
Under review as a conference paper at ICLR 2021

KEEP THE GRADIENTS FLOWING: USING GRADIENT
FLOW TO STUDY SPARSE NETWORK OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Training sparse networks to converge to the same performance as dense neural
architectures has proven to be elusive. Recent work suggests that initialization is
the key. However, while this direction of research has had some success, focusing
on initialization alone appears to be inadequate. In this paper, we take a broader
view of training sparse networks and consider various choices made during train-
ing that might disadvantage sparse networks. We measure the gradient flow across
different networks and datasets, and show that the default choices of optimizers,
activation functions and regularizers used for dense networks can disadvantage
sparse networks. Based upon these findings, we show that gradient flow in sparse
networks can be improved by reconsidering aspects of the architecture design and
the training regime. Our work suggests that initialization is only one piece of
the puzzle and a wider view of tailoring optimization to sparse networks yields
promising results.

1 INTRODUCTION

Over the last decade, a “bigger is better” race in the number of model parameters has gripped the
field of machine learning (Amodei et al., 2018; Thompson et al., 2020), primarily driven by over-
parameterized deep neural networks (DNNs). Additional parameters improve top-line metrics, but
drive up the cost of training (Horowitz, 2014; Strubell et al., 2019; Hooker, 2020) and increase the
latency and memory footprint at inference time (Warden & Situnayake, 2019; Samala et al., 2018;
Lane & Warden, 2018). Moreover, overparameterized networks have been shown to be more prone
to memorization (Zhang et al., 2016).

To address some of these limitations, there has been a renewed focus on compression techniques
that preserve top-line performance while improving efficiency. A large amount of research focus
has centered on pruning, where weights estimated to be unnecessary are removed from the network
at the end of training (Louizos et al., 2017; Wen et al., 2016; Cun et al., 1990; Hassibi et al., 1993a;
Ström, 1997; Hassibi et al., 1993b; Zhu & Gupta, 2017; See et al., 2016; Narang et al., 2017).
Pruning has shown a remarkable ability to preserve top-line metrics of performance, even when
removing the majority of weights (Hooker et al., 2019; Gale et al., 2019). However, most pruning
techniques still require training a large, overparameterized model before pruning a subset of weights.

Due to the drawbacks of starting dense prior to introducing sparsity, there has been a recent focus on
methods that allow networks which start sparse at initialization, to converge to similar performance
as dense networks (Frankle & Carbin, 2018; Frankle et al., 2019b; Liu et al., 2018a). These efforts
have focused disproportionately on trying to understand the properties of initial sparse weight dis-
tributions that allow for convergence. However, while this work has had some success, focusing on
initialization alone has proven to be inadequate (Frankle et al., 2020; Evci et al., 2019).

In this work, we take a broader view of why training sparse networks to converge to the same
performance as dense networks has proven to be elusive. We reconsider many of the basic building
blocks of the training process and ask whether they disadvantage sparse networks or not. Our work
focuses on the behaviour of networks with random, fixed sparsity at initialization and we aim to
gain further intuition into how these networks learn. Furthermore, we provide tooling tailored to the
analysis of these networks.

1

Under review as a conference paper at ICLR 2021

In order to effectively study sparse network optimization in a controlled environment, we propose
an experimental framework, Same Capacity Sparse vs Dense Comparison (SC-SDC). Contrary to
most prior work comparing sparse to dense networks, where overparameterized dense networks
are compared to smaller sparse networks, SC-SDC compares sparse networks to their equivalent
capacity dense networks (same number of active connections and depth). This ensures that the
results are a direct result of sparse connections themselves and not due to having more or fewer
weights (as is the case when comparing large, dense networks to smaller, sparse networks).

We go beyond simply comparing top-line metrics by also measuring the impact on gradient flow
of each intervention. Historically, exploding and vanishing gradients were a common problem in
neural networks (Hochreiter et al., 2001; Hochreiter, 1991; Bengio et al., 1994; Glorot & Bengio,
2010; Goodfellow et al., 2016). Recent work has suggested that poor gradient flow is an exacerbated
issue in sparse networks (Wang et al., 2020; Evci et al., 2020). To accurately measure gradient flow
in sparse networks, we propose a normalized measure of gradient flow, which we term Effective
Gradient Flow (EGF) – this measure normalizes by the number of active weights and thus is better
suited to studying the training dynamics of sparse networks. We use this measure in conjunction
with SC-SDC, to see where sparse optimization fails and to consider where this failure could be a
result of poor gradient flow.

Contributions Our contributions can be enumerated as follows:

1. Measuring effective gradient flow We conduct large scale experiments to evaluate the role of
regularization, optimization and architecture choices on sparse models. We evaluate multiple
datasets and architectures and propose a new measure of gradient flow, Effective Gradient Flow
(EGF), that we show to be a stronger predictor of top-line metrics such as accuracy and loss than
current gradient flow formulations.

2. Batch normalization plays a disproportionate role in stabilizing sparse networks We show
that batch normalization is more important for sparse networks than it is for dense networks,
which suggests that gradient instability is a key obstacle to starting sparse.

