
Provable Robustness of (Graph) Neural Networks
Against Data Poisoning and Backdoor Attacks

Lukas Gosch1,2,3∗, Mahalakshmi Sabanayagam1∗,
Debarghya Ghoshdastidar1,2, Stephan Günnemann1,2

1 School of Computation, Information and Technology, 2 Munich Data Science Institute
Technical University of Munich, Germany

3 Munich Center for Machine Learning (MCML), Germany
{l.gosch, m.sabanayagam, d.ghoshdastidar, s.guennemann}@tum.de

Abstract

Generalization of machine learning models can be severely compromised by data
poisoning, where adversarial changes are applied to the training data. This vulnera-
bility has led to interest in certifying (i.e., proving) that such changes up to a certain
magnitude do not affect test predictions. We, for the first time, certify Graph Neural
Networks (GNNs) against poisoning attacks, including backdoors, targeting the
node features of a given graph. Our certificates are white-box and based upon (i)
the neural tangent kernel, which characterizes the training dynamics of sufficiently
wide networks; and (ii) a novel reformulation of the bilevel optimization describing
poisoning as a mixed-integer linear program. We note that our framework is more
general and constitutes the first approach to derive white-box poisoning certificates
for NNs, which can be of independent interest beyond graph-related tasks.

1 Introduction

Numerous works showcase the vulnerability of modern machine learning models to data poisoning,
where adversarial changes are made to the training data [Biggio et al., 2012, Muñoz-González et al.,
2017, Zügner and Günnemann, 2019, Wan et al., 2023], as well as backdoor attacks affecting both
training and test sets [Goldblum et al., 2023]. Empirical defenses against such threats are continually
at risk of being compromised by future attacks [Koh et al., 2022, Suciu et al., 2018]. This motivates
the development of robustness certificates, which provide formal guarantees that the prediction for a
given test data point remains unchanged under an assumed perturbation model.

Robustness certificates can be categorized as providing deterministic or probabilistic guarantees, and
as being white box, i.e. developed for a particular model, or black box (model-agnostic). While each
approach has its strengths and applications [Li et al., 2023], we focus on white-box certificates as
they can provide a more direct understanding into the worst-case robustness behavior of commonly
used models and architectural choices [Tjeng et al., 2019, Mao et al., 2024, Banerjee et al., 2024].
The literature on poisoning certificates is less developed than certifying against test-time (evasion)
attacks (see App. N) and we provide an overview and categorization in Table 2. Notably, white-box
certificates are currently available only for decision trees [Drews et al., 2020], nearest neighbor
algorithms [Jia et al., 2022], and naive Bayes classification [Bian et al., 2024]. In the case of Neural
Networks (NNs), the main challenge in white-box poisoning certification comes from capturing
their complex training dynamics. As a result, the current literature reveals that deriving white-box
poisoning certificates for NNs, and by extension Graph Neural Networks (GNNs), is still an unsolved
problem, raising the question if such certificates can at all be practically computed.

∗Equal contribution.

AdvML-Frontiers’24: The 3nd Workshop on New Frontiers in Adversarial Machine Learning@NeurIPS’24,
Vancouver, CA.

In this work, we give a positive answer to this question by developing the first approach towards
white-box certification of NNs against data poisoning and backdoor attacks, and instantiate it for
common convolution-based and PageRank-based GNNs. Concretely, poisoning can be modeled
as a bilevel optimization problem over the training data D that includes training on D as its in-
ner subproblem. To overcome the challenge of capturing the complex training dynamics of NNs,
we consider the Neural Tangent Kernel (NTK) that characterizes the training dynamics of suffi-
ciently wide NNs under gradient flow [Jacot et al., 2018, Arora et al., 2019]. In particular, we
leverage the equivalence between NNs trained using the soft-margin loss and standard soft-margin

Figure 1: Illustration of
our poisoning certificate.

Support Vector Machines (SVMs) with the NN’s NTKs as kernel matrix
[Chen et al., 2021]. Using this equivalence, we introduce a novel refor-
mulation of the bilevel optimization problem as a mixed-integer linear
program (MILP) that allows to certify test datapoints against poisoning
as well as backdoor attacks for sufficiently wide NNs (see Fig. 1). Al-
though our framework applies to wide NNs in general, solving the MILP
scales with the number of labeled training samples. Thus, it is a natural
fit for semi-supervised learning tasks, where one can take advantage of
the low labeling rate. As a result, we focus on semi-supervised node
classification in graphs and use our framework with corresponding NTKs
[Sabanayagam et al., 2023] of various GNNs. Our contributions are:

(i) We are the first to certify GNNs in node-classification tasks against poisoning and backdoor
attacks targeting node features. Our certification framework called QPCert is introduced in Sec. 3 and
leverages the NTK to capture the complex training dynamics of GNNs. Further, it can be applied to
NNs in general and thus, it represents the first approach on white-box poisoning certificates for NNs.

(ii) We contribute a reformulation of the bilevel optimization problem describing poisoning as a
MILP when instantiated with kernelized SVMs, allowing for white-box certification of SVMs. While
we focus on the NTK as kernel, our strategy can be transferred to arbitrary kernel choices.

Notation. We represent matrices and vectors with boldfaced upper and lowercase letters, respectively.
vi and Mij denote i-th and ij-th entries of the vector v and matrix M, respectively. i-th row of
matrix M is Mi. In is the identity matrix of size n and 1n×n is the matrix of all 1s with size n× n.
⟨a,b⟩ denotes scalar product between a and b. We use ∥.∥2 for vector Euclidean norm and matrix
Frobenius norm, 1[.] for indicator function, E [.] for expectation, ⊙ for the Hadamard product and

the ceil operator ⌈z⌉ for the smallest integer ≥ z. [n] denotes {1, 2, . . . , n}.

2 Preliminaries

We are given a partially-labeled graph G = (S,X) with n nodes and a graph structure matrix
S ∈ Rn×n

≥0 , representing for example, a normalized adjacency matrix. Each node i ∈ [n] has features
xi ∈ Rd collected in a node feature matrix X ∈ Rn×d. We assume labels yi ∈ {1, . . . ,K} are given
for the first m ≤ n nodes. Our goal is to perform node classification in transductive (labels of the
remaining n−m nodes should be inferred) or inductive (newly added nodes at test time should be
classified) settings. VL and VU denote the set of labeled and unlabeled nodes, respectively.

Perturbation model. We assume that at training time the adversary A has control over the features
of an ϵ-fraction of nodes and that ⌈(1− ϵ)n⌉ nodes are clean. For backdoor attacks, the adversary
can also change the features of a test node of interest. Following the semi-verified learning setup
introduced in [Charikar et al., 2017], we assume that k < n nodes are known to be uncorrupted.
We denote the verified nodes by set VV and the nodes that can be potentially corrupted as set U .
We further assume that the strength of A to poison training or modify test nodes is bounded by a
budget δ ∈ R+. More formally, A can choose a perturbed x̃i ∈ Bp(xi) := {x̃ | ∥x̃ − xi∥p ≤ δ}
for each node i under control. We denote the set of all perturbed node feature matrices constructible
by A from X as A(X) and A(G) = {(S, X̃) | X̃ ∈ A(X)}. In data poisoning, the goal of A is to
maximize misclassification in the test nodes. For backdoor attacks A aims to induce misclassification
only in test nodes that it controls.

Learning setup. GNNs are functions fθ with (learnable) parameters θ ∈ Rq and L number of layers
taking the graph G = (S,X) as input and outputting a prediction for each node. We consider linear
output layers with weights WL+1 and denote by fθ(G)i ∈ RK the (unnormalized) logit output
associated to node i. Note for binary classification fθ(G)i ∈ R. We define the architectures such as

2

MLP, GCN [Kipf and Welling, 2017], SGC [Wu et al., 2019], (A)PPNP [Gasteiger et al., 2019] and
others in App. A. We focus on binary classes yi ∈ {±1} and refer to App. E for the multi-class case.
Following Chen et al. [2021], the parameters θ are learned using the soft-margin loss

L(θ,G) = min
θ

1

2
∥W(L+1)∥22 + C

m∑
i=1

max(0, 1− yifθ(G)i) (1)

where the second term is the Hinge loss weighted by a regularization C ∈ R+. Note that due
to its non-differentiability, the NN is trained by subgradient descent. Furthermore, we consider
NTK parameterization [Jacot et al., 2018] in which parameters θ are initialized from a standard
Gaussian N (0, 1/width). Under NTK parameterization and sufficiently large width limit, the training
dynamics of fθ(G) are precisely characterized by the NTK defined between nodes i and j as
Qij = Q(xi,xj) = Eθ[⟨∇θfθ(G)i,∇θfθ(G)j⟩] ∈ R.

Equivalence of NN to soft-margin SVM with NTK. Chen et al. [2021] show that training NNs in
the infinite-width limit with Eq. (1) is equivalent to training a soft-margin SVM with (sub)gradient
descent using the NN’s NTK as kernel. Thus, both methods converge to the same solution. More
formally, let the SVM be defined as fθ(G)i = fSVM

θ (xi) = ⟨β,Φ(xi)⟩ where Φ(·) is the feature
transformation associated to the used kernel and θ = β are the learnable parameters obtained by
minimizing L(θ,G). Following Chen et al. [2021], we do not include a bias term. To find the optimal
β∗, instead of minimizing Eq. (1) with (sub)gradient descent, we work with the equivalent dual

P1(Q) : min
α

−
m∑
i=1

αi +
1

2

m∑
i=1

m∑
j=1

yiyjαiαjQij s.t. 0 ≤ αi ≤ C ∀i ∈ [m] (2)

with the Lagrange multipliers α ∈ Rm and kernel Qij = Q(xi,xj) ∈ R computed between all
labeled nodes i ∈ [m]. and j ∈ [m]. The optimal dual solution may not be unique and we denote
by S(Q) the set of α solving P1(Q). However, any α∗ ∈ S(Q) corresponds to the same unique
β∗ =

∑m
i=1 yiα

∗
iΦ(G)i minimizing Eq. (1) [Burges and Crisp, 1999]. Thus, the prediction of the

SVM for a test node t using the dual is given by fSVM
θ (xt) =

∑m
i=1 yiα

∗
iQti for any α∗ ∈ S(Q),

where Qti is the kernel between a test node t and training node i. By choosing Q to be the NTK
of a GNN fθ, the prediction equals fθ(G)t if the width of the GNN’s hidden layers goes to infinity.
Thus, a certificate for the SVM directly translates to a certificate for infinitely-wide GNNs. In the
finite-width case, where the smallest GNN’s layer width is h, the output difference between both
methods can be bounded with high probability by O(lnh√

h
) (the probability → 1 as h → ∞). Thus,

the certificate translates to a high probability guarantee for sufficiently wide finite networks.

3 QPCert: Our certification framework
Poisoning a clean training graph G can be described as a bilevel problem where an adversary A tries
to find a perturbed G̃ ∈ A(G) that results in a model θ minimizing an attack objective Latt(θ, G̃):

min
G̃,θ

Latt(θ, G̃) s. t. G̃ ∈ A(G) ∧ θ ∈ argmin
θ′

L(θ′, G̃) (3)

Eq. (3) is called an upper-level problem and minθ′ L(θ′, G̃) the lower-level problem. Now, a sample-
wise poisoning certificate can be obtained by solving Eq. (3) with an Latt(θ, G̃) chosen to describe
if the prediction for a test node t changes compared to the prediction of a model trained on the
clean graph. However, this approach is challenging as even the simplest bilevel problems given by a
linear lower-level problem embedded in an upper-level linear problem are NP-hard [Jeroslow, 1985].
Thus, in this section, we develop a general methodology to reformulate the bilevel (sample-wise)
certification problem for kernelized SVMs as a mixed-integer linear program, making certification
tractable through the use of highly efficient modern MILP solvers such as Gurobi [Gurobi Optimiza-
tion, LLC, 2023] or CPLEX [Cplex, 2009]. Our approach can be divided into three steps: (1) The
bilevel problem is reduced to a single-level problem by exploiting properties of the quadratic dual
P1(Q); (2) We model G̃ ∈ A(G) by assuming a bound on the effect any G̃ can have on the elements
of the kernel matrix Q. This introduces a relaxation of the bilevel problem from Eq. (3) and allows
us to fully express certification as a MILP; (3) In App. D, we choose the NTK of different GNNs as
kernel and derive bounds on the kernel elements to use in the certificate. In the following, we present
our certificate for binary classification where yi ∈ {±1} ∀i ∈ [n] and transductive learning, where
the test node is already part of G. We generalize it to a multi-class and inductive setting in App. E.

