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Making Large Language Models Perform Better in
Knowledge Graph Completion

Anonymous Author(s)

ABSTRACT
Large language model (LLM) based knowledge graph completion
(KGC) aims to predict the missing triples in the KGs with LLMs.
However, research about LLM-based KGC fails to sufficiently har-
ness LLMs’ inference proficiencies, overlooking critical structural
information integral to KGs. In this paper, we explore methods to
incorporate structural information into the LLMs, with the over-
arching goal of facilitating structure-aware reasoning. We first
discuss on the existing LLM paradigms like in-context learning and
instruction tuning, proposing basic structural information injec-
tion approaches. Then we propose a Knowledge Prefix Adapter
(KoPA) to fulfill this stated goal. The KoPA uses a structural pre-
training phase to comprehend the intricate entities and relations
within KGs, representing them as structural embeddings. Then
KoPA communicates such cross-modal structural information
understanding to the LLMs through a knowledge prefix adapter
which projects the structural embeddings into the textual space
and obtains virtual knowledge tokens positioned as a prefix of
the input prompt. We conduct comprehensive experiments and
provide incisive analysis concerning how the introduction of cross-
modal structural information would be better for LLM’s factual
knowledge reasoning ability. Our code and data are available at
anonymous.4open.science/r/KoPA-3415.

CCS CONCEPTS
• Information systems → Information integration; • Computing
methodologies→ Natural language generation; Semantic networks.

KEYWORDS
Knowledge Graphs, Knowledge Graph Completion, Large Language
Models, Graph-text Fusion, Cross-modal Adapter

1 INTRODUCTION
Knowledge graphs (KGs) [2] are the quintessential wisdom essence
and key infrastructure of modern AI. KGs represent and store real-
world knowledge in the triple form: (head entity, relation, tail entity).
This structured format of knowledge triples offers significant advan-
tages across many AI fields such as recommendation systems [30],
question answering [42], and fault analysis [7]. However, there is a
pertinent drawback of KGs, whether manually curated or automat-
ically extracted. Their scope is restricted to observed knowledge,

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: A simple case of LLM-based KGC. Useful struc-
tural information that describes the surrounding informa-
tion about the entities can serve as auxiliary prompts and
guide the LLM to make correct decisions.

resulting in an incomplete representation riddled with unobserved
or missing triples. This phenomenon motivates knowledge graph
completion (KGC), which aims to predict the missing triples and
further enhance the given KG.

Existing KGC approaches can be divided into two categories:
methods based on embeddings [3] and pre-train language models
(PLM) [40]. Recently, as large language models (LLMs) [23, 46] show
outperforming capabilities [24], this field has recently been revo-
lutionized by LLMs. Some works [41] make the first step towards
LLM-based KGC, employing existing paradigms like zero-shot rea-
soning (ZSR) [4] and instruction tuning (IT) [24] to accomplish
the KGC task. However, such approaches transform the KGC task
into a text-based prediction of individual triples, leading to specific
fundamental problems. LLMs lack the depth and precision of factual
knowledge which always results in the hallucination [48] problem
of LLMs. Besides, the structural intricacies of KGs such as sub-
graph structure, relational patterns, and relative entities/relations
are often overlooked. This richly non-textual structured infor-
mation, if properly incorporated, can significantly enhance the
LLM’s understanding and representation of KGs. Figure 1 presents
an intuitive view of the importance of structural information for
LLM reasoning. However, this is neglected by vanilla ZSR and IT
approaches [41] because each input typically only includes a single
input triple, leading to potential wastage of the structural informa-
tion inherent in the KG. Such an approach fails to equip the LLMs
with the awareness of the KG structure.

To address these issues, we take a strategic step to LLM-based
KGC, aiming to explore how to incorporate the KG structural infor-
mation into the LLMs and enable structure-aware reasoning. Our
initial focus involves transferring the existing LLM paradigms such
as in-context learning (ICL) [9] and instruction tuning (IT) [24] to a

https://anonymous.4open.science/r/KoPA-3415
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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structure-aware context. We propose a structure-aware ICL method
and a structure-aware IT method as the base models, focusing on
integrating the KG structural information into LLM through text
form. Such an approach benefits from the fact that specific textual
information exists about entities and relationships in KG so that
we can use the text to represent this knowledge as complementary
background information, expecting that LLMs can learn the local
structural information in KG through textual prompts. But they also
have the obvious disadvantage that there is a clear semantic divide
between structural and textual information. The textual descrip-
tions in the expanded prompt still fail to fully exploit the structural
information in the complex KG.

Additionally, we propose a novel Knowledge Prefix Adapter
(KoPA) approach to make LLMs a better knowledge reasoner, lever-
aging structural embedding pre-training to capture the KG
structural information. Then KoPA transforms the structural
embeddings into textual embedding space by a knowledge prefix
adapter and obtains several virtual knowledge tokens. These to-
kens, acting as prefixes in the input prompt sequence, direct
the instruction-tuning process, providing valuable supplementary
input triple information. This mapping of structural embeddings to
textual form provides auxiliary information to input triples. Besides,
we conduct comprehensive analysis and experiments, highlight-
ing the remarkable performance and transferability of KoPA. In
summary, our contribution is three-folded:
• Extending the existing LLM paradigms. We are the first
extensive investigation of LLM-based KGC methods, specifically
by incorporating KG structural information to enhance the rea-
soning ability of LLMs. We discuss the pipeline to adapt the
existing LLM paradigms like ICL and IT to a structure-aware
setting for KGC using addtional textual prompts.