3. Not all optimizers and regulizers are created equal Weight decay and data augmentation can
hurt sparse network optimization, particularly when used in conjunction with accelerating, adap-
tive optimization methods that use an exponentially decaying average of past squared gradients,
such as Adam (Kingma & Ba, 2014) and RMSProp (Hinton et al., 2012). We show this is highly
correlated to a high EGF (gradient flow) and how batch normalization helps stabilize EGF.

4. Changing activation functions can benefit sparse networks We benchmark a wide set of ac-
tivation functions, specifically ReLU (Nair & Hinton, 2010) and non-saturating activation func-
tions such as PReLU (He et al., 2015), ELU (Clevert et al., 2015), SReLU (Jin et al., 2015),Swish
(Ramachandran et al., 2017) and Sigmoid (Neal, 1992). Our results show that when using adap-
tive optimization methods, Swish is a promising activation function, while when using stochastic
gradient descent, PReLU preforms better than the other activation functions.

Implications Our work is timely as sparse training dynamics are poorly understood. Most training
algorithms and methods have been developed to suit training dense networks. Our work provides
insight into the nature of sparse optimization and suggests a wider viewpoint beyond initialization is
necessary to converge sparse networks to comparable performance as dense. Our proposed approach
provides a more accurate measurement of the training dynamics of sparse networks and can be
used to inform future work on the design of networks and optimization techniques that are tailored
explicitly to sparsity.

2 METHODOLOGY

2.1 SAME CAPACITY SPARSE VS DENSE COMPARISON

Our goal is to measure what architecture and optimization choices favor sparse networks relative to
dense networks. To fairly compare sparse and dense networks, we propose Same Capacity Sparse
vs Dense Comparison (SC-SDC), a simple framework which allows us to study sparse network
optimization and identify what training configurations are not well suited for sparse networks.

SC-SDC can be summarized as follows (See Figure 1 for an overview):

2

Under review as a conference paper at ICLR 2021

Figure 1: Same Capacity Sparse vs Dense Comparison (SC-SDC)

1. Initialize For a chosen network depth (number of layers) L and a maximum network width
NMaxW , we compare sparse and dense networks at various widths, while ensuring they have the
same paramater count.

Initially, we mask the weights θS of sparse network S:

al
S = θlS �ml , al

D = θlD, for l = 1, . . . , L (1)

, where θlS�ml denotes an element-wise product of the weights θS of layer l and the random binary
matrix (mask) for layer l, ml, al

S is the nonzero weights in layer l of sparse network S and al
D is

the nonzero weights in layer l of dense network D (all the weights since no masking occurs).

For a fair comparison, we need to ensure the same number of nonzero weights for sparse network S
and dense network D , across each layer L.

||al
S ||0 = ||al

D||0, for l = 1, . . . , L (2)

We provide more implementation details of how we achieve this in Appendix A.1.

2. Match active weight distributions Following prior work (Liu et al., 2018b; Gale et al., 2019),
we ensure the nonzero weights at initialization of the sparse and dense networks are sampled from
the same distribution at each layer as follows:

al
S ∼ P l , al

D ∼ P l, for l = 1, . . . , L (3)

, where P l refers to the initial weight distribution at layer l, for example Kaiming initialization (He
et al., 2015). This ensures that both sets of active weights (sparse and dense) are initially sampled
from the same distribution.

3. Train We then train the sparse and dense networks for 1000 epochs (allowing for convergence).

4. Evaluate the better architecture We gather the results across the widths/capacity levels and
conduct a paired, one-tail Wilcoxon signed-rank test (Wilcoxon, 1945) to evaluate the better archi-
tecture. Our null hypothesis (H0) is that sparse networks have similar or worse test accuracy than
dense networks (lower or the same median), while our alternative hypothesis (H1) is that sparse
networks have better test accuracy performance than dense networks of the same capacity (higher
median). This can be formulated as:

H0 : Sparse <= Dense , H1 : Sparse > Dense (4)

Our goal of SC-SDC is to compare sparse and dense networks at the same capacity level. By same
capacity, we are referring to the same number of active weights, but other notions of same capacity
can also be used. We briefly discuss this in Appendix A.1.

3

Under review as a conference paper at ICLR 2021

Table 1: The average correlation between gradient flow measures and generalization performance

Measure Correlation to Test Loss Correlation to Test Accuracy
Sparse Dense Sparse Dense

C
IF

A
R

-1
0 ||g||1 (5) 0.3705 0.3940 0.3551 0.3750

||g||2 (5) 0.3732 0.3181 0.3167 0.3840
egf1 (6) 0.4155 0.4168 0.3992 0.4041
egf2 (6) 0.4373 0.3323 0.3833 0.3774

C
IF

A
R

-1
00 ||g||1 (5) 0.4030 0.4411 0.4286 0.3720

||g||2 (5) 0.3998 0.4008 0.3974 0.3913
egf1 (6) 0.4362 0.4506 0.4418 0.3821
egf2 (6) 0.4048 0.4121 0.4142 0.3990

We compare the average absolute Kendall Rank correlation between different formulations of
gradient flow and generalization. The subscript denotes the p-norm (l1 or l2 norm). We see that
EGF has higher absolute correlation when compared to standard gradient flow measures. We also
see that is consistent across Fashion MNIST (see Appendix B.1).