3

A single-level reformulation. Given an SVM fSVM
θ trained on the clean graph G, its class prediction

for a test node t is given by sgn(p̂t) = sgn(fSVM
θ (xt)). If for all G̃ ∈ A(G) the sign of the prediction

does not change if the SVM should be retrained on G̃, then we know that the prediction for t is
certifiably robust. Thus, the attack objective reads Latt(θ, G̃) = sgn(p̂t)

∑m
i=1 yiαiQ̃ti, where Q̃ti

denotes the kernel computed between nodes t and i on the perturbed graph G̃, and indicates robustness
if greater than zero. Now, notice that the perturbed graph G̃ only enters the training objective Eq. (2)
through values of the kernel matrix Q̃ ∈ Rn×n. Thus, we introduce the set A(Q) of all kernel
matrices Q̃, constructable from G̃ ∈ A(G). Furthermore, we denote with S(Q̃) the optimal solution
set to P1(Q̃). As a result, we can rewrite Eq. (3) for kernelized SVMs as

P2(Q) : min
α,Q̃

sgn(p̂t)

m∑
i=1

yiαiQ̃ti s.t. Q̃ ∈ A(Q) ∧ α ∈ S(Q̃) (4)

and certify robustness if the optimal solution to P2(Q) is greater than zero. Crucial in reformulating
P2(Q) into a single-level problem are the Karush–Kuhn–Tucker (KKT) conditions of the lower-level
problem P1(Q̃). Concretely, the KKT conditions of P1(Q̃) are

∀i ∈ [m] :

m∑
j=1

yiyjαjQ̃ij − 1− ui + vi = 0 (Stationarity) (5)

αi ≥ 0, C − αi ≥ 0, ui ≥ 0, vi ≥ 0 (Primal and Dual feasibility) (6)
uiαi = 0, vi(C − αi) = 0 (Complementary slackness) (7)

where u,v ∈ Rm are Lagrange multipliers. Now, we can state Proposition 1 proved in App. F.

Proposition 1. Problem P1(Q̃) given by Eq. (2) is convex and satisfies strong Slater’s constraint.
Consequently, the single-level optimization problem P3(Q) arising from P2(Q) by replacing α ∈
S(Q̃) with Eqs. (5) to (7) has the same globally optimal solutions as P2(Q).

A mixed-integer linear reformulation. The computational bottleneck of P3(Q̃) are the non-linear
product terms between continuous variables in the attack objective as well as in Eqs. (5) and (7),
making P3(Q̃) a bilinear problem. To transform P3(Q̃) to a MILP, first, the complementary slackness
constraints can be linearized by recognizing that they have a combinatorial structure. In particular,
ui = 0 if αi > 0 and vi = 0 if αi < C. Thus, introducing binary integer variables s and t ∈ {0, 1}m,
we reformulate the constraints in Eq. (7) with big-M constraints as

∀i ∈ [m] : ui ≤ Mui
si, αi ≤ C(1− si), vi ≤ Mviti, αi ≥ Cti, si, ti ∈ {0, 1} (8)

where Mui
and Mvi are positive constants. In general, verifying that a certain choice of big-Ms

results in a valid (mixed-integer) reformulation of the complementary constraints Eq. (7), i.e., such
that no optimal solution to the original bilevel problem is cut off, is at least as hard as solving
the bilevel problem itself [Kleinert et al., 2020]. This is problematic as heuristic choices can lead
to suboptimal solutions to the original problem [Pineda and Morales, 2019]. However, additional
structure provided by P1(Q̃) and P3(Q) together with insights into the optimal solution set allow us
to derive valid and small Mui and Mvi for all i ∈ [m].

Concretely, the adversary A can only make a bounded change to G. Thus, the element-wise difference
of any Q̃ ∈ A(Q) to Q will be bounded. As a result, there exist element-wise upper and lower
bounds Q̃L

ij ≤ Q̃ij ≤ Q̃U
ij for all i, j ∈ [m] ∪ {t} and valid for any Q̃ ∈ A(Q). In App. D we derive

concrete lower and upper bounds for the NTKs corresponding to different common GNNs. This,
together with 0 ≤ αi ≤ C, allows us to lower and upper bound

∑m
j=1 yiyjαjQ̃ij in Eq. (5). Now,

given an optimal solution (α∗, Q̃∗,u∗,v∗) to P3(Q), observe that either u∗
i or v∗i are zero, or can be

freely varied between any positive values as long as Eq. (5) is satisfied without changing the objective
value or any other variable. As a result, one can use the lower and upper bounds on

∑m
j=1 yiyjαjQ̃ij

to find the minimal value range necessary and sufficient for ui and vi, such that Eq. (5) can always be
satisfied for any α∗ and Q̃∗. Consequently, only redundant solutions regarding large u∗

i and v∗i will
be cut off and the optimal solution value stays the same as for P3(Q), not affecting the certification.
The exact Mui

and Mvi depend on the signs of the involved yi and yj and are derived in App. G.

4

Now, the remaining non-linearities come from the product terms αiQ̃ij . We approach this by first
introducing new variables Zij for all i, j ∈ [m] ∪ {t} and set Zij = αjQ̃ij . Then, we replace all
product terms αjQ̃ij in Eq. (5) and in the objective in Eq. (4) with Zij . This alone has not changed
the fact that the problem is bilinear, only that the bilinear terms have now moved to the definition of
Zij . However, we have access to lower and upper bounds on Q̃ij . Thus, replacing Zij = αjQ̃ij with
linear constraints Zij ≤ αjQ̃

U
ij and Zij ≥ αjQ̃

L
ij results in a relaxation to P3(Q). This resolved all

non-linearities and we can write the following theroem.
Theorem 1 (MILP Formulation). Node t is certifiably robust against adversary A if the optimal
solution to the following MILP denoted by P (Q) is greater zero

min
α,u,v,s,t,Z

sgn(p̂t)

m∑
i=1

yiZti s.t.

Zij ≤ αjQ̃
U
ij , Zij ≥ αjQ̃

L
ij ∀i ∈ [m] ∪ {t}, j ∈ [m]

∀i ∈ [m] :

m∑
j=1

yiyjZij − 1− ui + vi = 0, ui ≤ Musi, αi ≤ C(1− si), si ∈ {0, 1},

αi ≥ 0, C − αi ≥ 0, ui ≥ 0, vi ≥ 0, vi ≤ Mvti, αi ≥ Cti, ti ∈ {0, 1}.

P(Q) includes backdoor attacks through the bounds Q̃L
tj and Q̃U

tj for all j ∈ [m]. On computational
aspects, P(Q) involves (m+ 1)2 + 5m variables out of which 2m are binary. Thus, the number of
binary variables that mainly define the time complexity of MILP-solvers scales with the number of
labeled samples. Finally, we require the element-wise bounds on the NTKs corresponding to the
GNNs to apply QPCert. We derive the bounds for perturbation models Bp(x) considering p = ∞
and p = 2, and prove that they are tight in the worst-case, in App. D.

4 Experimental results

In this section, we present the effectiveness of QPCert in certifying different GNNs using their NTKs
against node feature poisoning and backdoor attacks. In App. I, we provide insights into the role of
graph data and architectural components. Code is at https://github.com/saper0/qpcert.

Dataset. We use graphs generated from Contextual Stochastic Block Models (CSBM) [Deshpande
et al., 2018] and the real graph dataset Cora-ML [Bojchevski and Günnemann, 2018], where we
generate continuous 384-dim. embeddings of the abstracts with a sentence transformer2. Furthermore,
from Cora-ML’s 7 classes, we extract the subgraph defined by the two largest classes and call the
resulting binary-classification dataset Cora-MLb. We give dataset statistics and the details of graph
generation using CSBM in H.1. For the CSBM graphs we sample 200 nodes and choose 40 nodes
per class for training, leaving 120 unlabeled nodes. For Cora-MLb, we choose 10 nodes per class for
training, leaving 1215 unlabeled nodes, and for Cora-ML, 20 train nodes per class. All results are
averaged over 5 seeds (Cora-ML: 3 seeds) and reported with the standard deviation.

GNNs. We evaluate GCN, SGC, (A)PPNP, MLP, and the skip connection variants GCN Skip-α and
GCN Skip-PC (see App. A). All results concern the infinite-width limit and thus, are obtained by
training an SVM with the respective GNN’s NTK and, if applicable, applying QPCert using Gurobi
to solve the MILP from Theorem 1. Architectural details with the hyperparameters are provided in
App. H.2. We fix the hidden layers to L = 1, and the results for L = {2, 4} are provided in App. K.2.

Adversarial evaluation settings. We categorize four settings of interest. (1) Poison Labeled (PL):
The adversary A can potentially poison the labeled data VL. (2) Poison Unlabeled (PU): Especially
interesting in a semi-supervised setting is the scenario when A can poison the unlabeled data VU ,
while the labeled data, usually representing a small curated set of high quality, is known to be
clean [Shejwalkar et al., 2023]. (3) Backdoor Labeled (BL): Like (1) but the test node is also
controlled by A. (4) Backdoor Unlabeled (BU): Like (2) but again, the test node is controlled
by A. Settings (1) and (2) are evaluated transductively, i.e. on the unlabeled nodes VU already
known at training time. Note that this means for (2) that some test nodes may be corrupted. For the
backdoor attack settings (3) and (4) the test node is removed from the graph during training and

2all-MiniLM-L6-v2 from https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

5

https://github.com/saper0/qpcert
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GCN Skip-PC
GCN Skip-α
MLP

(a) CSBM: PU

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GCN Skip-PC
GCN Skip-α
MLP

(b) CSBM: BU

0 0.01 0.02 0.05 0.1 0.2 0.5

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GCN Skip-PC
GCN Skip-α
MLP

(c) Cora-MLb: PU

0 0.01 0.02 0.05 0.1 0.2 0.5

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GCN Skip-PC
GCN Skip-α
MLP

(d) Cora-MLb: BU

Figure 3: Certifiable robustness for different (G)NNs in Poisoning Unlabeled (PU) and Backdoor
Unlabeled (BU) setting. padv = 0.2 for CSBM and padv = 0.1 for Cora-MLb.

added inductively at test time. The size of the untrusted potential adversarial node set U is set in
percentage padv ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1} of the scenario-dependent attackable node set
and resampled for each seed. We consider node feature perturbations Bp(x) with p = ∞ and p = 2.
In the case of CSBM, δ is set in percentage of 2µ of the underlying distribution, and for real data
to absolute values. Our main evaluation metric is certified accuracy, referring to the percentage of
correctly classified nodes without attack that are provably robust against data poisoning / backdoor
attacks of the assumed adversary A. We note as we are the first work to study white-box certificates
for clean-label attacks on node features in graphs in general, there is no baseline prior work.

