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Abstract

We introduce a novel immunogenicity goal-directed peptide sequence generator in
a Wasserstein generative adversarial network (GAN) with gradient penalty. The
GAN is trained using the bladder cancer epitope sequences that are predicted
to bind with the human leukocyte antigen, HLA-A*0201, to trigger cytotoxic
T-cell immune responses. The convolutional neural network-based generator is
guided by an immunogenicity predictor from DeepImmuno-CNN and a critic to
generate immunogenic epitopes for bladder cancer vaccines. The convolutional
neural network-based immunogenicity predictor is trained with class I peptide
human leukocyte antigen sequences from the immune epitope database to produce
a continuous immunogenic score. We incorporated the trained immunogenicity
predictor by training the generator with the predicted immunogenicity score of
the generated peptide sequences. We showed our generator can produce more
immunogenic peptides after adding the predictor and can produce peptides that are
similar to the epitopes shown in bladder cancerous cells.

1 Introduction

Tumor-specific antigens have been utilized in cancer vaccines, a form of cancer immunotherapy, to
stimulate the production of tumor-specific T cells [1]. These antigens are encoded in the genome and
are not present in normal cells, making them representative of aberrant proteins [2]. An epitope can
be defined as a segment of an antigen that is generated through antigen processing [3]. The activation
of the tumor-specific T cell response occurs when epitopes from class I or class II human leukocyte
antigen (HLA) molecules are presented to T cell receptors (TCRs), which recognize antigens in the
form of peptides [4]. The HLA class I molecule serves as the TCR ligand for CD8+ cytotoxic T
lymphocytes (CTLs) and binds peptides consisting of 8-11 amino acids. On the other hand, the TCR
ligand for CD4+ helper T cells is the HLA class II molecule, and the bound peptides typically consist
of 15 amino acids [5].

Peptide-based cancer vaccines refer to cancer vaccines that employ polypeptides comprised of
known or predicted tumor antigen epitopes [6]. Peptide-based vaccines are widely utilized in cancer
vaccination practices and are designed to activate a tumor-specific cytotoxic T lymphocyte (CTL)
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response [7]. These vaccines consist of multiple epitopes, typically ranging from 8 to 11 amino acids
in length [8]. Moreover, these peptides are commonly combined with a carrier protein to facilitate
their recognition and processing by antigen-presenting cells (APCs), thereby triggering an immune
response that involves CTLs [9].

To develop an effective peptide-based vaccine, it is crucial to ensure that the epitopes are recog-
nizable by T cells, highly prevalent, and exclusive to tumor cells [10]. The process of identifying
immunogenic epitopes begins by obtaining samples of both cancerous and normal cells through
biopsy, followed by comparing their DNA sequences using techniques like Whole Exome Sequencing
(WES) or Whole Genome Sequencing (WGS) to identify tumor-specific mutations [11]. Somatic
variant callers can be employed to detect single nucleotide variants from the WES and WGS data,
and subsequently, peptides containing the mutated regions are extracted using sliding windows from
the varied protein sequence [12]. Epitope candidates can be identified using computational prediction
tools, an approach that offers significant advantages in terms of time and cost when compared to
traditional methods such as mass spectrometry techniques [13, 14, 15, 16].

Immunogenicity refers to the capacity of a substance to initiate an immune response, and the binding
of a peptide to HLA molecules is essential for epitope immunogenicity [17]. [18] devised DeepHLA-
pan, a recurrent neural network-based method that integrates binding affinity and immunogenicity
details of peptide-HLA complexes to predict CD8+ T-cell epitopes. [19], on the other hand, utilized a
convolutional neural network (CNN)-based method called DeepImmuno, where they utilized linear
peptides of 9 to 10 amino acids and 4-digit class I HLA alleles as input to forecast the immunogenicity
score of peptide-HLA pairs for T-cell immune responses. [20] introduced Seq2Neo, a CNN-based
pipeline that leverages the binding affinity and transporters associated with antigen processing (TAP)
transport efficiency of a given peptide-HLA pair to improve the prediction of immunogenicity scores
for T-cell immune responses.

Generative Adversarial Networks (GANs) [21] are deep learning models that aim to understand
and capture the distribution of training data, enabling the synthesis of samples from this learned
distribution [22, 23]. GAN algorithms have found application in generating novel protein and peptide
structures for use in drug screening and the discovery stage [24]. [25] developed a GAN equipped
with a graph CNN that predicts solubility and toxicity from molecular descriptors, guiding the
generator network to produce new small molecules with desired drug properties. [26] proposed
a GAN architecture known as "RANC," which incorporates reinforcement learning to generate
chemically diverse structures with desired features, with a focus on maintaining similar lengths of
the SMILES string as their training data. [27] developed a semisupervised, guided, conditional,
Wasserstein generative adversarial network capable of generating proteins with desired structure folds,
while incorporating greater sequence diversity and novelty compared to conditional variational auto-
encoder designs. [19] employed a generator trained with a Wasserstein generative adversarial network
with gradient penalty (WGAN-GP) to generate immunogenic epitopes binding to HLA-A*0201.
They demonstrated that their generated peptides exhibited features and amino acid sequences similar
to real epitopes within their training dataset.

