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ABSTRACT

Coreset selection methods are effective in accelerating training and reducing
memory requirements but remain largely unexplored in applied multimodal set-
tings. We adapt a state-of-the-art (SoTA) coreset selection technique for multi-
modal data, focusing on the depth prediction task. Our experiments with embed-
ding aggregation and dimensionality reduction approaches reveal the challenges
of extending unimodal algorithms to multimodal scenarios, highlighting the need
for specialized methods to better capture inter-modal relationships.

1 INTRODUCTION

Data for modern deep learning systems require gigabytes and even terabytes of storage (Rus-
sakovsky et al., 2015) (Schuhmann et al., 2022) and substantial computational resources for train-
ing. One technique to address these computational challenges is coreset selection (Iyer et al., 2021b;
Coleman et al., 2020; Chen et al., 2012), which aims to identify minimal subsets of training data
that maintain model performance. However, many real-world applications, such as medical diagno-
sis (Salvi et al., 2024) or autonomous vehicles (Cui et al., 2022; Yeong et al., 2021; Caesar et al.,
2020) require processing multiple modalities of data simultaneously. These multimodal scenarios
amplify computational demand and introduce new challenges, as traditional coreset selection meth-
ods cannot be applied directly. In this work, we extend one of the SoTA coreset selection techniques
to handle multimodal data (Zhou et al., 2023). Through extensive experimentation on depth pre-
diction tasks, we demonstrate the limitations of current approaches and the need for specialized
multimodal coreset selection methods for better modeling inter-modal relationships. We provide
code for reproducing experiments.1

2 METHOD

We adapt the Data Quantization (Zhou et al., 2023) method, to the multimodal setting. The goal
is to select a representative subset S that retains the diversity and informativeness of the original
dataset. Let D = {({xm

i }Mm=1, yi)}Ni=1 denote a dataset with N samples and M modalities, where
xm
i represents the features of the i-th sample for the m-th modality, and yi is the corresponding

target. For ease of notation, xi will further denote a multimodal tuple {xm
i }Mm=1.

Following previous approaches, we employ a submodular gain function (Iyer et al., 2021a) and
generalize it to multimodal data. Denoted P (xi), to measure the importance of a multimodal sample
xi in maximizing the retained information. The gain of adding xi to the current subset Si−1 is:

P (xi) =
∑

p∈Si−1

||f(p)− f(xi)||2 −
∑

p∈D\Si−1

||f(p)− f(xi)||2,

where f(x) is the embedding of a multimodal sample x, Si−1 is the current subset of size i − 1,
and D \ Si−1 represents the remaining samples.

The data set D is divided into non-overlapping bins {S1, S2, . . . , SN} through recursive selection
by maximizing submodular gain xk ← argmax P (x) with x ∈ D \

⋃n−1
j=1 Sj .

1https://github.com/VityaVitalich/MultiModalCoreset
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Method Aggregation Dimension Val RMSE, % ↑ Val Loss, % ↑
Full Dataset - - 100.00 100.00

Random Coreset - - 50.23 46.33

Coreset
Concat 301824 49.08 47.41
Mean 768 51.54 47.90
Sum 768 51.11 52.12

Coreset w/ PCA

Concat 512 47.73 45.43
Concat 1024 55.93 50.00
Concat 2048 47.90 43.23
Concat 4096 44.00 36.50

Coreset w/ UMAP Concat 512 49.29 49.23
Concat 1024 50.53 45.27

Table 1: Percentage of quality retained relative to the Full Dataset for Validation RMSE and Valida-
tion Loss, evaluated after training with coresets selected using each method.

3 EXPERIMENTAL SETTING

Dataset: We use the CLEVR dataset (Johnson et al., 2016), where multimodal input consists of
RGB image and semantic mask, the target is a depth map obtained from Omnidata (Eftekhar et al.,
2021).

Models: We employ MultiMAE both to extract a multi-modal embedding f(xi), and to perform
depth estimation from RGB + semantic mask. Embeddings f(xi) of a multimodal sample xi are
obtained from MultiMAE’s transformer encoder. The input and output adapters were trained fol-
lowing (Bachmann et al., 2022) and (Ranftl et al., 2021) respectively. We use Root Mean Square
Error (RMSE) as the target metric for depth estimation. Refer to Appendix A for more details.

Coreset Selection: All coresets are 20% from the original dataset, obtained with N = 20. We
evaluated the following baselines: Full: Complete dataset used for training as a reference. Random
Coreset: A random 20% subset. Token Aggregation: Concatenation, mean or sum of embeddings.
Dimensionality Reduction: We also apply PCA and UMAP (McInnes et al., 2020) to concatenation
of tokens before coreset selection.

4 RESULTS & DISCUSSION

Our results in Table 3 show that coreset selection methods lead to a 50% performance drop compared
to the full data set and an improvement so minor over the random coreset that it could be due to
chance, see Appendix A for raw RMSE values. The best performance is achieved with PCA (1024
features), but the improvement is incremental and UMAP shows no consistent gain.

We hypothesize that these results are due to the large dimensionality of the embeddings, and eu-
clidean distance not being informative enough to separate similar and dissimilar objects. We em-
ployed dimensionality reduction to extract the most ”meaningful” parts of the embedding, which
did not help in our setting. A direction worth exploring would be to try another model for extracting
multi-modal embeddings.

5 CONCLUSION

We address the challenge of selecting multimodal coresets, essential for modern applications, and
present an adaptation of the SoTA coreset selection method to the multimodal setting. Our results
highlight the need for further exploration of multimodal coreset selection techniques.
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Method RMSE Validation Loss Training Loss
Full Dataset 0.0033 0.0015 0.0030
Random Coreset 0.0065 0.0033 0.0055
Coreset, Full L2 0.0066 0.0032 0.0058
Coreset, Mean Cosine 0.0063 0.0032 0.0057
Coreset, Sum Cosine 0.0064 0.0029 0.0055
PCA (512) 0.0068 0.0033 0.0066
UMAP (1024) 0.0065 0.0033 0.0062
UMAP (512) 0.0066 0.0031 0.0064
PCA (1024) 0.0059 0.0030 0.0055
PCA (2048) 0.0068 0.0035 0.0057
PCA (4096) 0.0074 0.0042 0.0058

Table 2: Comparison of RMSE, Validation Loss, and Training Loss across methods.

A TECHNICAL DETAILS

Training was performed using the Adam optimizer with learning rate 5×10−5, β1 = 0.9, β2 = 0.99,
for 40 epochs with batch size 128, no weight decay and cosine annealing scheduler. The training
was conducted on a single NVIDIA A100 GPU.
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