• Designing new cross-modal LLM paradigm.We further pro-
pose a knowledge prefix adapter (KoPA) that effectively inte-
grates pre-trained KG structural embeddings with LLMs. KoPA
fosters comprehensive cross-modal interactions between tex-
tual embeddings from LLMs and structural embeddings sourced
from KGs to enhance LLM’s reasoning ability.

• Comprehensive evaluation. We conduct extensive experi-
ments on three public benchmarks and evaluate the KGC per-
formance of all the structure-aware methods proposed by us
with adequate baseline comparison with further exploration of
the transfer ability and knowledge retention degree.

2 RELATEDWORKS
2.1 Knowledge Graph Completion
Knowledge graph completion (KGC) [37] is an important topic in
the KG community, aiming to mine unobserved triples in a given
KG. KGC contains several sub-tasks such as triple classification
[3], entity prediction [3]. The common point among KGC tasks is
to establish an effective mechanism to measure the plausibility of
the triples. The mainstream KGC methods can be divided into two
categories: embedding-based and PLM-based methods. Embedding-
based methods [3, 31, 34, 38] are designed to embed the entities
and relations of KGs into continuous representation spaces. These
approaches make full use of structural information from the KGs
to model triple plausibility with a well-designed score function and

learn the entity/relation embeddings in a self-supervised manner.
Moreover, PLM-based methods consider KGC as text-based tasks
by fine-tuning pre-trained language models [8]. The short textual
descriptions are organized as an input sequence and encoded by the
PLMs. KG-BERT [40] is the first PLM-based method that models
KGC as a binary text classification task. Subsequent works like
MTL-KGC [16] and StAR [35] have further improved KG-BERT by
introducing more training tasks such as relation classification and
triple ranking and more complex triple encoding strategy. PKGC
[21] utilizes manual prompt templates to capture the triple semantic.
Other methods like KGT5 [5, 29] make a step on the generative KGC
[43] in a sequence-to-sequence paradigm with encoder-decoder
PLMs like T5 [27]. PLM-based methods leverage the power of PLM
but make the training process into text-based learning, which is
difficult to capture complex structure information in the KGs.

2.2 LLMs for KG research
In recent years, large language models (LLMs) [23, 33, 46] have
made rapid progress and demonstrated powerful capabilities in a
considerable number of text-related tasks [49]. LLMs are usually
pre-trained in an auto-regressive manner with next word prediction
task [4] and demonstrate strong capability on text comprehension
and generation. Among the research topics of LLM, integrating
LLM and KG [25] is a popular and important one. On the one hand,
hallucination [39, 48] is widespread in LLMs which means LLMs
are lack factual knowledge and not interpretable. KGs that store
structured knowledge can mitigate such a phenomenon [10, 15,
26] by introducing factual knowledge into LLMs. On the other
hand, LLMs can benefit KG-related tasks such as KGC [51, 52],
entity alignment [47], and KGQA [1] by its powerful generation
capability. KGs for LLMs (KG4LLM) and LLMs for KGs (LLM4KG)
are both important research topics. We focus on applying LLMs in
the KGC task (LLM4KGC), which has not been carefully studied yet.
KGLLaMA [41] made the first step by vanilla instruction tuning
approach but it lacks in-depth and systematic exploration about
how to unleash the power of KGs themselves to make structure-
aware reasoning in LLMs and achieve better KGC performance. In
this paper, we will dive into this problem from a more systematic
perspective with the knowledge graph completion task.

2.3 Incorporate Non-textual Modality
Information into LLMs

As LLMs demonstrate generalizable capabilities on text generation,
many otherworks attempt to incorporate non-textualmodality such
as images [19, 50], audio [22], and video [22], which are also called
multi-modal LLMs [45]. These methods tend to encode non-textual
information through the modality encoders and then process it as
virtual text tokens. The non-textual tokens are aligned with the
word tokens by instruction tuning on multi-modal datasets.

The multi-modal LLM mentioned above usually excludes graph,
which is another important data modality. There are also some
works talking about how to incorporate graph data into LLMs.
Drug-Chat [17] proposes to encode the drug molecule graphs with
graph encoders and fine-tune the LLM to predict drug interactions.
Other works [11, 18, 36, 44] explore how to solve graph learning
tasks like node classification and graph classification by convert
the graph structure information into LLMs.
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Our research is relative to this topic as KGs also have complex
graph structures on top of the text descriptions. In this paper, we
will explore how to incorporate complex structural information in
the KGs into the LLMs to achieve better reasoning capabilities on
knowledge graph completion.