As of March 2023, the Immune Epitope Database (IEDB) [28] reports only 24 experimentally tested
linear bladder cancer epitopes that bind with HLA class I molecules, as identified by [29]. In contrast,
the TSNAdb database offers 6234 bladder cancer neoepitopes, each featuring a single amino acid
mutation, predicted to bind with HLA-A*0201 and having predicted binding affinity IC50 <500nM.
We choose HLA-A*0201 as the binding target of the generated peptides since HLA-A*0201 binds
with most of the bladder cancer neoepitopes in the TSNAdb database. We select bladder cancer
neoepitopes as an illustrative example of our method. Since the neoepitopes from the TSNAdb
database are not predicted to be immunogenic, we aim to design a goal-directed generator to provide
potential immunogenic peptide sequences and increase the pool of peptides worthy of experimental
testing.

In this study, we have developed a novel training method for a goal-directed generator aimed
at generating immunogenic epitope sequences specific to bladder cancer. Our choice of GAN
architecture is the WGAN-GP, which has been proven to provide higher training stability [30]. The
critic network in our architecture is trained using bladder cancer epitope sequences that are exclusive
to cancerous cells and have the ability to bind with HLA-A*0201. In our newly proposed training
scheme, the generator is trained using the critic’s output, which assigns a high value if the peptide
exists in cancerous cells and a low value if it does not. Additionally, the generator is trained using
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the output of a scorer, which is a CNN trained with the immunogenicity predictor output from
DeepImmuno [19]. Our results demonstrate that by incorporating the scorer, the generator can
produce a greater number of immunogenic peptides. Furthermore, these peptides exhibit a high
degree of similarity to the bladder cancer epitopes found within the training dataset. The python code
are provided at: https://github.com/YenCheHsiao/Goal-directed-WGAN-GP.

2 Methods

2.1 Datasets

The bladder cancer epitopes used in our study were sourced from the tumor-specific neoantigen
database (TSNAdb) [31]. These epitopes, along with their corresponding HLA molecules, were
predicted using NetMHCpan v4.0 [32]. NetMHCpan v4.0 assesses the binding affinity of potential
epitopes within a protein sequence based on mass spectrometry eluted ligands and half-maximal
inhibition (IC50) scores, with a threshold of IC50 < 500nM. Only epitopes containing a single
mutated amino acid were selected for extraction. It is important to note that these epitopes have
not been experimentally verified in other literature. The bladder cancer dataset within TSNAdb was
utilized as the training dataset for our goal-directed WGAN-GP.

During the data cleaning process, we specifically selected bladder cancer epitope sequences predicted
to bind with HLA-A*0201 and having a length of either 9 or 10 amino acids. Our resulting training
dataset comprised a total of 6234 epitopes. For standardization, we employed the same coding
strategy as in [19]. This involved padding 9-mer peptides to become 10-mers by joining the first
five amino acids and the last four amino acids with a placeholder "-". Thus, the peptide sequences
in our study are represented as a sequence consisting of a placeholder "-" and the 20 amino acid
types: Alanine (A), Arginine (R), Asparagine (N), Aspartate (D), Cysteine (C), Glutamine (Q),
Glutamate (E), Glycine (G), Histidine (H), Isoleucine (I), Leucine (L), Lysine (K), Methionine (M),
Phenylalanine (F), Proline (P), Serine (S), Threonine (T), Tryptophan (W), Tyrosine (Y), and Valine
(V). The amino acids and placeholder were converted into one-hot encoded matrices [33].

2.2 Goal-directed WGAN-GP

We implemented our goal-directed WGAN-GP using the architecture illustrated in Figure 1. This
architecture comprises a peptide sequence generator, a critic, an immunogenicity predictor, and a
scorer. The generator and critic are CNN-based models adapted from [19]. The critic is trained using
the predicted bladder cancer epitopes obtained from TSNAdb and the generated epitopes, thereby
guiding the training of the generator. Before being input to the critic, the predicted bladder cancer
epitopes are encoded as a one-hot matrix, as depicted in Figure 7 (a) in Appendix B. Conversely, the
output of the generator is a matrix of probabilities, which can be decoded as a peptide sequence, as
shown in Figure 7 (b) in Appendix B. The peptide sequence generator tries to generate sequences
that are closely similar to the predicted bladder cancer epitopes in the training dataset.

The immunogenicity predictor utilized is the Deepimmuno-CNN from [19]. This predictor takes a
10-mer generated peptide sequence, along with a 46-mer HLA-A*0201 sequence, as input, predicting
their respective immunogenicities. The scorer is a CNN-based model that outputs the immunogenicity
score. In contrast to the immunogenicity predictor, the scorer is trained during the training of the
goal-directed WGAN-GP. The scorer takes the generated sequence and the sequence in the training
dataset as the input and the output of the immunogenicity predictor given the scorer’s input as the
target value. Throughout the training, the placeholder ’-’ remains in the peptide sequence and is
only removed when utilizing the trained generator to produce peptide sequences, as depicted in the
procedure outlined in Figure 7 (b), step (3).

Consider a generative network Gθ : Rm → Rpq with a set of parameters θ ∈ R and a regression
model P : Rpq → [0, 1]. We aim to update the set of parameters θ such that the expected value
EGθ(z)∼PG

[p̂] is maximized, where p̂ = P (Gθ(z)), z ∈ Rm is a random noise vector, and PG is the
generated data distribution.

