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ABSTRACT

The ability to generate diverse solutions to a given problem is a hallmark of
human creativity. This divergent reasoning is also crucial for machines, enhancing
their robustness and enabling them to assist humans in many applications such as
scientific discovery. However, existing approaches to multi-step reasoning with
large language models (LLMs) have mostly focused only on reasoning accuracy,
without further discovering more diverse valid solutions. For example, supervised
fine-tuning can improve LLM reasoning quality, but requires extensive supervised
data to capture the full range of possible solutions. Reinforcement learning aims to
find limited highest-reward solutions while neglecting the solution diversity. To
fill this gap, we propose Flow of Reasoning (FOR), an efficient diversity-seeking
LLM finetuning method aimed at improving reasoning quality and diversity with
minimal data. FOR formulates multi-step LLM reasoning as a Markovian flow on
a DAG-structured reasoning graph. This formulation allows us to incorporate and
adapt principled GFlowNet approaches, for finetuning LLMs to sample diverse
reasoning paths with probabilities proportional to the (unnormalized) reward of
target problems. Extensive experiments show that, with limited training examples
(e.g., 15 examples), FOR enables the discovery of diverse, creative, high-quality
solutions, greatly outperforming a wide range of existing inference and training
methods across five challenging puzzle-solving tasks, including BlocksWorld
(embodied reasoning), Game24 (math puzzle solving), Rubik’s Cube (spatial
reasoning), 1D-ARC (abstraction reasoning), and PrOntoQA (logical reasoning).

1 INTRODUCTION

Divergent problem solving is the ability to generate multiple diverse solutions to a given prob-
lem (Runco, 1991; Runco & Acar, 2012). As a hallmark of human intelligence, this ability drives
creativity by uncovering novel ways to accomplish a task, providing more possibilities and adaptivity
in different complex situations. Similarly, by encouraging machines to explore diverse solutions
rather than confining to one reasoning path, we not only enhance machines’ robustness (e.g., by
ranking or aggregating different solutions) (Wang et al., 2022), but also empower automated systems
that assist humans in generating ideas and thinking out-of-the-box, thereby potentially facilitating
task completion (Shinn et al., 2024), education (Li et al., 2023a), and scientific discovery (Jain et al.,
2023a).

State-of-the-art reasoning with large language models (LLMs), however, has largely focused on
improving only the problem-solving accuracy with the topmost solution, without moving a step
further to discover more diverse valid solutions. Specifically, inference methods, such as CoT (chain
of thought, Wei et al., 2022), ToT (Yao et al., 2024), RAP (Hao et al., 2023), and others (Chen et al.,
2024b; Besta et al., 2024), rely heavily on the underlying pretrained LLM’s capability and decoding
algorithms to obtain diverse reasoning solutions. Moreover, the search-based inference (Yao et al.,
2024; Hao et al., 2023; Chen et al., 2024b; Besta et al., 2024) can be computationally costly when
searching for multiple reasoning paths. On the other hand, finetuning methods improve the inherent
abilities of the underlying LLMs. However, the popular supervised finetuning (SFT) (Yue et al.,
2023; Yu et al., 2023c) often demands extensive supervision data to capture the full diversity of
solutions, which can be costly to label in many applications. Alternatively, reinforcement learning
(RL), such as proximal policy optimization (PPO, Schulman et al., 2017), trains LLMs to generate
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Figure 1: Multi-step LLM reasoning as a Markovian flow on five tasks, forming DAG-structured
reasoning graphs. In the example of Game24 (left), we sample 20 reasoning paths from each method,
respectively. Baseline methods such as SFT and CoT generate only one valid solution (leftmost path)
repetitively (e.g., SFT generates this solution twice out of the 20 attempts), while our method FOR
discovers three additional unique solutions.

the highest-reward reasoning solution and overlooks solution diversity. As shown in the case study in
Figure 1, limited solutions are found by the above-mentioned methods.

To overcome the limitations, we introduce Flow of Reasoning (FOR), a data-efficient approach
that finetunes LLMs for diverse reasoning with only minimal data. FOR draws inspirations from
generative flow networks (GFlowNets) for amortized diverse sampling (Bengio et al., 2021) that
have been studied in different domains like molecule synthesis (Koziarski et al., 2024; Kim et al.,
2024a) and operation scheduling (Zhang et al., 2023a). In particular, FOR enables diversity-seeking
finetuning of multi-step LLM reasoning, to sample high-quality reasoning paths with probabilities
proportional to the reward of target problems (as opposed to reward maximization in conventional RL).
To this end, we formulate multi-step LLM reasoning from a Markovian flow perspective (Figure 2),
where each reasoning step corresponds to an edge (action) that leads to the next node (state) in a flow
graph. The reasoning process thus forms a flow that travels step-by-step from an initial state to the
terminal states of the target problem. Based on this new formulation, we introduce the trajectory
balance objective and adapt efficient exploration methods from the recent GFlowNet studies, enabling
effective finetuning of LLMs to align with the task reward using only 15 input examples.

FOR differs crucially from the recent GFlowNet applications on autoregressive sequence generation
with or without LLMs (Hu et al., 2023a; Malkin et al., 2022a). In particular, contrary to the token-level
modeling in the previous work, FOR introduces higher-level modeling at the granularity of reasoning
steps. This combines the best of the GFlowNet sequence generation (Hu et al., 2023a; Malkin et al.,
2022a) and the aforementioned search-based LLM reasoning (Yao et al., 2024; Hao et al., 2023)
while overcoming their limitations, by enabling more flexible DAG-structured reasoning graphs, more
efficient handling of complex multi-step reasoning problems, and thereby greatly improved reasoning
quality and diversity as shown in §4. We evaluate the divergent problem-solving capability of the
proposed approach on five puzzle-solving problems that have proven challenging for LLM reasoning,
including BlocksWorld that involves embodied reasoning (Kambhampati et al., 2024), Game24
involving math puzzle solving (Yao et al., 2024), Rubik’s Cube involving spatial reasoning (Ding
et al., 2023), 1D-ARC involving abstraction reasoning (Xu et al., 2023b), and PrOntoQA involving
logical reasoning (Saparov & He, 2022). Empirical results show that FOR, with limited (e.g. about
15) training examples, generates diverse, high-quality solutions, greatly outperforming a wide range
of baselines with 20% - 85% improvements, including supervised training methods like SFT, reward-
maximizing reinforcement learning like PPO, diversity-seeking approaches GFN-CoT and various
decoding methods, and advanced inference methods like CoT, ToT, GoT, and RAP. Ablation studies
further validate the key designs in FOR that lead to robustness and effectiveness.
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Figure 2: Left: The forward policy PF pst|st´1; θ, gq in the flow-based formulation is parameterized
as LLM and finetuned with the trajectory balance objective (Eq.5) to achieve the desired flow
F psnq “ Rpsnq on all terminal states sn. Right: FOR incorporates local search with a destroy-
and-reconstruction process to augment informative trajectories in training (§3.2.2). This facilitates
efficient exploration and improves policy learning.

2 RELATED WORK
LLM reasoning. Recent LLMs (Achiam et al., 2023; Touvron et al., 2023; Chowdhery et al., 2023)
have shown strong potential in tackling complex reasoning tasks (Hu et al., 2023c; Zhang et al., 2023d;
Yu et al., 2023b). (1) Fine-tuning LLMs, including supervised fine-tuning (SFT) and reinforcement
learning (RL), is a key method for improving LLM reasoning abilities. SFT, leveraging large and
high-quality datasets of reasoning chains, has proven highly effective (Yu et al., 2023c; Yue et al.,
2023; Yuan et al., 2024a). RL techniques like PPO are widely used for optimizing reward-driven
behavior in LLMs (Ouyang et al., 2022; Bai et al., 2022; Havrilla et al., 2024). However, both
approaches tend to limit solution diversity. (2) Prompting-based methods engages LLMs in a step-
by-step thinking process. Chain-of-Thought (CoT) (Wei et al., 2022) enhances LLM performance
by guiding them through intermediate steps to reach the final answer. Building on CoT, methods
like ToT (Yao et al., 2024) and GoT (Besta et al., 2024) model reasoning as tree and graph searches,
enabling exploration of multiple paths. Other methods, like RAP (Hao et al., 2023) and XoT (Ding
et al., 2023) use planning approaches such as MCTS to refine reasoning trajectories.

GFlowNets. GFlowNets (Bengio et al., 2021) were developed to generate diverse, high-reward
samples from unnormalized distributions (Shen et al., 2023b; Roy et al., 2023; Zhang et al., 2023c;
Ma et al., 2024; Pan et al., 2023b), making them particularly effective in domains like molecule
synthesis (Koziarski et al., 2024; Kim et al., 2024a; Lu et al., 2024) and biological sequence design
(Ghari et al., 2023; Jain et al., 2022), where diversity is essential. Unlike traditional reinforcement
learning (e.g., PPO), which focuses on maximizing reward, GFlowNets sample complete trajectories
with probabilities proportional to their rewards, promoting exploration of the solution space. Recently,
GFlowNets with LLMs have been applied to autoregressive tasks like token-level text generation (Hu
et al., 2023a), but these approaches are limited to token-level sampling, making them less suited for
complex reasoning. FOR extends GFlowNet principles to higher-level multi-step reasoning, modeling
it as a Markovian flow through a DAG, enabling the exploration of diverse reasoning paths.

3 FOR FOR DIVERSE REASONING

3.1 MULTI-STEP LLM REASONING AS GENERATIVE FLOW

We start by formulating step-by-step LLM reasoning from the Markovian flow perspective. As we will
show later, the new flow-based formulation allows us to connect LLM reasoning with the GFlowNet
approaches for diversity-seeking finetuning. Meanwhile, the unique setting of multi-step LLM
reasoning also inspires generalizations to the standard GFlowNets formalism (e.g., parameterization
and exploration mechanisms) for enhanced efficiency. Figure 2 illustrates our approach. We refer to
Appendix B for preliminaries and backgrounds of GFlowNets.