3 BASIC SETTINGS FOR LLM-BASED KGC
3.1 Notations and Preliminaries
A KG can be denoted as G = (E,R,T ,D) where E,R are the entity
set, relation set respectively. T = {(ℎ, 𝑟, 𝑡) | ℎ, 𝑡 ∈ E, 𝑟 ∈ R} is the
triple set andD is the description set of each entity and relation. We
denote D(𝑒),D(𝑟 ) as the short textual description of each entity
𝑒 ∈ E and each relation 𝑟 ∈ R. For example, the text description of
the entity ’/m/0ctzf1’ is D(’/m/0ctzf1’)=’The Transformers’. When
applying LLMs to KGC tasks, we denote a LLM asM that serves as a
text decoder. The input textual sequence S of the modelM consists
of several parts: the instruction prompt I, the triple prompt X, and
the optional auxiliary demonstration prompt U. The instruction
prompt I is the manually prepared instruction to guide the LLMM
to execute the KGC task. The triple prompt X contains the textual
information about the triples that need to be processed, which can
be denoted asX(ℎ, 𝑟, 𝑡) = D(ℎ) ⊕D(𝑟 ) ⊕D(𝑡), where (ℎ, 𝑟, 𝑡) ∈ T
is a triple and ⊕ denotes the textual token concatenation operation.
In other words, the short descriptions of ℎ, 𝑟, 𝑡 would be applied as
the input information. The auxiliary demonstration promptU is
an optional prompt for different settings. In the following, we will
follow this set of notations.

Meanwhile, we use triple classification as an entry point to in-
vestigate how to utilize LLM to accomplish the KGC task. Triple
classification is a basic KGC task aiming to conduct binary classi-
fication tasks on the given triples. Whereas in the LLM paradigm,
all tasks are converted into the form of text generation. Therefore,
we desire the model M to answer true or false given the textual
sequence input S = I ⊕ U ⊕ X.

Triple classification is different from vanilla text classification
because the entities and the relations in the prompt have complex
semantic information defined by the given KG. Without knowledge
of this type of information, the model response is unreliable and
unstable. Despite the vast amount of commonsense knowledge
that exists in the LLMs [48], research has shown that large models
are numb to fine-grained factual knowledge and will fall into a
hallucination. Thus, incorporating the KG information into the
prompt to provide more auxiliary information and guide the LLM
to make structure-aware reasoning is the key to achieving excellent
LLM-based KGC.

3.2 Extending Existing LLM Paradigms
In this section, we first discuss how to solve the KGC task with
existing mainstream LLM paradigms called training-free reasoning
approaches and instruction-tuning approaches.

3.2.1 Training-free reasoning approaches. Training-free rea-
soning approaches prompt the LLMs to get direct answers without
training. Common training-free methods consist of zero-shot rea-
soning (ZSR) and in-context learning (ICL). For ZSR, we directly
utilize the sequence S𝑧𝑠𝑟 = I ⊕X as the input to get the prediction

results. The decoding process of the LLM M can be formulated as:

A𝑧𝑠𝑟 = argmax
A

𝑃M (A|S𝑧𝑠𝑟 )

= argmax
A

𝑃M (A|I𝑧𝑠𝑟 ,X) (1)

where A is the generated answer of the model M and I𝑧𝑠𝑟 is
the instruction template for ZSR. In the setting of ZSR, no KG
information is added to the input sequence S𝑧𝑠𝑟 . The determinative
information in the ZSR prompt is only the textual descriptions of
the test triple. ZSR is unable to incorporate KG information due to
its setting limitations, otherwise, it cannot be called zero-shot.

As another training-free paradigm, in-context learning (ICL) [9]
allows the modelM to add auxiliary demonstrationU to the input
S and accomplish the task in the form of analogical reasoning,
which can be denoted as:

A𝑖𝑐𝑙 = argmax
A

𝑃M (A|S𝑖𝑐𝑙 )

= argmax
A

𝑃M (A|I𝑖𝑐𝑙 ,U,X) (2)

As for the triple classification task, the demonstration U should
be some triples and their labels in the form of {(X𝑖 , 𝑦𝑖 ), 1 ≤ 𝑖 ≤ 𝑘},
where X𝑖 is the demonstration triple and 𝑦𝑖 is the label. We denote
the ICL with 𝑘 demonstrations as 𝑘-shot ICL.

The demonstration triples can be randomly sampled from the
existing training KG. However, to further incorporate the relative
KG information of the test triple (ℎ, 𝑟, 𝑡), we propose to sample
triples that are in the local structure of ℎ and 𝑡 , which means one
of the entities in each sampled triple should be ℎ or 𝑡 . Besides, as
existing KG only consists of positive triples, we employ negative
sampling [21] to sample negative triples for demonstration. The
number of positive and negative triples are the same for balanced
predictions. In the demonstration prompt, the positive triples are
labeled as true and the negative triples are labeled as false.

By doing this, we incorporate the local structural information
into the demonstration prompt U with both positive and nega-
tive samples. Such a structure-aware demonstration could better
enhance the analogical reasoning process of the modelM.