The loss function of the critic Dω is the same as in [30], which is

Lω =Ex̃∼PG
[Dω(x̃)]− Ex∼Pr

[Dω(x)]

+ λEx̂∼Px̂
[(∥∇x̂Dω(x̂)∥2 − 1)2],

(1)
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Figure 1: Training scheme of our goal-directed WGAN-GP. The training of our goal-directed Wasser-
stein Generative Adversarial Network with Gradient Penalty (WGAN-GP) involves incorporating an
immunogenicity predictor from [19] to train a generator and a scorer. The objective of the scorer is to
assist the generator in producing highly immunogenic peptides, while the critic aims to guide the
generator in generating peptides with high similarity (though not identical) to those in the training
dataset. The generator takes a set of Nbatch random noise vectors z, each composed of 128 elements
sampled from a zero-mean, unit-variance Gaussian distribution, as input. Implemented as a deep
convolutional neural network, the generator produces Nbatch one-probability matrices Gθ(z), which
serve as input for the critic, immunogenicity predictor, and scorer. The critic’s output is a vector
of real values Dω(Gθ(z)), the output of the immunogenicity predictor P (Gθ(z)) is a vector of real
values between 0 and 1, and the scorer’s output is a vector with real values Sϕ(Gθ(z)). The scorer is
trained using the mean squared error between the output of the immunogenicity predictor and its own
output, considering the generated one-probability matrices Gθ(z) and the one-hot encoded matrix of
peptides in the training data x as input. The outputs of the scorer Sϕ(Gθ(z)) and the output of the
critic Dω(Gθ(z)) are used to compute a scaling variable Sscale. The variable γ indicates whether
the generated peptides are repeated in a batch (γ = 0 for repetitions, γ = 1 otherwise). The critic
is trained using the standard critic loss in a WGAN-GP, while the generator is trained with a loss
aiming to minimize the critic’s output given the generated one-probability matrices Dω(Gθ(z))and
to minimize the scorer’s output given the generated one-probability matrices Sϕ(Gθ(z)) multiplied
by the scaling variable Sscale and the variable γ.

where
x̃ = Gθ(z), (2)

x̂ = ϵx+ (1− ϵ)x̃, (3)
Ex∼P[f(x)] is the expected value of a function f(x) with x sampled from the distribution P, Pr

and PG are the training data distribution and the generated data distribution, respectively, Px̂ is the
distribution of the data sampled from the training and generated distribution as defined in (3), Gθ(·)
and Dω(·) is the function of the generator and the critic in WGAN-GP, λ is the penalty coefficient,
∥·∥2 is the L-2 norm, ϵ ∈ [0, 1] is a random real number between zero and one, z is a random noise
vector and each element is sampled from a normal distribution with zero mean and unit variance, θ is
the weights in the generative network Gθ, and ω is the weights in the critic network Dω .

The designed loss function of the generator Gθ is

Lθ = −Ex̃∼PG
[Dω(x̃)]− γSscaleEx̃∼PG

[Sϕ(x̃)], (4)
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where

γ =

{
1 if n(A) = Nbatch

0 otherwise
, (5)

A is a set composed of the generated one-probability matrix Gθ(z) in a batch, n(A) is the cardinality
of A (the number of elements in the set A), Nbatch is the number of generated peptides in a batch,

Sscale = 1 + |Ex̃∼PG
[Dω(x̃)]− Ex̃∼PG

[Sϕ(x̃)]|, (6)

| · | denotes as modulus, Sϕ is the scorer, and ϕ is the weights in the scorer network Sϕ.

The loss function of the scorer Sϕ is defined as

Lϕ = Ex̃∼PG
[(Sϕ(x̃)− P (x̃))2] + Ex∼Pr [(Sϕ(x)− P (x))2], (7)

where P (·) ∈ [0, 1] is the output of the immunogenicity predictor.

The variable Sscale in the loss function of the generator (4) is the addition of one and the modulus of
the difference between the expected value of the critic output and the expected value of the scorer
output given the generated one-probability matrices Gθ(z) as input. This term ensures that the
expected value of the critic output will not dominate the generator’s loss function by multiplying it
with the expected value of the scorer’s output.

The variable γ in the loss function of the generator (4) is used to force the generator to produce
diverse peptide sequences in the training stage. If γ = 1, (4) becomes a weighted sum of the
expected value of the critic output and the expected value of the scorer output given the generated
one-probability matrices Gθ(z) as input. If γ = 0, the training of the goal-directed WGAN-GP is the
vanilla WGAN-GP in [30].

The architecture of the generator, the critic, the scorer, and the residual block in these three networks
can be found in Table 1, Table 2, Table 3, and Table 4 in Appendix C, respectively.

2.3 Training of the goal-directed WGAN-GP

In this paper, the batch size is 64 (Nbatch = 64). z ∈ R128 is defined to be a random noise vector
with 128 elements, and each element is sampled from a normal distribution with zero mean and
unit variance. The generative network, the critic network, and the scorer network are defined as
Gθ : R128 → R10×21, Dω : R10×21 → R, and Sϕ : R10×21 → R, respectively. For each epoch, the
critic is trained 97 times, the generator is trained 10 times, and the scorer is trained 97 times. The
algorithm of our goal-directed WGAN-GP is shown in Algorithm 1 in Appendix A.