2.2 MEASURING GRADIENT FLOW

Gradient flow (GF) is used to study optimization dynamics and typically approximated by taking the
norm of the gradients of the network (Pascanu et al., 2013; Nocedal et al., 2002; Chen et al., 2018;
Wang et al., 2020; Evci et al., 2020).

We consider a feedforward neural network f : RD → R, with function inputs x ∈ RD and network
weights θ. The gradient norm is usually computed by concatenating all the gradients of a network
into a single vector, g = ∂C

∂θ , whereC is our cost function. Then the vector norm is taken as follows:

gfp = ||g||p, (5)

where p denotes the pth-norm.

Effective Gradient Flow Traditional measures of gradient flow take the l1 or l2 norm of all the
gradients (Chen et al., 2018; Pascanu et al., 2013; Evci et al., 2020). This is not appropriate for sparse
networks, as this would include gradients of masked weights which have no influence on the forward
pass. Furthermore, computing l1 or l2 across all weights in the networks gives disproportionate
influence to layers with more weights. We instead propose a simple modification of Equation 5,
which we term Effective Gradient Flow (EGF), that computes the average, masked gradient (only
gradients of active weights) norm across all layers.

We calculate EGF as follows:

g = (
∂C
∂θ1
�m1,

∂C
∂θ2
�m2, . . . ,

∂C
∂θC

�mL) for l = 1, . . . , L (6)

egfp =

∑L
n=1 ||gi||p
L

, (7)

where L is number of layers and
∂C
∂θl
�ml denotes an element-wise product of the gradients of layer

l,
∂C
∂θl

, and the mask ml applied to the weights of layer l. For a fully dense network, ml is a matrix
of all ones, since no gradients are masked.

EGF has the following favourable properties:

• Gradient flow is evenly distributed across layers EGF distributes the gradient norm across the
layers equally, preventing layers with a lot of weights from dominating the measure and also
preventing layers with vanishing gradients from being hidden in the formulation, as is the case
with equation 5 (when all gradients are appended together).

• Only gradients of active weights are used EGF ensures that for sparse networks, only gradients
of active weights are used. Even though weights are masked, their gradients are not necessarily

4

Under review as a conference paper at ICLR 2021

Table 2: Different network configurations for sparse and dense comparisons

Configuration Variants
Optimizers SGD , SGD with mom (0.9) ,

Adagrad , RMSprop and Adam
Regularization/Normalization method No regularization, L2/Weight Decay , Data Augmentation ,

Skip Connections and Batchnorm.
Number of hidden layers 1 , 2 , 4.
Dense Width 308, 923, 1538, 2153, 2768.
Activation functions ReLU, PReLU , ELU , SReLU and Sigmoid.
Batch Size 128
Learning Rate 0.001, 0.1

zero since the partial derivative of the weight wrt. the loss, is influenced by other weights and
activations. Thereby a weight can be zero, but its gradient can be nonzero.

• Possibility for application in gradient-based pruning methods Tanaka et al. (2020) showed that
gradient-based pruning methods like GRASP (Wang et al., 2020) and SNIP (Lee et al., 2018a),
disproportionately prune large layers and are susceptible to layer-collapse, which is when an al-
gorithm prunes all the weights in a specific layer. Due to the fact that EGF is evenly distributed
across layers, maintaining EGF (as opposed to standard gradient norm) could possibly be used as a
pruning criteria. Furthermore, current approaches measuring or approximating the change in gra-
dient flow during pruning in sparse networks (Wang et al., 2020; Evci et al., 2020; Singh Lubana
& Dick, 2020), could benefit from this new formulation.

To evaluate EGF against other standard gradient norm measures, such as the l1 and l2 norm, we
empirically compare these measures and their correlation to test loss and accuracy. We take the
absolute average of the Kendall Rank correlation (Kendall, 1938), across the different experiment
configurations. We follow a similiar approach to Jiang et al. (2019), but unlike their work which
has focused on correlating network complexity measures to the generalization gap, we measure the
correlation of gradient flow to performance (accuracy and loss). We measure gradient flow at 10
points evenly spaced throughout training, specifically at the end of epoch 0, 99. 199, 299, 399, 499,
599, 699, 799, 899 and 999.

Our results from Table 1 shows that EGF has a higher average absolute correlation to both test loss
and accuracy. This is also true of Fashion MNIST (see Appendix B.1). Due to the comparative
benefits of EGF, we use it for the remainder of the paper to measure the impact of interventions. We
include all measures of gradient flow in Appendix B for completeness.

2.3 ARCHITECTURE, NORMALIZATION, REGULARIZATION AND OPTIMIZER VARIANTS

We briefly describe our key experiment variants below, and also include for completeness all unique
variants in Table 2.

Activation functions ReLU networks (Nair & Hinton, 2010) are known to be more resilient to
vanishing gradients than networks that use Sigmoid or Tanh activations, since they only result in
vanishing gradients when the input is less than zero, while on active paths, due to ReLU’s linearity,
the gradients flow uninhibited (Glorot et al., 2011). Although most experiments are run on ReLU
networks, we also explore different activation functions, namely PReLU (He et al., 2015), ELU
(Clevert et al., 2015), Swish (Ramachandran et al., 2017), SReLU (Jin et al., 2015) and Sigmoid
(Neal, 1992).