3.2.2 Instruction tuning approaches. Instruction tuning ap-
proaches fine-tune the LLMs with instruction template to activate
the instruction following ability of LLMs. Vanilla instruction tun-
ing leverages the input S𝑖𝑡 to fine-tune LLMs. The instruction
prompt I𝑖𝑡 will describe the details of completing the triple classi-
fication task and the triple prompt X consists of the input triple.
No other auxiliary demonstrations are included in the input tem-
plate. To train the model M, the input sequence is organized as
S𝑖𝑡 = I𝑖𝑡 ⊕ X ⊕ A𝑖𝑡 , where A𝑖𝑡 is the predicted answer of the
training data. The modelM is fine-tuned with the next word pre-
diction task [49] which is a universal approach to training LLMs.
The training objective can be formulated as:

L𝑖𝑡 = − 1
|S𝑖𝑡 |

|S𝑖𝑡 |∑︁
𝑖=1

log 𝑃M (𝑠𝑖 |𝑠<𝑖 ) (3)

where 𝑠𝑖 (𝑖 = 1, 2, . . . , |S𝑖𝑡 |) represents the textual tokens of the
input sequenceS𝑖𝑡 . In the inference stage, themodelM is employed
to predict the answer A𝑖𝑡 of the test data like Equation 1. Besides,
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Figure 2: An overview of the knowledge prefix adapter (KoPA) by us. KoPA first pre-trains structural embeddings for the
entities and relations in the given KG and then employs instruction tuning to fine-tune the LLM. The structural embeddings of
the given input triple will be projected into the textual space of the LLM by the adapter and serve as prefix tokens in the front
of the input sequence, which can be "seen" by the following textual tokens due to the unidirectional attention mechanism in
the decoder-only LLM.

negative sampling [21] is also applied to generate negative data
samples as training KG only consists of positve triples.

To incorporate semantic-rich KG information into LLMs, we
also propose a structure-aware instruction tuning approach by
adding the one-hop neighborhood structure information in the
input prompt to inform the LLM with the local structural informa-
tion. As mentioned before, the structural information of KG plays a
significant role in the KGC tasks [37]. To incorporate such KG infor-
mation during the fine-tuning stage, we achieve this goal by adding
the neighborhood descriptions of the input triple. Specifically, we
can sample the neighborhoods of the head ℎ and tail 𝑡 and put the
textual descriptions of neighborhood triples in the demonstration
promptU𝑖𝑡 . In this way, the input training sequence is enhanced
as S𝑖𝑡 = I𝑖𝑡 ⊕ U𝑖𝑡 ⊕ X ⊕ A𝑖𝑡 .

Therefore, we provide a detailed discussion of how the existing
LLM paradigms can introduce local structural information about
KGs to further enhance the model performance. However, though
these approaches can work to some extent, they have obvious
drawbacks. This textbf fundamental approaches to incorporate
KG structural information focus on adding the neighborhood
information to the input prompt in the text form. However,
representing the KG structural information in text is not a good
choice, which may bring in more invalid or redundant information
to the prompt. It’s not scalable and effective to increase prompt
length indefinitely because a long context will lead to both a decline
in model capability and high computational consumption. Besides,
we also have difficulty finding the structural information in the
KGs that is decisive for triple discrimination. These two problems
put us in a dilemma.

4 METHODLOGY
To solve such issues, we propose the Knowledge Prefix Adapter
(KoPA for short) to incorporate the KG structural information into
LLM for KGC. Figure 2 presents an intuitive view of KoPA. Firstly
we extract the structural information of entities and relations from
the KG through structural embedding pre-training, and then we

inform this structural information to LLM through a structural
prefix adapter into the input sequence S. The LLM M is further
fine-tuned with the structural-enhanced text sequence. We will
discuss the details in the next few sections about our design.

4.1 Structural Embedding Pre-training
Instead of adding text about the neighborhood information into
the input sequence, KoPA extracts the structural information of
the entities and relations by self-supervised structural embedding
pre-training. For each entity 𝑒 ∈ E and each relation 𝑟 ∈ R, we
learn a structural embedding 𝒆 ∈ R𝑑𝑒 , 𝒓 ∈ R𝑑𝑟 respectively, where
𝑑𝑒 , 𝑑𝑟 are the embedding dimensions. We encode the KG struc-
tural information in the embeddings and further adapt them into
the textual representation space of LLMs. Referring to the exist-
ing embedding-based KGC paradigm, we define a score function
F (ℎ, 𝑟, 𝑡) to measure the plausibility of the triple (ℎ, 𝑟, 𝑡). We adopt
the self-supervised pre-training objective by negative sampling [3]:

L𝑝𝑟𝑒 =
1
|T |

∑︁
(ℎ,𝑟,𝑡 ) ∈T

(
− log𝜎 (𝛾 − F (ℎ, 𝑟, 𝑡))

−
𝐾∑︁
𝑖=1

𝑝𝑖 log𝜎 (F (ℎ′𝑖 , 𝑟
′
𝑖 , 𝑡

′
𝑖 ) − 𝛾)

) (4)

where 𝛾 is the margin, 𝜎 is the sigmoid activation function and
(ℎ′
𝑖
, 𝑟 ′
𝑖
, 𝑡 ′
𝑖
) (𝑖 = 1, 2, . . . , 𝐾) are 𝐾 negative samples [3] of (ℎ, 𝑟, 𝑡).