The Multi-Step Reasoning Problem. Consider a multi-step reasoning problem that gives an
initial state s0 and a goal g. For example, in BlocksWorld (Figure 2), an initial state is the starting
configuration of the block stack, and a goal describes the desired configuration of blocks. Reasoning
aims to find complete paths (or trajectories) that lead from the initial state to the states that satisfy
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the goal. Given a current state s, applying an action on it leads to the transition to the next state
s1, denoted as s Ñ s1. For example, in Figure 2, state s0 transits to s1 after an action "pickup
blue". A complete trajectory is thus a sequence of transitions τ “ ps0 Ñ s1 Ñ ¨ ¨ ¨ Ñ snq P T ,
where sn is the terminal state and T is the set of all complete trajectories. Given a current state st,
there could be multiple alternative next actions, resulting in different branches of the reasoning. Also,
different sequences of actions can lead to the same intermediate/terminal states, as shown in Figure 1.
As a result, the multi-step reasoning has the structure of a directed acyclic graph (DAG).

The reasoning graph consists of diverse trajectories that lead to different terminal states. A crucial
component often provided in reasoning tasks is the reward Rpsnq P Rě0, which assigns a numerical
value to any terminal state sn. For instance, a terminal state meeting the goal g receives a high reward.
As discussed in §1, to generate diverse high-quality reasoning trajectories for solving a task, we want
to sample the trajectories with probabilities proportional to the reward. This significantly differs from
popular reinforcement learning methods (e.g., PPO) and prompting-based planning algorithms (e.g.,
RAP, ToT), which focus on optimizing for only the maximum-reward trajectory.

The Flow Perspective. Sampling complex multi-step trajectories from the (often unnormalized)
reward is particularly challenging (LeCun et al., 2006; Qin et al., 2022). To overcome the difficulty, we
consider the above reasoning problem from a flow-based viewpoint which was initially developed in
(Bengio et al., 2021) and has been studied in other machine learning settings like molecule generation
(Pan et al., 2022; Malkin et al., 2022a; Shen et al., 2023a; Li et al., 2023c; Lahlou et al., 2023; Li
et al., 2024a; He et al., 2024). Specifically, we define a trajectory flow function F : T Ñ Rě0.
Analogous to the classical concept of flows in networks, the flow F pτq can be thought of as the
volume of water traveling along this path τ . Based on this, for any state s, we can define the state
flow F psq “

ř

sPτ F pτq, and for any edge s Ñ s1, the edge flow F ps Ñ s1q “
ř

sÑs1Pτ F pτq.
These concepts of (unnormalized) flow are connected to the (normalized) probability distributions.
Specifically, the flow trajectory determines a distribution over trajectories:

P pτq “ F pτq{Z, Z “
ÿ

τPT
F pτq. (1)

With a Markov assumption, it can be shown that the distribution factorizes into step-wise distributions:

P pτq “
źn

t“1
PF pst|st´1q, where PF pst|st´1q “ F pst´1 Ñ stq{F pst´1q. (2)

That is, intuitively, PF pst|st´1q characterizes the proportion of water at node st´1 that travels toward
node st. The distribution PF is also called the forward policy, which can be used to generate a
trajectory τ by sampling a sequence of transitions step-by-step starting from the initial state s0.
Equivalently (Bengio et al., 2023), there exists a backward policy that defines the distributions
PBp¨|stq over the parents of each state st: PBpst´1|stq “ F pst´1 Ñ stq{F pstq.

Let τ be the trajectory ending at the terminal state sn. Recall that our aim in diverse LLM reasoning
is to obtain a forward policy PF pst|st´1q such that the resulting trajectory distribution is proportional
to the reward. From the flow perspective, according to Eqs.(1) and (2), this aim is equivalent to
approximating a Markovian flow F such that F psnq equals the reward (Bengio et al., 2021):

F psnq “ Rpsnq, @ terminal state sn. (3)

The above flow-based concepts provide a rich set of constraints that can be converted into training
objectives for learning the desired forward policy. For example, the detailed balance constraint
F pst´1qPF pst|st´1q “ F pstqPBpst´1|stq yields the respective objective used in molecule genera-
tion tasks (Bengio et al., 2023). In this work (§3.2), we devise the learning objective from the recent
trajectory balance constraint shown to be more efficient (Malkin et al., 2022a). We consider the
incorporation of other more recent extensions (Jang et al., 2023; Pan et al., 2023a) like subtrajectory
balance (Madan et al., 2023) as future work.

LLM Parameterization. We parameterize the forward policy PF with an LLM and finetune as
described in the next section. Specifically, for a reasoning task, we express its goal g, action a, and
state s as natural language (see Figure 1, BlocksWorld as an example). At each reasoning step t, the
LLM generates an action at „ PLLMpa|st; θ, g, cq, where c is an appropriate prompt (e.g., instructions
or in-context demonstrations). The prompts used in the experiments are detailed in Appendix C. Once
an action is generated, the state transits to the next st`1 “ T pst, atq with a transition function T .
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Therefore, assuming that different actions applying to the same state st lead to different next states,
and that action at leads to state st`1, we can write PF pst`1|st; θ, gq “ PLLMpat|st; θ, g, cq. In the
experiments, we follow previous work and define T either by an LLM with appropriate prompts and
greedy decoding (e.g., BlocksWorld as in (Hao et al., 2023)) or by the environment (e.g., Rubik’s
Cube as in (Ding et al., 2023)).

3.2 EFFICIENT DIVERSITY-SEEKING FINETUNING OF LLMS

The above new flow-based formulation of reasoning opens up the door for us to seamlessly import
existing successful GFlowNet training methods for finetuning the LLM as the forward policy. These
methods range from the training objective as mentioned earlier to the various exploration strategies,
such as on-/off-policy sampling and local search (Kim et al., 2023; Zhang et al., 2022; Sendera et al.,
2024), that substantially enhance the training efficiency. Algorithm 1 in Appendix D summarizes the
FOR training procedure.

3.2.1 TRAINING OBJECTIVE

In this work, we derive our training objective based on the trajectory balance approach (Malkin et al.,
2022a), which has shown improved efficiency than other alternatives (Bengio et al., 2023; 2021).
Specifically, for any complete forward trajectory τ “ ps0 Ñ s1 Ñ ¨ ¨ ¨ Ñ snq, the trajectory balance
constraint, with a task goal g, says (Figure 2):

Zps0, gq
źn

t“1
PF pst|st´1; gq “ F psnq

źn

t“1
PBpst´1|st; gq, (4)

where we have used the fact that P psnq “ F psnq{Zps0, gq for the terminal state sn. Plugging in
the reward R, as motivated by Eq.(3), to provide supervision signals, the constraint leads to a loss
function w.r.t the parameterized forward policy PF :

lpτ ; θ, gq “

ˆ

log
Zps0, gq

śn
t“1 PF pst|st´1; θ, gq

Rpsnq
śn

t“1 PBpst´1|st; θ, gq

˙2

, PBpst´1|st; θ, gq :“
1

|Papstq|
, (5)

where |Papstq| denotes the number of parents of state st, and Malkin et al. (2022a) suggested a
canonical choice of setting PBp¨|stq to be uniform over the parents. Note that Z is the total flow
conditioning on each goal g and initial state s0. Estimating logZ can be cumbersome. We thus
follow (Zhang et al., 2023a) to use the log-variance approximation, which implicitly estimates logZ
given each trajectory τ :

Φpτ ; θq “ logRpsnq `
ÿn

t“1
logPBpst´1|st; θ, gq ´

ÿn

t“1
logPF pst|st´1; θ, gq, (6)

where Φpτ ; θq equals to true logZ in the optimal case. Our optimization goal then turns into
minimizing the variance of Φpτ ; θq over different trajectories τ with the loss:

LV pτ ; θq “ pΦpτ ; θq ´ Eτ rΦpτ ; θqsq
2, (7)

where we draw sample trajectories τ from a behavior policy πpτ ; θ, gq for training, and Eτ rΦpτ ; θqs is
estimated with a mini-batch of sampled trajectories. Different configurations of π result in on-policy,
off-policy, and mixed explorations, which could impact training efficiency as shown in ablation
studies (§4). We discuss our method of defining πpτ ; θ, gq below. If LV pτ ; θq is globally optimized,
the resulting flow satisfies Eq.(3) and PF p¨|¨; θ, gq samples proportionally to the reward as desired.

3.2.2 EFFICIENT EXPLORATION

The trajectory space is combinatorially large. We want to set up a πpτ, g; θq distribution in Eq.(7) that
enables efficient exploration of the trajectory space and produces effective samples for training the
parameters θ of the policy PF . Drawing inspirations from the recent GFlowNet literature (Vemgal
et al., 2023; Shen et al., 2023a; Hu et al., 2023a), we combine both on-policy and off-policy strategies.
Moreover, we adapt the local search strategy from (Kim et al., 2023; Zhang et al., 2022; Sendera
et al., 2024) to further enhance the exploration and yield stronger performance.

More specifically, for on-policy explorations, we use the online policy PF pst|st´1; θ, gq itself and its
tempered version to create training trajectories τ given the goal g and initial state s0 in a reasoning
problem. For off-policy explorations, we use standard options from previous work (Vemgal et al.,
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2023; Shen et al., 2023a; Hu et al., 2023a), including a replay buffer that prioritizes past high-reward
trajectories, ϵ-sampling, and offline trajectory data (for Game24 in §4.3). To further explore high-
reward regions, we incorporate and modify a local search method (Figure 2) with higher efficiency. In
particular, we select the trajectory with the highest reward in each trajectory batch, truncate the latter
portion of the trajectory, and reconstruct it using a random policy PU . This random policy avoids the
computationally intensive forward process of LLMs, leading to enhanced efficiency. This approach
reconstructs trajectories with a high probability of receiving higher rewards, as partially destroyed
trajectories with high rewards are more likely to select the correct actions at the initial steps, while
potentially making mistakes in the subsequent steps. Further details on the exploration strategies and
local search process are provided in Appendices D and E, respectively.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Baselines. We compare our approach with several prompting-based methods, including k-shot
CoT (Wei et al., 2022) (with k = 1, 5, 15), ToT (Yao et al., 2024) (using BFS and DFS), GoT (Besta
et al., 2024), XoT (Ding et al., 2023), and RAP (Hao et al., 2023). For fine-tuning-based methods,
we evaluate SFT with diversity-enhancing decoding strategies like Temperature Sampling (Shi et al.,
2024) (α “ 1.0, 0.5, 0.1, where α is a temperature used to adjust the probability distribution over
the vocabulary for the next token), Nucleus Sampling (Holtzman et al., 2019) (η “ 0.95, selecting
from tokens that together make up η of the probability mass), Typical Sampling (Meister et al., 2023)
(τ “ 0.95, where the sampling distribution is restricted to words with negative log probabilities
near the conditional entropy, and then η of the distribution mass is truncated), and diverse beam
search (Vijayakumar et al., 2016) (DBS, beam width k “ 20). Additionally, we apply fine-tuning with
PPO (Schulman et al., 2017) and GFN-CoT (Hu et al., 2023a). We also compare against OpenAI-O1,
the latest and strongest reasoning model. All finetuning methods are trained on the same dataset as
FOR. Except for Game24, which uses Llama-2-13B, Llama-3-8B is the base model for all other tasks.
In the BlocksWorld task, we evaluated most baselines for a broad comparison, but some methods
(e.g., GFN-CoT) showed suboptimal performance, which informed our decision to selectively apply
baselines in the subsequent tasks. For the remaining tasks, we focused on high-performing methods
from the initial evaluation.