Batch normalization and Skip Connections Other methods to help alleviate the vanishing gradient
problem include the addition of skip connections (every two layers) (Srivastava et al., 2015; He et al.,
2016) and batch normalization (Ioffe & Szegedy, 2015). We empirically explore these methods.

Optimization and Regularization techniques We explore the impact of popular regularization
methods: weight decay/l2 regularization (0.0001) (Krogh & Hertz, 1992; Hanson & Pratt, 1989) and
data augmentation (random crops and random horizontal flipping (Krizhevsky et al., 2012)). Fur-
thermore, we benchmark the impact of the most widely used optimizers such as minibatch stochastic
gradient descent (with momentum (0.9) (Sutskever et al., 2013; Polyak, 1964) and without momen-

5

Under review as a conference paper at ICLR 2021

tum (Robbins & Monro, 1951)) , Adam (Kingma & Ba, 2014), Adagrad (Duchi et al., 2011) and
RMSProp (Hinton et al., 2012).

3 EMPIRICAL SET-UP

SC-SDC MLP Setting We use the SC-SDC empirical setting (section 2.1) for all experiment vari-
ants. We train over 6000 MLPs for 1000 epochs and evaluate performance on CIFAR-10 and CIFAR-
100 (Krizhevsky et al., 2009). We compare sparse and dense networks across various widths, depths,
learning rates, regularization and optimization methods as shown in Table 2.

We choose a max network width NMaxW of n+ 4, where n is the input dimension of the network.
In the case of CIFAR, n = 3072 and so our maximum width NMaxW = 3076. We repeat these ex-
periments with one, two and four hidden layers, with the number of active weights in these networks
ranging from 949, 256 to 31, 765, 568 weights. In section 4, we discuss results achieved using four
hidden layers on CIFAR-100 and we provide the one and two hidden layer results in Appendix C.

Dense Width Following from SC-SDC, these networks are compared at various network widths,
specifically a width of 308, 923, 1538, 2153, 2768 (10%, 30%, 50%, 70% and 90% of our maxi-
mum width NMaxW (3076)) as shown in Table 2. We use the term dense width to refer to the width
of a network if that network was dense. For example, when comparing sparse and dense networks
at a dense width of 308, this means the dense network has a width of 308, while the sparse network
has a width of NMaxW (3076), but has the same number of active connections as the dense counter-
part. We provide more detailed discussion of the choices made in the SC-SDC implementation in
Appendix A.1.

Extended CNN Setting We also extend our experiments to Wide Resnet-50 (the WRN-28-10 vari-
ant) (Zagoruyko & Komodakis, 2016) and use the optimization and regularization configurations
from the paper.

4 RESULTS AND DISCUSSION

4.1 COMPARISON OF DENSE AND SPARSE INTERVENTIONS USING SC-SDC

In this section, we use the results of the Wilcoxon signed rank test from SC-SDC to identify where
optimization choices are currently well suited for sparse networks and which are not. Furthermore,
for each variant, we also measure the gradient flow using EGF(egf2 (6))1 as described in the previous
section. Our main findings show that:

1. Batch normalization is critical to training sparse networks, more so than it is for dense networks.
This suggests that gradient instability is a key obstacle for sparse optimization.

2. Weight decay (with and without batch normalization) and data augmentation (without batch nor-
malization) can hurt both sparse and dense network optimization. This particularly occurs when
using accelerated, adaptive optimization methods that use an exponentially decaying average of
past squared gradients, such as Adam and RMSProp (Ruder, 2016). In these methods, large EGF
(gradient flow) strongly correlates to poor test accuracy.

3. Non-saturating activation functions, such as Swish (Ramachandran et al., 2017) and PReLU (He
et al., 2015), achieve promising results in both the sparse and dense regime. However, these
results are more statistically significant when sparse networks are used and so this could motivate
for the use of similar activation functions for training sparse networks.

Batch normalization plays a disproportionate role in stabilizing sparse networks Batch normal-
ization ensures that the distribution of the nonlinearity inputs remains stable as the network trains,
which was hypothesized to help stabilize gradient propagation (gradients do not explode or vanish)
(Ioffe & Szegedy, 2015). Following from Table 3a and 3b, we see that batch normalization is sta-
tistically more important for sparse network performance than it is for dense networks, across most
configurations and learning rates.