The weight 𝑝𝑖 is the self-adversarial weights proposed in [31].
By minimizing such a pre-training loss, the structural embed-

dings of each entity and relation are optimized to fit all its relative
triples thus the KG structural information such as subgraph struc-
ture and relational patterns is captured in the embeddings. Such
an approach has been proven effective in many embedding-based
KGC methods [3, 31] to capture classic structural information like
relational patterns and distributed entity representations [13] in
the earliest days.
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Table 1: Comparasion among LLM-based KGC methods in
three ways. As for the prompt length anaysis, 𝐿𝐼 , 𝐿𝑇 denote
the length of the instruction prompt and triple prompt. 𝐿𝐷
denotes the length of a demonstration and 𝑘 is the demon-
stration number. ZSR/ICL/IT refer to zero-shot reasoning,
in-context learning, and instruction tuning respectively.

Method Requires
Fine-tuning

Extra
KG Info

Prompt
Length

ZSR % % 𝐿𝐼 + 𝐿𝑇
ICL % ! 𝐿𝐼 + 𝐿𝑇 + 𝑘𝐿𝐷

Vanilla IT ! % 𝐿𝐼 + 𝐿𝑇
Enhanced IT ! ! 𝐿𝐼 + 𝐿𝑇 + 𝑘𝐿𝐷

KoPA ! ! 𝐿𝐼 + 𝐿𝑇 + 3

4.2 Knowledge Prefix Adapter
After structural embedding pre-training, we could obtain the struc-
tural embeddings (𝒉, 𝒓, 𝒕) of a triple (ℎ, 𝑟, 𝑡) where the KG structural
information is encoded in. However, the structural embeddings are
learned in a different representation space against the textual to-
ken representation space of the LLM M, which meansM can not
directly understand these embeddings. Thus we apply a knowledge
prefix adapter P to project them into the textual token representa-
tion space ofM. Specifically speaking, the structural embeddings
are converted to several virtual knowledge tokens K by P:

K = P(𝒉) ⊕ P(𝒓) ⊕ P(𝒕) (5)
In practice, the adapter P would be a simple projection layer

[50]. Then we put K in the front of the original input sequence
S serving as a prefix of the instruction and triple prompt S𝑘𝑝𝑎 =

K ⊕ I𝑖𝑡 ⊕ X. This way, all the following text tokens can be seen
with the prefix K due to the unidirectional attention in decoder-
only LLMs. By doing this, the textual tokens can pay unidirectional
attention to the structural embeddings of the input triple. Such
a structure-aware prompt will be employed during fine-tuning
and inference. During training, we froze the pre-trained structural
embeddings. The adapter is optimized to learn the mapping from
structural knowledge toward textual representation and will have
the generalization to new triples in the inference stage, which will
benefit the textual description and provide the triple information
from another perspective to make enhanced predictions.

4.3 Complexity Analysis
After proposing KoPA, we make a comparison among LLM-based
KGC methods to demonstrate the advantages of KoPA, which is
shown in Table 1. Compared with the basic paradigms (ZSR/ICL/IT),
KoPA incorporates the KG structural embeddings into LLM to
combine the textual and structural information. Meanwhile, KoPA
makes the length of the prompt more refined as the length of virtual
tokens generated by the structural prefix adapter is fixed to 3 for
head/relation/tail respectively. In contrast, the prompt length of
structure-aware IT (enhanced IT in the table) is linearly related to
the number of neighborhood triples 𝑘 . In contrast to methods that
incorporate structural information based on textual descriptions,
KoPA achieves this goal by fixed-length virtual knowledge tokens
generated by the adapter.

Table 2: Statistical information of datasets. The positve (+)
and negative (-) samples are 1:1 in the valid / test set.

Dataset |E | |R| #Train #Valid(+/-) #Test(+/-)

UMLS 135 46 5216 652/652 661/661
CoDeX-S 2034 42 32888 1827/1827 1828/1828

FB15K-237N 13104 93 87282 7041/7041 8226/8226

5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Datasets. In our experiments, we use three public KG bench-
marks UMLS [40], CoDeX-S [28], and FB15K-237N [21] to evaluate
the proposed LLM-based KGC methods. The detailed split informa-
tion of the datasets is shown in Table 2.

5.1.2 Baseline Methods. In our experiments, we provide a com-
prehensive comparison with three broad classes of baselines on
triple classification, which is an important subtask of KGC. The
KGC baselines can be divided into three parts: embedding-based
methods [3, 31, 34, 38], PLM-basedmethods [21, 40], and LLM-based
methods [41]. Besides, we further divide the LLM-based methods
into two categories: training-free methods and fine-tuning methods.
Training-free methods consist of ZSR and ICL while fine-tuning
methods consist of vanilla IT and structure-aware IT (enhanced IT).
The specific models used for these baselines are listed below:

(1). Embedding-based KGC methods. We select four tradi-
tional embedding-based KGC methods for comparisons, namely
TransE [], DistMult [38], ComplEx [34], and RotatE [31]. These
methods predict the triple plausibility by the learned structural
embeddings and the score functions defined in the model.

(2). PLM-based KGC methods. We select KG-BERT [40] and
PKGC [21] as PLM-based KGC baselines, which are classic methods
focusing on the triple classification task. These methods treat triple
classification as a binary text classification task.

(3). LLM-based KGC methods. LLM-based KGC research is
still at an early stage. There are only KGLLaMA [41] to be the
LLM-based KGC baseline. In addition to KGLLaMA, the methods
proposed in Section 3 by us including ZSR, ICL, IT, and structure-
aware IT (enhanced IT) will also serve as baselines.