0 0.01 0.02 0.05 0.1

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0
C

er
ti

fie
d

A
cc

u
ra

cy

GCN
APPNP
SGC
GCN Skip-PC
GCN Skip-α
MLP

(a) PL, padv = 1

0 0.01 0.02 0.05 0.1 0.2 0.5

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GCN Skip-PC
GCN Skip-α
MLP

(b) PL, padv = 0.1

Figure 2: Poison Labeled (PL): Cora-MLb

Non-trivial certificates or On the impor-
tance of graph information. We evaluate the
effectiveness of our certificates in providing
non-trivial robustness guarantees. Consider
the PL setting where A can poison all labeled
nodes (padv = 1) for which a trivial certificate
would return 0% certified accuracy. Fig. 2a
proves that QPcert returns non-trivial guar-
antees. Further, it highlights an interesting
insight: All GNNs have significantly better
worst-case robustness behavior than the certified accuracy of an MLP. Thus, leveraging the graph
connectivity, significantly improves their certified accuracy, even when faced with perturbations on
all labeled nodes. App. K.1 shows a similar result for CSBM establishing that this behavior is not
dataset-specific. In Fig. 2b we show that this observation stays consistent also for other padv .

In Fig. 3 we evaluate the poison unlabeled (PU) and backdoor unlabeled (BU) settings for CSBM
and Cora-MLb with padv = 0.2 and padv = 0.1, respectively. When poisoning only unlabeled
data, the MLP is not affected by the adversary providing a good baseline for our certificate to study
GNNs. Again, QPCert provides non-trivial certified robustness beyond the MLP baseline. All GNNs
show certified accuracy beyond the one of an MLP persisting until relatively strong perturbations
(δ ≥ 0.2), with a similar picture for Cora-MLb in Fig. 3c and investigated in depth for all GNNs
in App. K.1. Concerning backdoor attacks on unlabeled nodes, Figs. 3b and 3d show that GNNs
show significantly better certified robustness than an MLP, even if MLP training is not affected by
A. We observe similar results for a BL setting in App. K.1 and App. L.1. These results show that
leveraging graph information significantly improves certified accuracy across all considered attack
settings. For Cora-ML results, we refer to App. M. Note that a comparison across architecture can
be affected by the certificate’s tightness and we hypothesize that the high worst-case robustness of
SGC may be due to the certificate being tighter (Theorem 3). However, this still allows us to derive
architectural insights for a specific GNN as presented in App. I. We explore the tightness of QPCert
experimentally in App. J, leveraging a differentiable implementation of quadratic programming.

Conclusion. While we focus on (G)NNs for graph data, our framework enables white-box poisoning
certification of NNs on any data domain. Further, it allows for certifying general kernelized SVMs
for arbitrary kernel choices if respective kernel bounds as in App. D are derived. To the best of our
knowledge, this makes our work not only the first white-box poisoning framework for NNs, but also
the first for kernelized SVMs. Moreover, the reformulation of the bilevel problem to MILP is directly
applicable to any quadratic program that satisfies strong Slater’s constraint and certain bounds on the
involved variables, hence the name QPCert. Thus extensions to certify quadratic programming layers
in NN [Amos and Kolter, 2017] or other quadratic learners are thinkable. Therefore, we believe that
our work opens up numerous new avenues of research in the area of provable robustness.

6

Acknowledgment

The authors want to thank Yan Scholten and Pascal Esser for the interesting discussions and helpful
feedback on the manuscript. This paper has been supported by the DAAD programme Konrad
Zuse Schools of Excellence in Artificial Intelligence, sponsored by the German Federal Ministry of
Education and Research; by the German Research Foundation, grant GU 1409/4-1; as well as by the
TUM Georg Nemetschek Institute Artificial Intelligence for the Built World.

References
B. Amos and J. Z. Kolter. Optnet: Differentiable optimization as a layer in neural networks. In

International Conference on Machine Learning (ICML), 2017.

S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, and R. Wang. On exact computation with an
infinitely wide neural net. Advances in Neural Information Processing Systems (NeurIPS), 2019.

A. Bambade, F. Schramm, A. Taylor, and J. Carpentier. QPLayer: efficient differentiation of convex
quadratic optimization. 2023. URL https://inria.hal.science/hal-04133055.

D. Banerjee, A. Singh, and G. Singh. Interpreting robustness proofs of deep neural networks. In
International Conference on Learning Representations (ICLR), 2024.

S. Bian, X. Ouyang, Z. FAN, and P. Koutris. Naive bayes classifiers over missing data: Decision and
poisoning. In International Conference on Machine Learning (ICML), 2024.

B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against support vector machines. In
International Conference on Machine Learning (ICML), 2012.

A. Bojchevski and S. Günnemann. Deep gaussian embedding of graphs: Unsupervised inductive
learning via ranking. In International Conference on Learning Representations, 2018.

C. J. C. Burges and D. Crisp. Uniqueness of the svm solution. In Advances in Neural Information
Processing Systems (NeurIPS), 1999.

M. Charikar, J. Steinhardt, and G. Valiant. Learning from untrusted data. In Annual ACM SIGACT
Symposium on Theory of Computing (STOC), 2017.

M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li. Simple and deep graph convolutional networks. In
International Conference on Machine Learning (ICML), 2020.

R. Chen, Z. Li, J. Li, J. Yan, and C. Wu. On collective robustness of bagging against data poisoning.
In International Conference on Machine Learning, pages 3299–3319. PMLR, 2022.

Y. Chen, W. Huang, L. Nguyen, and T.-W. Weng. On the equivalence between neural network and
support vector machine. Advances in Neural Information Processing Systems (NeurIPS), 2021.

J. Cohen, E. Rosenfeld, and Z. Kolter. Certified adversarial robustness via randomized smoothing. In
International Conference on Machine Learning (ICML), 2019.

I. I. Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation, 2009.

F. Croce and M. Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks, 2020.

S. Dempe and J. Dutta. Is bilevel programming a special case of a mathematical program with
complementarity constraints? Math. Program., 131:37–48, 2012. doi: https://doi.org/10.1007/
s10107-010-0342-1.

Y. Deshpande, S. Sen, A. Montanari, and E. Mossel. Contextual stochastic block models. Advances
in Neural Information Processing Systems (NeurIPS), 31, 2018.

S. Drews, A. Albarghouthi, and L. D’Antoni. Proving data-poisoning robustness in decision trees.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 1083–1097, 2020.

7

https://inria.hal.science/hal-04133055

J. Gasteiger, A. Bojchevski, and S. Günnemann. Predict then propagate: Graph neural networks meet
personalized pagerank. In International Conference on Learning Representations (ICLR), 2019.

M. Goldblum, D. Tsipras, C. Xie, X. Chen, A. Schwarzschild, D. Song, A. Madry, B. Li, and
T. Goldstein. Dataset security for machine learning: Data poisoning, backdoor attacks, and
defenses. IEEE Transactions on Pattern Analysis & Machine Intelligence, 45(02):1563–1580,
2023. ISSN 1939-3539.

L. Gosch, D. Sturm, S. Geisler, and S. Günnemann. Revisiting robustness in graph machine learning.
In International Conference on Learning Representations (ICLR), 2023.

S. Günnemann. Graph neural networks: Adversarial robustness. In Graph Neural Networks:
Foundations, Frontiers, and Applications, pages 149–176. Springer Singapore, 2022.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.

S. Hong, N. Carlini, and A. Kurakin. Diffusion denoising as a certified defense against clean-label
poisoning. arXiv preprint arXiv:2403.11981, 2024.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural
networks. Advances in neural information processing systems, 31, 2018.

M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li. Manipulating machine learning:
Poisoning attacks and countermeasures for regression learning. In IEEE Symposium on Security
and Privacy (SP), 2018.

R. G. Jeroslow. The polynomial hierarchy and a simple model for competitive analysis. Mathematical
programming, 1985.

J. Jia, X. Cao, and N. Z. Gong. Intrinsic certified robustness of bagging against data poisoning attacks.
In Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 7961–7969,
2021.

J. Jia, Y. Liu, X. Cao, and N. Z. Gong. Certified robustness of nearest neighbors against data poisoning
and backdoor attacks. In AAAI Conference on Artificial Intelligence (AAAI), 2022.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks, 2017.

T. Kleinert, M. Labbé, F. Plein, and M. Schmidt. There’s no free lunch: On the hardness of choosing
a correct big-m in bilevel optimization. Operations Research, 68 (6):1716–1721, 2020. doi:
https://doi.org/10.1287/opre.2019.1944.

P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In International
conference on machine learning (ICML), 2017.

P. W. Koh, J. Steinhardt, and P. Liang. Stronger data poisoning attacks break data sanitization
defenses. Machine Learning, 111(1):1–47, 2022.

Y. Lai, Y. Zhu, B. Pan, and K. Zhou. Node-aware bi-smoothing: Certified robustness against graph
injection attacks, 2024.

A. Levine and S. Feizi. Deep partition aggregation: Provable defense against general poisoning
attacks. In International Conference on Learning Representations (ICLR), 2021.

L. Li, T. Xie, and B. Li. Sok: Certified robustness for deep neural networks. In IEEE Symposium on
Security and Privacy, (SP), 2023.

V. Lingam, M. S. Akhondzadeh, and A. Bojchevski. Rethinking label poisoning for GNNs: Pitfalls
and attacks. In International Conference on Learning Representations (ICLR), 2024.

S. Liu, A. C. Cullen, P. Montague, S. M. Erfani, and B. I. P. Rubinstein. Enhancing the antidote:
Improved pointwise certifications against poisoning attacks. In AAAI Conference on Artificial
Intelligence (AAAI), 2023.

8

X. Ma, Z. Wang, and W. Liu. On the tradeoff between robustness and fairness. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Y. Ma, X. Zhu, and J. Hsu. Data poisoning against differentially-private learners: Attacks and
defenses. In International Joint Conference on Artificial Intelligence (IJCAI), 2019.

Y. Mao, M. N. Mueller, M. Fischer, and M. Vechev. Understanding certified training with interval
bound propagation. In International Conference on Learning Representations (ICLR), 2024.

S. Mei and X. Zhu. Using machine teaching to identify optimal training-set attacks on machine
learners. In AAAI Conference on Artificial Intelligence (AAAI), 2015.

A. Meyer, A. Albarghouthi, and L. D’Antoni. Certifying robustness to programmable data bias in
decision trees. Advances in Neural Information Processing Systems (NeurIPS), 2021.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning, second edition.
The MIT Press, 2018.

L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongrassamee, E. C. Lupu, and F. Roli.
Towards poisoning of deep learning algorithms with back-gradient optimization. In Proceedings of
the 10th ACM workshop on artificial intelligence and security, pages 27–38, 2017.

S. Pineda and J. M. Morales. Solving linear bilevel problems using big-ms: Not all that glitters is
gold. IEEE Transactions on Power Systems, 34(3):2469–2471, 2019. doi: 10.1109/TPWRS.2019.
2892607.

K. Rezaei, K. Banihashem, A. Chegini, and S. Feizi. Run-off election: Improved provable defense
against data poisoning attacks. In International Conference on Machine Learning (ICML), 2023.

E. Rosenfeld, E. Winston, P. Ravikumar, and Z. Kolter. Certified robustness to label-flipping attacks
via randomized smoothing. In International Conference on Machine Learning, pages 8230–8241.
PMLR, 2020.

M. Sabanayagam, P. Esser, and D. Ghoshdastidar. Analysis of convolutions, non-linearity and depth
in graph neural networks using neural tangent kernel. Transactions on Machine Learning Research
(TMLR), 2023.

P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad. Collective classification in
network data. AI Magazine, 29(3):93, Sep. 2008.

V. Shejwalkar, L. Lyu, and A. Houmansadr. The perils of learning from unlabeled data: Backdoor
attacks on semi-supervised learning. In International Conference on Computer Vision (ICCV),
2023.

J. M. Steele. The Cauchy-Schwarz master class: an introduction to the art of mathematical inequali-
ties. Cambridge University Press, 2004.

J. Steinhardt, P. W. W. Koh, and P. S. Liang. Certified defenses for data poisoning attacks. Advances
in neural information processing systems, 30, 2017.

O. Suciu, R. Mărginean, Y. Kaya, H. Daumé, and T. Dumitraş. When does machine learning fail?
generalized transferability for evasion and poisoning attacks. In USENIX Conference on Security
Symposium (SEC), 2018.