1Note we measure EGF at 10 points throughout training and take the average

6

Under review as a conference paper at ICLR 2021

(a) Effect of Different Regularization Methods - 0.001 Learning Rate

NR DA L2 BN SC DA BN SC DA L2 BN SC

Adagrad 0.9997 0.9997 0.9983 0.0062 0.2385 0.0006 0.0035
Adam 0.0003 0.0547 0.1984 0.0789 0.0025 0.0391 0.1184
RMSProp 0.0005 0.0003 0.3001 0.1165 0.1664 0.0957 0.0234
SGD 0.9997 0.9997 0.9997 0.0003 0.2478 0.0013 0.0035
Mom (0.9) 0.9997 0.9997 0.9995 0.0006 0.9989 0.0005 0.0025

(b) Effect of Different Regularization Methods - 0.1 Learning Rate

BN BN SC DA BN L2 BN DA BN SC DA L2 BN SC

Adagrad 0.0003 0.0016 0.0018 0.9626 0.0234 0.0140
Adam 0.0698 0.0035 0.0023 0.0434 0.1912 0.3766
RMSProp 0.0021 0.5624 0.0267 0.0079 0.8943 0.0016
SGD 0.0005 0.0045 0.0003 0.0481 0.0004 0.0126
Mom (0.9) 0.0004 0.0027 0.0016 0.4435 0.0053 0.2118

(c) Effect of Different Activation Functions - 0.1 Learning Rate

Relu Swish PRelu SRelu Sigmoid Elu

Adagrad 0.0234 0.0045 0.0498 0.1817 0.4797 0.0032
Adam 0.1912 0.1817 0.0391 0.0620 0.0045 0.0004
RMSProp 0.8943 0.1671 0.0023 0.0115 0.9973 0.1533
SGD 0.0126 0.0267 0.0045 0.0778 0.0304 0.0559
Mom (0.9) 0.2118 0.0134 0.0013 0.0778 0.0013 0.9733

NR - No Regularization, BN - Batchnorm, SC - Skip Connections, DA - Data Augmention
and L2- weight decay.

Table 3: Wilcoxon Signed Rank Test Results for ReLU networks with four hidden layers, trained on
CIFAR-100, using different learning rates. We use a p-value of 0.05, the bold values indicate where
sparse networks perform better than dense networks in a statistical significance manner (reject H0

from 4), while non-bold values indicate that it is possible dense networks have the same or better test
accuracy in that configuration. The performance results for these networks are presented in Figure
2a, 12 and 10a .

From Table 3a and Figure 10a, we see methods such as L2 and data augmentation usually favour
dense networks (apart from Adam and RMSProp, when using data augmentation). However, with
the addition of batch normalization (Table 3b, L2 to L2 BN and DA to DA BN), these methods
favour sparse variants. This is especially apparent in Figure 10a, where batch normalization im-
proves performance across all sparse optimizers, while resulting in a lower, more stable EGF. This
further emphasizes the importance of stabilizing gradient flow, particularly in sparse networks.

Weight Decay and Data Augmentation can hurt sparse network optimization When we take
a closer look at the effects of weight decay and data augmentation on sparse network accuracy
(Figure 2,Figure 13), we see that weight decay (even with batch normalization) drastically decreases
accuracy when used with adaptive optimization methods that use an exponentially decaying average
of past squared gradients (Adam and RMSProp). Furthermore, it results in distinctively larger EGF
values, which hints at Adam and RMSProp being more sensitive to larger gradient norms than other
optimizers. This agrees with Loshchilov & Hutter (2017), who proposed a different formulation
of weight decay for adaptive methods, since the current L2 regularization formulation for adaptive
methods could lead to weights with large gradients being regularized less, although this was not
experimentally verified. In the context of data augmentation, we see poor test accuracy when it is
used without batch normalization (Figure 10a). If used with batch normalization (Figure 2), it results
in a lower EGF and best test accuracy. This further emphasized the need to stabilize gradient flow
and how EGF can be used to this end.

The potential of non-saturating activation functions - Swish and PReLU We also explore the
effect of different activation functions on sparse network optimization. For the activation function

7

Under review as a conference paper at ICLR 2021

(a) Test Accuracy for Dense and Sparse Networks on CIFAR-100

(b) Gradient Flow for Dense and Sparse Networks on CIFAR-100

NR - No Regularization, BN - Batchnorm, SC - Skip Connections, DA - Data Augmention
and L2- weight decay.

Figure 2: We show the test accuracy (upper image) and gradient flow (lower image) results for
Sparse MLPs with four hidden layers and a large learning rate (0.1), across different regularization
methods and promising activations. The results for all optimizers can be found in Figure 13.

variants, the best configuration for each optimizer was chosen. For Adagrad, Adam and RMSProp
we use BN, SC and DA, while for SGD, we use BN, SC, L2 and DA.

From Table 3c, we see that Swish, PReLU and Sigmoid favour sparse architectures, but from the per-
formance results from Figure 12, we see that only Swish and PReLU are viable activation choices.
We continue to see a consistent trend for adaptive methods (most notably in Adam and RMSProp),
that higher EGF values, for example in SReLU, correspond to poor performance (Figure 11b), while
promising methods result in a lower EGF value (such as Swish). This further emphasizes how EGF
can be used to guide advances in network optimization.

4.2 GENERALIZATION OF RESULTS ACROSS ARCHITECTURE TYPES.

In this section, we move on from SC-SDC and extend our result to Wide ResNet-50. We note from
Figure 3, that most of our results from SC-SDC also hold on larger, more complicated models. We
see that L2 regularization (even with batch normalization) hurts performance for adaptive methods
(Adagrad and Adam) and also results in higher EGF values (Figure 14). Furthermore, we also see
data augmentation is beneficial when used with batch normalization. Finally, we see that Swish is a
promising activation function for adaptive methods and leads to lower EGF (Figure 14). This shows
that the SC-SDC results are not constrained to small scale experiments and that it can be used to
learn about dynamics of larger, more complicated networks.