5.1.3 Implementation and Detail Settings. We reproduce the
baseline results and implement the KoPA proposed by us.

For embedding-based KGC methods, we reproduce the results
with OpenKE we set the embedding dimension 𝑑𝑒 = 𝑑𝑟 = 512 and
sample 𝐾 = 32 negative samples during training. The margin 𝛾 is
tuned among {0, 4, 6, 8, 12}. After training KGC models, we search
for the best classification score threshold on the validation set for
test data following the traditional setting [3].

For PLM-based methods, the backbone model for PLM-based
KGC methods is BERT [8]. We fine-tune the KG-BERT according
to the official code implementation. Since PKGC requires a lot of
manual work to annotate each relation with a prompt, we only
report the results of FB15K-237N shown in the original paper.

For zero-shot reasoning, in addition to measuring with the same
backbone Alpaca, we also test the performance of theGPT-3.5-turbor
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Table 3: The main experiment results of triple classification. We report the accuracy (ACC), precision (P), recall (R), and F1-score
(F1) results for each method on the three datasets. "-" means the result are missing because the specificity of PKGC makes it
difficult to reproduce. The best Acc / F1 results in baselines are marked with underline, and we highlight our results with bold
when we achieve new SOTA.

Model UMLS CoDeX-S FB15K-237N

Acc P R F1 Acc P R F1 Acc P R F1

Embedding-based

TransE [3] 84.49 86.53 81.69 84.04 72.07 71.91 72.42 72.17 69.71 70.80 67.11 68.91
DistMult [38] 86.38 87.06 86.53 86.79 66.79 69.67 59.46 64.16 58.66 58.98 56.84 57.90
ComplEx [34] 90.77 89.92 91.83 90.87 67.64 67.84 67.06 67.45 65.70 66.46 63.38 64.88
RotatE [31] 92.05 90.17 94.41 92.23 75.68 75.66 75.71 75.69 68.46 69.24 66.41 67.80

PLM-based KG-BERT [40] 77.30 70.96 92.43 80.28 77.30 70.96 92.43 80.28 56.02 53.47 97.62 67.84
PKGC [21] - - - - - - - - 79.60 - - 79.50

LLM-based
Training-free

Zero-shot(Alpaca) 52.64 51.55 87.69 64.91 50.62 50.31 99.83 66.91 56.06 53.32 97.37 68.91
Zero-shot(GPT-3.5) 67.58 88.04 40.71 55.67 54.68 69.13 16.94 27.21 60.15 86.62 24.01 37.59

ICL(1-shot) 50.37 50.25 75.34 60.29 49.86 49.86 50.59 50.17 54.54 53.67 66.35 59.34
ICL(2-shot) 53.78 52.47 80.18 63.43 52.95 51.54 98.85 67.75 57.81 56.22 70.56 62.58
ICL(4-shot) 53.18 52.26 73.22 60.99 51.14 50.58 99.83 67.14 59.29 57.49 71.37 63.68
ICL(8-shot) 55.52 55.85 52.65 54.21 50.62 50.31 99.83 66.91 59.23 57.23 73.02 64.17

LLM-based
Fine-tuning

KG-LLaMA [41] 85.77 87.84 83.05 85.38 79.43 78.67 80.74 79.69 74.81 67.37 96.23 79.25
KG-Alpaca [41] 86.01 94.91 76.10 84.46 80.25 79.38 81.73 80.54 69.91 62.71 98.28 76.56

Vanilla IT 86.91 95.18 77.76 85.59 81.18 77.01 88.89 82.52 73.50 65.87 97.53 78.63
Structure-aware IT 89.93 93.27 86.08 89.54 81.27 77.14 88.40 82.58 76.42 69.56 93.95 79.94

KoPA 92.58 90.85 94.70 92.70 82.74 77.91 91.41 84.11 77.65 70.81 94.09 80.81

which has 175B parameters. For the in-context learning method,
we sample k-shot (k=1,2,4,8) structure-aware demonstrations. Be-
sides, we sample 4 neighborhood triples for each triple to conduct
structure-aware instruction tuning. For KoPA, we employ RotatE
[31] and the score function of structural embedding pre-training
and the embedding dimension is set to 512 and the adapter is a
512×4096 linear projection layer.

For KoPA, we employ Alpaca-7B [32] as the LLM backbone. Al-
paca is a famous extended version of LLaMA [33] model fine-tuned
on instruction-following data. We reproduce the triple classification
results of KGLLaMA [41] over two backbones (LLaMA and Alpaca)
to avoid the effect of backbone choice on the results. We name the
two baseline models KGLLaMA and KGAlpaca respectively. For
all the fine-tuning methods (instruction tuning, structure-aware
instruction tuning, and KoPA), we fine-tune Alpaca using LoRA
[14] with rank 64. The number of epochs is searched in {3, 4, 5} and
the learning rate is tuned in {1𝑒−4, 3𝑒−4, 5𝑒−4}. We use the AdamW
optimizer [20] with a fixed batch size of 12. We conducted all the
experiments with Nvidia A800 GPUs. The structural embedding
pre-training process is efficient and only takes several minutes to
finish. Therefore, the main time cost is caused by the LLM fine-
tuning, which takes several hours for different datasets. (1 hour for
UMLS, 4 hours for CoDeX-S, and 8 hours for FB15K-237N in our
experimental environments).

