
Strategies to Improve Few-shot Learning for Intent Classification and
Slot-Filling

Anonymous ACL submission

Abstract

Intent classification (IC) and slot filling (SF)001
are two fundamental tasks in modern Natural002
Language Understanding (NLU) systems. Col-003
lecting and annotating large amounts of data004
to train deep learning models for such sys-005
tems are not scalable. This problem can be006
addressed by learning from few examples us-007
ing fast supervised meta-learning techniques008
such as prototypical networks. In this work,009
we systematically investigate how contrastive010
learning and data augmentation methods can011
benefit these existing meta-learning pipelines012
for jointly modelled IC/SF tasks. Through013
extensive experiments across standard IC/SF014
benchmarks (SNIPS and ATIS), we show that015
our proposed approaches outperform standard016
meta-learning methods: contrastive losses as017
a regularizer in conjunction with prototypical018
networks consistently outperform the existing019
state-of-the-art for both IC and SF tasks, while020
data augmentation strategies primarily improve021
few-shot IC by a significant margin.022

1 Introduction023

NLU specific intent classification and slot-filling024

models often need to learn from only a few contex-025

tual examples given by the end user in industrial026

model deployment scenarios. Such models are of-027

ten trained using meta-learning, a competitive few-028

shot learning strategy to learn from only a few ex-029

amples. In this paper, we systematically dissect the030

existing meta-learning pipelines for jointly mod-031

elled few-shot Intent Classification (IC) and Slot032

Filling (SF) and identify practical training strate-033

gies to improve their performance by a significant034

margin. Precisely, we investigate how different035

data augmentation and contrastive learning strate-036

gies improve IC/SF performance, and show that037

our training approach outperforms state-of-the-art038

models for few-shot IC/SF. Given the user utter-039

ance: “Book me a table for 6 at Lebanese Taverna”,040

an IC model identifies “Restaurant Booking” as041

the intent of interest, and an SF model identifies 042

the slot types and values: Party_Size:"6", Name: 043

"Lebanese Taverna". These functionalities are typi- 044

cally driven by powerful deep learning models that 045

rely on huge amounts of domain-specific training 046

data. As such labeled data is rarely available, build- 047

ing models that can learn from only a few examples 048

per class is inevitable. 049

Few-shot learning techniques (Krone et al., 2020; 050

Ren and Xue, 2020; Geng et al., 2019, 2020; Liu 051

et al., 2020b) have been recently proposed to ad- 052

dress the problem of generalizing to unseen classes 053

in IC/SF when only a few training examples per 054

class are available. Krone et al. (2020) utilized 055

meta-learning approaches such as prototypical net- 056

works (Snell et al., 2017) and MAML (Finn et al., 057

2017) to jointly model IC/SF. They showed that 058

prototypical networks outperform other prevalent 059

meta-learning techniques such as MAML as well 060

as fine-tuning. Moreover, one primary benefit of 061

prototypical networks is that it is computationally 062

cheap during meta-testing, thus making it a good 063

candidate for industrial few-shot learning systems. 064

In this paper, we extend this powerful supervised 065

meta-learning technique with unsupervised con- 066

trastive learning and data augmentation. 067

Rajendran et al. (2020) showed that meta- 068

learners can be particular prone to overfitting which 069

can be partially alleviated by data augmentation 070

(Liu et al., 2020a). Data augmentation strategies 071

in NLP have been shown to boost performance in 072

general text classification settings (Wei and Zou, 073

2019b; Xie et al., 2019; Lee et al., 2021), however, 074

there exists very little work on how data augmen- 075

tation can be effectively used in the meta-learning 076

pipeline specific to NLU tasks. To address this 077

question, we first use a data augmentation strategy 078

slot-list values for IC/SF tasks which gen- 079

erates synthetic utterances using dictionary-based 080

slot-values. We note that similar dictionary based 081

augmentation has been previously used in (Li et al., 082
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2021), but in the context of dialogue state tracking,083