The model training is conducted on Windows 10, version 22H2, utilizing an Intel(R) Core(TM)
i7-10875H CPU @ 2.30GHz with 8 logical CPUs. The training process is executed on the CPU,
employing Python 3.8.0 as the coding language, and the model is constructed using PyTorch 2.0.0.

3 Experiments

To validate the efficacy of our proposed generator training scheme, we adopted the same architecture
for both the generative and critic networks as outlined in [19]. We then compared the peptides
generated by the generator trained with and without our devised training scheme. For assessing
immunogenicity, we utilized the CNN-based immunogenicity predictor, DeepImmunoCNN, from
[19]. The CNN was retrained using the "remove0123_sample100.csv" data file provided in their
source code. The immunogenicity predictor takes a 10-mer peptide sequence and a 4-digit encoded
HLA sequence as inputs, predicting their real-value immunogenicity score within the range of [0, 1].
In this analysis, we specifically considered HLA-A*0201 as the HLA sequence input, defining an
immunogenic peptide as one with an immunogenicity score exceeding 0.5.

3.1 Immunogenicity

We conducted a comparative analysis between the generator trained with our devised training scheme
and the generator trained using the architecture from [19]. Our goal-directed WGAN-GP was trained
on bladder cancer epitope data sourced from TSNAdb [31]. We compared the number of immunogenic
epitopes generated by our approach with the results presented in [19]. The WGAN-GP was separately
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Figure 2: The comparison of the generator trained by our goal-directed WGAN-GP to the Deepim-
muno generator [19].

trained for 0, 20, 40, 60, 80, and 100 epochs, producing 1024 peptides from each generator trained
during these epochs. To ensure consistent comparison, we removed peptide sequences containing
more than 2 placeholders (’-’), resulting in 957, 1024, 1024, 1024 , 1024, and 1024 peptides from the
generators trained with 0, 20, 40, 60, 80, and 100 epochs, respectively. After inputting these peptides
into the immunogenicity predictor, we counted the number of immunogenic peptides with a score
higher than 0.5. The results are depicted in Figure 2, indicating that our designed training scheme
with TSNAdb [31] yields more immunogenic epitopes compared to the generator from [19].

We conducted two training sessions: the first involved training the WGAN-GP without incorporating
the immunogenicity predictor, and the second involved our goal-directed WGAN-GP trained, both
training for 1000 epochs and using the TSNAdb dataset [31]. The averaged immunogenicity scores
of the generated peptide sequences used to train the generator are presented in Figure 3, where the
orange and blue solid lines represent the averaged scores calculated using

P
(s)
epoch =

1

10

10∑
k=1

P (k)
mean, (8)

where k = 1, 2, · · · , 10 is the number of training of the generator in an epoch, s = 1, 2, · · · , N is
the number of epoch, N = 1000 is the maximum iteration number, and

P (k)
mean =

1

Nbatch

Nbatch∑
j=1

P (Gθ(z
(j))), (9)

Additionally, the cumulative averaged immunogenicity score is defined as

P
(s)
cumulate =

1

s

s∑
t=1

P
(t)
epoch. (10)

The cumulative averaged immunogenicity score in (10) is depicted as a brown dashed line and a
purple dotted line in Fig.3. Notably, the immunogenicity scores of sequences generated from our
goal-directed WGAN-GP continue to increase, reaching approximately 0.93. Conversely, sequences
generated without the immunogenicity predictor in the GAN only reach around 0.6 and show no
further increase. The new Fig.3 (b) demonstrates our method’s superior maximum immunogenicity
compared to the vanilla WGAN-GP. To further validate that our goal-directed WGAN-GP generates
peptides with higher immunogenicity scores compared to the WGAN-GP without the immunogenicity
predictor, we employed the generator trained for 1000 epochs from both schemes to produce 10000
peptide sequences. Considering only 9 or 10-mers, the resulting number of peptide sequences is 9998
for our goal-directed WGAN-GP and 9830 for the WGAN-GP. In Fig.4, the immunogenicity scores of
the peptide sequences from both models are presented in dots and box plots. Each orange or blue dot
represents a peptide sequence from our goal-directed WGAN-GP or WGAN-GP, respectively. The
band in the box indicates the median, while the lower and upper bounds of the box represent the first
(25th percentile) and the third (75th percentile) quartiles, respectively. The whiskers indicate ±1.5×
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Figure 3: (a) The averaged immunogenicity score of the peptide sequences generated from our
designed goal-directed WGAN-GP (orange line) compared to the WGAN-GP without the immuno-
genicity predictor (blue line) through training and their cumulative average score in the brown dashed
line and the purple dotted line, respectively. (b) The maximum immunogenicity score of the peptide
sequences generated from our designed goal-directed WGAN-GP (orange line) compared to the
WGAN-GP without the immunogenicity predictor (blue line) through training and their cumulative
average score in the brown dashed line and the purple dotted line, respectively.

