
GAC 2021 Proposal

Title: What makes representations “useful”?

Scientific question: Internal representations play a central role in the study of both biological and
artificial intelligence, as well as in philosophy of mind, but what precisely defines a representation is
challenging to pin down. Across disciplines, one common thread is that representations are typically
“useful” in some sense. Centering around this concept of usefulness, we propose a cross-disciplinary
GAC to share ideas and develop more precise answers to the following questions:

1. What makes representations “useful,” both in terms of their content and their form?

2. How does the use or downstream causal effect of a representation contribute to its meaning?

We will simplify the scope by primarily discussing these questions in the context of visual perception.

Background: Representations play a central role in cognitive science, neuroscience, philosophy
of mind, and machine learning. Painting in broad strokes, “representation” in philosophy often goes
hand-in-hand with intentionality, or the idea that minds manipulate meaningful symbols, and mean-
ingful representations play an explanatory role in phenomenology. In cognitive science and artificial
intelligence, the idea that an agent internalizes representations of the world – in terms of entities (like
objects) and structures (like maps) – helps to both explain and design intelligent systems. In ma-
chine learning, designing or learning the right representations can significantly impact the efficiency
of downstream tasks including both further learning and inference. While some pluralism of ideas is
to be expected, there is also much to gain by exploring connections between these different aspects
of representation across disciplines.

Researchers in each of these fields are often inspired by ideas or developments in the others,
and motivated by some of the same basic questions, such as those surrounding representations. Dis-
agreement and misunderstanding about the term “representation” has the potential to hinder scientific
communication and duplicate research efforts [6, 11, 59, 31, 25]. If the main source of confusion is
a plurality of serviceable notions of representations, our GAC will help to clarify what these notions
are and in which contexts they are appropriate. If, indeed, a deeper confusion about representations
stymies innovative research, then our GAC presents an opportunity to clarify and refocus research in
multiple fields, and to cultivate cross-disciplinary researchers.

Ideas about “useful” representations are seeing a resurgence in different forms, making it a timely
and exciting subtopic for collaboration across disciplines. We will next summarize some active areas
related to “usefulness” in each discipline.

An active area in philosophy examines embodied cognition and how cognitive and perceptual
processes might involve affordances, or possibilities for action in the perceiver’s environment. It re-
mains unresolved what the implications of embodiment and affordances are for our understanding of
representations [47, 54, 27, 3, 50, 52, 49, 19]. Further, there is a (re)animated literature around how
teleology – roughly, functions or purposes derived from the process of evolution – should inform our
understanding of representations and mechanisms in neural systems [15, 4, 53, 26, 14, 41].

In neuroscience, “usefulness” appears in many guises. For one, many have pointed out the insuf-
ficiency of correlational methods for making representational claims; equally important is how neural
activity influences downstream functions, or put another way, how the hypothesized representation
is actually used [46, 45, 11, 6]. A related problem is leveraging animals’ natural behaviors and eco-
logical niches as a way to constrain theories of neural representation [20, 18, 42]. Other senses of
“usefulness” derive from optimization for a task or set of tasks [39, 61, 32, 58], or task-independent



prediction of past or future inputs [43, 44, 16, 55]; learning an internal model of the world may be a
possible middle-ground [34, 9].

There have been many exciting recent developments in machine learning on topics related to
representation-learning from unlabeled and minimally structured data. As a result, there is a growing
and evolving set of quantitative metrics for what makes a model or representation useful. One area is
elaborating classic concepts from Information Theory (IT) to explain the success of deep learning [57,
1, 23], and to address technical limitations that have made IT impractical for studying representations
[60]. There have also been recent developments in defining “disentangled” representations [8, 29, 48,
24], along with new design patterns and training objectives to achieve them by unsupervised methods
[28, 13, 2, 35]. New ideas to self-supervised learning, learning from structured data like video, and
active/causal perception has led to further breakthroughs in representation learning [17, 36, 21, 56,
40, 51]. Another active area in deep learning is uncertainty quantification, where there is renewed
interest in questions like what types of uncertainty to represent and why, and various proposals for
how to do so in practice [30, 10, 33, 12]1.