V. Tjeng, K. Xiao, and R. Tedrake. Evaluating robustness of neural networks with mixed integer
programming, 2019.

A. Wan, E. Wallace, S. Shen, and D. Klein. Poisoning language models during instruction tuning. In
International Conference on Machine Learning (ICML), 2023.

B. Wang, X. Cao, J. jia, and N. Z. Gong. On certifying robustness against backdoor attacks via
randomized smoothing, 2020.

9

W. Wang, A. Levine, and S. Feizi. Improved certified defenses against data poisoning with (determin-
istic) finite aggregation. In International Conference on Machine Learning (ICML), 2022.

M. Weber, X. Xu, B. Karlaš, C. Zhang, and B. Li. Rab: Provable robustness against backdoor attacks.
In IEEE Symposium on Security and Privacy (SP), 2023.

F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger. Simplifying graph convolutional
networks. In International Conference on Machine Learning (ICML), 2019.

H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli. Is feature selection secure
against training data poisoning? In International Conference on Machine Learning (ICML), pages
1689–1698. PMLR, 2015.

C. Xie, Y. Long, P.-Y. Chen, Q. Li, S. Koyejo, and B. Li. Unraveling the connections between privacy
and certified robustness in federated learning against poisoning attacks. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security, 2023.

Y. Zhang, A. Albarghouthi, and L. D’Antoni. Bagflip: A certified defense against data poisoning.
In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Information
Processing Systems (NeurIPS), 2022.

D. Zügner and S. Günnemann. Adversarial attacks on graph neural networks via meta learning. In
International Conference on Learning Representations (ICLR), 2019.

10

A Architecture definitions

We consider GNNs as functions fθ with (learnable) parameters θ ∈ Rq and L number of layers taking
the graph G = (S,X) as input and outputs a prediction for each node. We consider linear output
layers with weights WL+1 and denote by fθ(G)i ∈ RK the (unnormalized) logit output associated
to node i. In the following, we formally define the (G)NNs such as MLP, GCN [Kipf and Welling,
2017], SGC [Wu et al., 2019] and (A)PPNP [Gasteiger et al., 2019] considered in our study.
Def. 1 (MLP). The L-layer Multi-Layer Perceptron is defined as fθ(G)i = fMLP

θ (xi) =

WL+1ϕ
(L)
θ (xi). With ϕl

θ(xi) = σ(W (l)ϕ
(l−1)
θ (xi) + b(l)) and ϕ

(0)
θ (xi) = xi. W (l) ∈ Rdl+1×dl

and b(l) ∈ Rdl are the weights/biases of the l-th layer with d0 = d and dL+1 = K. σ(·) is an element-
wise activation function. If not mentioned otherwise, we choose σ(z) = ReLU(z) = max{0, z}.
Def. 2 (GCN & SGC). A Graph Convolution Network fGCN

θ (G) [Kipf and Welling, 2017] of depth
L is defined as fθ(G) = ϕ

(L+1)
θ (G) with ϕ

(l)
θ (G) = Sσ(ϕ

(l−1)
θ (G))W (l) and ϕ

(1)
θ (G) = SXW(1).

W(l) ∈ Rdl−1×dl are the l-th layer weights, d0 = d, dL+1 = K, and σ(z) = ReLU(z) applied
element-wise. A Simplified Graph Convolution Network fSGC

θ (G) [Wu et al., 2019] is a GCN with
linear σ(z) = z.
Def. 3 ((A)PPNP). The Personalized Propagation of Neural Predictions Network fPPNP

θ (G)
Gasteiger et al. [2019] is defined as fθ(G) = PH where Hi,: = fMLP

θ (xi) and P = α(In −
(1 − α)S)−1. The Approximate PPNP is defined with P = (1 − α)KSK + α

∑K−1
i=0 (1 − α)iSi

where α ∈ [0, 1] and K ∈ N is a fixed constant.

Along with the GNNs presented in Definitions 1 to 3, we consider two variants of popular skip
connections in GNNs as given a name in Sabanayagam et al. [2023]: Skip-PC (pre-convolution),
where the skip is added to the features before applying convolution [Kipf and Welling, 2017]; and
Skip-α, which adds the features to each layer without convolving with S [Chen et al., 2020]. To
facilitate skip connections, we need to enforce constant layer size, that is, di = di−1. Therefore,
the input layer is transformed using a random matrix W to H0 := XW of size n × h where
Wij ∼ N (0, 1) and h is the hidden layer size. Let Hi be the output of layer i using which we
formally define the skip connections as follows.
Def. 4 (Skip-PC). In a Skip-PC (pre-convolution) network, the transformed input H0 is added
to the hidden layers before applying the graph convolution S, that is, ∀i ∈ [L], ϕ

(l)
θ (G) =

S
(
σ(ϕ

(l−1)
θ (G)) + σs (H0)

)
W (l), where σs(z) can be linear or ReLU.

Skip-PC definition deviates from Kipf and Welling [2017] because we skip to the input layer instead
of the previous one. We define Skip-α as defined in Sabanayagam et al. [2023] similar to Chen et al.
[2020].
Def. 5 (Skip-α). Given an interpolation coefficient α ∈ (0, 1), a Skip-α network is defined such
that the transformed input H0 and the hidden layer are interpolated linearly, that is, ϕ(l)

θ (G) =(
(1− α)Sϕ

(l−1)
θ (G) + ασs (H0)

)
Wi ∀i ∈ [L], where σs(z) can be linear or ReLU.

B Derivation of NTK for (A)PPNP

We derive the closed-form NTK expression for (A)PPNP fθ(G) [Gasteiger et al., 2019] in this section.
The learnable parameters θ are only part of H. In practice, H = ReLU(XW1 + B1)W2 + B2

where node features X, θ = {W1 ∈ Rd×h,W2 ∈ Rh×K ,B1 ∈ Rn×h,B2 ∈ Rn×K}. Note that in
the actual implementation of the MLP, B1 is a vector and we consider it to be a matrix by having
the same columns so that we can do matrix operations easily. Same for B2 as well. We give the full
architecture with NTK parameterization in the following,

fθ(G) = P(
cσ√
h
σ(XW1 +B1)W2 +B2)

where h → ∞ and all parameters in θ are initialized as standard Gaussian N (0, 1). cσ is a constant
to preserve the input norm [Sabanayagam et al., 2023]. We derive for K = 1 as all the outputs
are equivalent in expectation. The NTK between nodes i and j is E

θ∼N (0,1)
[⟨∇θfθ(G)i,∇θfθ(G)j⟩].

11

Hence, we first write down the gradients for node i following [Arora et al., 2019, Sabanayagam et al.,
2023]:

∂fθ(G)i
∂W2

=
cσ√
h
(Piσ(G1))

T ;G1 = XW1 +B1

∂fθ(G)i
∂B2

= (Pi)
T1n

∂fθ(G)i
∂W1

=
cσ√
h
XT (PT

i 1nW
T
2 ⊙ σ̇(G1))

∂fθ(G)i
∂B1

=
cσ√
h
PT

i 1nW
T
2 ⊙ σ̇(G1)

We note that B2 has only one learnable parameter for K = 1, but is represented as a vector of size n
with all entries the same. Hence, the derivative is simply adding all entries of Pi. First, we compute
the covariance between nodes i and j in G1.

E
[
(G1)ik (G1)jk′

]
= E

[
(XW1 +B1)ik (XW1 +B1)jk′

]
Since the expectation is over W1 and B1 and all entries are ∼ N (0, 1), and i.i.d, the cross terms will
be 0 in expectation. Also, for k ̸= k′, it is 0. Therefore, it gets simplified to

E
[
(G1)ik (G1)jk

]
= E

[
XiW1W

T
1 X

T
j +

(
B1B

T
1

)
ij

]
=
(
XXT

)
ij
+ 1 = (Σ1)ij (9)

Thus, Σ1 = XXT + 1n×n and let (E1)ij = E
[
σ(G1)iσ(G1)

T
j

]
and

(
Ė1

)
ij

= E
[
σ̇(G1)iσ̇(G1)

T
j

]
computed using the definitions in Theorem 2 for ReLU non-linearity. Now, we can compute the NTK
for each parameter matrix and then sum it up to get the final kernel.

〈
∂fθ(G)i
∂W2

,
∂fθ(G)j
∂W2

〉
=

c2σ
h
Piσ(G1)σ(G1)

TPT
j

h→∞
= c2σPiE

[
σ(G1)σ(G1)

T
]
PT

j = c2σPiE1P
T
j (10)

〈
∂fθ(G)i
∂B2

,
∂fθ(G)j
∂B2

〉
= Pi1n×nP

T
j (11)

〈
∂fθ(G)i
∂B1

,
∂fθ(G)j
∂B1

〉
h→∞
= c2σPi(E [σ̇(G1)σ̇(G1)])P

T
j = c2σPiĖ1P

T
j (12)

〈
∂fθ(G)i
∂W1

,
∂fθ(G)j
∂W1

〉
=

c2σ
h

f,h∑
p,q

(XT (PT
i 1nW

T
2 ⊙ σ̇(G1)))pq(X

T (PT
j 1nW

T
2 ⊙ σ̇(G1)))pq

=
c2σ
h

d∑
p=1

h∑
q=1

[n∑
a=1

(XT)pa(P
T
i W

T
2)aqσ̇(G1)aq

n∑
b=1

(XT)pb(P
T
j W

T
2)bqσ̇(G1)bq

]
h→∞
= c2σ

n,n∑
a=1,b=1

(XXT)abPia(P
T)bjE [σ̇(G1)σ̇(G1)]ab

= c2σPi(XXT ⊙ E [σ̇(G1)σ̇(G1)])P
T
j = c2σPi(XXT ⊙ Ė)1P

T
j (13)

12

Finally, the NTK matrix for the considered (A)PPNP is sum of Eqs. (10) to (13) as shown below.

Q = c2σ

(
PE1P

T +P1n×nP
T +PĖ1P+P

(
XXT ⊙ Ė1

)
PT
)

= c2σ

(
P (E1 + 1n×n)P

T +P
((

XXT + 1n×n

)
⊙ Ė1

)
PT
)

= c2σ

(
P (E1 + 1n×n)P

T +P
(
Σ1 ⊙ Ė1

)
PT
)

(14)

Note that cσ is a constant, and it only scales the NTK, so we set it to 1 in our experiments. Since
we use a linear output layer without bias term at the end, that is, B2 = 0, the NTK we use for our
experiments is reduced to

Q =
(
PE1P

T +P
(
Σ1 ⊙ Ė1

)
PT
)
.

□

C NTKs for GCN and SGC

We restate the NTK derived in Sabanayagam et al. [2023] for self containment. The GCN of depth L
with width dl → ∞ ∀l ∈ {1, . . . , L}, the network converges to the following kernel when trained
with gradient flow.
Theorem 2 (NTK for Vanilla GCN). For the GCN defined in Definition 2, the NTK Q at depth L
and K = 1 is

Q(L) =

L+1∑
k=1

S
(
. . .S

(
S︸ ︷︷ ︸

L+1−k terms

(
Σk ⊙ Ėk

)
ST ⊙ Ėk+1

)
ST ⊙ . . .⊙ Ėd

)
ST . (15)

Here Σk ∈ Rn×n is the co-variance between nodes of layer k, and is given by Σ1 = SXXTST ,
Σk = SEk−1S

T with Ek = cσ E
F∼N (0,Σk)

[
σ(F)σ(F)T

]
, Ėk = cσ E

F∼N (0,Σk)

[
σ̇(F)σ̇(F)T

]
and

ĖL+1 = 1n×n.