Figure 4: The dots and box plot showing the median immunogenicity score of the 9998 peptides
produced from the generator trained with our goal-directed WGAN-GP is about 0.95, and it is higher
than the score of the 9830 peptides generated from the vanilla WGAN-GP with about 0.6.

the interquartile range [34]. The median immunogenicity score in our goal-directed WGAN-GP is
approximately 0.95, significantly higher than the median in the WGAN-GP, which is around 0.62.
Our method exhibits a narrower interquartile range, focusing more peptides at the median. The
outlier minimum closely matches the vanilla WGAN-GP’s median, while the maximum aligns with
our method’s minimum, demonstrating our generator’s effectiveness in producing immunogenic
peptides. These results underscore the effectiveness of our designed training method in enhancing the
generator’s capability to produce peptide sequences with higher immunogenicity compared to the
vanilla training scheme for the WGAN-GP.

The additional experiment results of the prediction of immunogenicity score using DeepHLApan
[35] and IEDB [28] are in Appendix D. In addition, the evaluation of our method using brain cancer
epitopes are in Appendix E.

3.2 Binding affinity

The binding affinity between the generated peptides and HLA-A0201 is quantified by the half-
maximal inhibition (IC50) values, representing the concentration of the test peptide resulting in 50%
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Figure 5: The number of the immunogenic peptides compared to the number of peptides that bond to
HLA-A*0201 with different ranges of the binding affinity IC50.

Figure 6: The histogram of the maximum similarity with the corresponding number of the peptides
generated from our goal-directed WGAN-GP and the WGAN-GP.

inhibition of the binding of a probe peptide [36]. In the training dataset, the bladder cancer epitopes
are predicted to have a binding affinity smaller than 500nM using NetMHCpan v4.0 [32] by [31].
To investigate whether the generated peptides also exhibit a strong binding affinity (< 500nM),
we employed the binding affinity prediction tool NetMHCpan 4.1 [35] to predict the IC50 values.
Peptides with a predicted binding affinity IC50 below 500nM are considered binders to HLA-A*0201
[37].

The predicted binding affinity of all generated peptides across different epochs is illustrated in
Figure 5. The count of peptides with binding affinity IC50 < 500 nM rises from 30 to 664 as the
training epoch progresses from 0 to 20. Subsequently, as the epoch advances from 20 to 40, the
count decreases from 664 to 577. However, from epoch 40 to 100, the count of peptides with binding
affinity IC50 < 500 nM increases again, reaching 798. These observations suggest that our training
scheme may contribute to the reduction of IC50 values over the course of training.

3.3 Similarity

We investigate whether increasing the training epochs can enhance the number of peptides similar to
the neoepitopes in TSNAdb [31]. Similarity, as computed by [19], is determined using [19]

Similarity =
2n

lpg
+ lpr

, (11)

where n represents the number of matches between the generated peptide sequence pg and the peptide
sequence pr in the training dataset, lpg

denotes the length of the generated peptide sequence, lpr
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stands for the length of the peptide sequence in the training dataset, and Similarity is the computed
similarity.

We calculate the similarity between each generated peptide and all peptides in the TSNAdb bladder
cancer dataset. The number of each maximum similarity value is counted, aiming to assess whether
increasing the training epoch improves the similarity between the generated peptide and bladder
cancer epitopes in the TSNAdb dataset.

The maximum similarity of peptides generated from the generator trained by our goal-directed
WGAN-GP is compared with the generator trained by the vanilla WGAN-GP, both trained for 1000
epochs using the TSNAdb dataset [31]. 10000 peptides are generated from the two generators,
and sequences with more than 2 placeholders ’-’ are removed. The resulting number of peptide
sequences is 10000 for our goal-directed WGAN-GP and 9837 for the WGAN-GP. In Figure 6, we
present the number of peptides with respect to each calculated maximum similarity, rounded off to
the second decimal place. The WGAN-GP exhibits a higher number of peptides with maximum
similarity exceeding 0.78 compared to our goal-directed WGAN-GP. However, it also demonstrates
that peptides produced by our goal-directed WGAN-GP can exhibit similar sequences to those in the
TSNAdb bladder cancer dataset [31].

The generated set of 10,000 peptides from our goal-directed generator contains some repeated
sequences. Upon removing the duplicates, we obtained 8,156 unique peptides, in contrast to the
generator trained by the vanilla WGAN-GP, which yields 9,827 unique peptides. The most frequent
sequence, "FLEPGIPRL," occurs 18 times in the 10,000 generated peptides from our goal-directed
generator. We think that the occurrence of repeated peptides from our generator is likely due to
the scarcity of highly predicted immunogenic peptides in the training dataset. This increases the
likelihood of repetition compared to vanilla WGAN-GP, which directly trains using the entire dataset.

4 Conclusion

The prediction algorithms for immunogenic neoantigens face challenges due to the limited number
of proven immunogenic neoantigens [38]. Experimental validation of immunogenicity is a crucial
step in enhancing the chances of successful immunotherapy [39]. However, the preparation time
for a personalized peptide-based cancer vaccine is lengthy, taking at least 3 months from sample
collection to vaccine production [40]. Our method aims to increase the pool of predicted immunogenic
neoepitope candidates, enabling the generation of more peptides worthy of testing. These peptides
can undergo experimental evaluation for their binding affinity to HLA-A*0201 or their ability to
elicit cytotoxic T-cell response.