Evaluation. As mentioned in §1, an effective reasoning method should not only produce correct
solutions but also maximize the number of correct solutions found. Unlike previous approaches that
evaluate a single solution per problem, we propose generating n solutions per problem and assess
methods based on four criteria: (1) Accuracy (Acc): Success is defined if at least one of the n
solutions is correct. (2) Diversity: For solved problems, we report the average number of unique
correct solutions among the n—higher is better (see Appendix C.1 for details). (3) Creativity: For
each method, we report the proportion of unique successful trajectories found in all solutions that are
not discovered by other methods. (See Appendix C.2 for details.) (4) Runtime: The average time
taken by a method to produce one solution is used as an efficiency metric. For all the datasets, we
recorded the average results and standard deviation of our performance from 3 repetitions, except for
tree- and graph-structured methods and O1-series, which require significant time or expense to find a
single solution. Creativity is calculated based on the result of 1 repetition due to the small standard
deviation observed in accuracy and diversity metrics.

4.2 EMBODIED REASONING: BLOCKSWORLD

BlocksWorld involves a set of blocks with unique colors that can be stacked on top of each other or
moved around. The goal of this task is to enable LLMs to plan a sequence of actions to transform an
initial configuration of blocks into a desired goal configuration using a series of actions. The actions
are text instructions (STACK, UNSTACK, PUT, PICKUP) generated based on domain rules and
block positions, and a state is the current block orientation. Following (Hao et al., 2023), we use a
second LLM (Llama-3-8b) aside from the policy model for state transition, which generates the next
state st`1 given pst, atq using greedy decoding.

Setup. Blocksworld examples (Valmeekam et al., 2024; Hao et al., 2023) are grouped by the minimum
number of required actions: 30 examples for 2 steps, 57 for 4 steps, and 114 for 6 steps, following
Hao et al. (2023). We select the first 15 of each group as the training examples for FOR and the rest
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Table 1: Results on BlocksWorld, comparing prompting-based and finetuning-based methods on
questions requiring two, four, and six steps, respectively. Standard deviations of three runs are shown
in brackets (except for GPT-4o due to budget limit and ToT/RAP as they are exceedingly slow).
We also report results from the O1-series models. Since these models are optimized for multi-step
reasoning, their performance provides a reference for the upper limit of reasoning accuracy. (For
O1-preview, we sampled only one solution due to budget limit.)

Method 2-step 4-step 6-step Runtime (s)
Acc. (%) Acc. (%) Diversity Creativity (%) Acc. (%) Diversity Creativity (%) (6-step)

Prompting-based methods

CoT (1-shot) 48.88 (8.31) 28.57 (5.83) 1.05 (0.04) 0.00 15.82 (2.08) 1.05 (0.03) 0.00 3.57
CoT (5-shot) 68.89 (8.31) 42.86 (1.94) 1.04 (0.03) 0.00 29.63 (1.72) 1.02 (0.01) 0.00 3.68
CoT (15-shot) 64.44 (6.29) 42.06 (4.89) 1.03 (0.02) 0.00 19.53 (1.26) 1.03 (0.03) 0.00 5.32
CoT (GPT-4o, 1-shot) 93.33 54.76 1.08 0.00 67.67 1.06 0.79 3.92
ToT (BFS) 13.33 14.28 - - 5.05 - - 398.74
ToT (DFS) 13.33 16.67 - - 8.08 - - 48.91
RAP 100.00 92.86 - - 69.70 - - 466.09

O1-series methods

O1-mini (1-shot) * 100.00 100.00 1.05 0.00 93.93 1.05 2.38 10.38
O1-preview (1-shot) * 100.00 95.24 - - 78.79 - - 36.61

Finetuning-based methods

SFT (α=1.0) 44.44 (3.14) 42.06 (5.44) 1.05 (0.01) 0.00 34.68 (2.52) 1.04 (0.01) 4.76 4.05
SFT (α=0.5) 42.22 (3.14) 39.68 (2.24) 1.02 (0.02) 0.00 29.63 (1.90) 1.02 (0.02) 0.79 4.07
SFT (α=0.1) 26.67 (5.44) 26.20 (3.89) 1.00 (0.00) 0.00 17.51 (1.26) 1.00 (0.00) 0.00 4.08
SFT + DBS 31.10 (3.11) 38.88 (1.12) 1.00 (0.00) 0.00 18.85 (1.25) 1.00 (0.00) 0.00 15.71
SFT + Nucleus 48.89 (3.14) 53.97 (2.97) 1.04 (0.03) 0.00 42.08 (1.71) 1.12 (0.03) 0.00 4.21
SFT + Typical 53.33 (5.44) 48.41 (2.25) 1.08 (0.02) 0.00 37.71 (2.38) 1.08 (0.02) 0.00 3.65
SFT + PPO 46.66 (5.44) 44.44 (2.24) 1.11 (0.05) 2.04 24.58 (1.72) 1.08 (0.03) 3.17 4.03
SFT + GFN-CoT 48.89 (8.81) 44.42 (2.96) 1.00 (0.00) 0.00 40.73 (1.25) 1.05 (0.03) 0.00 4.08

FOR (Ours) 100.00 (0.00) 98.41 (1.12) 1.27 (0.02) 12.24 78.44(4.54) 1.33 (0.03) 9.52 13.98

as test examples. We sampled 8, 20, and 40 times for the 2, 4, and 6-step datasets, respectively, to
report diversity and creativity. All the baselines are included in §4.1.

Reward Design. We compose a terminal state reward and an augmented intermediate reward to
evaluate trajectories. Terminal state reward is assigned to a high positive value when a trajectory
reaches the goal g. The augmented intermediate reward assesses actions by using the LLM to estimate
the confidence of actions in achieving their goals. A natural choice is to use the log-likelihood of
actions, logPLLMpat|st´1, gq. However, the value of logP is negative. To maintain monotonicity
consistency and positive reward values, we use ´1{ logPLLMpat|st´1, gq instead. The total reward
is defined as: Rpsnq “ w ¨ Ipsuccessq ` λ

řn
t“1 ´1{ logPLLMpat|st´1, gq, where w is the success

weight (set to 100 and the following tasks).

Results. As shown in Table 1, our method demonstrates improvements across all metrics. In terms of
accuracy, our method outperforms the best prompting-based baseline (GPT-4o with CoT) by 80% in
4-step tasks and 16% in 6-step tasks, and exceeds the best finetuning-based baseline (SFT + Nucleus)
by 82% and 86%, respectively, highlighting its robustness with increasing task complexity. From
a diversity standpoint, it outperforms SFT + PPO by around 14%, showing our method is able to
generate more diverse solutions. Our method outperforms all other baselines in the creativity metric,
discovering more unique solutions that are not found by other baselines. Most baselines do not find
any unique solutions, resulting in a creativity score of 0. It is worth noting that the O1 series improves
the accuracy to a large extent, but still struggles to find diverse reasoning paths. Additionally, FOR
matches the inference speed of high-efficiency baselines like k-shot CoT, ToT (DFS), and SFT-based
methods, while being 30× faster than ToT (BFS) and RAP on a single NVIDIA A100 GPU. Training
costs are detailed in Appendix C.3.

4.3 MATH PUZZLE SOLVING: GAME OF 24
Game of 24 is a mathematical reasoning task that may have multiple solutions. The objective of
this task is to use 4 integers and 4 basic arithmetic operations (`,´,ˆ,˜) to reach 24, where each
number can only be used once. Each action at is defined as an equation composed of 2 numbers and
an operator, and the state st is the left number.
Setup. We use the LLM-reasoner dataset (Hao et al., 2024) and randomly select 20 examples for
training, with examples ranked from easy to hard and those indexed 910-1010 used for testing. Since
prior works show that LLMs struggle to online sample a correct trajectory in this task (Yao et al.,
2024; Yu et al., 2023a), we use Python code to generate the offline ground-truth data with diverse
trajectories, which is used for fine-tuning methods. In addition, to avoid the pitfalls of arithmetic
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calculations with language models, we use Python code to calculate the results after "=" in an action
at across all methods evaluated in our experiment. We compare with baselines mentioned in §4.1 and
additionally report the OpenAI-O1 mini performance. We sampled 20 times to report performance.

Table 2: Results on Game of 24.

Method Acc. (%) Diversity Creativity (%)

Prompting-based methods

CoT (5-shot) 6.00 1.33 0.00
CoT (GPT-4o, 5-shot) 59.00 1.61 52.60
XoT 20.00 - -
ToT 21.00 - -
RAP 12.00 - -

O1-series methods

OpenAI-O1-mini 94.00 - -

Finetuning-based methods

SFT (α “ 1.0) 19.00 1.37 6.49

FOR 41.00 (0.82) 1.52 (0.01) 31.82

Reward Design. Similar to BlocksWorld,
the success reward gives a high positive
reward when a trajectory τ succeeds in
reaching 24, and the augmented reward
gives the product of the probability of
correctness for each action at, given its
last state st´1 provided by the untrained
LLM model: Rpsnq “ w ¨ Ipsuccessq `
śn

t“1 Puntrainedpat|st´1q.