(
Ek

)
ij
=
√
(Σk)ii (Σk)jj κ1

 (Σk)ij√
(Σk)ii (Σk)jj

(
Ėk

)
ij
= κ0

 (Σk)ij√
(Σk)ii (Σk)jj

 ,

where κ0(z) =
1

π
(π − arccos (z)) and κ1(z) =

1

π

(
z (π − arccos (z)) +

√
1− z2

)
.

D QPCert for GNNs through their corresponding NTKs

To certify a specific GNN using our QPCert framework, we need to derive element-wise lower
and upper bounds valid for all NTK matrices Q̃ ∈ A(Q) of the corresponding network, that are
constructable by the adversary. As a first step, we introduce the NTKs for the GNNs of interest before
deriving the bounds. While Sabanayagam et al. [2023] provides the NTKs for GCN and SGC with
and without skip connections, we derive the NTK for (A)PPNP in App. B. For clarity, we present the
NTKs for fθ(G) with L = 1 here and the general case for any L in App. C. For L = 1, the NTKs
generalize to the form Q = M(Σ⊙ Ė)MT +MEMT for all the networks, with the definitions of
M,Σ, E and Ė detailed in Table 1. Thus, it is important to note that the feature matrix X, which the
adversary can manipulate, enters into the NTKs only as a product XXT , making this the quantity of
interest when bounding the NTK matrix.

Therefore, focusing on p = ∞ and p = 2 in the perturbation model Bp(x) and X̃ ∈ A(X), we first
derive the bounds for X̃X̃T by considering U := {i : i ̸∈ VV } to be the set of all unverified nodes

13

Table 1: The NTKs of GNNs have the general form Q = M(Σ ⊙ Ė)MT +MEMT for L = 1.
The definitions of M,Σ, E and Ė are given in the table. κ0(z) =

1
π (π − arccos (z)) and κ1(z) =

1
π

(
z (π − arccos (z)) +

√
1− z2

)
.

GNN M Σ Eij Ėij

GCN S SXXTST
√
ΣiiΣjjκ1

(
Σij√
ΣiiΣjj

)
κ0

(
Σij√
ΣiiΣjj

)
SGC S SXXTST Σij 1

(A)PPNP P XXT + 1n×n

√
ΣiiΣjjκ1

(
Σij√
ΣiiΣjj

)
κ0

(
Σij√
ΣiiΣjj

)
MLP In XXT + 1n×n

√
ΣiiΣjjκ1

(
Σij√
ΣiiΣjj

)
κ0

(
Σij√
ΣiiΣjj

)

that the adversary can potentially control. In the following, Lemma 1, and Lemma 2 present the
worst-case element-wise lower and upper bounds for X̃X̃T = XXT +∆ in terms of ∆. The proofs
can be found in App. D.1.

Lemma 1 (Bounds for ∆, p = ∞). Given B∞(x) and any X̃ ∈ A(X), then X̃X̃T = XXT +∆
where the worst-case bounds for ∆, ∆L

ij ≤ ∆ij ≤ ∆U
ij for all i and j ∈ [n], is

∆L
ij = −δ∥Xj∥11[i ∈ U]− δ∥Xi∥11[j ∈ U]− δ2d1[i ∈ U ∧ j ∈ U ∧ i ̸= j]

∆U
ij = δ∥Xj∥11[i ∈ U] + δ∥Xi∥11[j ∈ U] + δ2d1[i ∈ U ∧ j ∈ U] (16)

Lemma 2 (Bounds for ∆, p = 2). Given B2(x) and any X̃ ∈ A(X), then X̃X̃T = XXT + ∆
where the worst-case bounds for ∆, ∆L

ij ≤ ∆ij ≤ ∆U
ij for all i and j ∈ [n], is

∆L
ij = −δ∥Xj∥21[i ∈ U]− δ∥Xi∥21[j ∈ U]− δ21[i ∈ U ∧ j ∈ U ∧ i ̸= j]

∆U
ij = δ∥Xj∥21[i ∈ U] + δ∥Xi∥21[j ∈ U] + δ21[i ∈ U ∧ j ∈ U] (17)

The NTK bounds Q̃L
ij and Q̃U

ij , are then derived by simply propagating the bounds of X̃X̃T through
the NTK formulation since the multipliers and addends are positive. To elaborate, we compute Q̃L

ij by
substituting XXT = XXT +∆L, and likewise for Q̃U

ij . Only bounding Eij and Ėij needs special
care and our respective approach is discussed in App. D.2. Further, we prove that the bounds are tight
in the worst-case as shown in Theorem 3 in App. D.3.
Theorem 3 (NTK bounds are tight). The worst-case NTK bounds are tight for GNNs with linear
activations such as SGC and (A)PPNP, and MLP with σ(z) = z for both p = ∞ and p = 2 in Bp(x).

D.1 Derivation of NTK bounds

To derive Lemmas 1 and 2, we consider the perturbed feature matrix X̃ ∈ A(X) and derive the
worst-case bounds for X̃X̃T based on the perturbation model Bp(x) where p = ∞, p = 2 and p = 1
in our study. Let’s say U is the set of nodes that are potentially controlled by the adversary A(X)

and X̃ = X+ Γ ∈ Rn×d where Γi is the adversarial perturbations added to node i by the adversary,
therefore, ∥Γi∥p ≤ δ and Γi > 0 for i ∈ U and Γi = 0 for i ̸∈ U . Then

X̃X̃T = (X+ Γ)(X+ Γ)T

= XXT + ΓXT +XΓT + ΓΓT = XXT +∆. (18)

As a result, it suffices to derive the worst-case bounds for ∆, ∆L ≤ ∆ ≤ ∆U , for different
perturbations. To do so, our strategy is to bound the scalar products ⟨Γi,Xj⟩ and ⟨Γi,Γj⟩ element-
wise, hence derive ∆L

ij ≤ ∆ij ≤ ∆U
ij . In the following, we derive ∆L

ij and ∆U
ij for the cases when

p = ∞, p = 2 and p = 1 in Bp(x).

14

Case (i): Derivation of Lemma 1 for p = ∞. In this case, the perturbation allows ∥X̃i−Xi∥∞ ≤ δ,
then by Hölder’s inequality ⟨a,b⟩ ≤ ∥a∥p∥b∥q where 1

p + 1
q = 1 for all p, q ∈ [1,∞] we have

|⟨Γi,Xj⟩| ≤ ∥Γi∥∞∥Xj∥1 ≤ δ∥Xj∥1
|⟨Γi,Γj⟩| ≤ ∥Γi∥2∥Γj∥2 ≤ d∥∆i∥∞∥∆j∥∞ ≤ dδ2. (19)

Using Eq. (19), the worst-case lower bound ∆L
ij is the lower bound of ΓXT +XΓT + ΓΓT :

∆L
ij =

0+ if i, j ̸∈ U
−δ∥Xj∥1+ if i ∈ U
−δ∥Xi∥1+ if j ∈ U
−δ2d if i, j ∈ U and i ̸= j.

(20)

The last case in Eq. (20) is due to the fact that ⟨Γi,Γi⟩ ≥ 0, hence ∆L
ii = 0. Finally, the Eq. (20) can

be succinctly written using the indicator function as

∆L
ij = −δ∥Xj∥11[i ∈ U]− δ∥Xi∥11[j ∈ U]− δ2d1[i ∈ U ∧ j ∈ U ∧ i ̸= j],

deriving the lower bound in Lemma 1. Similarly, applying the Hölder’s inequality for the worst-case
upper bound, we get

∆U
ij =

0+ if i, j ̸∈ U
δ∥Xj∥1+ if i ∈ U
δ∥Xi∥1+ if j ∈ U
δ2d if i, j ∈ U .

(21)

Thus, we derive Lemma 1 by succinctly writing it as

∆U
ij = δ∥Xj∥11[i ∈ U] + δ∥Xi∥11[j ∈ U] + δ2d1[i ∈ U ∧ j ∈ U].

□

Case (ii): Derivation of Lemma 2 for p = 2. The worst-case lower and upper bounds of ∆ij for
p = 2 is derived in the similar fashion as p = ∞. Here, the perturbation allows ∥X̃i −Xi∥2 ≤ δ.
Hence,

|⟨Γi,Xj⟩| ≤ ∥Γi∥∞∥Xj∥2 ≤ δ∥Xj∥2
|⟨Γi,Γj⟩| ≤ ∥Γi∥2∥Γj∥2 ≤ δ2. (22)

Using Eq. (22), we derive the lower and upper bounds of ∆ij :

∆L
ij =

0+ if i, j ̸∈ U
−δ||xj ||2+ if i ∈ U
−δ||xi||2+ if j ∈ U
−δ2 if i, j ∈ U

∆U
ij =

0+ if i, j ̸∈ U
δ||xj ||2+ if i ∈ U
δ||xi||2+ if j ∈ U
δ2 if i, j ∈ U

□

D.2 Bounding Eij and Ėij in the NTK

NTKs for GNNs with non-linear ReLU activation have E and Ė with non-linear κ1(z) and κ0(z)
functions in their definitions, respectively. In order to bound the NTK, we need a strategy to bound
these quantities as well. In this section, we discuss our approach to bound Eij and Ėij through
bounding the functions for any GNN with L layers. For ease of exposition, we ignore the layer
indexing for the terms of interest and it is understood from the context. Recollect that the definitions
of E and Ė are based on Σ, which is a linear combination of S and the previous layer. So, we

15

consider that at this stage, we already have Σ, ΣL and ΣU . Now, we expand the functions in the
definition and write Eij and Ėij using their corresponding Σ as follows:

Eij =

√
ΣiiΣjj

π

 Σij√
ΣiiΣjj

(
π − arccos

(
Σij√
ΣiiΣjj

))
+

√
1−

Σ2
ij

ΣiiΣjj

 (23)

Ėij =
1

π

(
π − arccos

(
Σij√
ΣiiΣjj

))
(24)

We derive the lower and upper bounds for Eij and Ėij in Algorithm 1.

Algorithm 1 Procedure to compute EL
ij , EU

ij , ĖL
ij and ĖU

ij

Given Σ, ΣL and ΣU

Let sl =
√
ΣL

iiΣ
L
jj , su =

√
ΣU

iiΣ
U
jj

if ΣL
ij > 0 then

al =
ΣL

ij

su
, au =

ΣU
ij

sl
else

al =
ΣL

ij

sl
, au =

ΣU
ij

su
end if
if |ΣU

ij | > |ΣL
ij | then

bl =

(
ΣL

ij

su

)2

, bu =

(
ΣU

ij

sl

)2

else

bl =

(
ΣL

ij

sl

)2

, bu =

(
ΣU

ij

su

)2

end if
EL

ij =
sl

π

(
al
(
π − arccos

(
al
))

+
√
1− bu

)
EU

ij = su

π

(
au (π − arccos (au)) +

√
1− bl

)
ĖL

ij =
1
π

(
π − arccos

(
al
))

ĖU
ij = 1

π (π − arccos (au))

D.3 Derivation of Theorem 3: NTK bounds are tight

We analyze the tightness of NTK bounds by deriving conditions on graph G = (S,X) when ∆L
ij

and ∆U
ij are attainable exactly. As our NTK bounding strategy is based on bounding the adversarial

perturbation X̃X̃T and the non-linear functions κ0(z) and κ1(z), it is easy to see that the bounds
with non-linearities cannot be tight. So, we consider only linear GCN (=SGC), (A)PPNP and MLP
with linear activations.

Now, we focus on deriving conditions for the given node features X using the classic result on the
equality condition of Hölder’s inequality [Steele, 2004], and then analyze the NTK bounds. Steele
[2004, Fig. 9.1] shows that the bounds on ⟨a,b⟩ using the Höder’s inequality is reached when
|ai|p = |bi|q ∥a∥p

p

∥b∥q
q

. Using this, we analyze

∆ij = ⟨Γi,Xj⟩+ ⟨Γj ,Xi⟩+ ⟨Γi,Γj⟩ (25)
in which we call ⟨Γi,Γj⟩ as interaction term. Following this analysis, the tightness of NTK bounds
is derived below for p = ∞ and p = 2.

