
Published as a workshop paper at ICLR 2022

SIREN-VAE: LEVERAGING FLOWS AND AMORTIZED
INFERENCE FOR BAYESIAN NETWORKS

Jacobie Mouton
Computer Science Division
Stellenbosch University
South Africa

Steve Kroon∗

Computer Science Division
Stellenbosch University AND

National Institute for Theoretical and Computational Sciences
South Africa

ABSTRACT

Initial work on variational autoencoders assumed independent latent variables
with simple distributions. Subsequent work has explored incorporating more com-
plex distributions and dependency structures: including normalizing flows in the
encoder network allows latent variables to entangle non-linearly, creating a richer
class of distributions for the approximate posterior, and stacking layers of latent
variables allows more complex priors to be specified for the generative model.
This work explores incorporating arbitrary dependency structures, as specified
by Bayesian networks, into VAEs. This is achieved by extending both the prior
and inference network with graphical residual flows—residual flows that encode
conditional independence by masking the weight matrices of the flow’s residual
blocks. We compare our model’s performance on several synthetic datasets and
show its potential in data-sparse settings.

1 INTRODUCTION

Variational autoencoders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014) provide a pow-
erful framework for constructing deep latent variable models. By positing and fitting a generic
model of the data generating process, they allow one to generate new samples and to reason proba-
bilistically about the data and its underlying representation. Despite the success of VAEs, an early
shortcoming identified is that they typically make use of overly simple latent variable distributions,
e.g. using fully-factorized Gaussian distributions as both the prior and approximate posterior over
the latent variables. Subsequent work has explored incorporating more complex latent variable
distributions and have shown that this results in improved performance: normalizing flows can be
included as part of the VAE’s encoder network (Kingma et al., 2016), entangling the latent variables
non-linearly to obtain a richer class of approximate posterior distributions. The prior distribution
can also be made more complex, for example by stacking layers of latent variables to create a hier-
archical structure (Sønderby et al., 2016). This increases the flexibility of the true posterior, leading
to improved empirical results (Kingma et al., 2016).

Traditional VAEs, as well as those with flow-enriched inference networks, do not allow one to di-
rectly control the dependence structure encoded by the model. Stacked latents can encode hierarchi-
cal dependencies, but limit us to simple conditional distributions. This work proposes an approach
to incorporating rich conditional distributions for arbitrary dependency structures—specified by
Bayesian networks (BNs)—into VAE models. The method extends both the prior and inference net-
work with graphical residual flows, which encode the dependence structure by masking the weight
matrices of the flow’s residual blocks to enforce sparsity. The resulting model can thus learn map-
pings between a simple distribution and more complex distributions that conforms to this depen-
dence structure. We evaluate the performance of our approach by comparing the effects of encoding
different dependencies on several synthetic datasets. We find that encoding the dependency infor-
mation from the true BN associated with the data yields better results than other approaches in
data-sparse settings; however, no clear advantage is observed when large datasets are available.

∗Correspondence to kroon@sun.ac.za .

1

Published as a workshop paper at ICLR 2022

2 VAES WITH STRUCTURED INVERTIBLE RESIDUAL NETWORKS

If we have prior knowledge about the data generating process, it seems likely to be beneficial to
incorporate this knowledge in a VAE. In this work, we assume access to a Bayesian network (BN)
specifying the dependency structure over D observed and K latent variables. Our goal is to suitably
incorporate this dependency information into the VAE’s encoder and decoder networks. Using θ
for the decoder network’s parameters, this means that its likelihood pθ(x|z) and prior pθ(z) should
factorize according to the BN’s conditional independencies. Approximating the posterior distribu-
tion p(z|x) while taking the knowledge from the BN into account requires suitably inverting the BN
such that one obtains edges from x to z. Webb et al. (2018) showed the importance of encoding
the generative model’s true inverted structure in the VAE’s encoder and provide an algorithm for
obtaining a suitable minimal faithful inverse of a BN.