Results. As shown in Table 2, FOR
demonstrates superior accuracy and diver-
sity in solving math puzzles compared to
other baselines with the same base model.
Not surprisingly, O1-mini and GPT-4o
achieve better performance due to the stronger intrinsic mathematical knowledge and reasoning
mechanism. We also investigate the fact that GPT-4o tends to use self-verification and reflection
during Game24’s inference. This may explain its superior performance in this task.
4.4 SPATIAL REASONING: RUBIK’S CUBE

The Rubik’s Cube is a well-known puzzle requiring multi-step spatial reasoning. The model’s
task is to plan a sequence of rotations to restore a shuffled cube, where each state st repre-
sents the block arrangement, and each action at is a layer rotation (e.g., 90 or 180 degrees).

Table 3: Results on Rubik’s Cube.

Method Acc. (%) Diversity Creativity (%)

Prompting-based methods

CoT 0.00 0.00 0.00
CoT (GPT-4) 1.09 1.00 4.35
ToT (BFS) 0.00 - -
GoT 0.00 - -
XoT 4.92 - -

Finetuning-based methods

SFT (α “ 1.0) 1.82 (0.06) 1.00 (0.00) 8.69
SFT + PPO 0.55 (0.45) 1.00 (0.00) 0.00

FOR 10.87 (1.18) 1.29 (0.02) 82.61

Setup. We randomly select 15 examples from
the training dataset in (Ding et al., 2023), and
evaluate different methods on a test set contain-
ing 183 examples. Each example can be solved
in four steps. All the baselines are included in
§4.1. For SFT, CoT and FOR, 10 solutions are
sampled. See more details in Appendix C.6.

Reward Design. Similar to the above tasks, a
high reward is given for successful restoration.
The augmented reward is based on the differ-
ence in the minimum steps required to restore
from the current cube state. If an action reduces
the required steps, it receives a higher reward;
otherwise, it gets a lower one. Formally, Rpsnq “ w ¨ Ipsuccessq `

řn
t“1 expprpst´1q ´ rpstqq,

where rpstq represents the remaining minimum steps.

4.4.1 RESULTS

As shown in Table 3, when there is a limited amount of training data available, our method outperforms
all baselines in the Rubik’s Cube task across all three metrics. It outperforms the best baseline (XoT)
by over 120% in accuracy. Additionally, our approach generates 29% more diverse solutions, while
other baselines only produce one solution on average. Notably, from a creativity perspective, our
approach generates a large amount of unique solutions that other baselines are unable to discover.

4.5 ABSTRACTION REASONING: 1D-ARC

1D-ARC is a one-dimensional simplification of the ARC benchmark (Chollet, 2019), introduced in
(Xu et al., 2023b). Each problem in the dataset contains a set of training input-output 1D grid pairs
that capture a specific underlying rule and a test case that measures if the model correctly understands
the rule. Following recent program search approaches (Wang et al., 2023b; Qiu et al., 2023; Butt
et al., 2024), which frame the problem as a sequence of transformation functions, each action at is a
function (e.g., horizontal mirroring), with the intermediate grid as state st.

Setup. We randomly select 5 examples from the 1d_move_1p, 1d_padded_fill, and 1d_denoising
tasks. These tasks involve moving the color bar by 1 pixel, filling in empty spaces enclosed by pixels,
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and removing noise-like pixels, respectively. The 15 selected examples form the training set, while
the remaining 45 examples from each task compose the test dataset. We sample 20 solutions for each
example during inference. See Appendix C.7 for more details.

Table 4: Results on 1D-ARC.

Method Acc. (%) Diversity Creativity (%)

IO 10.37 (1.21) - -
CoT 39.51 (1.94) 1.04 (0.01) 1.45
CoT (GPT-4o) 40.00 1.00 0.00
Program-Only 0.74 - -
Hypo-Search 1.48 - -

FOR 50.37 (1.60) 1.17 (0.02) 21.74

Baselines. Since there are no complex rea-
soning baselines (e.g., ToT) evaluated on this
task, we compare against Input-ouptut(IO)
prompting (Xu et al., 2023b; Mirchandani
et al., 2023), which involves incorporating
training input-output pairs into the prompt
and prompting LLMs to infer output grids
given the test input directly. Program Only
and Hypothesis Search (Wang et al., 2023b)
synthesize Python programs for transforma-
tion, with the latter first generating language-based transformation hypotheses before program
synthesis. Fine-tuning methods are not compared due to the lack of labeled reasoning data.

Reward Design. In addition to a success reward, we design the augmented rewards for actions based
on how much they reduce the distance to the ground truth. Specifically, an action receives a higher
reward if it reduces the hamming distance between the current state and the ground truth. The total
reward is Rpsnq “ w ¨ Ipsuccessq `

řn
t“1

řK
i“1 expphdpsit´1, g

iq ´ hdpsit, g
iqq, where hdp¨, ¨q is

hamming distance and K is the number of training input-output pairs. I indicates 1 only when the
searched program successfully transforms the test input to output.

4.5.1 RESULTS

As shown in Table 4, FOR substantially outperforms previous methods on all metrics, especially
diversity and creativity. Previous approaches (hypothesis search and program-only) generate programs
at once, which easily results in errors during the intermediate process, leading to inferior performance.
As expected, FOR outperforms CoT, given CoT lacks mechanisms to try different solutions, causing
them to rely solely on their internal knowledge and limiting their creativity.

4.6 LOGICAL REASONING: PRONTOQA

Table 5: PrOntoQA Results. Pred Acc measures the accuracy of
the final conclusions, while Proof Acc evaluates the correctness
of the reasoning process (e.g., no shortcuts/hallucinations).

Method In-Distribution Out-of-Distribution
Pred Acc.(%) Proof Acc.(%) Pred Acc.(%) Proof Acc.(%)

Prompting-based methods

CoT 52.20 (1.23) 35.40 (1.86) 43.50 (1.48) 18.50 (1.91)
CoT (GPT-4o) 89.00 47.80 62.92 24.78
ToT (BFS) 49.80 32.20 - -
RAP 50.70 39.50 - -

Finetuning-based methods

STaR 88.90 54.00 50.10 24.60

FOR 88.73 (1.33) 54.60 (1.50) 63.07 (1.71) 28.88 (2.36)
FOR +STaR 90.50 (1.89) 54.70 (1.41) 63.00 (2.13) 26.67 (2.80)

PrOntoQA is a logical reasoning
task. Each test case includes a ques-
tion (goal), a list of facts A (action
space), and an initial state s0. A
state st is the conclusion derived
from the previous state st´1. Perfor-
mance is evaluated using two met-
rics: prediction accuracy and proof
accuracy. Prediction accuracy refers
to the correctness of the final an-
swer, regardless of the reasoning
process. Proof accuracy, on the
other hand, measures the correct-
ness of the entire reasoning chain,
ensuring that each step leading to
the final answer is accurate. Both metrics are calculated using rule-based string matching. The
Diversity metric is not applicable, as each question has only one valid reasoning chain.

Setup. We randomly select 50 examples for the training set and 120 for the test set. The evaluation is
conducted on both in- and out-of-distribution (OOD) examples, with 32 samples drawn per problem
during inference. In addition to the baselines described in §4.1, we adopt STaR (Zelikman et al.,
2022), which applies SFT on correct examples through online sampling. We also evaluate FOR on
top of the model fine-tuned by STaR. See Appendix C.8 for more experimental details.

Reward Design. We removed the success reward to prevent the model from arriving at correct answers
through flawed reasoning paths. Instead, we apply a rule-based augmented reward that evaluates
the feasibility of a fact given the previous state st´1, checking if they share the same ontology.
Formally, the reward is defined as Rpsnq “ 1

n

řn
t“1 w ¨ Ipst´1, stq, where w is a hyperparameter

9
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Table 6: Ablation results on BlocksWorld for different components in FOR with Llama-3-8b.

Method 2-step 4-step 6-step
Acc. (%) Acc. (%) Diversity Acc. (%) Diversity

FOR (Ours) 100.00 (0.00) 98.41 (1.12) 1.27 (0.02) 78.44 (4.54) 1.33 (0.03)
- w/o local search 100.00 (0.00) 89.68 (2.97) 1.18 (0.02) 53.90 (2.10) 1.31 (0.03)
- w/o augmented rewards 100.00 (0.00) 91.30 (1.10) 1.22 (0.02) 47.10 (1.30) 1.21 (0.01)
- w/o replay buffer 100.00 (0.00) 94.44 (2.97) 1.24 (0.04) 72.38 (1.71) 1.24 (0.01)
- w/o ϵ-sampling 100.00 (0.00) 97.61 (1.95) 1.26 (0.03) 73.39 (2.38) 1.25 (0.04)

and Ipst´1, stq is an indicator function. Ipst´1, stq equals 1 only when the transition pst´1, stq is
part of the ground-truth reasoning path, ensuring no shortcuts are taken.

4.6.1 RESULTS

As shown in Table 5, FOR achieves superior results on both in- and out-of-distribution problems
compared to all baselines. While FOR slightly outperforms the SFT-based STaR for in-distribution
tasks, its advantage is far greater for out-of-distribution tasks. Moreover, combining FOR with STaR
enhances in-distribution performance while preserving out-of-distribution success, revealing the
complementary strengths of these methods.

4.7 ADDITIONAL ANALYSIS

Ablation Study. To further demonstrate the effectiveness of FOR, we conduct ablation studies to
analyze the impact of individual components, focusing specifically on the BlocksWorld task. Table 6
summarizes the experimental results.
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Figure 3: Additional Analysis on BlocksWorld. Left: Ac-
curacy of FOR across different step settings with varying
intermediate reward weight (λ). Right: Comparison of ac-
curacy and diversity between SFT trained with varying data
sizes and FOR trained with 15 examples on the test dataset.