Case (i): p = ∞. In this case, the feature bounds in Eq. (19) are tight,
∀j, Xj ̸= 0 and ∀i, k Γik = ci

16

where ci is some constant such that ∥Γi∥∞ ≤ δ so the perturbation budget is satisfied. As a result,
the upper bound of ∆ij in Lemma 1 is achieved exactly in the following cases,

(a) Number of adversarial nodes = 1: Here the interaction term in Eq. (25) is 0 for all i and j. Then
for the one adversarial node i, there exists Xj ∈ Rd

+, one can set Γi = +δ1d to achieve the upper
bound.

(b) Number of adversarial nodes > 1: Here the interaction term is ̸= 0 for all the adversarial nodes
i and j. Then, for the adversarial nodes i and j if there exist Xi ∈ Rd

+ and Xj ∈ Rd
+ then for

Γi = Γj = +δ1d upper bounds are achieved.

The NTKs with linear activations Qij achieve the upper bound in these cases. Similarly, the lower
bound in Lemma 1 is achieved exactly as discussed in the following,

(a) Number of adversarial nodes = 1: Here the interaction term in Eq. (25) is 0 for all i and j. Then
for the adversarial node i, there exists Xj ∈ Rd

+, one can set Γi = −δ1d to achieve the lower bound.

(b) Number of adversarial nodes > 1: Here the interaction term is ̸= 0 for all the adversarial nodes
i and j. Then, for the adversarial nodes i and j if there exist Xi ∈ Rd

+ and Xj ∈ Rd
− then for

Γi = −δ1d and Γj = +δ1d,

leading to tight lower bounds of Lemma 1. The lower and upper tight bounds of ∆ together leads to
tight NTK bounds for linear activations. Note that there is no need to impose any structural restriction
on the graph S to achieve the tight bounds for NTK.

Case (ii): p = 2. In this case, the feature bounds in Eq. (22) are tight,

∀i, j, Xj and Γi are linearly dependent

and ∥Γi∥2 ≤ δ so the perturbation budget is satisfied. As a result, the upper bound of ∆ij in Lemma 2
is achieved exactly in the following,

(a) Number of adversarial nodes = 1: Here the interaction term in Eq. (25) is 0 for all i and j. Then
for the one adversarial node i, and any Xj ∈ Rd, one can set Γi = +δ

Xj

∥Xj∥2
to achieve the upper

bound.

(b) Number of adversarial nodes > 1: Here the interaction term is ̸= 0 for all the adversarial nodes
i and j. Then, for the adversarial nodes i and j, if there exist Xi ∈ Rd

+ and Xj ∈ Rd
+ are linearly

dependent, then for Γi = +δ
Xj

∥Xj∥2
and Γj = +δ Xi

∥Xi∥2
tight upper bound is achieved.

The NTKs with linear activations Qij achieve the worst-case upper bound in these cases. Similarly,
the lower bound in Lemma 2 is achieved exactly as discussed in the following,

(a) Number of adversarial nodes = 1: Here the interaction term in Eq. (25) is 0 for all i and j. Then
for the adversarial node i, and any Xj ∈ Rd, one can set Γi = −δ

Xj

∥Xj∥2
to achieve the lower bound.

(b) Number of adversarial nodes > 1: Here the interaction term is ̸= 0 for all the adversarial nodes
i and j. Then, for the adversarial nodes i and j, if there exist Xi ∈ Rd

+ and Xj ∈ Rd
− are linearly

dependent, then for Γi = −δ
Xj

∥Xj∥2
and Γi = +δ Xi

∥Xj∥2
,

leading to tight lower bounds of Lemma 1. The lower and upper tight bounds of ∆ together leads to
tight NTK bounds for linear activations. Note that there is no need to impose any structural restriction
on the graph S to achieve the tight bounds for NTK, same as the p = ∞ case. We further note that
only one instance of achieving the worst-case bound is stated, and one can construct similar cases,
for example by considering opposite signs for the features and perturbations. □

E Multi-class certification and extension to an inductive setting

In this section, we discuss first the certification for multi-class and afterwards, how our certificate
extends from a transductive to an inductive setting.

Multi-class classification. To do multi-class classification using SVM with NTK, we choose the
One-Vs-All strategy, where we learn K classifiers. Formally, we learn β1, . . . ,βK which has
corresponding duals α1, . . . ,αK . In order to learn βc, all samples with class label c are assumed to
be positive and the rest negative. To not overload the notations, let’s say for all c, βc is the optimal

17

solution with the corresponding dual αc. Then the prediction for a node t is c∗ = argmaxc p̂
c
t where

p̂ct =
∑m

i=1 yiα
c
iQti where Q is the NTK matrix.

Given this, we propose a simple extension of our binary certification where to certify a node t
as provably robust, we minimize the MILP objective in Theorem 1 for the predicted class c∗ and
maximize the objective for the remaining K − 1 classes. Finally, certify t to be provably robust only
if the objective for c∗ remains maximum. Formally, we state the objective below.

Theorem 4. Node t with original predicted class c∗ is certifiably robust against adversary A if
c′ = c∗ where c′ is defined in the following. Using the MILP P (Q) in Theorem 1, we define

P (Q)c := P (Q) using αc, with the only change in obj. to (−1)1[c ̸=c∗]
m∑
i=1

yiZti

c′t = argmax
c∈[K]

P (Q)c. (26)

Inductive setting. Our framework easily extends to inductive node classification as Theorem 1 is
valid unchanged. The only change is that in inductive node classification, one has two graphs: (i) a
graph Gtrain known at training time; and (ii) a second graph Gtest with added test nodes available
during testing. Thus, in the computation of the bounds Q̃L

ij and Q̃U
ij , if both nodes i and j are known

at training time, the corresponding NTK bounds should be computed only using Gtrain excluding
test nodes. Whereas, if either i or j are test nodes, the corresponding bounds need to be calculated
using the expanded test graph Gtest.

F Proof of Proposition 1

We restate Proposition 1.

Proposition 1. Problem P1(Q̃) given by Eq. (2) is convex and satisfies strong Slater’s constraint.
Consequently, the single-level optimization problem P3(Q) arising from P2(Q) by replacing α ∈
S(Q̃) with Eqs. (5) to (7) has the same globally optimal solutions as P2(Q).

Given any Q̃ ∈ A(Q). We prove two lemmas, leading us towards proving Proposition 1.

Lemma 3. Problem P1(Q̃) is convex.

Proof. The dual problem Pb
1(Q̃) associated do an SVM with bias term reads

Pb
1(Q̃) : min

α
−

m∑
i=1

αi +
1

2

m∑
i=1

m∑
j=1

yiyjαiαjQ̃ij s.t.
m∑
i=1

αiyi = 0 0 ≤ αi ≤ C ∀i ∈ [m] (27)

It is a known textbook result that Pb
1(Q̃) is convex and we refer to Mohri et al. [2018] for a proof.

A necessary and sufficient condition for an optimization problem to be convex is that the objective
function as well as all inequality constraints are convex and the equality constraints affine functions.
Furthermore, the domain of the variable over which is optimized must be a convex set. As removing
the bias term of an SVM results in a dual problem P1(Q̃) which is equivalent to Pb

1(Q̃) only with
the constraint

∑m
i=1 αiyi = 0 removed, the necessary and sufficient conditions for convexity stay

fulfilled.

Now, we define strong Slater’s condition for P1(Q̃) embedded in the upper-level problem P2(Q)
defined in Eq. (4), which we from here on will call strong Slater’s constraint qualification [Dempe
and Dutta, 2012].

Def. 6 (Slater’s CQ). The lower-level convex optimization problem P1(Q̃) fulfills strong Slater’s
Constraint Qualification, if for any upper-level feasible Q̃ ∈ A(Q), there exists a point α(Q̃) in the
feasible set of P1(Q̃) such that no constraint in P1(Q̃) is active, i.e. 0 < α(Q̃)i < C for all i ∈ [m].

18

Lemma 4. Problem P1(Q̃) fulfills strong Slater’s constraint qualification.

Proof. We prove Lemma 4 through a constructive proof. Given any upper-level feasible Q̃ ∈ A(Q).
Let α be an optimal solution to P1(Q̃). We restrict ourselves to cases, where P1(Q̃) is non-
degenerate, i.e. the optimal solution to the SVM fSVM

θ corresponds to a weight vector β ̸= 0. Then,
at least for one index i ∈ [m] it must hold that αi > 0.

Assume that j is the index in [m] with the smallest αj > 0. Let ϵ = αj/m+ 1 > 0. Now, we
construct a new α′ from α by for each i ∈ [m] setting:

• If αi = 0, set α′
i = ϵ.

• If αi = C, set α′
i = C − ϵ.

The new α′ fulfills 0 < α′(Q̃)i < C for all i ∈ [m]. If P1(Q̃) is degenerate, set α′(Q̃)i = C/2 for
all i ∈ [m]. This concludes the proof.

[Dempe and Dutta, 2012] establish that any bilevel optimization problem U whose lower-level
problem L is convex and fulfills strong Slater’s constraint qualification for any upper-level feasible
point has the same global solutions as another problem defined by replacing the lower-level problem
L in U with L’s Karash Kuhn Tucker conditions. This, together with Lemmas 3 and 4 concludes the
proof for Proposition 1.

G Setting big-M constraints

Proposition 2 (Big-M ’s). Replacing the complementary slackness constraints Eq. (7) in P3(Q) with
the big-M constraints given in Eq. (8) does not cut away solution values of P3(Q), if for any i ∈ [m],
the big-M values fulfill the following conditions. For notational simplicity j : Condition(j) denotes
j ∈ {j ∈ [m] : Condition(j)}.

If yi = 1 then

Mui ≥
∑

j:yj=1∧Q̃U
ij≥0

CQ̃U
ij −

∑
j:yj=−1∧Q̃L

ij≤0

CQ̃L
ij − 1 (28)

Mvi ≥
∑

j:yj=−1∧Q̃U
ij≥0

CQ̃U
ij −

∑
j:yj=1∧Q̃L

ij≤0

CQ̃L
ij + 1 (29)

If yi = −1 then

Mui ≥
∑

j:yj=−1∧Q̃U
ij≥0

CQ̃U
ij −

∑
j:yj=1∧Q̃L

ij≤0

CQ̃L
ij − 1 (30)

Mvi ≥
∑

j:yj=1∧Q̃U
ij≥0

CQ̃U
ij −

∑
j:yj=−1∧Q̃L

ij≤0

CQ̃L
ij + 1 (31)

To obtain the tightest formulation for P (Q) from the above conditions, we set the big-M ’s to equal
the conditions.

Proof. Denote by UB an upper bound to
∑m

j=1 yiyjZij and by LB a lower bound to
∑m

j=1 yiyjZij .

The existence of these bounds follows from yi and yj ∈ {−1, 1} and Zij = αjQ̃ij with 0 ≤ αj ≤ C

and Q̃L
ij ≤ Q̃ij ≤ Q̃U

ij , i.e. the boundedness of all variables.

ui and vi need to be able to be set such that
∑m

j=1 yiyjZij − ui + vi = 1 (see Eq. (5)) can be

satisfied given any α∗ and Q̃∗ part of an optimal solution to P3(Q). By using UB and LB we get
the following inequalities:

19

UB − ui + vi ≥ 1 (32)

and

LB − ui + vi ≤ 1 (33)

Denote
∑m

j=1 yiyjZij by T . Thus, if T ≥ 1, setting vi = 0 and ui ≤ UB− 1∧ui ≥ LB− 1 allows
to satisfy Eq. (5). If T < 1, setting ui = 0 and vi ≤ 1−LB ∧ vi ≥ 1−UB allows to satisfy Eq. (5).
Note that for a given i, we are free to set ui and vi to arbitrary positive values, as long as they satisfy
Eq. (5), as they don’t affect the optimal solution value nor the values of other variables.