The dominant tools for quantitatively studying representations in machine learning and neuro-
science incorporate varying senses of usefulness and meaningfulness, which are crucial in philo-
sophical accounts of representation. For example, Information Theory and Mutual Information have
been extensively applied throughout neuro- and cognitive science [5, 7, 22] as well as in deep learning
[30, 57, 1]. However, it has been pointed out that this kind of information is not necessarily “usable”
in principle [60, 23] or “used” in practice [45, 6]. Another popular suite of tools compares representa-
tions based on their geometry [38, 37], which identifies “useful” representations insofar as the same
information is relevant for two systems (e.g. brains and neural networks). Further, these methods are
sensitive to statistical dependencies between representational spaces, but not to their downstream
causal effects.

Challenges, competing hypotheses, and proposed approach for resolution: The primary chal-
lenge will be identifying specific areas of overlap across fields, given their diverse ideas and vocabu-
laries. We will therefore structure the GAC in two parts: the first will be a brief set of tutorials in which
representatives from philosophy, machine learning, and neuroscience will each give an introduction
to concepts, seminal studies, operational definitions, and open questions about “useful” representa-
tions in their respective fields. In the second part of the GAC, we will hold moderated discussions
and debates on specific topics structured around the high-level “scientific questions” outlined at the
beginning of this document. These high-level questions are paraphrased in bold below, alongside
possible fine-grained discussion topics. This format and the questions below are subject to changes
given feedback from the community.

1. What makes representations “useful” in terms of their content and their form, and how
are these related?

What to represent (content): To what extent is it task performance or reward all the way
down versus task-free model-building all the way up, and how do these interact? How do em-
bodiment, affordances, and ecology further shape what is useful to represent? In what ways is
it useful to represent uncertainty? In what ways is it useful to represent causal relations?

How to represent it (form): What are the principles of designing usable representations
– things like disentanglement, independence, invariance, equivariance, efficiency, smoothness,

1Representing uncertainty is also a contentious topic in neuroscience and cognitive science, with two of last year’s
GACs devoted to questions on representation of probability in the brain.



and decodability – and how do they relate to each other? How do these interact with represen-
tational content, if at all? What existing evidence is there for each of these properties in the
brain, or what new experiments are needed to answer this?

2. The role of actual and potential use. Are different questions answered by knowing the po-
tential uses of a representation versus knowing the actual downstream effect that a particular
representation has? What are the conceptual, experimental, or technical barriers to quantify-
ing causal interactions among internal representations, or between internal representations and
behavior? How do salient actions and threats for an organism broadly influence the represen-
tations it uses? How, if at all, do evolutionary histories constrain biological representations, and
does something play an analogous role for artificial ones?

Concrete outcomes:

• A taxonomy of useful forms of representations across disciplines, and how they relate.

• A set of empirically testable questions – and experimental methodologies – about representa-
tional forms in biological neural systems.

• Updated philosophical theories of representation, and mathematical tools for quantifying repre-
sentations and representational similarity, taking into account emerging ideas in ML on disen-
tanglement, causality, etc.

Benefit to the community:

• Our collaboration will allow for deeper and broader insight into a far-reaching set of questions
than an investigation from within any one discipline is likely to achieve. It will also serve to cross-
pollinate ideas between disciplines, and to facilitate future inter-disciplinary collaborations.

• We will strongly encourage didacticism and open-access materials for all participants so that
tutorials and discussions will serve as an ongoing teaching resource.

• We will draw from diverse backgrounds and career levels for the participants, creating an im-
pactful and rare opportunity for researchers that face unique challenges, and serving as a model
for inclusive science.

Core members: The final team is subject to change, and we welcome new ideas and new members
from the community. If this proposal is accepted, the following members have all initially agreed to
help organize or advise the GAC, to co-author a summary paper, and to share updates at CCN 2022.

Name Position/Institution Expertise Role
Ben Baker Postdoc/UPenn Philo Organizer

Richard Lange Postdoc/UPenn Neuro (ML) Organizer
Alessandro Achille Applied Scientist/Amazon ML Organizer

Rosa Cao Professor/Stanford Philo (Neuro) Organizer
Niko Kriegeskorte Professor/Columbia Neuro (Philo) Advisor
Odelia Schwartz Professor/Miami Neuro Advisor

Xaq Pitkow Professor/BCM/Rice Neuro (ML) Advisor

Signed: Ben Baker, Richard Lange, Alessandro Achille2, Rosa Cao, Nikolaus Kriegeskorte, Odelia
Schwartz, Xaq Pitkow

2Paper co-authorship pending approval from Amazon.
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