5.1.4 Evaluation Protocol. We evaluate the methods with the
triple classification task [3], which is essentially binary classifica-
tion and all the test datasets are label-balanced. Therefore, we use
accuracy, precision, recall, and F1-score as the evaluation metrics.

5.2 Main Results
The main experiment results of triple classification are shown in Ta-
ble 3. Since precision and recall alone do not give a good response
to the model’s performance on the classification task, we focus
on accuracy and F1-score. However, to provide a comprehensive
analysis of different models, we also report the precision and re-
call results in the table. Overall, we can find that KoPA achieves
outperforming accuracy and F1 results compared with the existing
16 baseline models on all three datasets. Taking CoDeX-S as an
example, KoPA achieves 1.81% improvement in accuracy and 1.85%
improvement on F1. As we use the pre-trained RotatE embeddings
in KoPA, we can observe that KoPA significantly outperforms the
original embedding-based RotatE method, especially on larger and
more challenging datasets like CoDeX-S and FB15K-237N.

Meanwhile, compared with all LLM-based approaches, we can
see that the LLMs cannot understand the KG structural information
well without fine-tuning. The zero-shot LLMs perform very poorly
in the triple classification task even though GPT-3.5-turbo (175B
parameters) has excellent capability. Though the demonstrations
provided by ICL can incorporate the KG information, the perfor-
mance gain is limited. Besides, the prediction results of training-free
methods are biased and easy to slip into the extremes of all-right
or all-wrong, as the recall of them is either very high or very low
but the F1 scores are relatively low all the time.

However, fine-tuning LLMs can introduce the KG information
into LLMs as the overall performance makes obvious improvements.
Meanwhile, though structure-aware IT enhances the input prompt
with neighborhood information of triples, its performance is also
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(a). IR=10% (b). IR=20%
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KoPA Vanilla IT Enhanced IT

Figure 3: The results of the transferbility experiment. We
report the results on CoDeX-S dataset under different induc-
tive rate (IR). Besides, we split the test data into seen (S) and
unseen (U) parts based on whether the entity appeared dur-
ing training. Also we total the results of all (A) the test data
together. Accuracy (Acc) and F1-score (F1) are reported in the
radar charts.
limited compared with KoPA. This suggests that the structural
embeddings consist of more semantic-rich information compared
with text-based auxiliary prompts, which can also be understood
by the LLM through the prefix adapter. Combining the analysis
in Section 4.3 and the experimental results, KoPA achieves better
results on top of shorter prompts.

5.3 Transferability Exploration
The results in the main experiments have shown the effectiveness
of KoPA. To further validate the generality and the transferability
of KoPA, we conduct a new transferability experiment. In this
experiment, we will demonstrate that the knowledge prefix adapter
will learn to transfer from structural embeddings to textual token
representations and provide semantic-rich auxiliary information to
enhance the decoding process of LLM inference.

We demonstrate this point by testing the influence of KoPA for
entities that do not appear in the training phase, which is also called
inductive setting in other KGC works [6]. We split the KG dataset
into an inductive setting with a defined inductive rate (IR), which
refers to the ratio of unseen entities during training. For example,
if IR=10%, we will randomly select 10% entities as the inductive
entity set. Any triple in the training set whose head or tail is in the
inductive set will be removed during training. Besides, the triples
in the test set will be divided into two parts: the seen (S) part and
the unseen (U) part. If the head or tail in a triple is in the inductive
entity set, it will be regarded as unseen. We fine-tune the LLM with

Table 4: Ablation study results on CoDeX-S. We first replace
the pre-trained structural embeddingwith other components
and change the insert position of virtual knowledge tokens to
demonstrate the effectiveness of knowledge prefix adapter.

Model Acc F1

KoPA(Prefix + RotatE) 82.74 84.11

Embedding

w/o SE 81.18 82.52
w/ TransE 82.46 83.42
w/ DistMult 80.71 81.27
w/ ComplEx 81.21 82.12
w/ Random 81.53 82.36

Position Infix 81.21 82.69
Suffix 77.29 77.75

only remaining seen triples and test on both seen and unseen triples.
In this setting, a set of entities will not participate in the training
process and the LLM does not see their textual descriptions, which
will make the test process more challenging. We report the accuracy
and F1 score for seen (S), unseen (U), and all (A) test triples, which
is shown in Figure 3 for three fine-tuning methods: KoPA, vanilla
IT, and structure-aware IT (enhanced IT in the figure).

From the radio charts, we can observe that KoPA outperforms the
other methods for unseen triples and has less performance degra-
dation when IR increases. The performance of structure-aware
IT (enhanced IT) with neighborhood triples in the textual form
is more unstable. These phenomena suggest that the knowledge
prefix adapter can learn a good mapping from the structural em-
beddings to the textual representation, which is transferable even if
the entities are unseen during training. The structural embeddings
captured from KG play a more significant role in informing the
LLM with useful structural information.