orthogonal to our use-case. Additionally, we in-084

vestigate how state-of-the-art augmentation strate-085

gies such as backtranslation (Xie et al., 2019) and086

perturbation-based augmentations such as EDA –087

Easy Data Augmentation (Wei and Zou, 2019b) –088

can be used alongside prototypical networks.089

We further investigate how contrastive learn-090

ing (Chen et al., 2020) can be used as a regular-091

izer during the meta-training stage to create better092

generalizable meta-learners. Contrastive learning093

is useful in creating improved prototypes as they094

pull similar representations together while pushing095

apart dissimilar ones. Through extensive experi-096

ments across SNIPS and ATIS, we show that meta-097

training with contrastive losses as a regularizer im-098

proves IC/SF performance for unseen classes with099

few examples. Our contributions include:100

• We demonstrate the effectiveness of con-101

trastive losses as a regularizer in meta-102

learning, by empirically showing how it im-103

proves few-shot IC/SF tasks across bench-104

mark datasets.105

• We illustrate the positive impact of data aug-106

mentation techniques such as slot-list107

values, backtranslation and EDA in the108

meta-learning pipeline.109

2 Proposed Approaches110

We follow the few-shot learning setup for IC/SF111

described in (Krone et al., 2020) with a few modifi-112

cations. Instead of using a frozen backbone such113

as BERT or ELMo with a BiLSTM head, we use114

a more powerful pre-trained RoBERTa encoder.115

Additionally, in contrast to (Krone et al., 2020),116

we update our encoder during the meta-training117

stage. For a given utterance xi = {xi1, xi2, ..., xin}118

with n tokens, we first use the RoBERTa model119

denoted by fϕ to encode the utterance resulting120

in hi = {hi<cls>, h
i
1, ..., h

i
n}. We use the <cls>121

token embedding to denote the utterance level em-122

bedding which we use for intent classification. For123

slot filling, we use each of the token embeddings124

{hij}nj=1 of the ith utterance. Given a support set S,125

assuming Sl consists of utterances belonging to the126

intent class cl and Sa consists of tokens from the127

slot class ca, we first compute the class prototypes128

for intents (cl) and slots (ca):129

cl =
1

|Sl|
∑
xi∈Sl

fϕ(x
i) (1)130

131

ca =
1

|Sa|
∑

xi
j∈Sa

fϕ(x
i
j) ∀xi ∈ S (2) 132

Given a query example z and a distance func- 133

tion d, a distribution over the different classes is 134

computed using the softmax of the distances to the 135

different class prototypes. Specifically we denote 136

the intent specific log likelihood loss as: 137

LIC(ϕ, z) = − log{
exp(−d(fϕ(z), cl))∑
l′ exp(−d(fϕ(z), cl′ ))

}

(3) 138

We use euclidean distance as the standard dis- 139

tance function. Similarly, we define the slot specific 140

loss as LSlots(ϕ, z). For a given query set Q, the 141

cumulative loss for intents and slots is the log like- 142

lihood averaged across all the query samples and 143

is denoted by LTotal(ϕ): 144

LTotal(ϕ) =
∑
z∈Q

1

|Q|
{LIC(ϕ, z) + LSlots(ϕ, z)}

(4) 145

146
2.1 Contrastive Learning 147

The general idea of contrastive learning (Chen et al., 148

2020) is to pull together the representations of simi- 149

lar samples while pushing apart the representations 150

of dissimilar samples in an embedding space. In 151

our work, we specifically incorporate the super- 152

vised contrastive loss as an added regularizer with 153

the prototypical loss computation in Eq. (4). In 154

particular we identify places in the meta-training 155

pipeline where the incorporation of the contrastive 156

loss is most beneficial for good generalization to 157

few-shot classes. We devise two types of con- 158

trastive losses for the IC/SF tasks: (a) contrastive 159

loss for intents LcontrastiveIC(ϕ) where the <cls> 160

token embedding is used in the loss; (b) contrastive 161

loss for slots LcontrastiveSF (ϕ) where the individ- 162

ual token embeddings are used in the loss. The 163

regularized prototypical loss is the following: 164

165

LTotal(ϕ) =
∑
z∈Q

1

|Q|
{LIC(ϕ, z)+LSlots(ϕ, z)} 166

+ λ1LcontrastiveIC(ϕ) + λ2LcontrastiveSF (ϕ)
(5)