Thus, adding ui ≤ UB − 1 and vi ≤ 1 − LB as constraints to P3(Q) does not affect its optimal
solution. Consequently, setting Mui ≥ UB − 1 and Mvi ≥ 1− LB, are valid big-M constraints in
the mixed-integer reformulation of the complementary slackness constraints Eq. (7). The UB and
LB values depend on the sign of yi, yj and the bounds on αj and Q̃ij and the right terms in Eqs. (28)
to (31) represent the respective UB and LB arising. This concludes the proof.

H Additional experimental details

H.1 Datasets

The CSBM implementation is taken from [Gosch et al., 2023] publicly released under MIT li-
cense. Cora-ML taken from [Bojchevski and Günnemann, 2018] is also released under MIT
license. Cora-ML has 2995 nodes with 8416 edges, and 7 classes. It traditionally comes
with a 2879 dimensional discrete bag-of-words node feature embedding from the paper ab-
stract. As we focus on continuous perturbation models, we use the abstracts provided by [Bo-
jchevski and Günnemann, 2018] together with all-MiniLM-L6-v2, a modern sentence transformer
from https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 to generate
384-dimensional continuous node-feature embeddings. From Cora-ML, we extract the subgraph
defined by the two most largest classes, remove singleton nodes, and call the resulting binary-
classification dataset Cora-MLb. It has 1235 nodes and 2601 edges.

Random Graph Model: CSBM. A CSBM graph G with n nodes is iteratively sampled as: (a)
Sample label yi ∼ Bernoulli(1/2) ∀i ∈ [n]; (b) Sample feature vectors Xi|yi ∼ N (yiµ, σ

2Id); (c)
Sample adjacency Aij ∼ Bernoulli(p) if yi = yj , Aij ∼ Bernoulli(q) otherwise, and Aji = Aij .
Following Gosch et al. [2023] we set p, q through the maximum likelihood fit to Cora [Sen et al.,
2008] (p = 3.17%, q = 0.74%), and µ element-wise to Kσ/2

√
d with d = ⌊n/ ln2(n)⌋, σ = 1, and

K = 1.5, resulting in an interesting classification scheme where both graph structure and features are
necessary for good generalization. As mentioned in the main text, we sample n = 200 and choose
40 nodes per class for training, leaving 120 unlabeled nodes. Note that we do not need a separate
validation set, as we perform 4-fold cross-validation (CV) for hyperparameter tuning.

H.2 Architectures

We fix S to row normalized adjacency D̂−1Â in GCN and SGC [Sabanayagam et al., 2023], and
symmetric normalized adjacency D̂

1
2 ÂD̂

1
2 in APPNP as per the implementation in the respective

work, where D̂ and Â are degree and adjacency matrices of the given graph G with an added self-loop.
For CSBMs we fix C = 0.01 for comparability between experiments and models in the main section.
We find that changing C has little effect on the accuracy but can strongly affect the robustness of
different architectures. Other parameters on CSBM and all parameters on real-world datasets are set
using 4-fold cross-validation.

We outline the hyperparameters for Cora-MLb, for CSBM all parameters have been mentioned above
except the Skip-α for GCN Skip-α and α for APPNP, which both have been set to 0.2.

• GCN (Row Norm.): C = 0.75

• GCN (Sym. Norm.): C = 1

• SGC (Row Norm.): C = 0.75

20

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

• SGC (Sym Norm.): C = 0.75

• APPNP (Sym. Norm.): C = 1, α = 0.1

• MLP: C = 0.5

• GCN Skip-α: C = 1, α = 0.1

• GCN Skippc: C = 0.5

For Cora-ML, the following hyperparameters were set:

• GCN (Row Norm.): C = 0.05

• SGC (Row Norm.): C = 0.0575

• MLP: C = 0.004

again chosen by 4-fold cross-validation, but choosing the result with lowest C in the standard
deviation of the best validation accuracy, to reduce runtime of the MILP certification process.

H.3 Hardware

Experiments are run on CPU using Gurobi on an internal cluster. Experiments for CSBM, Cora-MLb
do not require more than 15GB of RAM. Cora-ML experiments do not require more than 20GB of
RAM. The time to certify a node depends on the size of MILP as well as the structure of the concrete
problem. On our hardware, for CSBM and Cora-MLb certifying one node typically takes several
seconds up to one minute on a single CPU. For Cora-ML, certifying a node can take between one
minute and several hours (≤ 10) using two CPUs, depending on the difficulty of the associated MILP.

I Insights on the role of graph structure and architectures

We exemplify study directions enabled through our certification framework. By leveraging CSBMs,
we study the effect of graph connectivity in the poisoning unlabeled setting in Fig. 4a for GCN.
Interestingly, we observe an inflection point at perturbation strength δ = 0.05, where higher con-
nectivity leads to higher certified accuracy against small perturbations, whereas higher connectivity
significantly worsens certified accuracy for strong perturbations. These trends are consistent across
various architectures and attack settings as presented in App. K.2.

Secondly, we study the effect of different α choices in APPNP on its certified accuracy in poison
labeled setting in Fig. 4b. Interestingly, it also shows an inflection point in the perturbation strength
(δ = 0.1), where higher α increases the provable robustness for larger δ, whereas worsens the
provable robustness for smaller δ in Cora-MLb. Notably, this phenomenon is unique to the PU
setting (see App. L.2) and is similarly observed in CSBM as shown in App. K.2. Although this setup
seems to be similar to the connectivity analysis, it is different as the α in APPNP realizes weighted
adjacency rather than changing the connectivity of the graph, that is, increasing or decreasing the
number of edges in the graph. We compare different normalization choices for S in GCN and SGC in
App. L.3. Through these analyses, it is significant to note that our certification framework enables
informed architectural choices from the perspective of robustness.

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN 2×
GCN 1×
GCN 0.5×
GCN 0.25×
GCN 0×

(a) CSBM: PU

0.02 0.05 0.1 0.2

Perturbation Budget δ (p = 2)

0.6

0.7

0.8

0.9

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

APPNP α = 0.1
APPNP α = 0.2
APPNP α = 0.3
APPNP α = 0.5
APPNP α = 1.0 (MLP)

(b) Cora-MLb: PU

Figure 4: (a) Graph connectivity analysis where c× is cp and cq in CSBM model. (b) APPNP analysis
based on α.

21

J Tightness of QPCert

The SVM quadratic dual problem is solved using QPLayer [Bambade et al., 2023], a differentiable
quadratic programming solver. Thus, for evaluating tightness, we use APGD [Croce and Hein, 2020]
with their reported hyperparameters as attack to compute an upper bound on the provable robustness
by differentiate through the learning process (QPLayer). The results in Fig. 5 show that the provable
robustness bounds are tight for small pertubation budgets δ but less tight for larger δ, demonstrating
one limitation. While theoretically, the NTK bounds are tight (Theorem 3), the approach of deriving
element-wise bounds on Q to model A leading to a relaxation of P3(Q) can explain the gap between
provable robustness and empirical attack. Thus, we are excited about opportunities for future work to
improve our approach for modeling A in the MILP P (Q).

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

lower bound
upper bound
GCN
APPNP
SGC
GCN Skip-PC
GCN Skip-α
MLP

(a) CSBM: PU

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

lower bound
upper bound
GCN
SGC
APPNP
MLP
GCN Skip-PC
GCN Skip-α

(b) CSBM: PL

Figure 5: Tightness of our certificate. PU and PL with padv = 0.2.

K Additional Results: CSBM

K.1 Evaluating QPCert and importance of graph information

Fig. 6a shows the same result as Fig. 2a from Sec. 4 establishing that including graph information
boosts worst-case robustness in CSBM too. This also shows that the result is not dataset-specific.
In Fig. 6, we provide the remaining settings in correspondence to Fig. 3, Poison Labeled PL and
Backdoor Labeled BL for CSBM. Similarly, the heatmaps showing the certified accuracy gain with
respect to MLP is presented in Fig. 7.

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GCN Skip-PC
GCN Skip-α
MLP

(a) CSBM: PL, padv = 1

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GCN Skip-PC
GCN Skip-α
MLP

(b) CSBM: PL, padv = 0.2

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GCN Skip-PC
GCN Skip-α
MLP

(c) CSBM: BL, padv = 0.2

Figure 6: Certifiable robustness for different (G)NNs in Poisoning Labeled (PL) and Backdoor
Labeled (BL) setting.

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0B
u

d
ge

t
δ

(p
=
∞

)

−0.6

−0.4

−0.2

0.0

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(a) GCN

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0B
u

d
ge

t
δ

(p
=
∞

)

−0.4

−0.2

0.0

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(b) SGC

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0B
u

d
ge

t
δ

(p
=
∞

)

−0.6

−0.4

−0.2

0.0

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(c) APPNP

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0B
u

d
ge

t
δ

(p
=
∞

)

−0.6

−0.4

−0.2

0.0

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(d) GCN Skip-PC

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0B
u

d
ge

t
δ

(p
=
∞

)

−0.6

−0.4

−0.2

0.0

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(e) GCN Skip-α

Figure 7: Heatmaps showing certified accuracy gain that is the difference of certified accuracy
between GCN and MLP of different GNNs for Poison Unlabeled (PU) setting.

22

K.2 On graph connectivity and architectural insights

We present the sparsity analysis for SGC and APPNP in (a) and (b) of Fig. 8, showing a similar
observation to GCN in App. I. The APPNP α analysis for PU and PL are provided in (c) and (d) of
Fig. 8, showing the inflection point in PU but not in PL. Additionally, we show the influence of
depth, linear vs ReLU, regularization C and row vs symmetric normalized adjacency in Fig. 9.

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

SGC 2×
SGC 1×
SGC 0.5×
SGC 0.25×
SGC 0×

(a) SGC, PU

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

APPNP 2×
APPNP 1×
APPNP 0.5×
APPNP 0.25×
APPNP 0×

(b) APPNP, PU

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

α = 0.0
α = 0.1
α = 0.2
α = 0.3
α = 0.5
α = 1.0 (MLP)

(c) APPNP, PU

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

α = 0.0
α = 0.1
α = 0.2
α = 0.3
α = 0.5
α = 1.0 (MLP)

(d) APPNP, PL

Figure 8: (a)-(b): Graph connectivity analysis where c× is cp and cq in CSBM model. GCN is
provided in Fig. 4a. (c)-(d): APPNP analysis based on α.

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN row
GCN sym
SGC row
SGC sym

(a) S in GCN, SGC

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

SGC L = 1
SGC L = 2
SGC L = 4

(b) Hidden layers L

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN Skip-PC linear
GCN Skip-PC relu
GCN Skip-α linear
GCN Skip-α relu

(c) Skip connections

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

C = 0.001
C = 0.01
C = 0.1

(d) Regularization

Figure 9: (a): Symmetric and row normalized adjacencies as the choice for S in GCN and SGC.
(b): Effect of number of hidden layers L. (c): Linear and relu for the Skip-PC and Skip-α. (d):
Regularization C in GCN. All experiments in PU setting and padv = 0.2.

K.3 Results for p = 2 perturbation budget

We present the results for p = 2 perturbation budget evaluated on CSBM and all the GNNs considered.
We focus on Poison Unlabeled setting. Fig. 10 and Fig. 11 show the results for this case. Certifiable
robustness for all GNNs and accuracy gain with respect to MLP for GCN and SGC are provided in
Fig. 10. Other heatmaps showing the accuracy gain with respect to MLP is in Fig. 11. All the results
are in identical to p = ∞ setting and we do not see any discrepancy.

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GCN Skip-PC
GCN Skip-α
MLP

(a) CSBM: PU

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

2)

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(b) GCN

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

2)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(c) SGC

Figure 10: (a): Certifiable robustness for different (G)NNs in Poisoning Unlabeled (PU). (b)-(c):
Certified accuracy gain for GCN and SGC. All experiments with Poisoning Unlabeled (PU) and
padv = 0.2

K.4 Comparison between p = ∞ and p = 2

We provide a comparison between p = ∞ and p = 2 perturbation budget, showing that p = 2 is
tighter than p = ∞ for the same budget as expected.