1) "Local search" significantly en-
hances the performance of FOR by
improving exploration in the trajec-
tory space and collecting high-reward
trajectories for training. Removing lo-
cal search results in a 31.3% decrease
in 6-step task accuracy. 2) ϵ-sampling
also contributes to exploration, though
to a lesser extent. 3) "Augmented
intermediate rewards" play a critical
role, as removing them leads to a 51%
drop in 6-step accuracy and a 13% re-
duction in diversity. The left plot in
Figure 3 shows the impact of varying the augmented reward weight λ. This improvement arises from
distinguishing unsuccessful trajectories that are more likely and less likely to succeed, guiding the
policy towards more successful paths by assigning higher probabilities to the former. However, when
λ becomes too large, accuracy declines as the success reward’s influence diminishes. 4) the replay
buffer contributes to FOR performance by leveraging historical high-reward trajectories for learning.

Data-Efficiency. We tested the final 20 examples from the 6-step test set and adjusted the number of
training examples for both FOR and the SFT methods. As illustrated in the right plot of Figure 3,
SFT’s accuracy improves with additional training data, while its diversity remains stable. However,
SFT’s performance remains lower than FOR’s under any amount of training data. This is attributed
to FOR’s ability to learn from diverse reasoning trajectories, enhancing trajectory coverage and
improving generalization to new cases.

5 CONCLUSION

We introduce FOR that efficiently trains LLM policy for diverse, high-quality reasoning paths
with probability proportional to unnormalized reward. The core of the approach is the flow-based
formulation of multi-step reasoning that allows us to adapt principled GFlowNet training strategies.
On five representative tasks across embodied, math, logical, spatial, and abstraction reasoning, FOR
show stronger performance and improved diversity than both finetuning-based and prompting-based
baselines. We discuss limitations and broader impact in Appendix G and H.
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A ADDITIONAL RELATED WORK

Reasoning with LLM. Recent LLMs (Achiam et al., 2023; Touvron et al., 2023; Bai et al.,
2022; Chowdhery et al., 2023) have demonstrated great potentials in tackling complex reasoning
tasks (Cobbe et al., 2021; Mishra et al., 2022; Hendrycks et al., 2021; Rein et al., 2023; Mialon
et al., 2023). (1) Fine-tuning LLMs is a primary way to enhance their reasoning abilities, including
SFT and reinforcement learning (RL) approaches. SFT with large-scale and high-quality datasets of
reasoning chains has proven very effective (Yu et al., 2023c; Yue et al., 2023; Yuan et al., 2024a).
Various methods for constructing training samples have been proposed when ground truth reasoning
chains are not available. For example, STaR (Zelikman et al., 2022) uses online sampling with
self-correction to find positive samples. ReSTEM (Singh et al., 2023) and V-STaR(Hosseini et al.,
2024) filter samples with external verifiers. RL techniques, particularly reward-maximizing policy
optimization methods like PPO, are widely employed in LLMs (Ouyang et al., 2022; Bai et al.,
2022; Havrilla et al., 2024; Luong et al., 2024). However, both maximum likelihood training (i.e.
SFT) and reward-maximizing policy optimization (e.g., PPO) do not encourage models to generate
diverse solutions. (2) prompting-based reasoning algorithms aim to better elicit the knowledge
inside LLMs without tuning their parameters. Techniques such as CoT (Wei et al., 2022) and its
variants (Chen et al., 2022; Li et al., 2024b; Zhang et al., 2023e; Zhou et al., 2022; Kojima et al., 2022)
have improved LLM performance by enabling them to generate intermediate steps before arriving at
a final answer. To provide reasoning more guidance , self-evaluation (Xie et al., 2024b; Shinn et al.,
2024; Madaan et al., 2024) and reward models are introduced to enhance reasoning process (Uesato
et al., 2022; Lightman et al., 2023) Besides, a more relevant series of works combine LLM reasoning
capabilities with planning and search algorithms such as MCTS (Hao et al., 2023; Feng et al., 2023;
Zhao et al., 2024), tree and graph search (Jung et al., 2022; Zhu et al., 2022; Yao et al., 2024; Besta
et al., 2024; Yao et al., 2023). Moreover, recent studies turn to amortizing computation for reasoning
paths (Yuan et al., 2023; Wu et al., 2024; Bansal et al., 2024), such as self-correct (Kumar et al., 2024;
Saunders et al., 2022), self-improvement (Tian et al., 2024; Yuan et al., 2024b).

GFlowNets. GFlowNets (Bengio et al., 2021) were originally proposed to learn policies for sam-
pling from unnormalized distributions, with a primary motivation from scientific discovery (Jain et al.,
2023a), which requires generating diverse high-reward samples (Shen et al., 2023b; Roy et al., 2023;
Zhang et al., 2023c; Ma et al., 2024; Pan et al., 2023b), such as molecular generation (Koziarski et al.,
2024; Kim et al., 2024a; Lu et al., 2024) and biological sequence generation (Ghari et al., 2023; Jain
et al., 2022). Beyond the science domain, GFlowNets have also been applied in various downstream
applications such as recommendation systems (Liu et al., 2023b), domain adaptation (Zhu et al.,
2023), combinatorial optimization (Zhang et al., 2023b; Kim et al., 2024b) and explainability of
deep neural networks (Li et al., 2023b). Additionally, GFlowNets have proven to be suitable for
sampling from posterior distributions (Hu et al., 2023b; Deleu et al., 2022; 2024; Zhang et al., 2022).
As a reinforcement learning method, prior works have incorporated intermediate feedback with
GFlowNets to address sparse reward issues (Pan et al., 2023a; Jang et al., 2023; Pan et al., 2022) and
multi-objective rewards (Jain et al., 2023b; Hernandez-Garcia et al., 2023; Chen & Mauch, 2023).
There are also theoretical analyses treating GFlowNets as recurrent MCMC (Deleu & Bengio, 2023)
and variational inference (Malkin et al., 2022b; Zimmermann et al., 2022) that are used to model the
distribution over trajectories.

Lateral and vertical thinking. Vertical and lateral thinking (Waks, 1997; Ismayilzada et al., 2024)
are two distinct approaches that differ significantly in their focus and methodology. Vertical thinking
emphasizes logical, structured, and sequential reasoning, often following a step-by-step approach to
solve problems. Our work aligns with this paradigm to generate multiple correct, structured reasoning
processes to achieve specific goals. In contrast, lateral thinking prioritizes creativity and innovation,
encouraging the exploration of unconventional perspectives and challenging established assumptions.
Multiple benchmarks are proposed to evaluate the lateral thinking ability of LLMs (Huang et al.,
2023; Chen et al., 2024a; Kraaijveld et al., 2024; Todd et al., 2024). To further improve the ability of
lateral and divergent thinking, (Zhong et al., 2024) designs a fine-tuning and inference framework to
generate unexpectable but reasonable answers, and (Summers-Stay et al., 2023) proposes a prompting
framework to enhance such ability. In addition, riddle-solving QA tasks that require reasoning about
unexpected or unconventional answers such as BrainTeaser(Jiang et al., 2023) and RiddleSense (Lin
et al., 2021). Future work should investigate formalizing these tasks and developing quantitative
approaches to effectively guide LLMs in tackling them.
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B PRELIMINARIES AND BACKGROUND

GFlowNets (Bengio et al., 2021; 2023; Liu et al., 2023a) are a class of models that amortize the
cost of sampling from an intractable target distribution over terminal states X by learning a neural
network-facilitated approximation of the target distribution using its unnormalized density or reward
function. The task of sampling from this distribution resorts to a decision-making process. Below we
introduce GFlowNets with more details.

Settings. We are given a pointed directed acyclic graph (DAG) G “ pS,Aq, where S is a finite set
of vertices (states), and A Ď S ˆ S is a set of directed edges (actions). If s Ñ s1 is an action, we say
s is a parent of s1 and s1 is a child of s. There is exactly one state that has no incoming edge, called
the initial state s0 P S. States that have no outgoing edges are called terminal states. We denote by
X the set of terminal states. A complete trajectory is a sequence τ “ ps0 Ñ . . . Ñ snq such that
each si Ñ si`1 is an action and sn “ x P X . We denote by T the set of complete trajectories and
the terminal state as τx.

Here we define the reward R : X Ñ R`, and define a forward transition probability function,
or a forward policy, PF p¨|sq, which is a distribution over the children of every state s P S. The
forward policy is typically parametrized by a neural network that takes a representation of s as
input and produces the logits of a distribution over its children. Any forward policy PF induces
a distribution over complete trajectories τ P T (denoted by PF as well), which in turn defines a
marginal distribution over terminal states x P X :

PF pτq “ PF ps0 Ñ . . . Ñ snq “

n´1
ź

i“0

PF psi`1|siq @τ P T (8)

Given a forward policy PF , terminal states x P X can be sampled from PF by sampling trajectories
τ from PF pτq and taking their final states sn. GFlowNets aim to find a forward policy PF such that
the induced distribution PJ

F pxq is proportional to the reward function:
PJ
F pxq9Rpxq (9)

Training. Training GFlowNets considers achieving a consistent flow (Bengio et al., 2023; Malkin
et al., 2022a), which means the flow for the forward direction should equal to the flow for the
backward direction. Below we introduce relevant objectives.

Detailed Balance (DB) The DB objective (Bengio et al., 2023) requires learning two objectives
in addition to parametric forward policy PF p¨|sq: 1. A Backward policy, which is distribution
PBps1|s; θq over the parents of any non-initial state. 2. A State flow function: F p¨; θq : S Ñ Rą0.
Then DB loss for a single transition s Ñ s1 is defined as:

LDB “

ˆ

log
F ps; θqPF ps1|s; θq

F ps1; θqPBps|s1; θq

˙2

(10)

if LDB is optimized to 0 for each transition, then the forward policy PF satisfies 9.

Trajectory Balance (TB) Trajectory balance (Malkin et al., 2022a) introduces a backward policy
PB , which is a learned distribution PBp¨|s1q over the parents of every state s P S, and an estimated
partition function Zθ that is a scalar parameter describes the flow of initial state Fs0 in the DB loss.
The TB objective for a complete trajectory τ is defined as

LTBpτ ; θq “

˜

log
Zθ

śn´1
t“0 PF pst`1|st; θq

Rpsnq
śn´1

t“0 PBpst|st`1; θq

¸2

(11)

If LTB is made equal to 0 for every complete trajectory τ , then 9 satisfies for all x P X and Z is the
inverse constant of proportionality: Z “

ř

xPX Rpxq.