167

We provide more details about the two contrastive 168

losses in the Appendix section. 169

2.2 Data Augmentation for Few-shot IC/SF 170

Prior works in computer vision (Liu et al., 2020a; 171

Ni et al., 2020) have shown that data augmentation 172
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Level
SNIPS

(Kmax=20)
ATIS

(Kmax=20)
SNIPS

(Kmax=100)
ATIS

(Kmax=100)
IC Acc Slot F1 IC Acc Slot F1 IC Acc Slot F1 IC Acc Slot F1

Krone et al. (2020) - 0.877 ± 0.01 0.597 ± 0.017 0.660 ± 0.02 0.340 ± 0.004 0.877 ± 0.01 0.621 ± 0.007 0.719 ± 0.01 0.412 ± 0.02
Baseline (Ours) - 0.887 ± 0.06 0.597 ± 0.04 0.737 ± 0.06 0.74 ± 0.01 0.907 ± 0.05 0.593 ± 0.04 0.80 ± 0.04 0.70± 0.02

CL (IC) Support(m-train) 0.905 ± 0.05 0.594 ± 0.04 0.75 ± 0.07 0.748 ± 0.02 0.912 ± 0.03 0.594 ± 0.04 0.802 ± 0.06 0.70 ± 0.02
CL (IC) Support,Query(m-train) 0.908 ± 0.06 0.596 ± 0.04 0.76 ± 0.04 0.748 ± 0.02 0.93 ± 0.05 0.60 ± 0.03 0.829 ± 0.06 0.703 ± 0.03

CL (IC + SF) Support(m-train) 0.903 ± 0.06 0.60± 0.04 0.757 ± 0.04 0.755 ± 0.02 0.92 ± 0.01 0.60 ± 0.04 0.826 ± 0.05 0.70 ± 0.03
CL (IC + SF) Support,Query(m-train) 0.91 ± 0.04 0.60 ± 0.03 0.75 ± 0.07 0.756 ± 0.02 0.93 ± 0.03 0.60 ± 0.04 0.833 ± 0.05 0.71 ± 0.02

CL (IC + SF), DA (Slot list) Support,Query(m-train) 0.921± 0.037 0.619± 0.037 0.803 ± 0.069 0.748 ± 0.019 0.923± 0.055 0.619± 0.035 0.821± 0.08 0.73± 0.02

Table 1: Few-shot classification accuracy with contrastive learning (CL) for prototypical networks. For CL (IC)
only LcontrastiveIC is used, whereas for CL (IC + SF), both LcontrastiveIC and LcontrastiveSF are used.