8

Under review as a conference paper at ICLR 2021

Figure 3: WideResNet50 Test Accuracy on CIFAR-100. The density ranges from 1% to 100%. The
gradient flow results can be found in Figure 14.

5 RELATED WORK

Pruning at Initialization Methods that prune at initialization aim to start sparse, instead of first
pre-training an overparameterized network and then pruning. These methods use certain criteria to
estimate at initialization, which weights should remain active. This criteria includes using the con-
nection sensitivity (Lee et al., 2018b), gradient flow (via the Hessian vector product) (Wang et al.,
2020) and conversation of synaptic saliency (Tanaka et al., 2020). Another branch of pruning is Dy-
namic Sparse Training, which uses information gathered during the training process, to dynamically
update the sparsity pattern of these sparse networks (Mostafa & Wang, 2019; Bellec et al., 2017;
Mocanu et al., 2018; Dettmers & Zettlemoyer, 2019; Evci et al., 2019). While our work is motivated
by the same goal of allowing networks to start sparse and converge to the same performance as
dense networks, we instead focus on the impact of optimization and regularization choices on sparse
networks.

Sparse Network Optimization as Pruning Criteria Optimization in sparse networks has often
been neglected in favour of studying network initialization. However, there has been work that has
looked at sparse network optimization from different perspectives, mainly as a guide for pruning
criteria. This includes using gradient information (Mozer & Smolensky, 1989; LeCun et al., 1989;
Hassibi & Stork, 1992; Karnin, 1990), approximates of gradient flow (Wang et al., 2020; Dettmers
& Zettlemoyer, 2019; Evci et al., 2020) and Neural Tangent Kernel (NTK) (Liu & Zenke, 2020) to
guide the introduction of sparsity.

Sparse Network Optimization to study Network Dynamics Apart from use as pruning criteria,
optimization information has been used to investigate aspects of sparse networks, such as their loss
landscape (Evci et al., 2019), how they are impacted by SGD noise (Frankle et al., 2019a), the
effect of different activation functions (Dubowski, 2020) and their weight initialization (Lee et al.,
2019). Our work differs from these approaches as we consider more aspects of the optimization and
regularization process in a controlled experimental setting (SC-SDC), while using EGF to reason
about some of the results.

6 CONCLUSION AND FUTURE WORK

In this work, we take a wider view of sparse optimization strategies and introduce appropriate tooling
to measure the impact of architecture and optimization choices on sparse networks (EGF , SC-SDC
). Our results show that weight decay and data augmentation can hurt optimization, when adaptive
optimization methods are used and this usually corresponds to a much higher EGF.Furthermore, we
show how batch normalization is critical to training sparse networks, more so than it is for dense
networks as it helps stabilize gradient flow. We also show the potential of non-saturating activation
functions for sparse networks such as Swish and PReLU. Finally, we show that our results extend to
more complicated models like Wide ResNet-50.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Dario Amodei, Danny Hernandez, Girish Sastry, Jack Clark, Greg Brockman, and Ilya Sutskever.
Ai and compute, 2018. URL https://openai.com/blog/ai-and-compute/.

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep networks. arXiv preprint arXiv:1711.05136, 2017.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International Conference
on Machine Learning, pp. 794–803. PMLR, 2018.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Yann Le Cun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems, pp. 598–605. Morgan Kaufmann, 1990.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
learning research, 7(Jan):1–30, 2006.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. arXiv preprint arXiv:1907.04840, 2019.

Adam Dubowski. Activation function impact on sparse neural networks. B.S. thesis, University of
Twente, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In Conference
on learning theory, pp. 907–940, 2016.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the Lottery:
Making All Tickets Winners. arXiv e-prints, art. arXiv:1911.11134, November 2019.

Utku Evci, Fabian Pedregosa, Aidan Gomez, and Erich Elsen. The difficulty of training sparse
neural networks. arXiv preprint arXiv:1906.10732, 2019.

Utku Evci, Yani A Ioannou, Cem Keskin, and Yann Dauphin. Gradient flow in sparse neural net-
works and how lottery tickets win. arXiv preprint arXiv:2010.03533, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. arXiv preprint arXiv:1912.05671, 2019a.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing the
lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019b.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Pruning neural
networks at initialization: Why are we missing the mark?, 2020.

Ken-Ichi Funahashi. On the approximate realization of continuous mappings by neural networks.
Neural networks, 2(3):183–192, 1989.

Trevor Gale, Erich Elsen, and Sara Hooker. The State of Sparsity in Deep Neural Networks. arXiv
e-prints, art. arXiv:1902.09574, February 2019.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

10

https://openai.com/blog/ai-and-compute/

Under review as a conference paper at ICLR 2021

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315–323, 2011.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Stephen José Hanson and Lorien Y Pratt. Comparing biases for minimal network construction with
back-propagation. In Advances in neural information processing systems, pp. 177–185, 1989.

