeddings zq using their respective quantizers, and timbre embeddings hyjmy
extracted by a transformer encoder. Prosody embeddings z, is derived from frame-wise
acoustic features using a separate transformer and quantizer. These components are re-
combined, conditioned by timbre via adaptive layer normalization, and decoded into the
output waveform y. This architecture disentangles speaker-specific traits from content and
prosody, leveraging vector quantization to preserve nuanced vocal features, making it a
strong base for our conversion system.

4.1. Dual Attribute Modulation

Our analysis of FACodec revealed that its timbre subspace—originally intended to encode
speaker identity—also entangles timbral technique. This entanglement complicates the
task of converting specific vocal techniques. Moreover, our experiments show that realistic
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Figure 1: The FABYOL framework for timbral technique conversion. It integrates a BYOL-
TT technique extractor from and employs AdaLN to modulate both prosody and
timbre. Black arrows depict the original FACodec pipeline, red arrows highlight
the additional FABYOL pipeline, and the red dashed arrow indicates supervision.
The fire icons mark the only components trained during the process while all other
parts of the framework remain frozen.
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technique conversion cannot rely on timbre alone; Techniques like whisper and vocal fry
exhibit distinct prosodic behaviors—whisper often features reduced pitch variation and
energy, while vocal fry is characterized by irregular, low-frequency modulations. These
observations suggest that technique modeling requires joint modulation of both timbre and
prosody.

To achieve that, we evaluated several conditioning strategies, including concatena-
tion (Qian et al., 2019), cross-attention (Li et al., 2024), AdaIN (Chou et al., 2019), and
FiLM (Perez et al., 2018), and ultimately chose AdaLN (Peebles and Xie, 2023), a frame-
level AdalN variant. AdaLN effectively removes source-specific global information before
injecting target traits (Chou et al., 2019), which is beneficial for our setting where source
techniques vary across training. Its frame-level modulation also better captures the tempo-
ral nuances of vocal techniques, which are not strictly global attributes like speaker identity.

FABYOL retains the original encoders, attribute vector quantizers, and decoder struc-
ture from FACodec, all kept frozen throughout the process. Central to our method, the
technique embedding hie, € RC%ch is processed via a multilayer perceptron to produce
scale and shift parameters:

[’Yp(htech)v Bp(htech)a ’Yt(htech)y /8t<htech)] = MLP(htech)a (1)

where v, (htecn ), ﬁp(htech) € R are parameters for conditioning the prosody subspace, and
~¢(Ngeen )s B¢ (ieen) € RE condition the timbre subspace. The prosody parameters are later
extended across the time dimension to 7.
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We apply AdaLLN to modulate both prosody and timbre components, as depicted by the
red arrows in Figure 1. For prosody, we normalize each time frame to zero-mean and unit-
variance across the channel dimension. We compute the modulated prosody embedding
frame as

Z/Pﬂf = AdaLN(Zp,ta htech)

= 7p(htech) : W + ﬂp(htech)a (2)

where p(zp, +) and o(zp, ;) represent the mean and standard deviation of z;, ; over its channels.
Similarly, for the timbre embedding, we use

h,tim = AdaLN(htim ‘ htech)
htim - /f‘(htim)

U(htim) + IBt(htGCh)ﬂ (3)

=Yt (htech) :

where p(hgin) and o(hyiy) are computed across the timbre vector’s dimension. This dual
application of AdaLN ensures both prosody and timbre are reconfigured to reflect the target
technique’s characteristics.

In the final stage, the modulated prosody embeddings zg, along with z. and z4, is
summed to form z'gum € RE*T". This is then conditioned by conditional layer normal-
ization using the modulated timbre embeddings, Zcong = AdaLN(z'sum, h{; ), and passed
through the frozen decoder to synthesize the output waveform x. Inspired by adaptive
normalization in style transfer (Chou et al., 2019) and diffusion transformers (Peebles and
Xie, 2023), our AdaLN-based G(x,hecn) efficiently transfers target technique traits with
minimal modification to the existing architecture.