Conditional GFlowNets. In a GFlowNet, both the policy and reward function can be conditioned
on additional information. For instance, in the tasks we focus on, a GFlowNet policy generates
actions sequentially for an embodied reasoning problem, starting from an initial state s0 and a goal g.
Furthermore, the allowable actions vary depending on the specific s0 in each case. The conditional
GFlowNets we train achieve amortization by sharing the policy model across different s0 and g,
enabling the model to generalize to initial states and targets that were not seen during training.
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C EXPERIMENTAL DETAILS

C.1 DIVERSITY METRIC

We define the following metric to measure the diversity of reasoning paths found by different
approaches. Under the same number of samplings at inference time, we count the number of different
successful trajectories a policy finds for the successful example on average.

Diversity “

řn
i“1 Si ¨ IpSi ě 1qi
řn

i“1 IpSi ě 1qi
ě 1 (12)

where n is the total number of problems, Si is the number of successful trajectories found for the i-th
question, and IpSi ě 1q is an indicator function that is 1 if there is at least one successful trajectory
found for the i-th question and 0 otherwise. Thus, the denominator is the number of examples in
which a model finds at least one trajectory, and the nominator is the sum of all successful trajectories a
model finds across all examples. The smallest diversity is 1 when a method can only find at most one
successful trajectory on average, and diversity “ 1.5 indicates a method is able to find 1.5 different
successful trajectories on average.

C.2 CREATIVITY METRIC

We define the following metric to quantify the creativity of a reasoning method. Given the same
number of samples during inference, we calculate the ratio of unique successful trajectories that
a method identifies in the test dataset Dtest, which are not found by any other methods. Let
M “ tm1,m2, . . . ,m|M|u represent the set of reasoning methods. For the i-th problem, the l-th
method has a solution set Sl

i , where 1 ď l ď |M|. The complete set of solutions across all methods
is defined as:

S “

n
ď

i“1

|M|
ď

l“1

Sl
i (13)

Then we can define the creativity metric of method ml as:

Creativitypmlq “
1

|S|

|Dtest|
ÿ

i“1

ÿ

sPSl
i

Ips, i, lq, (14)

where for the i-th problem, if the solution s P Sl
i is found only by method ml and not by any other

method mk (where k ‰ l), then Ips, i, lq “ 1. Otherwise, Ips, i, lq “ 0. The indicator function
Ips, i, lq is defined as:

Ips, i, lq “

"

1, if s R
Ť

k‰l S
k
i

0, otherwise
(15)

C.3 EFFICIENCY ANALYSIS

All experiments were conducted using a server with a single NVIDIA A100 GPU. Below we report
the average of 3 times training for 6-step training cost on BlocksWorld dataset for 10 epochs. We
compare with SFT, PPO and table 7 shows the results.

Table 7: Training time shown is seconds
when training on the BlocksWorld.

Method Runtime (s)
SFT 196.37

SFT+PPO 1740.96
FOR 6833.37

PPO and FOR need much more training costs because
they need exploration and interaction with environments
to collect trajectories for training, and SFT only trains on
ground-truth trajectories which take less time.

C.4 BLOCKSWORLD.

FOR Setup. During the training, we finetune the LLM
with LoRA (Hu et al., 2021) with r “ 32, α “ 64, and
dropout=0.1. We set ϵ from 0.3 and decrease it to 0.01, β from 1 to 2, and the probability δ using
replay buffer increases from 0.3 to 0.5 throughout the iterations linearly. The learning rate is set to
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Table 8: OOD results on BlocksWorld.

Method 2-step to 4-step 4-step to 6-step
Acc. (%) Diversity Creativity (%) Acc. (%) Diversity Creativity (%)

CoT (1-shot) 9.52 1.0 3.12 2.02 1.0 0
CoT (5-shot) 14.28 1.0 3.12 12.12 1.08 3.45
CoT (15-shot) 11.90 1.0 3.12 8.08 1.0 0
ToT (BFS) 9.52 - - 8.08 - -
ToT (DFS) 4.76 - - 6.06 - -
RAP 80.95 - - 34.34 - -

SFT (α=1.0) 11.92 1.0 9.37 28.28 1.03 1.15
FOR (Ours) 71.43 1.20 59.38 65.65 1.25 60.92

Table 9: Baseline results with diversity-encouraging instruction prompt.

Method 4-step 6-step
Acc. (%) Diversity Creativity (%) Acc. (%) Diversity Creativity (%)

CoT (1-shot) 16.67 (-10.90) 1.00 (-0.05) 0.0 (0.00) 11.11 (-4.71) 1.09 (+0.04) 0.0 (0.00)
CoT (5-shot) 59.52 (+16.66) 1.12 (+0.08) 2.04 (+2.04) 33.33 (+3.70) 1.03 (+0.00) 0.79 (+0.79)
CoT (15-shot) 52.38 (+12.32) 1.09 (+0.06) 0.0 (0.00) 13.13 (-6.40) 1.07 (+0.04) 0.0 (0.00)

SFT (α=1.0) 59.52 (+17.46) 1.10 (+0.05) 0.0 (0.00) 47.47 (+12.79) 1.10 (+0.06) 0.0 (0.00)
FOR (Ours) 98.41 1.27 12.24 78.44 1.33 9.52

1e-4 with a cosine annealing schedule, and the number of training iterations is set to 10. Reward
weight λ is set to 1.5. In our ablation study when setting λ “ 0, we add a small number b “ 0.5 to
avoid log 0. Table 4 shows the template we use for the forward policy in the 6-step setting, and its
difference between 2-step and 4-step is only replacing the 6-step demonstration to 2-step and 4-step.
During testing, we sample 8, 20, and 40 trajectories for 2, 4, and 6 steps respectively. As long as one
trajectory reaches the goal, we label this instance as solved, all the baselines conform to the same
rule.

Additional details for baselines. We compare FOR the following baselines:

(1) Chain-of-Thoughts prompting (CoT) (Wei et al., 2022): It concatenates k problems with ground
truth solutions and the test problem, and prompts the LLM to generate a solution. We test the setting
where k “ 1, 5, 15, and pass the test cases to LLMs at the same times as FOR, and the test case is
regarded as solved if at least one plan is correct.

(2) Tree-of-Thoughts prompting (ToT) (Yao et al., 2024): This approach constructs a tree of actions
and searches for the solution with the highest reward. For each action, the reward includes (a) the
likelihood of the LLM predicting the action and (b) self-evaluation, where the LLM is prompted with
the question, "Is this action good?" and the answer is mapped to a reward value. We implement ToT
with both breadth-first search (BFS) and depth-first search (DFS), terminating after generating 10
solutions.

(3) Reasoning-via-Planning (RAP) (Hao et al., 2023): This method also conducts a tree search for
the optimal solution. Different from ToT, it alternatively predicts the next action and predicts the
resulting block arrangement. Besides the rewards used in ToT, if the predicted block arrangement
matches the goal, a high reward will be assigned.

(4) Supervised Fine-Tuning (SFT): We use problems in the training set and their corresponding ground
truth solutions to finetune the LLM. Note that this is an easier setting than FOR which does not have
access to ground truth solutions. We train LLM with the same iterations as FOR.

(5) Proximal Policy Optimization (PPO) (Schulman et al., 2017): This is a widely-used reinforcement
learning method for LLM training. We design the objective to encourage the LLM to generate
solutions that satisfy the goal. Following the common practice of previous work (Ouyang et al.,
2022; Wang et al., 2023a), we penalize the policy if it deviates too much from the reference policy.
Formally, the objective is maxπθ

Eτ„πθ
rRpx, yqs ´ βDKL rπθpy | xq}πref py | xqs.

(6) GFN-CoT (Hu et al., 2023a): This approach adapts the GFlowNets training paradigm, which is
a diversity-seeking RL method, to enable posterior sampling of the intermediate reasoning process
from LLMs.
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Prompt for BlocksWorld

I am playing with a set of blocks where I need to arrange the blocks into stacks.
Here are the actions I can do

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the block is clear.
A block is clear if the block has no other blocks on top of it and if the block is not picked up.
I can only unstack a block from on top of another block if the block
I am unstacking was really on top of the other block.
I can only unstack a block from on top of another block if the block I am unstacking is clear.
Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding the block being stacked.
I can only stack a block on top of another block if the block onto which I am stacking the block is clear.
Once I put down or stack a block, my hand becomes empty.

[STATEMENT]
As initial conditions I have that, the orange block is clear, the hand is empty, the red block is on top of the
blue block, the orange block is on top of the red block and the blue block is on the table.
My goal is to have that the blue block is on top of the orange block.
My plan is as follows:
[PLAN]
unstack the orange block from on top of the red block
put down the orange block
unstack the red block from on top of the blue block
put down the red block
pick up the blue block
stack the blue block on top of the orange block
[PLAN END]

[STATEMENT]
As initial conditions I have that, <current state>
My goal is to My goal is to have that <goals>
My plan is as follows:
[PLAN]
<action>

Figure 4: Prompt template for the embodied reasoning task (6-step).

Performance on OOD settings. We further assess performance on out-of-distribution (OOD)
settings. Specifically, we train the model using FoR and SFT on a 2-step training set and evaluate
them on a 4-step test set, and train the model on the 4-step training set and evaluate them on the
6-step test set. This allows us to analyze their generalization on OOD problems. For prompting-based
baselines, we use 2-step and 4-step examples as demonstrations, respectively.

According to the result in table 8, FoR maintains the highest accuracy (71.43%) on OOD tasks
compared to other methods like CoT and SFT, which range from 9.52% to 14.28%. FoR also
achieves greater diversity (by an absolute improvement of 0.2 over SFT), highlighting its superior
generalization and solution exploration capabilities.

Additional baseline results with diversity-encouraging instruction. To further stimulate the
diverse problem-solving ability in the baseline approaches, we add a diversity-encouraging prompt as
instruction:
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Table 10: An example of the probability of two trajectories to be sampled by FOR.