2.1 SIREN-VAE

We use graphical residual flows (GRFs; see section 2.2) to incorporate structure in a VAE’s latent
space, yielding the structured invertible residual network (SIReN) VAE. For an observed sample x,
the encoder network, with parameters ϕ, is defined as a flow conditioned on x:

z = GRFg(ϵ;x, ϕ) where ϵ ∼ p0 (1)

log qϕ(z|x) = log p0(ϵ)− log
∣∣det(JGRFg (ϵ))

∣∣ (2)

The subscript g here denotes that this is a generative flow, det(JF (·)) denotes the Jacobian determi-
nant of a flow transformation F , and we set p0 to N (0, I). For a sample z from the encoder network,
the decoder uses a normalizing flow for the prior density, and a fully-factored Gaussian likelihood,
with parameters output by a network denoted by DecoderNN:

log pθ(z) = log p0(GRFn(z; θ)) + log |det(JGRFn
(z))| (3)

µ, logσ = DecoderNN(z; θ) (4)
pθ(xi|z) = N (xi;µi, σi), i = 1, . . . , D (5)

The subscript n above denotes a normalizing flow. Figure 1 illustrates the full VAE. Note that GRFn

must be inverted to generate samples from this VAE, making sample generation slower than with
regular VAEs.

2.2 GRAPHICAL RESIDUAL FLOWS

Graphical flows (Wehenkel & Louppe, 2021; Weilbach et al., 2020) add further structure to nor-
malizing flows (NFs) (Tabak & Turner, 2013; Rezende & Mohamed, 2015) by encoding non-trivial
variable dependencies through sparsity of the neural networks’ weight matrices. While the graph-
ical flows of Wehenkel & Louppe (2021) or Weilbach et al. (2020) could also be used, we in-
stead consider applying similar ideas to residual flows (Chen et al., 2019). We choose the re-
sulting GRFs over other graphical flows due to their faster and more stable inversion behaviour,
as discussed in Behrmann et al. (2021); Mouton & Kroon (2022). Consider a residual network
F (y) = (fT ◦ . . . ◦ f1)(y), composed of blocks y(t) := ft(y

(t−1)) = y(t−1) + gt(y
(t−1)). F

is an NF if all of the ft are invertible. A sufficient condition for invertibility of ft is Lip(gt) < 1,
where Lip(·) denotes the Lipschitz constant of a transformation. Behrmann et al. (2019) construct
a residual flow by applying spectral normalization to the residual network’s weight matrices such
that the bound Lip(gt) < 1 holds for all layers. The graphical structure of a BN can be incorporated
into a residual flow by suitably masking the weight matrices of each residual block before applying
spectral normalization.

Normalizing GRF Given a BN graph, G, the update to z(t−1) in block ft of GRFn in the decoder
is defined as follows for a residual block with a single hidden layer (it is straightforward to extend
this to residual blocks with more hidden layers):

z(t) := z(t−1) + (Wd,2 ⊙Md,2) · h((Wd,1 ⊙Md,1) · z(t−1) + bd,1) + bd,2 . (6)

Here, h(·) is a nonlinearity with Lip(h) ≤ 1, ⊙ denotes element-wise multiplication, d denotes that
this operation is part of the decoder, and the Md,i are binary masks ensuring that component j of the

2

Published as a workshop paper at ICLR 2022

Table 1: Negative Log-likelihood (NLL) and reconstruction error (RE) achieved by each model
when trained on different sized training sets. Each entry corresponds to the average performance
on 100 test samples over 5 independent runs with standard deviation given in the subscript. Lower
is better. Bold indicates the best result in each group. The number of observed (D) and latent (K)
variables, as well as the number of edges (E) in the datasets’ associated BN are also provided.

2× |G| training samples 100× |G| training samples

D K E Model NLL RE NLL RE

E
C

ol
i7

0

29 15 59

VAE 42.99±1.50 6.21±.32 36.95±.01 4.68±.01

SIReN-VAEind 43.77±0.16 6.32±.08 35.84±.23 4.07±.10

SIReN-VAEFC 42.91±1.04 6.03±.29 35.77±.23 4.05±.09

SIReN-VAEtrue 38.98±0.81 4.95±0.22 36.22±.19 3.88±.10

A
rt

h1
50

67 40 150

VAE 74.13±3.27 6.13±.70 38.92±.06 4.50±.02

SIReN-VAEind 42.60±0.38 4.85±.02 38.84±.11 4.45±.02

SIReN-VAEFC 42.15±0.00 4.82±.00 39.06±.07 4.49±.01

SIReN-VAEtrue 42.06±0.40 4.80±.01 38.86±.22 4.42±.04

M
ag

ic
-I

rr
i

5 59 102

VAE 15.70±1.89 11.95±2.58 10.18±.21 7.30±.60

SIReN-VAEind 14.66±1.08 16.66±1.40 10.03±.00 9.12±.01

SIReN-VAEFC 12.41±3.34 12.05±3.99 10.03±.00 9.13±.01

SIReN-VAEtrue 10.83±0.64 11.13±1.95 10.02±.01 8.91±.29

residual block’s output is only a function of the input corresponding to {zj}∪PaG(zj). By compos-
ing a number of such blocks, each variable ultimately receives information from its ancestors in the
BN via its parents. This is similar to the way information propagates between nodes in a message
passing algorithm. The masks above are constructed according to a variant of MADE (Germain
et al., 2015) for arbitrary graphical structures. Similar masks are applied to DecoderNN such that µi