4.2. Cross-Speaker Unpaired Reference

In our design, we tackled the real-world challenge of users providing unrelated reference
samples by adopting an unpaired reference method during training, similar to (Chen et al.,
2024). We transform a source utterance x using a randomly chosen reference z with the
target technique t,of, selected from different speakers and linguistic content than x. This
mirrors practical use cases, unlike traditional supervised training that relies on ground
truth audio (Liu, 2024). By decoupling technique-specific learning from speaker identity
and content, this approach improves disentanglement and generalization. Our training
integrates reconstruction and bidirectional paired data conversion across all transformations,
boosting the model’s adaptability to diverse, unseen speaker scenarios.

4.3. Training Objective

Our loss-driven optimization strategy builds upon FACodec with a total loss:

Liotal = AmelLmel + Aaux ([’p + Ltim + Ltech
+ Lclsspkr + »Ccls,tech + Ladv + Lfeat) .
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The original FACodec components include Ly, (multi-scale mel-spectrogram loss) and
GAN-based losses (Laqy and Lgeat). Here, the prosody and timbre losses, defined as £, =
12, — Z§T||1 and Limbre = ||h};,, — hGT||;. The technique loss, Leen = ||h}.y, — hSE |1
Additionally, the supervision losses, indicated by the red dashed arrow in Figure 1, use
cross-entropy objectives: Lcis speaker €ncOUrages preservation of the source speaker identity,
while L technique Promotes correct transfer of the target technique. Empirically, we set

Amel = 10 and A ux= 5.

5. Experimental Setup
5.1. Dataset

Our study utilized audio data from a total of 130 unique speakers, sourced from several
datasets. After manually quality-filtered, the JVS dataset (Takamichi et al., 2019) provided
1,500 parallel clips (500 modal voice, 500 whisper, 500 falsetto) from 100 vocalists. The
EMVD dataset (Tailleur et al., 2024) provided 270 clips (135 modal voice and 135 scream)
from 27 singers. Our self-recorded data included the EMO dataset—consisting of 706 clips
(353 modal voice and 353 scream) from a single speaker—and 6 additional clips (3 modal
voice and 3 scream) from two other speakers. Finally, we used one scream sample from the
Genera Studios Metal Screams? sample pack.

All audio was resampled to 16 kHz, and trimmed via voice activity detection (VAD)
(Team, 2024). Paired data alignment varied by source: JVS and EMVD clips were time-
stretched with pyrubberband® using a DTW time map (Miiller, 2007), while the EMO
clips were manually aligned in a Digital Audio Workstation. For normalization, audio
was handled differently by technique: modal, falsetto, and scream were set to a modal
RMS reference, while whisper was normalized to its own RMS reference. The data was
then partitioned; JVS and EMVD were split into speaker-disjoint training and test sets at
approximately a 9:1 ratio, and the EMO dataset was randomly split at the same 9:1 ratio.
A reference set was constructed by randomly selecting two clips for each technique from the
test set speakers. Our evaluation protocol involved two distinct tasks: 1) Reconstruction:
each test file was processed using itself as the reference; 2) Conversion: each test file was
converted using all files in the reference set to generate the final outputs.

5.2. Implementation Details

We trained the BYOL-TT encoder on a single NVIDIA RTX 3090 GPU. It transforms 1-
second Mel-spectrograms (16 kHz, 1024-point FFT, 1024-sample window, 160-sample hop)
into 1024-dimensional technique embeddings hie.,. Training took one day with a batch size
of 256 and a learning rate of 1074, The encoder remains frozen for FABYOL after training.
FABYOL is also trained on a single NVIDIA RTX 3090 GPU. It processes 1-second Mel-
spectrograms with the same parameters, using a 10-layer MLP with SiLLU activation to
project hyieqn into 256-dimensional parameters conditioning prosody and timbre subspaces.
Training lasted approximately two days with a batch size of 16 and a learning rate of
2 x 1074