The HLA class I–presented peptides are subject to HLA allotype restriction, potentially excluding
patients with incompatible HLA class I allotypes [10]. In cases where the peptide-HLA complex
presented in the patient’s tumor cannot be predicted to have high immunogenicity, our goal-directed
WGAN-GP can be employed to generate hypothesized immunogenic peptides. This can be achieved
by training our goal-directed WGAN-GP with a dataset containing all predicted neoepitope sequences
that are predicted to exhibit high binding affinity with the specific four-digit HLA, as retrieved from
the TSNAdb database [31].

Our findings demonstrate that the generator, trained using our designed training scheme, is capable
of generating 9-mer and 10-mer peptide sequences with high immunogenicity. Additionally, our
analysis reveals that the generator can generate peptide sequences with a strong binding affinity
(IC50 <500nM). We anticipate that our designed training scheme for the WGAN-GP can serve as a
valuable tool for facilitating the design of peptide-based vaccines and can find applicability in diverse
scenarios requiring a goal-directed WGAN-GP.
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A Proposed algorithm for Goal-directed WGAN-GP

Algorithm 1 The training procedure of the Goal-directed WGAN-GP. The value for the parameters
are k = 1, λ = 10, ncritic = 10, Ndata = 6232, Nbatch = 64, α = 10−4, β1 = 0.5, and β1 = 0.9.

Require: A maximum iteration number N , the initial weights ω0, θ0, and ϕ0 for the critic Dω , the
generator Gθ, and the scorer Sϕ, respectively.
nsplit ← ⌊ Ndata

Nbatch
⌋

while k ≤ N do
Randomly split the training dataset with data distribution Pr to nsplit data
{P(1)

r ,P(2)
r , · · · ,P(nsplit)

r }
for i = 1, · · · , nsplit do

Sample a batch of noise vectors {z(j)}Nbatch
j=1 ∼ N(0, 1).

for j = 1, · · · , Nbatch do
Sample real data x ∼ P(i)

r without replacement, and a random number ϵ ∈ U [0, 1].
x̃← Gθ(z

(j))

L
(j)
ϕ ←

1
Nbatch

((Sϕ(x̃)− P (x̃))2 + (Sϕ(x)− P (x))2)

x̂← ϵx+ (1− ϵ)x̃

L
(j)
ω ← 1

Nbatch
(−Dω(x) +Dω(x̃) + λ(∥∇x̂Dω(x̂)∥2 − 1)2)

end for
ϕ← Adam(∇ϕ

∑Nbatch

j=1 L
(j)
ϕ , ϕ, α, β1, β2)

ω ← Adam(∇ω

∑Nbatch

j=1 L
(j)
ω , ω, α, β1, β2)

if (i mod ncritic) = 0 then
Sample a batch of noise vectors {z(j)}Nbatch

j=1 ∼ N(0, 1).
A← ∅
for j = 1, · · · , Nbatch do

Add Gθ(z
(j)) to a set A

S
(j)
scale ←

1
Nbatch

(1 + |Dω(Gθ(z
(j)))− Sϕ(Gθ(z

(j)))|)
end for
if n(A) = Nbatch then
γ ← 1

else
γ ← 0

end if
Lθ ← 1

Nbatch

∑Nbatch

j=1 (−Dω(Gθ(z
(j))− γSscaleSϕ(Gθ(z

(j)))

θ ← Adam(∇θLθ, θ, α, β1, β2)
end if

end for
k := k + 1

end while
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B Encoding and decoding of peptide sequences

Figure 7: The encoding and the decoding methods in our goal-directed Wasserstein Generative
Adversarial Network with Gradient Penalty (WGAN-GP) adopted from [19]. In (a), the peptide
is encoded from a peptide sequence to a one-hot matrix x. (1) A 9-mer peptide sequence, such as
TLYSESPAL, is prepared before input to the critic. (2) If the peptide sequence has only 9 amino
acids, a placeholder ’-’ is inserted at the fifth position to extend the sequence to a length of 10. (3)
The encoded peptide is represented as a one-hot matrix, where each row corresponds to a position in
the peptide sequence, and columns represent amino acids along with a placeholder ’-’. The element
in the one-hot matrix is 1 if the corresponding position contains the amino acid or the placeholder at
the corresponding column. For example, ’T’ is at position 1, so the first row of the one-hot matrix
will have 1 at the 17th column, corresponding to the character ’T’, and 0 in the other columns. In
(b), the peptide is decoded through the generated one-probability matrix Gθ(z). (1) The output of
the generator Gθ(z) is a one-probability matrix, where each row represents the position of a peptide
sequence, and columns represent amino acids along with a placeholder ’-’. Each element in Gθ(z) is
the probability that the position corresponding to the row contains the amino acid or the placeholder.
(2) A peptide sequence is decoded by selecting the amino acid or the placeholder with the highest
probability for each row. For instance, if 0.5 is the highest value in the first row, the first character in
the decoded sequence is ’Y’, corresponding to the column with the value 0.5 in the first row. (3) If
the peptide sequence contains a placeholder, it is removed to form a peptide sequence shorter than 10.

C Detailed description of the network architecture

We present the details of the generator, the critic, the scorer, and the residual block in Table 1, Table 2,
Table 3, and Table 4, respectively.