is very effective in meta-learning. In this section,173

we use various data augmentation strategies to im-174

prove the meta-learning pipeline for IC/SF tasks.175

Data augmentation for joint IC/SF tasks in NLU176

is particularly challenging as the augmentation is177

primarily possible at the level of intents. For in-178

tent level data augmentation, we use state-of-the-179

art techniques such as backtranslation (Xie et al.,180

2019) and EDA (Wei and Zou, 2019b) along with181

prototypical networks. We also introduce a novel182

data augmentation technique called slot-list183

values which effectively leverages the structure184

of joint IC/SF tasks. In particular, we investigate185

the effectiveness of these data augmentation tech-186

niques in the meta-learning pipeline at different187

levels such as: (a) support at meta-training; (b)188

support + query at meta-training; (c) support at189

meta-testing; (d) combination of those. We provide190

details about these augmentation methods below.191

2.2.1 Slot-List Values Augmentation192

In IC/SF datasets, certain slot types often can take193

on values specified in a finite list. For example,194

in the SNIPS dataset the slot type facility can take195

on values from the list ["smoking room", "spa",196

"indoor", "outdoor", "pool", "internet", "parking",197

"wifi"] . Specific to the discrete slot filling task,198

(Shah et al., 2019) used such values to learn an ad-199

ditional attention module for improving SF. Such200

lists can be created from the training dataset and201

be used for data augmentation. We leverage such202

lists to create synthetic utterances by replacing the203

values of slot types in a given utterance with other204

values from the list: e.g. given an utterance “Book205

a table at a pool bar”, we synthesize another utter-206

ance “Book a table at a indoor bar”.207

2.2.2 Augmentation by Backtranslation208

Backtranslation is a technique of translating an209

utterance into an intermediate language and back210

to its original language using a neural machine211

translation model. Previous works (Edunov et al.,212

2018; Yu et al., 2018; Sennrich et al., 2015) showed213

that backtranslation is extremely effective as a data 214

augmentation technique for NLP applications. In 215

our paper in particular, we use a pre-trained en-es 216

NMT model (Junczys-Dowmunt et al., 2018) for 217

generating the augmented utterances. To ensure 218

that the generated utterances are diverse, we follow 219

the procedure in (Xie et al., 2019) in which we 220

employ restricted sampling from the model output 221

probability distribution instead of beam-search. 222

2.2.3 EDA Data Augmentation 223

Adding small perturbations to the training data 224

via random insertion, deletion, swapping and syn- 225

onym replacement is one simple technique to gen- 226

erate synthetic data for data augmentation. Pre- 227

vious work by (Wei and Zou, 2019a) showed 228

that EDA achieves state-of-the-art results on text- 229

classification tasks. In our work, we use EDA to 230

generate synthetic data to perform data augmenta- 231

tion at different stages of meta-learning. 232

3 Experiments 233

Datasets: We use two well-known IC/SF bench- 234

marks: SNIPS (Coucke et al., 2018) and ATIS 235

(Hemphill et al., 1990). SNIPS is a more chal- 236

lenging dataset as it contains intents from diverse 237

domains whereas the ATIS dataset contains intents 238

from only the Airline domain. 239

Episode Construction: We follow the standard 240

episode construction technique described in (Krone 241

et al., 2020; Triantafillou et al., 2020) where the 242

number of classes and the shots per class in each 243

episode are sampled dynamically. 244

Few-shot Splits: For the SNIPS dataset, we 245

use 4 intent classes for meta-training and 3 in- 246

tent classes for meta-testing. Similar to (Krone 247

et al., 2020), we do not form a development split 248

for SNIPS as there are only 7 intent classes and 249

the episode construction process requires at least 250

3 classes in each split. For the ATIS dataset, we 251

first select intent classes with more than 15 exam- 252

ples, then use 5 intent classes for meta-training and 253

7 intent classes for meta-testing. The rest of the 254
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Level SNIPS(Kmax=20) ATIS (Kmax=20) SNIPS (Kmax=100) ATIS(Kmax=100)
IC Acc IC Acc IC Acc IC Acc

(Krone et al., 2020) - 0.877 ± 0.01 0.660 ± 0.02 0.877 ± 0.01 0.719 ± 0.01
Baseline (Ours) - 0.887 ± 0.06 0.737 ± 0.06 0.907 ± 0.05 0.80 ± 0.04
DA (Slot-list) Support(m-train) 0.898 ± 0.061 0.735 ± 0.052 0.916 ± 0.055 0.810 ± 0.052
DA (Slot-list) Support,Query(m-train) 0.919 ± 0.062 0.800 ± 0.054 0.917 ± 0.051 0.806 ± 0.066
DA (Slot-list) Support(m-train, m-test) 0.905± 0.062 0.772 ± 0.044 0.922± 0.051 0.818± 0.056
DA (Slot-list) Support(m-test) 0.926 ± 0.038 0.764 ± 0.073 0.931 ± 0.037 0.840± 0.047

DA (Backtranslation) Support(m-train) 0.885 ± 0.03 0.77 ± 0.06 0.928 ± 0.029 0.79 ± 0.06
DA (Backtranslation) Support(m-train, m-test) 0.881 ± 0.03 0.79 ± 0.05 0.931 ± 0.030 0.795 ± 0.06
DA (Backtranslation) Support(m-test) 0.895 ± 0.036 0.71 ± 0.06 0.899 ± 0.06 0.77 ± 0.14