B. Hassibi, D. G. Stork, and G. J. Wolff. Optimal brain surgeon and general network pruning.
In IEEE International Conference on Neural Networks, pp. 293–299 vol.1, March 1993a. doi:
10.1109/ICNN.1993.298572.

Babak Hassibi and David G. Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In NIPS, pp. 164–171. Morgan Kaufmann, 1992.

Babak Hassibi, David G. Stork, and Stork Crc. Ricoh. Com. Second order derivatives for network
pruning: Optimal brain surgeon. In Advances in Neural Information Processing Systems 5, pp.
164–171. Morgan Kaufmann, 1993b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Cited on, 14(8), 2012.

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische Uni-
versität München, 91(1), 1991.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies, 2001.

Sara Hooker. The Hardware Lottery. arXiv e-prints, art. arXiv:2009.06489, September 2020.

Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin, and Andrea Frome. What Do Com-
pressed Deep Neural Networks Forget? arXiv e-prints, art. arXiv:1911.05248, November 2019.

Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

M. Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10–14,
2014.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/
abs/1502.03167.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

Xiaojie Jin, Chunyan Xu, Jiashi Feng, Yunchao Wei, Junjun Xiong, and Shuicheng Yan. Deep
learning with s-shaped rectified linear activation units. arXiv preprint arXiv:1512.07030, 2015.

11

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167

Under review as a conference paper at ICLR 2021

Ehud D Karnin. A simple procedure for pruning back-propagation trained neural networks. IEEE
transactions on neural networks, 1(2):239–242, 1990.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 and cifar-100 datasets. URl:
https://www. cs. toronto. edu/kriz/cifar. html, 6:1, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Anders Krogh and John A Hertz. A simple weight decay can improve generalization. In Advances
in neural information processing systems, pp. 950–957, 1992.

N. D. Lane and P. Warden. The deep (learning) transformation of mobile and embedded computing.
Computer, 51(5):12–16, May 2018. ISSN 1558-0814. doi: 10.1109/MC.2018.2381129.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal Brain Damage. In NIPS, pp. 598–605.
Morgan Kaufmann, 1989.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. SNIP: single-shot network pruning
based on connection sensitivity. CoRR, abs/1810.02340, 2018a. URL http://arxiv.org/
abs/1810.02340.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018b.

Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip HS Torr. A signal propagation
perspective for pruning neural networks at initialization. arXiv preprint arXiv:1906.06307, 2019.

Tianlin Liu and Friedemann Zenke. Finding trainable sparse networks through neural tangent trans-
fer. arXiv preprint arXiv:2006.08228, 2020.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018a.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the Value of
Network Pruning. CoRR, abs/1810.05270, 2018b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

C. Louizos, M. Welling, and D. P. Kingma. Learning Sparse Neural Networks through L 0 Regu-
larization. ArXiv e-prints, December 2017.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. In Advances in neural information processing systems,
pp. 6231–6239, 2017.

John H McDonald. Handbook of biological statistics, volume 2. sparky house publishing Baltimore,
MD, 2009.

Duane Merrill and Michael Garland. Merge-based parallel sparse matrix-vector multiplication. In
SC’16: Proceedings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, pp. 678–689. IEEE, 2016.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):1–12, 2018.

12

http://arxiv.org/abs/1810.02340
http://arxiv.org/abs/1810.02340

Under review as a conference paper at ICLR 2021

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. arXiv preprint arXiv:1902.05967, 2019.

Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trim-
ming the fat from a network via relevance assessment. In D. S. Touret-
zky (ed.), Advances in Neural Information Processing Systems 1, pp. 107–
115. Morgan-Kaufmann, 1989. URL http://papers.nips.cc/paper/
119-skeletonization-a-technique-for-trimming-the-fat-from-a-network-via-relevance-assessment.
pdf.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In ICML, 2010.

Sharan Narang, Erich Elsen, Gregory Diamos, and Shubho Sengupta. Exploring Sparsity in Recur-
rent Neural Networks. arXiv e-prints, art. arXiv:1704.05119, Apr 2017.

Radford M Neal. Connectionist learning of belief networks. Artificial intelligence, 56(1):71–113,
1992.

Jorge Nocedal, Annick Sartenaer, and Ciyou Zhu. On the behavior of the gradient norm in the
steepest descent method. Computational Optimization and Applications, 22(1):5–35, 2002.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310–1318, 2013.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR Com-
putational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Swish: a self-gated activation function. arXiv
preprint arXiv:1710.05941, 7, 2017.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Ravi K Samala, Heang-Ping Chan, Lubomir M Hadjiiski, Mark A Helvie, Caleb Richter, and Kenny
Cha. Evolutionary pruning of transfer learned deep convolutional neural network for breast cancer
diagnosis in digital breast tomosynthesis. Physics in Medicine & Biology, 63(9):095005, may
2018. doi: 10.1088/1361-6560/aabb5b.

Abigail See, Minh-Thang Luong, and Christopher D. Manning. Compression of Neural Machine
Translation Models via Pruning. arXiv e-prints, art. arXiv:1606.09274, Jun 2016.

Ekdeep Singh Lubana and Robert P Dick. A gradient flow framework for analyzing network pruning.
arXiv e-prints, pp. arXiv–2009, 2020.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp, 2019.