Initial State goal Trajectory Terminal State PF pτq

the red block is on
top of the blue block

1. unstack the orange block from
on top of the blue block
2. put down the orange block
3. unstack the blue block from on
top of the red block
4. put down the blue block
5. pick up the red block
6. stack the red block on top of the
blue block

0.47

the red block is on
top of the blue block

1. unstack the orange block from
on top of the blue block
2. put down the orange block
3. unstack the blue block from on
top of the red block
4. stack the blue block on top of the
orange block
5. pick up the red block
6. stack the red block on top of the
blue block

0.46

Please carefully understand the goals and initial states, then come up with diverse solutions and
think outside the box.

We evaluate multiple baseline methods using LLama-3-8B as the base model, following the exact
same settings as in Section 4.2. The results for BlocksWorld are reported in Table 9. The numbers
in parentheses indicate the performance difference compared to the original prompt without the
diversity-encouraging instruction.

We observe that diversity-encouraging prompts for the CoT and SFT baselines lead to improvements
in both diversity and accuracy, with average absolute gains of 0.03 and 5.11%, respectively. However,
FoR still outperforms them, achieving average absolute improvements of 0.19 in diversity, 9.46% in
creativity, and 34.93% in accuracy compared to the best baseline for each metric.

Additional case study. In Table 10, we show examples generated by FOR. We observe that after
training, FOR can sample the terminal state with probability approximately proportional to the
rewards, leading to an approximate sampling of different plans with the same probability. This
empirically verifies the efficacy of the training objective.

C.5 GAME OF 24.

FOR Setup. See Figure 5 for the prompt template used in the experiment of the Game of 24.

We use LoRA to train the model with r “ 8, α “ 32, dropout=0.1. We load the LLM in fp16, and set
the hyperparameters as follows: batch size = 4, learning rate = 1e-5, number of epochs = 5, and the
reward weight w “ 100.

C.6 RUBIK’S CUBE

FOR Setups. The training hyperparameters are identical to BlocksWorld. During testing, we sample
10 trajectories. See Figure 6 for the prompt template of the Rubik’s Cube task.

Additional details for baselines. Apart from the baselines in Blocksworld, we further compare them
with GoT and XoT.

Graph-of-Thought(GoT) (Besta et al., 2024): GoT builds upon the ToT method by introducing the
ability to create graph-like thought structures, achieved through the aggregation and refinement
of thoughts during intermediate search stages. While this approach allows for more adaptable
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Prompt for Game of 24

Use numbers and basic arithmetic operations (+ - * /) to obtain 24.
For each step, you are only allowed to choose two of the remaining numbers to obtain a new
number.
Input: 4 4 6 8
Steps:
4 + 8 = 12 (left: 4 6 12)
6 - 4 = 2 (left: 2 12)
2 * 12 = 24 (left: 24)
Input: 2 9 10 12
Steps:
12 * 2 = 24 (left: 9 10 24)
10 - 9 = 1 (left: 1 24)
24 * 1 = 24 (left: 24)
Input: 4 9 10 13
Steps:
13 - 10 = 3 (left: 3 4 9)
9 - 3 = 6 (left: 4 6)
4 * 6 = 24 (left: 24)
Input: 1 4 8 8
Steps:
8 / 4 = 2 (left: 1 2 8)
1 + 2 = 3 (left: 3 8)
3 * 8 = 24 (left: 24)
Input: 5 5 5 9
Steps:
5 + 5 = 10 (left: 5 9 10)
10 + 5 = 15 (left: 9 15)
15 + 9 = 24 (left: 24)
Input: <input>
Steps:
<action>

Figure 5: Prompt template for the mathematical puzzle task.

Prompt for Rubik’s Cube

You are a virtual expert in solving a 2x2 Pocket Cube. Your task is to restore a scrambled 2x2 Rubik’s
Cube to its original state. All the given problems can be solved in 1 to 4 moves. You cannot exceed more
than 11 moves. Provide the sequence of moves required for the restoration. Please follow the instructions
and rules below to complete the solving:
1. A 2x2 Pocket Cube has six faces, namely: [Upper, Front, Bottom, Left, Right, Back] Each consisting of
a 2x2 grid of squares, with each square having its own color.
2. Colors in the Cube are represented in numbers: [0, 1, 2, 3, 4, 5]
3. You must make a move to the Cube to achieve a Restored State. Note that we just need each face to
have the same numbers, no matter which face has which color.
4. A restoration of a Pocket Cube is to move squares in each face to have the same numbers.
5. You are only allowed to use the following moves [U, U’, U2, R, R’, R2, F, F’, F2].
Now strictly follow the above process to form Restoration Moves.

[STATEMENT]
As initial state of the cube, I have that
[Initial Cube State]:
<current state>
[Process]:
[Step 1]
[Move] <action>

Figure 6: Prompt template for the spatial Reasoning task.

thought structures, it still requires several LLM inference calls for evaluation, leading to substantial
computational expenses.
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Prompt for 1D-ARC

You are provided with a series of input-output pairs, where each value from ’a’ to ’j’ represents a different
color, and ’.’ denotes a blank cell. For example, [[’.’,’a’,’.’],[’.’,’.’,’b’]] represents a grid with 2 rows and 3
columns, where color ’a’ is at position (1,0) and color ’b’ is at position (2,1).
Coordinates are expressed in 2D positions (row, col), with ’row’ indicating the row number and ’col’
indicating the column number, both using zero-based indexing. The input-output pairs may not cover all
possibilities, so you should infer the simplest possible relationship between them.
Your task is to reason through a sequence of Python functions that can transform the input grid into the
output grid. Please strictly follow this process to form the appropriate Python function.
[STATEMENT]
You have the following input-output pairs:
[Initial Grid State]:
<init_state>
Based on the provided list of Python functions, select the appropriate function to achieve the transformation
from the input to the output:
<python_function>
Now, please choose one function from the above list:
<action>

Figure 7: Prompt template for abstraction reasoning task.

Everything-of-Thought(XoT) (Ding et al., 2023): XOT is a collaborative framework combining LLMs
with MCTS to optimize the thought generation process, aiding LLMs in solving complex problems.
It first trains a small network to explore the space fast while LLMs refine and correct the thoughts
generated by MCTS.

C.7 1D-ARC

FOR Setups. Except that we train the model for 1 iteration, other training hyperparameters are
identical to BlocksWorld. We use the hand-crafted transformation functions in ARC Challenge
2nd-place (de Miquel, 2021) on Kaggle 2020. See Figure 7 for the prompt template of the 1D-ARC
task. Part of the prompt is adapted from (Tan & Motani, 2023). For CoT and FOR, we sampled
20 times. IO methods directly predict the output grids without an explicit reasoning process, while
program-only and Hypothesis Search approaches generate a large number of candidate programs and
choose the best candidates, which is time-consuming. As a result, we do not report diversity and
creativity metrics for these methods.

Additional details for baselines. In addition to IO and CoT, we also compare our approach with
Hypothesis Search which belongs to discrete program search methods (Barke et al., 2024; Xu et al.,
2023a; Lee et al., 2024).

Hypothesis Search (Wang et al., 2023b): The method first generates multiple hypotheses describing
the underlying transformation rules in natural language, and then selects a subset of potentially correct
hypotheses. Based on these selected hypotheses, numerous Python programs are synthesized, which
are subsequently tested on the training input-output pairs to verify whether they pass all the cases. If
a program successfully passes all the training input-output pairs, it is considered to have accurately
captured the underlying transformation rules.

C.8 LOGICAL REASONING.

OOD data creation We separate the in-distribution and OOD data by topics and ontology. We use
the animal-related problems as in-distribution examples and the number-related problems as OOD
examples.

Setup. We use LoRA to train the model with r “ 8, α “ 32, dropout=0.1. We load the LLM in
fp16, and set the hyperparameters as follows: batch size = 4, learning rate = 5e-6, number of epochs
= 40, and the reward weight w “ 100. See Table 8 for the prompt template of the logical reasoning
task.
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Prompt for PrOntoQA

Given a list of facts, and a current claim, output one possible fact as the next step ONLY BASED ON THE
LAST CLAIM without using your knowledge. Be sure to copy the EXACT sentence in the facts. Do NOT
change any wording. Do NOT create your own words. Give me the next step ONLY.

Facts 1: Each lepidopteran is an insect. Each arthropod is a protostome. Every animal is multicellular.
Protostomes are invertebrates. Each whale is bony. Each painted lady
is a butterfly. Invertebrates are animals. Butterflies are lepidopterans. Each insect is six-legged. Every
insect is an arthropod.
Arthropods are not bony.
Query 1: True or false: Sally is not bony.
Claim 1.1: Sally is an insect.
Next 1.1: Every insect is an arthropod.
Claim 1.2: Sally is an arthropod.
Next 1.2: Arthropods are not bony.
Claim 1.3: Sally is not bony.
Next 1.3: Finish.

Facts 2: Lepidopterans are insects. Every animal is multicellular. Each insect is an arthropod.
Each invertebrate is an animal. Insects are six-legged. Arthropods are small. Arthropods are invertebrates.
Each butterfly is a lepidopteran. Whales are not small.
Query 2: True or false: Polly is not small.
Claim 2.1: Polly is a lepidopteran.
Next 2.1: Lepidopterans are insects.
Claim 2.2: Polly is an insect.
Next 2.2: Each insect is an arthropod.
Claim 2.3: Polly is an arthropod.
Next 2.3: Arthropods are small.
Claim 2.4: Polly is small.
Next 2.4: Finish.

Facts 3: <facts>
Query 3: <query>
Claim 3.1: <initial state>
Next 3.1: <action>

Figure 8: Prompt template for logical reasoning task.

Additional details for Baselines. Apart from CoT, ToT, and RAP, we compare FOR with STaR (Ze-
likman et al., 2022), which uses online sampling to filter our positive examples consistent with ground
truth trajectories to finetune the LLM. Note that this is an easier setting than FOR which doesn’t have
access to ground truth solutions. It also indicates an upper bound of SFT methods that do not rely on
ground truth solutions, like. All baselines use Llama3 8B as the base model.