DA (EDA) Support(m-train) 0.893 ± 0.062 0.787 ± 0.07 0.911 ± 0.04 0.805 ± 0.08
DA (EDA) Support(m-train,m-test) 0.893 ± 0.047 0.761 ± 0.08 0.915 ± 0.04 0.808 ± 0.10
DA (EDA) Support(m-test) 0.892 ± 0.047 0.731 ± 0.06 0.915 ± 0.05 0.78 ± 0.059

Table 2: Few-shot IC accuracy with Data Augmentation (DA) for prototypical networks; m-train refers to meta-
training and m-test refers to meta-testing

classes are used as a development split. In (Krone255

et al., 2020), the intent classes for each split are256

manually chosen. This is not representative of real-257

istic situations where the types of few-shot classes258

can vary considerably. To address this issue, we259

report our experiment results averaged over 5 seeds260

where in each run the intent classes for each split261

are randomly sampled. In each experiment run, we262

evaluate our results for 100 episodes sampled from263

the test-split. We refer to our re-implementation of264

(Krone et al., 2020) with this strategy as Baseline.265

Contrastive Learning Helps IC/SF tasks: Ta-266

ble 1 shows the results of experiments adding267

contrastive losses as a regularizer to our baseline.268

Overall, we observe that across both SNIPS and269

ATIS datasets, using contrastive losses as a regu-270

larizer predominantly improves IC accuracy, while271

marginally improving SF F1 score. In particular,272

we notice that using contrastive losses as a reg-273

ularizer with both the support and query during274

meta-training leads to the best performances.275

Impact of Data Augmentation is Dependent276

on Stage of Application: Table 2 shows the re-277

sults of adding data augmentation to the few-shot278

IC tasks. We find that the data augmentation279

techniques in general improve the performance of280

few-shot IC, depending on the stage in the meta-281

learning pipeline at which the data is augmented.282

More specifically, for SNIPS we notice up to 4%283

and 2% gain in IC accuracy for Kmax = 20284

and Kmax = 100 respectively. With EDA, we285

find that augmentation during meta-training and286

meta-testing together leads to a noteworthy gain287

in few-shot IC performances across both SNIPS288

and ATIS. In comparison, backtranslation is effec-289

tive in improving the few-shot IC performance for290

SNIPS, when the shots per class is higher such as291

in Kmax = 100. However for ATIS, we observe292

a significant gain in IC only for Kmax = 20.293

Slot-list Values Augmentation at Meta-Testing294

Helps: We find that dictionary based augmentation 295

techniques such as slot-list values gener- 296

ally show consistent gain in IC at all stages during 297

meta-training and shots per class. 298

Combination of Contrastive Learning and 299

Data Augmentation Helps IC/SF tasks: We find 300

that the combination of contrastive losses and data 301

augmentation via slot-list values outper- 302

forms models trained independently with only con- 303

trastive losses or data augmentation. We hypothe- 304

size that this is due to two independent effects work- 305

ing together in conjunction: (a) contrastive learning 306

helps to create improved prototypes whereas (b) 307

data augmentation helps mitigate meta-overfitting. 308

For SF, we find that data augmentation leads to 309

only limited improvements when compared to IC 310

(see Appendix C). We attribute this to the low shots 311

per slot class, an artifact of the episodic sampling 312

procedure (Krone et al., 2020), done per intent class 313

in the joint IC/SF setting. 314

4 Conclusion 315

In this work, we systematically dissect meta- 316

learning pipelines for few-shot IC/SF tasks and 317

identify stages during meta-learning where con- 318

trastive learning and data augmentation can be ef- 319

fective. Empirically, we found that contrastive 320

losses are effective regularizers during meta- 321

training and outperform the current state-of-the- 322

art few-shot joint IC/SF benchmarks across both 323

SNIPS and ATIS. Impact of data augmentation in 324

general is highly dependent on the stage at which it 325

is applied during meta-learning. Notably, a combi- 326

nation of contrastive losses and data augmentation 327

via slot-list values during meta-training 328

leads to the best performances across both SNIPS 329

and ATIS. These strategies for improving few-shot 330

IC/SF tasks create a strong benchmark and open 331

up possibilities on more stronger modes of meta- 332

specific augmentation and contrastive learning. 333
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A Hyperparameters474