In the residual block shown in Table 4, the residual connection is defined to be

zres = xres + 0.3yres, (12)

where xres is the input data in a residual block, yres is the output from the fifth layer (convolution
1D) in the residual block, and zres is the output of the residual connection.

We denote the output matrix of the Convolution 1D in the residual block as a two-dimensional
matrix Y res. The element at the i-th row and the j-th column of Y res is denoted Y res

ij . The input
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Table 1: Details of the generator network adopted from [19]

Layer Type Kernel
size Filter Stride Padding Output

shape Number of parameters

1 Input - - - - 128 -
2 Fully Connected - - - - 1280 165120
3 Reshape - - - - 128×10 -
4 Residual block - - - - 128×10 98560
5 Residual block - - - - 128×10 98560
6 Residual block - - - - 128×10 98560
7 Residual block - - - - 128×10 98560
8 Residual block - - - - 128×10 98560
9 Convolution 1D 1 21 1 no 21×10 2709
10 Transpose - - - - 10×21 -
11 Gumbel-Softmax - - - - 10×21 -

Table 2: Details of the critic network adopted from [19]

Layer Type Kernel
size Filter Stride Padding Output

shape Number of parameters

1 Input - - - - 10×21 -
2 Transpose - - - - 21×10 -
3 Convolution 1D 1 128 1 no 128×10 2816
4 Residual block - - - - 128×10 98560
5 Residual block - - - - 128×10 98560
6 Residual block - - - - 128×10 98560
7 Residual block - - - - 128×10 98560
8 Residual block - - - - 128×10 98560
9 Reshape - - - - 1280 -
10 Fully Connected - - - - 1 1281

matrix of the Convolution 1D in the residual block is denoted as Xres. In the residual block, the
dimension of the input to the Convolution 1D is defined to be Xres ∈ RrresX ×cresX , where rresX = 128
and cresX = 10 are the number of rows and columns of the input matrix, respectively. The input
matrix with one zero padding is defined as Xpad = [0res Xres 0res] ∈ RrresX ×(cresX +2), where
0res = [0 0 · · · 0]T ∈ RrresX ×1 is an all zero column vector with dimension rresX . The dimension
of the output matrix after the Convolution 1D will be Y res ∈ Rfres×cresX , where fres = 128 is the
number of kernels. Each element in the output matrix of the Convolution 1D layer in the residual
block is computed by

Y res
i,j =

rresX∑
m=1

cresw∑
n=1

(kres,im,n ·X
pad
m,n+j) + bres,i, (13)

where 1 ≤ i ≤ fres, 1 ≤ j ≤ cresX , wres,i ∈ RrX×cresw is the i-th convolutional kernel, cresw = 3 is
the number of columns in the kernel, and bres,i ∈ R is the bias for the i-th kernel.

For The Convolution 1D in the 9-th layer of the generator, Xgen ∈ RrgenX ×cgenX is denoted as the input
matrix, where rgenX = 128 and cgenX = 10 is the number of rows and columns of the input matrix,
respectively. The output matrix will be Y gen ∈ Rfgen×cgenX , where fgen = 21 is defined to be the
number of kernels for this Convolution 1D. The Convolution 1D in the 9-th layer of the generator is
defined to be

Y gen
i,j =

rX∑
m=1

cgenw∑
n=1

(kgen,im,n ·X
gen
m,n+j) + bgen,i, (14)

where 1 ≤ i ≤ fgen, 1 ≤ j ≤ cgenX , wgen,i ∈ RrX×cgenw is the i-th convolutional kernel, cgenw = 1 is
the number of columns in the kernel, and bgen,i ∈ R is the bias for the i-th kernel.

For the Convolution 1D in the 3-rd layer of the critic and the scorer, Xcritic ∈ RrcriticX ×ccriticX

is denoted as its input matrix, where rcriticX = 21 and ccriticX = 10 is the number of rows and
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Table 3: Details of the scorer network
Layer Type Kernel

size Filter Stride Padding Output
shape Number of parameters

1 Input - - - - 10×21 -
2 Transpose - - - - 21×10 -
3 Convolution 1D 1 128 1 no 128×10 2816
4 Residual block - - - - 128×10 98560
5 Residual block - - - - 128×10 98560
6 Residual block - - - - 128×10 98560
7 Residual block - - - - 128×10 98560
8 Residual block - - - - 128×10 98560
9 Reshape - - - - 1280 -
10 Fully Connected - - - - 1 1281

Table 4: Details of the residual block adopted from [19]

Layer Type Kernel
size Filter Stride Padding Output

shape Number of parameters

1 Input - - - - 128×10 -
2 ReLU - - - - 128×10 -
3 Convolution 1D 3 128 1 1 128×10 49280
4 ReLU - - - - 128×10 -
5 Convolution 1D 3 128 1 1 128×10 49280
6 Residual connection - - - - 128×10 -

columns of its input matrix, respectively. The output matrix will be Y critic ∈ Rfcritic×ccriticX , where
fcritic = 128 is defined to be the number of kernels for this Convolution 1D. The operation of the
Convolution 1D in the 3-rd layer of the critic and the scorer is similar to (14) but with the change of
the input size and the number of kernels and it is defined as

Y critic
i,j =

rX∑
m=1

ccriticw∑
n=1

(kdis,im,n ·Xcritic
m,n+j) + bdis,i, (15)

where 1 ≤ i ≤ fcritic, 1 ≤ j ≤ ccriticX , wdis,i ∈ RrX×ccriticw is the i-th convolutional kernel,
ccriticw = 1 is the number of columns in the kernel, and bdis,i ∈ R is the bias for the i-th kernel.