and log σi are only a function of those zj ∈ PaG(xi). The change in density incurred by the normal-
izing flow (that maps samples from the data distribution to samples from a base distribution p0) is
tracked via the change-of-variable formula (3). Since we are enforcing a DAG dependency structure
between the variables, there is a permutation of the components of z for which the corresponding
permuted Jacobian is lower triangular. We can thus compute det(JGRFn

(z)) exactly as the product
of its diagonal entries, since the determinant is invariant under such permutations. The inverse of
this flow does not have an analytical form (Behrmann et al., 2019). Instead, each block is inverted
numerically using the Newton-like fixed-point method proposed by Song et al. (2019).

Generative GRF For the encoder, we determine the structure to embed in the flow by inverting
the BN graph using the faithful inversion algorithm of Webb et al. (2018). This leads to a generative
flow (that provides a mapping from the base to the approximate posterior distribution) where the
latents are conditioned on the observations:

z(t) := z(t−1) + (We,2 ⊙Me,2) · h((We,1 ⊙Me,1) · y(t−1) + be,1) + be,2,

where the subscript e denotes the encoder and y(t−1) = z(t−1) ⊕x where ⊕ denotes concatenation.

3 EXPERIMENTS

We evaluate the performance of SIReN-VAE on datasets generated from three fully-specified BNs,
obtained from the BN repository of Scutari (2022) . All leaf nodes were considered observed, and
the rest taken to be latent. To better compare the effect of the encoded dependency structure, we train
three different SIReN-VAE models. The first encodes a BN with conditionally independent latent
variables in the decoder (denoted by SIReN-VAEind), much like a vanilla VAE (though the prior
distributions would be non-Gaussian, unlike a vanilla VAE). The second model, SIReN-VAEFC, en-
codes a fully-connected structure between the latent variables of the generative model using the same
topological ordering as the true BN. Each observed variable is conditioned on all latent variables in
both these models. The final model encodes the true dependencies as specified by each dataset’s
accompanying BN and is denoted by SIReN-VAEtrue. Both SIReN-VAEind and SIReN-VAEFC use

3

Published as a workshop paper at ICLR 2022

Figure 1: SIReN-VAE encodes the BN’s graphi-
cal structure into the decoder via masking of the
flow and decoder neural network weights. The
inverted BN structure is similarly encoded in the
inference network’s flow. A more comprehen-
sive diagram is provided in Appendix A.

Figure 2: Negative ELBO (lower is better) vs
training set size for the EColi70 dataset. Error
bars show one standard deviation from the mean
over 5 independent runs.

the same latent dimension as the true BN. Note that GRFg should be deep enough to allow informa-
tion from x to reach all latents via their parents. We used four residual blocks for all GRFs in our
networks, since this was sufficient; each residual block had a single hidden layer. We also compare
the results to those of a vanilla VAE (with fully-factorized Gaussian prior and approximate posterior
of the same latent dimension). The encoder and decoder neural networks of this VAE had similar
architectures to the DecoderNN used in the SIReN-VAE models. All models were trained using
Adam with different initial learning rates (either 10−1, 10−2 or 10−3) based on which resulted in
the lowest loss. The learning rate was decreased by a factor of 10 each time no improvement in the
loss was observed for 10 consecutive epochs, until a minimum rate of 10−6 was reached.

We first trained all models on a training set consisting of 100× |G| data points where |G| = D +K
is the number of vertices in the BN. We compare the models based on their log-likelihood pθ(x) and
reconstruction error on 100 test instances over five independent runs. The test log-likelihood was
estimated using 500 importance-weighted samples as done in Burda et al. (2016). The results are
given in Table 1. Unsurprisingly, SIReN-VAE generally outperforms the vanilla VAE—this can be
attributed to the more complex prior and posterior distributions introduced by the flows. However,
we do not see any clear preference between the SIReN-VAE models. The picture changes when
we consider the various models’ performance when trained on much smaller training sets consisting
of only 2 × |G| instances. Here, SIReN-VAEtrue clearly outperforms the other models. Figure 2
illustrates how SIReN-VAEtrue achieves a considerably lower loss than the other models for smaller
training set sizes. We speculate that the increased sparsity of the neural network weights, in line with
the true BN independencies, poses an easier learning task than those posed by the other models.