For the ATIS dataset, we use the development set475

to tune for λ1 and λ2 in Eq. (5). For the SNIPS476

dataset, we empirically set both λ1 and λ2 to be477

0.06 due to the lack of a development set. In our ex-478

periments with the three data augmentation strate-479

gies, we generate synthetic utterances to exactly480

double the training data size for fair comparison481

throughout. Across all the experiments, we meta-482

train the models for 50 episodes and use a learning483

rate of 5e− 5.484

B On Contrastive Learning485

In our work, we use two types of contrastive losses486

for IC/SF tasks: (a) contrastive loss for intents487

LcontrastiveIC(ϕ) where the <cls> token embed-488

ding is used in the loss; (b) contrastive loss for slots489

LcontrastiveSF (ϕ) where the individual token em-490

beddings from the encoder are used in the loss.491

In particular, we use the supervised contrastive492

loss (Khosla et al., 2020) and leverage the label493

information present in the support or support +494

query set during meta-training. First we define495

the contrastive loss for intents LcontrastiveIC(ϕ):496

given a set of utterances with their corresponding497

intent labels Sintents = {(xi, yi)mi=1}, assume P (i)498

to be a set consisting of examples from Sintents499

with same labels as the ith example. Formally500

P (i) : {xj : yj = yi ∀j ∈ [1,m] & j ̸= i}. The501

contrastive loss for the intents LcontrastiveIC(ϕ) is502

defined as the following:503

m∑
i=1

− log
{ 1

|P (i)|
∑

z∈P (i)

exp(fϕ(xi)
T fϕ(z))/τ∑m

j=1,j ̸=i exp(fϕ(xi)
T fϕ(xj))/τ

}
(6)

504

Here fϕ(xi) denotes the <cls> embedding for505

the ith utterance. In case of slots, we first obtain506

the individual token embeddings in each utterance507

xi ∀i ∈ [1,m]. Consider the total number of to-508

kens to be N in an episode and their associated em-509

beddings’ set to be Sslots = {(hj , y
′
j), ∀j ∈ N},510

where y
′
j is the slot label for the jth token. Similar511

to the intents, we define the set Q(i) : {hj : y
′
j =512

y
′
i ∀j ∈ [1, N ] & j ̸= i}. Next we define the513

contrastive loss for the slots Lslots(ϕ) as:514

N∑
i=1

− log
{ 1

|Q(i)|
∑

z∈Q(i)

exp(hTi z)/τ∑N
j=1,j ̸=i exp(h

T
i hj)/τ

}
(7)