5.4 Ablation Study
To verify the effectiveness of the KoPA design, we conduct a two-
part ablation study. The first part is designed to verify the effec-
tiveness of structural embedding and the second part is designed
to verify the effectiveness of prefix adapter. As shown in Table 4,
we can find that removing the structural embeddings or replacing
them with random initialized embeddings both lead to performance
decline. Also, we find that the model is compatible with different
types of structural embeddings. However, the performance gain
depends on whether the embedding was originally powerful in the
triple classification task or not. Refer to Tables 3, TransE [3] and Ro-
tatE [31] are better embedding-based KGC models compared with
DistMult [38] and ComplEx [34]. This demonstrates that semantic-
rich structural information is the key to performance improvement
and KoPA takes full advantage of it.

Meanwhile, putting the virtual knowledge tokens generated by
the adapter in the middle (infix) or in the last (suffix) of the input
sequence will also decrease the performance. We believe the reason
is that putting tokens in the front of the sequence will make all
the text pay attention to them as LLMs are usually decoder-only
architectures with unidirectional self-attention. Then the LLM can
make a better decision with the structural embeddings that fully
interact with the text. Combining these two parts of the ablation
study, we believe that our design of KoPA is effective and reasonable.
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Figure 4: The Venn diagram of the correct predictions from
various KGC models. Each intersecting part in the diagram
represents the same predictions from different models on
certain data.

5.5 Case Study
To make a more intuitive view of KoPA, we conduct a case study in
this section from both macro and micro perspectives. From a macro
perspective, we count the prediction overlap of several models and
plot a Venn diagram shown in Figure 4.

From the diagram we can find that KoPA has a significant por-
tion of the proper predictions that do not intersect with several
other models, which means that KoPA makes the right prediction
on some test data that many other models predict incorrectly. This
suggests that the structural information incorporated in KoPA has a
significant role in making correct predictions. For a micro example,
a test triple (John Landis, film director film, Coming to America) is
predicted as wrong by the RotatE model and vanilla instruction tun-
ing LLM. With retrieved neighborhood triples (Coming to America,
locations, New York City), (John Landis, nationality, USA ), (Coming
to America, genre, romantic comedy), (Comedy, common netflix ti-
tles, Coming to America), the structure-aware fine-tuned LLM still
makes a wrong prediction because the neighborhood information
is of little use in the judgment of the current prediction though
they are the correct factual. The structural embeddings applied
in KoPA contain more information than structural information in
the form of text and are easier for us to extract by a structural
pre-training process. Thus, KoPA outperforms other models in the
triple classification task.

5.6 Common Ability Retention
To delve into the preservation of generic capabilities in LLMs, we
conducted another experiment to assess the overall proficiency of
LLMs both before and after fine-tuning. We apply the MMLU [12]
benchmark for this problem. MMLU is the most popular bench-
mark to evaluate the general abilities of LLMs in different domains
such as Humanities, Social Sciences, STEM, and others. The overall
evaluation results on different datasets are shown in Figure 5:

From the results, it can be noticed that after KoPA training, there
were discernible alterations in the generalized abilities of LLMs.
In most instances, there was a decrease, but notably, STEM profi-
ciency exhibited improvement on the UMLS dataset. We attribute
this phenomenon to the UMLS being a medical KG, encompassing
substantial knowledge in medicine, biology, and chemistry, and
training on this dataset allows the model to acquire more STEM
knowledge. Consequently, when facing natural language inputs

CS

Clinical

Humanity

Economics

Politics

KnowPAT None PRO
AFT RRHF

Social 
Science

STEMOther

Average

None UMLS CoDeX FB15K-237N

Figure 5: The common ability experiments on MMLU.

differing from the training task, the model adeptly leverages the
acquired knowledge from KGC task fine-tuning to get enhanced
results. We have listed several subjects in MMLUs that showed
improvement after training with UMLS. These subjects are highly
relevant and close to the knowledge domain encapsulated in the
UMLS in Table 5. The LLMs trained with the KGC task also achieved
significant improvements across different input prompts, marking
a compelling observation.

Table 5: The specific domains in MMLU in which LLM
achieves higher scores after training on UMLS.

Subjects w/o Training w/ Training

Clinical 44.9 47.9 (+3.0%)

College
Medicine 30.1 31.2 (+1.1%)

High School
Biology 42.9 46.8 (+3.9%)

High School
Chemistry 30.0 32.0 (+2.0%)

Medical
Genetics 44.0 48.0 (+4.0%)

6 CONCLUSION
In this paper, we systematically explore how to incorporate struc-
tural understanding ability into LLMs to make structure-aware
reasoning for KGC tasks. We extend the original LLM paradigms
and propose structure-aware ICL and IT methods to incorporate the
structural information by text. We further propose KoPA, a knowl-
edge prefix adapter to incorporate the pre-trained structural embed-
dings into the LLMs. We conduct triple classification experiments
to make comprehensive comparisons among the structure-aware
methods and demonstrate the outperforming results achieved by
KoPA. In the future, we plan to dive deep into LLM-based KGC and
think about a more unified framework to accomplish all the KGC
tasks with LLMs. Besides, we will also explore flexibly adapting
KGs into LLM-based downstream applications to make the LLMs
knowledgeable, reliable, and human-friendly.
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