C.9 GSM8K.

In addition to the above datasets, we additionally evaluate the proposed FOR on GSM8K (Cobbe
et al., 2021). We follow RAP (Hao et al., 2023) to define an action as an intermediate sub-question to
solve the problem and a state as all the history intermediate pairs of a sub-question and its answer.

Table 11: Results on GSM8K.

Method Acc. (%) Diversity

CoT 45.72 1.12
CoT-SC 41.74 -
RAP 37.16 -
SFT (α “ 1.0) 52.69 1.13
FoR 57.39 1.26

We conduct experiments with 2-shot settings and compare
them with supervised fine-tuning (SFT), CoT, CoT with
self-consistency (CoT-SC), and RAP. For each problem,
we sample 4 solutions and success is indicated as long as 1
solution is correct. For training, we construct the training
dataset with the last 50 examples in the GSM8K training
set. The implementation of baselines refers to (Hao et al.,
2024). Due to the lack of established evaluation metrics
for assessing the diversity of open-ended mathematical
reasoning, we manually annotate 50 test examples to eval-
uate the similarity between reasoning trajectories, determining whether two reasoning trajectories are
semantically equivalent or not.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

The results are shown below: FoR shows effectiveness on GSM8K and exceeds the accuracy and
diversity of all baselines, which demonstrates the potential of FoR for extending to more open-ended
reasoning tasks.

As shown in the table 11, in the task of GSM8K, FoR outperforms all baselines in both accuracy (by
an absolute improvement of 4.7% over SFT) and diversity (by an absolute improvement of 0.13 over
SFT). These results highlight the potential of FoR for extending to more open-ended reasoning tasks.

D EXPLORATION AND TRAINING

FOR employs the following techniques to explore during the training phase:

1. Online training: (1) we employ the online policy PF pat|st´1, αq, and its tempered version (2)
Similar to ϵ-greedy, we sample action at step t by PF with probability ϵ, and sample with uniform
distribution over action space PU pat|st´1q with p1 ´ ϵq probability. (3) To further explore the
high-reward region, we modified the local search (Kim et al., 2023; Zhang et al., 2022). More
specifically, we select the trajectory with the highest reward in a batch and conduct a destroy and
reconstruction process for augmenting the trajectories to enable a higher probability of sampling
successful trajectories, referring to Appendix E for more details.

2. Offline training: (1) Experience replay represents a significant advancement in reinforcement
learning, offering enhancements in both learning efficiency and stability, as evidenced by recent
empirical studies in GFlowNets (Vemgal et al., 2023; Shen et al., 2023a). To optimize the utility
of the trajectories collected, we set up a prioritized replay buffer (PRB). This buffer facilitates
the sampling of trajectories in proportion to their reward value, Rpτq, or its logarithmic value,
thereby prioritizing potentially more informative experiences. (2) For tasks (e.g. Game of 24) that
have a large space, online sampling diverse trajectories with LLMs is computationally expensive.
Therefore, we integrate the offline trajectories to have a larger coverage of space and improve the
efficiency, which means δ “ 0.

Algorithm 1 describes the training framework.

Algorithm 1 FOR Training

1: Input: I: number of iterations, PF : initial LLM policy, D: Prioritized Replay Buffer. M :
Batch-size, δ: online-offline ratio, E : Training Dataset, O: offline Data

2: Output: Trained policy PF .
3: for i “ 1 to I do
4: Sample from training dataset E with initial state s0 and goal g
5: Sample from u „ r0, 1s

6: if u ă δ then
7: // Exploration
8: Sample M online trajectories tτ1, ..., τMu with forward policy PF

9: Select trajectory τm P tτ1, ..., τMu with the largest Rpτmq

10: tτ 1
11 ...τ 1

N 1 u Ð Local Search(τm)
11: Update D Ð D Y tτ1, ..., τMu Y tτ 1

11 ...τ 1
N 1 u

12: else
13: // Exploitation
14: if is Game24 then
15: sample M offline trajectories from Offline Data O
16: else
17: sample M offline trajectories from D
18: end if
19: end if
20: Exploit M (with N 1) trajectories to compute objective function in Eq 7.
21: Update the parameter in PF with respect to Eq 7
22: end for
23: return PF
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E MODIFIED LOCAL SEARCH

Local search is a simple data augmentation technique for GFlowNets (Kim et al., 2023; Zhang et al.,
2022; Sendera et al., 2024), which is designed to enhance training efficiency. Different from the
original local search which is conducted on each sampled trajectory, we select the trajectory in a batch
with the highest reward to conduct a local search. Here we denote the trajectory reward Rpτq as the
reward of the terminal state of the trajectory Rpτ “ ps0 Ñ . . . Ñ snqq “ Rpsnq. More specifically,
we illustrate our modified local search for one instance as follows:

• Sampling: Sample a set of complete trajectories tτ1, ..., τMu using forward policy PF and select
the τm with the largest reward Rpτmq

• Searching: We destroy τm by backtracking K-step into a partial trajectory and reconstruct the
complete trajectory from the partial trajectory:

τdestroy “ ps0 Ñ . . . Ñ s1
n´Kq, τrecon “ ps1

n´K Ñ . . . Ñ s1
nq (16)

We obtain the local searched trajectory τ 1:

τ 1 “ ps0 Ñ . . . Ñ s1
n´K Ñ . . . Ñ s1

nq (17)

Where the τrecon is completed by the random policy PU which randomly selects a feasible action
for efficiency. We can obtain a set of reconstructed trajectories tτ 1

1, ..., τ
1
Nu

• Filtering: We now need to evaluate the collected reconstructed trajectories tτ 1
1, ..., τ

1
Nu and

determine whether to accept or reject τ 1 P tτ 1
1, ..., τ

1
Nu. Specifically, we accept τ 1 as follows:

Apτ, τ 1q “ 1Rpτ 1qąRpτq (18)

This means we greedily filter out the candidates tτ 1
11 ...τ 1

N 1 u Ă tτ 1
1, ..., τ

1
Nu that have a higher

reward than τm, which has a higher possibility of reaching the goal. Then we return these
trajectories and add them into the replay buffer D.
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Blue numbers represent the sample times of trajectories bigger than 1.
The figure shows that FoR can achieve 24 in multiple different states while SFT usually fail to do so.

*2
*2*3

*6 *2 *4

Figure 9: Problem (3,4,6,11). Green blocks represent the states that can achieve 24. Blue numbers
represent the sample times of trajectories bigger than 1. This shows that FoR can achieve 24 in
multiple different states while SFT usually fails to do so.

Balance between diversity and accuracy. According to Figure 9, we use the problem (3,4,6,11)
to show how FoR achieves such high performance while focusing on diversity. As illustrated in
the figure, we compare trajectories sampled 20 times by both SFT and FoR. While both methods
produce diverse trajectories initially, FoR demonstrates better capability in reaching successful final
steps from various middle steps. For example, FoR successfully transitions from intermediate steps
(3,6,15) to target 24, whereas SFT fails to do so. This highlights the effectiveness of FoR’s design in
simultaneously promoting diversity and ensuring accuracy.
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Figure 10: Problem (7,9,9,13). Green blocks represent the states that can achieve 24. Blue numbers
represent the sample times of trajectories bigger than 1. This shows that FoR can achieve 24 in
multiple different states while SFT usually fails to do so.

Better robustness due to exploratory nature. According to Figure 10, we use the problem
(7,9,9,13) to demonstrate the robustness of FoR. As shown in the figure, SFT repeatedly fails
by getting stuck in a single second state of (9,3,16) 20 times, while FoR successfully discovers
multiple diverse trajectories leading to the correct solution. This robustness can be attributed to
the exploratory nature of FoR’s training objective, which encourages the model to sample diverse
successful trajectories. By expanding the search space through high-reward exploration, FoR increases
the chance of finding successful outcomes. This capability not only improves the robustness of the
model but also enhances its generalization to new scenarios, showcasing the effectiveness of FoR in
addressing complex reasoning tasks.

Other examples Figure 11 shows generated samples for the BlocksWorld, Figure 12 for Game24,
and Table 12 for PrOntoQA, respectively.

Table 12: Examples for PrOntoQA.

Query: True or false: 31 is not imaginary. (OOD)
State Action
31 is a natural number. Natural numbers are integers.
31 is an integer. Integers are real numbers.
31 is a real number. Real numbers are not imaginary.
31 is not imaginary. Finish.

Query: True or false: Wren is not bony. (In-distribution)
State Action
Wren is a painted lady. Each painted lady is a butterfly.
Wren is a butterfly. Each butterfly is a lepidopteran.
Wren is a lepidopteran. Each lepidopteran is an insect.
Wren is an insect. Each insect is an arthropod.
Wren is an arthropod. Each arthropod is not bony.
Wren is not bony. Finish.
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Goal: red block on 
top of the blue block

Figure 11: Example of BlocksWorld for 6-step planning.

G LIMITATIONS AND FUTURE WORK

Due to resource constraints, our experiments use language models with up to 13B parameters.
However, we expect FOR to hold for larger models as well, and may potentially benefit larger models
even more. Recent works (Xi et al., 2024; AlKhamissi et al., 2023) that finetune larger models to
improve their reasoning ability with maximizing objectives usually need a large amount of data, and
our data-efficient FOR may improve this process. Future work should further address two limitations
in FOR.

The first is aquisation of a large amount of trajectories efficiently. Online sampling with LLMs
is computationally expensive, leading to more efficient and effective strategies for exploring more
complex settings such as real-world settings AlfWorld (Shridhar et al., 2020) and TravelPlanner (Xie
et al., 2024a) to be further studied.

The second is faciliating FOR long-range steps reasoning. LLMs fall short in long-range planning
and reasoning, thus methods like MCTS (Feng et al., 2023) or automatic reasoning system (Trinh
et al., 2024) can be combined with LLMs for long-horizon diverse reasoning.

H BROADER IMPACT

This study introduces FOR, a methodology that trains LLMs as policies to solve complex reasoning
problems with better creativity and diversity. We believe this work connects LLM reasoning with
GFlowNets and contributes to the application of GFlowNets to LLMs.
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Figure 12: Example of game of 24.
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