In the critic and the scorer, the reshape function aligns each row into a row vector. The reshape
function acted on the matrix A ∈ Rp×q can be represented by

vec(A) ≜ [Ar1 Ar2 · · · Arp] , (16)

where Ari is denoted as the i-th row vector in the matrix A.

In the generator, the reshape function at the third layer converts a vector B ∈ Rp·q into a matrix
B̂ ∈ Rp×q by putting the p-th q elements of B to the p-th row of the matrix B̂. It can be represented
as

B̂ =


B1 B2 · · · Bq

Bq+1 Bq+2 · · · B2q

...
B(p−1)q+1 B(p−1)q+2 · · · Bpq

 , (17)

where Bi is denoted as the i-th elements in the matrix B.

Let XGS ∈ RrGS
X ×cGS

X be the input and Y GS ∈ RrGS
X ×cGS

X be the output of the Gumbel-Softmax in
the 11-th layer of the generator network, where rGS

X = 10 is the number of row for the input matrix
XGS and cGS

X = 21 is the number of column in XGS , respectively. The Gumbel-Softmax in the
generator network is computed as

Y GS
i,j =

eX
Gumbel
i,j∑cGS

X
m=1 e

XGumbel
i,m

, (18)
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Figure 8: The histograms for the number of the peptides with respect to their maximum similarity. It
shows that increasing the training epoch may increase the number of peptides with higher maximum
similarity.

Figure 9: (a) The dots and box plot showing the median immunogenicity score of the 10000 brain
peptides predicted using DeepHLApan 4.1 [35] and produced from the generator trained with our
goal-directed WGAN-GP is about 0.78, and it is higher than the score of the 9837 peptides generated
from the vanilla WGAN-GP with about 0.62. (b) The dots and box plot showing the median
immunogenicity score of the 10000 brain peptides predicted using IEDB [28] and produced from the
generator trained with our goal-directed WGAN-GP is about 0.2, and it is higher than the score of
the 9837 peptides generated from the vanilla WGAN-GP with about 0.15.

where 1 ≤ i ≤ rGS
X , 1 ≤ j ≤ cGS

X , Y GS
i,j is denoted as the element of Y GS at the i-th row and the

j-th column, XGumbel is evaluated as

XGumbel =
XGS − ln(gGS)

τ
, (19)

where gGS ∈ RrGS
X ×cGS

X is a matrix with its value generated by the exponential distribution f(x) =
λe−λx, λ = 1, and τ = 0.75.

D Additional experiment results

Figure 8 depicts histograms illustrating the number of peptides generated from the generator trained
with 0, 20, 40, 60, 80, and 100 epochs, categorized by their maximum similarity rounded off to
the second decimal place. The results demonstrate a tendency for an increased number of peptides
with higher maximum similarity as the training epoch progresses. These findings indicate that the
generator, trained using our designed training scheme, learns the patterns of peptide sequences in
the training dataset and generates similar but not identical sequences, as no sequence achieves a
maximum similarity of 1.

In Fig.9, we have used both DeepHLApan 4.1 [35] and IEDB [28] to predict the immunogenicity
scores. Our analysis confirms that peptides generated by our system consistently exhibit higher
immunogenicity scores, in terms of the median, compared to those from the vanilla WGAN-GP.
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Figure 10: The averaged immunogenicity score of the brain peptide sequences generated from
our designed goal-directed WGAN-GP (orange line) compared to the WGAN-GP without the
immunogenicity predictor (blue line) through training and their cumulative average score in the
brown dashed line and the purple dotted line, respectively.

E Experiment result using brain cancer epitopes

In this section, we present the comparison of our goal-directed WGAN-GP with the vanilla WGAN-
GP using the brain cancer epitopes from TSNAdb [31]. The network architecture and hyperparameters
are the same as in (2).

The cumulative averaged immunogenicity score in (10) is depicted as a brown dashed line and a
purple dotted line in Fig.10. Notably, the result is similar to that of in Fig.3 as the immunogenicity
scores of sequences generated from our goal-directed WGAN-GP continue to increase, reaching
approximately 0.93. Conversely, sequences generated without the immunogenicity predictor in the
GAN only reach around 0.7 and show no further increase.

To further validate that our goal-directed WGAN-GP generates brain peptides with higher immuno-
genicity scores compared to the WGAN-GP without the immunogenicity predictor, we employed
the generator trained for 1000 epochs from both schemes to produce 10000 peptide sequences.
Considering only 9 or 10-mers peptides, the resulting number of peptide sequences is 9895 for our
goal-directed WGAN-GP and 9986 for the WGAN-GP. In Fig.11, the immunogenicity scores of the
peptide sequences from both models are presented in dots and box plots, which is similar to the result
in Fig.4.
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Figure 11: The dots and box plot showing the median immunogenicity score of the 10000 brain
peptides produced from the generator trained with our goal-directed WGAN-GP is about 0.9, and it
is higher than the score of the 9837 peptides generated from the vanilla WGAN-GP with about 0.6.
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