2. https://generastudios.com/products/metal-screams
3. https://github.com/bmcfee/pyrubberband
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5.3. Evaluation Metrics

Objective Metrics. We first employ Mel Cepstral Distortion (MCD) (Kubichek, 1993) to
assess overall audio quality between converted and ground truth audio samples. To evaluate
whisper conversion, we use Harmonic-to-Noise Ratio (HNR) (Fernandes et al., 2018), a well-
established metric in traditional vocal analysis research, as whispering typically results in
reduced harmonic content—values closer to GT indicate better conversion. For falsetto
conversion, we employ the average fundamental frequency (AF0) as a proxy. While falsetto
is a complex acoustic phenomenon, F0 is its most obvious characteristic, with falsetto voice
typically exhibiting a significantly higher FO than modal voice (Keating, 2014). Therefore,
results nearer to the ground truth AFO0 reflect higher fidelity in the conversion.

To assess speaker identity preservation, we evaluate existing speaker verification (SV)
models across various timbral techniques. We find that SV models often assign lower simi-
larity scores when comparing a speaker’s ground truth modal voice to their own utterances
in other techniques than when comparing modal utterances from different speakers. This
suggests a bias toward modal conditions and a limited ability to capture speaker identity
across techniques. To address this, we propose a more robust, technique-agnostic evaluation:
cross-gender model-to-model conversion. We compute speaker embedding cosine similarity
(SEC) by Resemblyzer? between source and converted samples.

Subjective Metrics. We employ three subjective metrics in our user study: TSMOS
to evaluate the timbral technique similarity, NMOS to assess the perceptual quality and
naturalness of the audio, and SSMOS to measure the speaker similarity.

5.4. Baseline Models

We compare FABYOL against three state-of-the-art baseline models representing distinct
paradigms in voice conversion and timbral control: 1) FreeVC (Li et al., 2023): a text-free,
one-shot voice conversion system with VITS framework; 2) CosyVoice (Du et al., 2024): a
scalable, zero-shot T'TS system based on supervised semantic tokens; 3) FACodec (Ju et al.,
2024): a neural codec factorizes speech into multiple attributs; 4) FABYOL: The timbral
technique conversion model proposed in this paper.

6. Experimental Result

6.1. Reconstruction

Table 1 presents the MRSTFT loss (Steinmetz and Reiss, 2020) across various vocal tech-
niques, illuminating the reconstruction strengths of FACodec and FABYOL. FACodec excels
at reconstructing diverse timbral techniques—Ilike whisper, falsetto, and scream—with qual-
ity matching modal voice, despite their absence from its training data. This highlights its
robust disentanglement of content, prosody , timbre, and acoustic details, showcasing its
adaptability to new vocal styles and solidifying its role as a key foundation for our research.

However, FACodec’s success depends on how well its timbre extractor works. If it only
captures speaker identity and misses the unique sound characteristics of these techniques,
which are mixed with speaker identity, the quality of reconstruction could drop. The fact

4. https://github.com/resemble-ai/Resemblyzer
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Table 1: Comparison of reconstruction MRSTFEFT loss (Steinmetz and Reiss, 2020) across
vocal techniques: M = Modal, F = Falsetto, W = Whisper, S = Scream.

Model M F W S Overall
FACodec (Ju et al., 2024) 0.86 0.91 0.86 1.14 0.948
FABYOL 126 1.24 101 156 1.281

that it handles such variety well suggests its timbre representation is flexible and has good
potential for our work. FABYOL builds on this by adding technique embeddings as condi-
tioning inputs, maintaining strong reconstruction quality.