23

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

2)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(a) APPNP

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

2)

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(b) GCN Skip-PC

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

2)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(c) GCN Skip-α

Figure 11: Heatmaps of different GNNs for Poison Unlabeled (PU) setting.

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

p =∞
p=2
GCN
APPNP
SGC
MLP

Figure 12: Comparison between p = ∞ and p = 2 for Poison Unlabeled setting. padv = 0.2.

L Additional results: Cora-MLb

L.1 Evaluating QPCert

Fig. 13a shows the certified accuracy on Cora-MLb for the BL settings for pcert = 0.1. Figs. 13b, 13c
and 14 show a detailed analysis into the certified accuracy difference of different GNN architectures
for PU setting for pcert = 0.1.

0 0.01 0.02 0.05 0.1 0.2 0.5

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GCN Skip-PC
GCN Skip-α
MLP

(a) BL, padv = 0.1

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.8

−0.6

−0.4

−0.2

0.0

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(b) GCN

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.8

−0.6

−0.4

−0.2

0.0

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in
(c) SGC

Figure 13: (a) Backdoor Labeled (BL) Setting. (b)-(c) Heatmaps of GCN and SGC for Poison
Unlabeled (PU) setting on Cora-MLb with padv = 0.1.

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.8

−0.6

−0.4

−0.2

0.0

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(a) APPNP

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.8

−0.6

−0.4

−0.2

0.0

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(b) GCN Skip-α

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.8

−0.6

−0.4

−0.2

0.0

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(c) GCN Skippc

Figure 14: Heatmaps of APPNP, GCN Skip-α and GCN Skippc for Poison Unlabeled (PU) setting
on Cora-MLb with padv = 0.1.

L.2 APPNP

Fig. 15 shows that the inflection point observed in Fig. 4b is not observed in the other settings.

24

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

APPNP α = 0.1

APPNP α = 0.2

APPNP α = 0.3

APPNP α = 0.5

MLP

(a) PL

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy APPNP α = 0.1

APPNP α = 0.2

APPNP α = 0.3

APPNP α = 0.5

MLP

(b) BL

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy APPNP α = 0.1

APPNP α = 0.2

APPNP α = 0.3

APPNP α = 0.5

MLP

(c) BU

Figure 15: Cora-MLb, all settings with padv = 0.05.

L.3 Symmetric vs. row normalization of the adjacency matrix

0 0.01 0.02 0.05 0.1 0.2

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN Row.

GCN Sym.

SGC Row.

SGC Sym.

MLP

(a) S in GCN, SGC, PU

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN Row.

GCN Sym.

SGC Row.

SGC Sym.

MLP

(b) S in GCN, SGC, PL

Figure 16: Influence of symmetric and row normalized adjacency in GCN and SGC for poison
unlabeled and poison labeled settings.

M Additional results: Cora-ML

For Cora-ML we choose 100 test nodes at random and investigate in Fig. 17a the poison labeled
(PL) setting with a strong adversary padv = 1.0 for GCN, SGC and MLP. It shows that QPCert can
provide non-trivial robustness guarantees even in multiclass settings. Fig. 17b shows the results for
poison unlabeled (PU) and padv = 0.05. Only SGC shows better worst-case robustness than MLP.
This, together with both plots showing that the certified radii are lower compared to the binary-case,
highlights that white-box certification of (G)NNs for the multiclass case is more challenging for
QPCert and an interesting direction for future research.

0 0.01 0.02 0.05

Perturbation budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN

SGC

MLP

(a) Cora-ML PL padv = 1.0

0 0.01 0.02 0.05

Perturbation budget δ (p = 2)

0.3

0.4

0.5

0.6

0.7

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN

SGC

MLP

(b) Cora-ML PU padv = 0.05

Figure 17: Cora-ML results for PL and PU.

N Related works

Poisoning certificates. The literature on poisoning certificates is significantly less developed than
certifying against test-time (evasion) attacks [Li et al., 2023] and we provide an overview in Table 2.

25

Table 2: Representative selection of data poisoning and backdoor attack certificates. To the best of
our knowledge, it contains all white-box works. Our work presents the first white-box certificate
applicable to (graph) neural networks and Support Vector Machines (SVMs). Poisoning refers
to (purely) training-time attacks. A backdoor attack refers to joint training-time and test-time
perturbations. Certificates apply to different attack types: (i) Clean-label: modifies the features of
the training data; (ii) Label-flipping: modifies the labels of the training data; (iii) Joint: modifies
both features and labels; (iv) General attack: allows (arbitrary) insertion/deletion, i.e., like (iii) but
dataset size doesn’t need to be constant; (v) Node injection: particular to graph learning, refers to
adding nodes with arbitrary features and malicious edges into the graph. It is most related to (iv)
but does not allow deletion and can’t be compared with (i) and (ii). Note that certificates that only
certify against (iii)− (v) cannot certify against clean-label or label-flipping attacks individually.

Deterministic Certified Models Perturbation Model Applies to ApproachPois. Backd. Attack Type Node Cls.
[Ma et al., 2019]

B
la

ck
B

ox

✗ Diff. Private Learners ✓ ✗ Joint ✗ Differential Privacy
[Liu et al., 2023] ✗ Diff. Private Learners ✓ ✗ General ✗ Differential Privacy
[Wang et al., 2020] ✗ Smoothed Classifier ✗ ✓ Joint ✗ Randomized Smoothing
[Weber et al., 2023] ✗ Smoothed Classifier ✗ ✓ Clean-label ✗ Randomized Smoothing
[Zhang et al., 2022] ✗ Smoothed Classifier ✓ ✓ Joint ✗ Randomized Smoothing
[Lai et al., 2024] ✗ Smoothed Classifier ✓ ✗ Node Injection ✓ Randomized Smoothing
[Jia et al., 2021] ✗ Ensemble Classifier ✓ ✗ General ✗ Ensemble (Majority Vote)

[Rosenfeld et al., 2020] ✓ Smoothed Classifier ✓ ✗ Label Flip. ✗ Randomized Smoothing
[Levine and Feizi, 2021] ✓ Ensemble Classifier ✓ ✗ Label Flip./General ✗ Ensemble (Majority Vote)
[Wang et al., 2022] ✓ Ensemble Classifier ✓ ✗ General ✗ Ensemble (Majority Vote)
[Rezaei et al., 2023] ✓ Ensemble Classifier ✓ ✗ General ✗ Ensemble (Run-Off Election)

[Drews et al., 2020] ✓ Decision Trees ✓ ✗ General ✗ Abstract Interpretation
[Meyer et al., 2021] ✓ Decision Trees ✓ ✗ General ✗ Abstract Interpretation
[Jia et al., 2022] ✓ k-Nearest Neighbors ✓ ✗ General ✗ Majority Vote
[Bian et al., 2024] ✓ Naive Bayes Classifier ✓ ✗ Clean-label ✗ Algorithmic
Ours W

hi
te

B
ox

✓ NNs & SVMs ✓ ✓ Clean-label ✓ NTK & Linear Programming

Black-box certificates for poisoning are derived following three different approaches: (i) Randomized
smoothing, a popular probabilistic test-time certificate strategy [Cohen et al., 2019], in which
randomization performed over the training dataset [Rosenfeld et al., 2020, Weber et al., 2023, Zhang
et al., 2022]. Other than data partitioning, a common defense is to sanitize the data, and Hong
et al. [2024] certifies diffusion-based data sanitation via randomized smoothing. (ii) Ensembles:
Creating separate partitions of the training data, training individual base classifiers on top of them and
certifying a constructed ensemble classifier [Levine and Feizi, 2021, Jia et al., 2021, Wang et al., 2022,
Rezaei et al., 2023]; Jia et al. [2021] and Chen et al. [2022] offer certificates and collective certificates,
respectively, for bagging, while Levine and Feizi [2021] and Wang et al. [2022] derive certificates for
aggregation-based methods tailored for black-box classifiers. (iii) Differential Privacy3 (DP): Ma
et al. [2019] show that any (ϵ, δ)-DP learner enjoys a certain provable poisoning robustness. Liu et al.
[2023] extend this result to more general notions of DP. Xie et al. [2023] derives guarantees against
arbitrary data poisoning in DP federated learning setup. However, white-box deterministic poisoning
certificates remain sparse. Drews et al. [2020] and Meyer et al. [2021] derive poisoning certificates
for decision trees using abstract interpretations, while Jia et al. [2022] provides a poisoning certificate
for nearest neighbor algorithms based on their inherent majority voting principle. Recently, Bian
et al. [2024] derives a poisoning certificate for naive Bayes classification. However, none of these
approaches can be extended to NNs.

Poisoning attacks and defense using the bilevel problem. The bilevel problem Eq. (3) is investigated
by several works in the context of developing a poisoning attack or empirical defense, including for
SVMs [Biggio et al., 2012, Xiao et al., 2015, Koh and Liang, 2017, Jagielski et al., 2018]. Notably
Mei and Zhu [2015] reformulate the bilevel problem P2(Q) for SVMs to a bilinear single-level
problem similar to P3(Q) but only solve it heuristically for attack generation and do not realize
the possibility of a MILP reformulation and certification. Koh and Liang [2017] also considers the
bilevel problem to detect and also generate poisoned samples using influence functions (gradient and
Hessian vector product). Other works [Biggio et al., 2012, Xiao et al., 2015] use the bilevel problem
with SVM hinge loss and regularized ERM to generate poison samples, and solve it using iterative
gradient ascent.

3The mechanism to derive a poisoning certificate from a certain privacy guarantee is model agnostic, thus we
count it as black-box. However, the calculated privacy guarantees may depend on white-box knowledge.

26

Graphs. Currently, there are no poisoning certificates for clean-label attacks specifically developed
for GNNs or the task of node classification. [Lai et al., 2024] is the only work on poisoning
certification of GNNs, but differ incomparably in their threat model and are black-box as well as not
applicable to backdoors. Lingam et al. [2024] develops a label poisoning attack for GNNs using the
bilevel problem with a regression objective and including NTKs as surrogate models. However, there
are many works on certifying against test-time attacks on graphs and Günnemann [2022] provides an
overview.

We note that [Steinhardt et al., 2017] develops statistical bounds on the loss that are not applicable to
certify classification. Robustness to data poisoning can be related to protection of privacy [Ma et al.,
2019], but may affect fairness [Ma et al., 2022]. We discuss the broader impact in App. O.

O Broader impact

Our method represents a robustness certificate for white-box models. This allows a more informed
decision when it comes to safety aspects of currently used models. However, insights into worst-case
robustness can be used for good but potentially also by malicious actors. We strongly believe that
research about the limitations of existing models is crucial in making models safer and thus, outweighs
potential risks. We are not aware of any direct risks coming from our work.

27

	Introduction
	Preliminaries
	QPCert: Our certification framework
	Experimental results
	Architecture definitions
	Derivation of NTK for (A)PPNP
	NTKs for GCN and SGC
	QPCert for GNNs through their corresponding NTKs
	Derivation of NTK bounds
	Bounding Eij and ij in the NTK
	Derivation of th:tightbounds: NTK bounds are tight

	Multi-class certification and extension to an inductive setting
	Proof of prop:innerprob
	Setting big-M constraints
	Additional experimental details
	Datasets
	Architectures
	Hardware

	Insights on the role of graph structure and architectures
	Tightness of QPCert
	Additional Results: CSBM
	Evaluating QPCert and importance of graph information
	On graph connectivity and architectural insights
	Results for p=2 perturbation budget
	Comparison between p= and p=2

	Additional results: Cora-MLb
	Evaluating QPCert
	APPNP
	Symmetric vs. row normalization of the adjacency matrix

	Additional results: Cora-ML
	Related works
	Broader impact