515

516

C Impact of Data Augmentation for Slot 517

Filling 518

Data augmentation for joint IC/SF tasks is challeng- 519

ing as augmentation is only possible at the level 520

of intents. Although data augmentation leads to 521

large improvements in few-shot IC performances, 522

its impact on SF tasks is limited. From Table 3, 523

across the different data augmentation methods 524

such as backtranslation, EDA and slot-list 525

values, we observe that there is no consistent 526

improvements in SF performances across our dif- 527

ferent experiment settings. We hypothesize that 528

as data augmentation does not provide any direct 529

signal to the SF task, the improvements are insub- 530

stantial. To address this issue and provide a more 531

direct signal to the SF task, we incorporate part- 532

of-speech (POS) and noun-phrase information of 533

the different slot values into the joint IC/SF model. 534

In the next section, we discuss ways to incorpo- 535

rate these additional syntactic information into the 536

meta-learning pipeline. 537

D Beyond Semantic Information 538

Part-of-speech (POS) and noun-parser information 539

can provide additional syntactic information about 540

of an utterance, thus augmenting the semantic in- 541

formation from the encoded tokens. In particular, 542

POS tags can help resolve decisions for ambiguous 543

tokens or words. Previous work (Wang et al., 2020) 544

has shown that prior information from POS tags 545

helps in improving IC and SF tasks in the general 546

supervised many shot setting. In our work, we use 547

POS tags as an additional source of information 548

particularly for the few-shot setting. We propose 549

two primary ways to incorporate POS tags in the 550

general meta-learning setting: (a) POS tag as an 551

additional input feature; (b) Explicitly training the 552

model to predict POS tags via a multi-task loss. 553

In addition to POS tags, we also augment infor- 554

mation about noun-phrases as an additional input 555

feature. Noun chunks or phrases have the poten- 556

tial to provide strong signals about possible spans 557

of different slots to the underlying model, thus 558

improving SF performance. For example, in the 559

utterance “book me a table for one at blue ribbon 560

barbecue”(with intent BookRestaurant, and slots: 561

party_size_number:"one", restaurant_name: "blue 562

ribbon barbecue"), "blue ribbon barbecue" is iden- 563

tified as a noun-chunk and the span information 564
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Level SNIPS(Kmax=20) ATIS (Kmax=20) SNIPS (Kmax=100) ATIS(Kmax=100)
Slot F1 Slot F1 Slot F1 Slot F1

Baseline (Ours) - 0.599 ± 0.04 0.748 ± 0.01 0.593 ± 0.04 0.703 ± 0.02
DA (Slot-list) Support(m-train) 0.603 ± 0.043 0.738 ± 0.020 0.609 ± 0.047 0.713 ± 0.025
DA (Slot-list) Support,Query(m-train) 0.609 ± 0.043 0.74 ± 0.02 0.609 ± 0.03 0.715 ± 0.02
DA (Slot-list) Support(m-train, m-test) 0.587± 0.045 0.712 ± 0.026 0.595 ± 0.042 0.686± 0.029
DA (Slot-list) Support(m-test) 0.572 ± 0.036 0.697 ± 0.028 0.589 ± 0.042 0.684± 0.02

DA (Backtranslation) Support(m-train) 0.595 ± 0.04 0.742 ± 0.01 0.611 ± 0.036 0.716 ± 0.02
DA (Backtranslation) Support(m-train, m-test) 0.595 ± 0.04 0.742 ± 0.01 0.611 ± 0.03 0.716 ± 0.02
DA(Backtranslation) Support(m-test) 0.598 ± 0.03 0.74 ± 0.01 0.60 ± 0.03 0.72 ± 0.01

DA(EDA) Support(m-train) 0.585 ± 0.032 0.742 ± 0.02 0.596 ± 0.05 0.701 ± 0.03
DA(EDA) Support(m-train,m-test) 0.593 ± 0.033 0.742 ± 0.02 0.594 ± 0.04 0.711 ± 0.005
DA(EDA) Support(m-test) 0.586 ± 0.036 0.74 ± 0.01 0.593 ± 0.037 0.714 ± 0.02

Table 3: Few-shot Slot F1 with Data Augmentation (DA) for prototypical networks; m-train refers to meta-training
and m-test refers to meta-testing

SNIPS (Kmax = 20) SNIPS(Kmax=100) ATIS(Kmax=20) ATIS(Kmax=100)
IC Acc Slot F1 IC Acc Slot F1 IC Acc Slot F1 IC Acc Slot F1

Baseline (Ours) 0.887 ± 0.06 0.597 ± 0.04 0.907 ± 0.05 0.593 ± 0.04 0.737 ± 0.06 0.748 ± 0.02 0.801 ± 0.05 0.703 ± 0.02
Multi-task POS loss 0.905 ± 0.04 0.603 ± 0.03 0.929 ± 0.03 0.595 ± 0.03 0.769 ± 0.06 0.75 ± 0.01 0.807 ± 0.05 0.711 ± 0.02
With POS-tag features 0.896 ± 0.06 0.592 ± 0.04 0.926 ± 0.03 0.590 ± 0.04 0.745 ± 0.06 0.747 ± 0.01 0.793 ± 0.09 0.713 ± 0.02
With noun-parser features 0.912 ± 0.05 0.599 ± 0.04 0.897 ± 0.05 0.597 ± 0.03 0.764 ± 0.04 0.755 ± 0.02 0.805 ± 0.07 0.715 ± 0.02