4 CONCLUSION

We propose the SIReN-VAE as an approach to incorporating an arbitrary BN dependency structure
into a VAE. Including domain knowledge about the conditional independencies between observed
and latent variables leads to much sparser weights matrices in both the encoder and decoder net-
works, but still allows sufficient information to propagate in order to model the data distribution.
Indeed, our empirical results show that the sparsity induced by true conditional independencies is
especially beneficial in settings where limited training data is available.

In this work we only considered synthetic datasets. Initial results on real-world datasets did not
show similar performance gains when using a SIReN-VAE encoding the hypothesized BN structure.
This could indicate that our approach is not sufficiently robust against deviations from the true un-
derlying Bayesian network. Going forward, we hope to develop our understanding of the behaviour
of SIReN-VAE when the encoded structure may be similar to, but not necessarily the same as, the
data. This will be valuable for understanding how to use this approach effectively with real-world
data, where the exact true BN structure is almost never available.

4

Published as a workshop paper at ICLR 2022

REFERENCES

Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Jörn-Henrik Jacobsen.
Invertible residual networks. In Proceedings of the 36th International Conference on Machine
Learning, pp. 573–582. PMLR, 2019.

Jens Behrmann, Paul Vicol, Kuan-Chieh Wang, Roger Grosse, and Jörn-Henrik Jacobsen. Under-
standing and mitigating exploding inverses in invertible neural networks. In Proceedings of The
24th International Conference on Artificial Intelligence and Statistics, pp. 1792–1800. PMLR,
April 2021.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. In 4th
International Conference on Learning Representations, 2016.

Ricky T. Q. Chen, Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. Residual flows
for invertible generative modeling. In Advances in Neural Information Processing Systems, pp.
9916–9926. Curran Associates, Inc., 2019.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked autoencoder
for distribution estimation. In Proceedings of the 32nd International Conference on Machine
Learning, pp. 881–889. PMLR, 2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In 2nd International
Conference on Learning Representations, pp. 14–16, 2014.

Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improving variational inference with inverse autoregressive flow. In Advances in Neural Informa-
tion Processing Systems, pp. 4743–4751. Curran Associates, Inc., 2016.

Jacobie Mouton and Steve Kroon. Graphical residual flows. In International Conference on Learn-
ing Representations Workshop on Deep Generative Models for Highly Structured Data, 2022.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Proceedings
of the 32nd International Conference on Machine Learning, pp. 1530–1538. PMLR, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Proceedings of the 31st International Con-
ference on Machine Learning, volume 32, pp. 1278–1286, 2014.

Marco Scutari. Bayesian network repository, 2022. URL https://www.bnlearn.com/
bnrepository/.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder
variational autoencoders. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

Yang Song, Chenlin Meng, and Stefano Ermon. MintNet: Building invertible neural networks with
masked convolutions. In Advances in Neural Information Processing Systems, pp. 11004–11014.
Curran Associates, Inc., 2019.

E. G. Tabak and Cristina V. Turner. A family of nonparametric density estimation algorithms. Com-
munications on Pure and Applied Mathematics, 66(2):145–164, 2013.

Stefan Webb, Adam Golinski, Robert Zinkov, N. Siddharth, Tom Rainforth, Yee Whye Teh, and
Frank Wood. Faithful inversion of generative models for effective amortized inference. In Ad-
vances in Neural Information Processing Systems, pp. 3070–3080. Curran Associates, Inc., 2018.

Antoine Wehenkel and Gilles Louppe. Graphical normalizing flows. In Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics, pp. 37–45. PMLR, 2021.

Christian Weilbach, Boyan Beronov, Frank Wood, and William Harvey. Structured conditional con-
tinuous normalizing flows for efficient amortized inference in graphical models. In Proceedings of
the 23rd International Conference on Artificial Intelligence and Statistics, pp. 4441–4451. PMLR,
2020.

5

https://www.bnlearn.com/bnrepository/
https://www.bnlearn.com/bnrepository/

Published as a workshop paper at ICLR 2022

A SIREN-VAE ILLUSTRATION

Figure A.1: SIReN-VAE encodes the BN’s graphical structure into the decoder (right) via masking
of the normalizing GRF (GRFn) and decoder neural network weights. The inverted BN structure is
similarly encoded in the inference network’s generating GRF (GRFg; left). The base distribution p0
is chosen to be N (0, I).

6