6.2. Efficacy of Timbral Technique Conversion

Objective Performance. FABYOL achieves the lowest MCD, delivering superior spec-
tral fidelity across techniques like whisper, falsetto, and scream. It outperforms FreeVC and
CosyVoice, which favor broad timbral shifts over technique-specific details, and FACodec,
which struggles to fully convert timbral techniques due to its lack of prosody modulation.
In whisper conversion, FABYOL’s HNR closely matches ground truth, capturing the weak
tonality of whispers. Baselines, lacking prosody modulation, miss this nuance and produce
overly harmonic outputs. Similarly, FABYOL’s AF0 aligns near-perfectly with ground
truth, thanks to prosody embedding modulation enabling precise spectral control—an area
where other baseline models lag behind. FABYOL also excels in preserving speaker identity,
as demonstrated by its strong performance in SEC. Its success is driven by targeted aug-
mentations, unpaired reference training, and classifier-guidance, which together effectively
separate technique from identity.

Subjective Performance. Subjective results, summarized in Table 2, reinforce FABYOL’s
strengths. Our model’s technique similarity (TSMOS) was rated significantly higher than
all baselines, approaching the perceptual quality of the ground truth audio. This confirms
that our dual-modulation approach generates techniques that are perceptually authentic.
Furthermore, FABYOL also achieved the highest speaker preservation (SSMOS) scores,
far surpassing the baselines. This result underscores its ability to robustly preserve the
speaker’s identity, a primary goal of this work. This focus on precise technique fidelity,
however, came with a trade-off in overall naturalness. This suggests that while FABYOL’s
synthesis is accurate, it lacks smoothness or contain synthesis artifacts, leading to a lower
perceived naturalness. Improving this output quality without compromising technique ac-
curacy remains a key area for future work.

6.3. Ablation Study

Dual Attribute Modulation. Removing prosody modulation noticeably degrades spec-
tral fidelity, especially for technique like falsetto. Speaker identity remains stable with or
without prosody modulation, indicating that prosody primarily enhances technique accu-

10
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Table 2: Performance comparison of timbral technique conversion across models.

Models MCD| HNR AF0 SEC{  TSMOS ¢ NMOS ¢ SSMOS 1
GT — 1.32 381 — 3.03 4 0.86  4.08 & 0.69 —
FreeVC (Li et al., 2023) 893  17.01 248  0.58 — — —
CosyVoice (Du et al., 2024) 828  11.97 328  0.68 149 +0.25 4.50 + 0.20  2.32 & 1.67
FACodec (Ju et al., 2024) 855 1055 298  0.74 218 £ 0.78  3.23 £ 047  2.45+0.35
FABYOL (ours) 7.59  -1.27 379 0.79 3.64 + 0.43 2.86+ 049 4.66 £ 0.25

Table 3: Ablation study results of dual Table 4: Ablation study results of different

modulation. augmentations.
Modulations MCD | HNR AF0 SEC 1 Augmentations MCD | WHNR AF0 SEC 1
w/o prosody 9.27 -0.94 198 0.78 BYOL-TT-DSP 7.90 -1.04 392 0.71
FABYOL 7.59 -1.27 379 0.79 BYOL-TT-SEL 7.59 -1.27 379 0.79

racy rather than identity consistency. These results underscore the importance of prosody-
aware modulation for faithfully transferring fine-grained vocal timbral techniques.
Augmentation Strategies. DSP-based augmentations improve technique representation
through targeted transformations, but methods like VILP often compromise speaker con-
sistency due to weaker disentanglement. In contrast, real-data selection strikes the best
balance—capturing subtle vocal techniques, preserving spectral detail, and maintaining
speaker identity—making it the most effective strategy for timbral technique transfer.

7. Conclusion

We present FABY OL, the first model for vocal timbral technique conversion while preserving
speaker identity. Our approach surpasses prior work in spectral fidelity, technique similarity,
and identity consistency by modulating both timbre and prosody via embedding-guided
AdaLN. We also introduce the EMO dataset to provide a high-quality, paired corpus for
this task, with a specific focus on vocal fry scream. Future work should focus on improving
output naturalness and developing scream-specific metrics. A key priority is to extend the
model to handle melodic content, enabling the application of timbral techniques to singing.
We also plan to expand datasets to include more timbral techniques and languages to enable
real-time applications.
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