Table 4: Effect of adding syntactic information into the joint IC/SF model

can potentially help with the SF task for the restau-565

rant_name slot. Conversely, the POS tag for “one”566

is NUM and can help classify numeric words to the567

numeric slot party_size_number.568

D.1 Feature-Based Addition569

Previous works have shown that adding POS tags570

as features improves IC (Zhang et al., 2016; Xie571

et al., 2018) as well SF performances (Firdaus et al.,572

2018) in many-shot settings. In this work we look573

into incorporating syntactic features in our meta-574

learning pipeline. A simple idea to incorporate575

POS or noun-chunk tags of an utterance is to con-576

catenate a vector representation of them, pij and577

ηij respectively, with the token embeddings fϕ(xij).578

Formally, in our meta-learning pipeline, we revise579

Eq. (2) for our slot prototype:580

ca =
1

|Sa|
∑

xi
j∈Sa

fϕ(x
i
j)⊕ pij ⊕ ηij ∀xi ∈ S (8)581

D.2 Multi-task POS Loss582

Although training language models distills implic-583

itly the structural knowledge of the underlying584

languages (Jawahar et al., 2019; Sundararaman585

et al., 2019) into the model, such knowledge can586

be imperfect. Explicitly training to learn structural587

knowledge such as POS tags (Wang et al., 2020),588

however, can help the model to improve on down-589

stream tasks such as IC/SF. We treat POS tagging590

as a token level classification problem, similar to591

SF. Given a support set S, assume Sl to consist of592

utterances belonging to the intent class cl, Sa to 593

consist of tokens from the slot class ca and Spos to 594

consist of POS tag tokens from the class cpos. In 595

addition to the intent class prototypes cl and slot 596

class prototypes ca, we define an additional class 597

prototype cpos for the POS tags: 598

cpos =
1

|Spos|
∑

xi
j∈Spos

fϕ(x
i
j) ∀xi ∈ S (9) 599

Given a query example z, we define the correspond- 600

ing loss with the POS tag prototypes as: 601

Lpos(ϕ, z) = − log{
exp(−d(fϕ(z), cpos))∑

pos′ exp(−d(fϕ(z), cpos′ ))
}

(10) 602

For the query set Q, the composite loss function is 603

the following: 604

605

LTotal(ϕ) =
∑
z∈Q

1

|Q|
{LIC(ϕ, z) + LSlots(ϕ, z) 606

+ βLpos(ϕ, z)} (11) 607

where β is a hyperparameter. For the ATIS dataset, 608

we select β by using a validation set. In case of the 609

SNIPS dataset, we empirically set β as 0.01 due to 610

unavailability of a development set. 611

In Table 4, we observe an improvement in both 612

IC and SF over the baseline with the addition of 613

information from the POS tags as an auxilliary loss. 614
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However, similar to feature-based addition, we no-615

tice only a marginal and small improvement for SF.616

To understand further this issue, we exmined the617

episodic sampling procedure used in (Krone et al.,618

2020). Across both the SNIPS and ATIS datasets,619

the average shots per class for intents are ≈ 5 and620

≈ 10 for Kmax = 20 and Kmax = 100 respec-621

tively. However for slots, we find that the average622

shots per class are ≈ 1.3 and ≈ 3 for Kmax = 20623

and Kmax = 100 respectively. We conjecture that624

as the shots per class for slots are much lesser in625

comparison to that of intents, it results in smaller626

improvements when compared to intents in the627

joint IC/SF setting.628

E Compute629

For all our experiments we primarily use a630

V100-16GB GPU. For meta-training on ATIS for631

Kmax = 100 with data augmentation, we use632

V100-32GB GPU due to increased memory require-633

ments.634

F Note on Data Augmentation Techniques635

In our paper, we investigate only a limited num-636

ber of data augmentation techniques specific to637

natural language processing. We note that in the638

recent years, a wide variety of augmentation tech-639

niques for NLP has been developed (See (Feng640

et al., 2021) for a good overview). However, we641

choose EDA, backtranslation and use a dictionary642

based slot-list values in our experiments643

due to it’s inherent simplicity which can enable644

easy integration with existing meta-learning meth-645

ods. Designing and adapting existing augmentation646

techniques to meta-learning is a future direction of647

research.648
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