Nikko Ström. Sparse connection and pruning in large dynamic artificial neural networks, 1997.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147, 2013.

Hidenori Tanaka, Daniel Kunin, Daniel LK Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. arXiv preprint arXiv:2006.05467, 2020.

Neil C. Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso. The Computational
Limits of Deep Learning. arXiv e-prints, art. arXiv:2007.05558, July 2020.

13

http://papers.nips.cc/paper/119-skeletonization-a-technique-for-trimming-the-fat-from-a-network-via-relevance-assessment.pdf
http://papers.nips.cc/paper/119-skeletonization-a-technique-for-trimming-the-fat-from-a-network-via-relevance-assessment.pdf
http://papers.nips.cc/paper/119-skeletonization-a-technique-for-trimming-the-fat-from-a-network-via-relevance-assessment.pdf

Under review as a conference paper at ICLR 2021

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020.

P. Warden and D. Situnayake. TinyML: Machine Learning with TensorFlow Lite on Arduino and
Ultra-Low-Power Microcontrollers. O’Reilly Media, Incorporated, 2019. ISBN 9781492052043.
URL https://books.google.com/books?id=sB3mxQEACAAJ.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning Structured Sparsity in Deep Neural Net-
works. ArXiv e-prints, August 2016.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–83,
1945.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.
URL http://arxiv.org/abs/1605.07146.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

Yue Zhao, Jiajia Li, Chunhua Liao, and Xipeng Shen. Bridging the gap between deep learning
and sparse matrix format selection. In Proceedings of the 23rd ACM SIGPLAN symposium on
principles and practice of parallel programming, pp. 94–108, 2018.

M. Zhu and S. Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. ArXiv e-prints, October 2017.

14

https://books.google.com/books?id=sB3mxQEACAAJ
http://arxiv.org/abs/1605.07146

Under review as a conference paper at ICLR 2021

A SC-SDC

In this section, we provide more information about SC-SDC and its benefits.

A.1 SC-SDC IMPLEMENTATION DETAILS

Wilcoxon Signed Rank Test This is a non-parametric test that compares dependent or paired sam-
ples, without assuming the differences in between the paired experiments are normally distributed
(McDonald, 2009; Demšar, 2006).

Random Sparsity Our work focuses on the training dynamics of random, sparse networks. This
ensures that what is learned is not dependent on a specific pruning method, but rather can be used to
better understand sparse training in general. Going forward, it would be interesting to explore these
dynamics on pruned networks.

We achieve random sparsity, by generating a random mask for each layer and then multiply the
weights by this mask during each forward pass. The sparsity is distributed evenly across the network.
For example, a 20% sparse MLP has 20% of the weights remaining in each layer.

Dense Width A critical component to how we specify our experiments is a term we define as dense
width. In order to fairly compare sparse and dense networks, we need them to have the same number
of active connections at each depth. In the case of sparse networks, this means ensuring they have
the same number of active connections as the dense networks, while remaining sparse. Dense width
refers to the width of a network if that network was dense. This process of comparing sparse and
dense networks at different dense widths is illustrated in figure 5.

Fair comparison of Sparse and Dense networks As can be seen from figure 5, SC-SDC ensures
the exact same active parameter count, but the sparse networks will be connected to more neurons.
It is possible that the increased number of activations being used can lead to sparse networks having
higher representational power, however most work on expressivity of neural networks looks at this
from a depth perspective and proves certain depths of networks are universal approximators (Eldan
& Shamir, 2016; Hornik et al., 1989; Funahashi, 1989).

To this end, we ensure these networks have the same depth, but we believe going forward an inter-
esting direction would be ensuring they have a similar amount of active neurons.

SC-SDC comparison details For completeness, we provide more details of how we ensure sparse
and dense networks are of the same capacity.

Following from equation 2, to ensure the same number of weights in sparse and dense networks, we
can ensure they have the same number of active weights at each layer as follows:

||al
S ||0 = ||al

D||0, for l = 1, . . . , L (8)

This is achieved by masking each of the weight layers of sparse network S:

al
S = θlS �ml for l = 1, . . . , L (9)

, where ml is a random binary matrix (mask) for layer l, s.t. ||ml||0 = al
D, where al

D is determined
by the chosen capacity, these networks will be compared at.

For SC-SDC, we need a maximum network width NMaxW and comparison width NW . We choose
a max network width NMaxW of n+ 4, where n is the input dimension of the network. In the case
of CIFAR, n = 3072 and so our maximum width NMaxW = 3076. The choice of n + 4 follows
from Lu et al. (2017), where the authors prove a universal approximation theorem for width-bounded
ReLU networks, with width bounded to n + 4. Our comparison width, NW , is equivalent to dense
widths we vary in our experiments - 308, 923, 1538, 2153, 2768.

The dimensions of each of layers are as follows:

1. First Layer:

θ1D ∈ RI×NW , θ1S ∈ RI×NMaxW , m1 ∈ {0, 1}I×NMaxW (10)

15

Under review as a conference paper at ICLR 2021

2. Intermediate Layers:

θ1S ∈ RNW×NW , θ1S ∈ RNMaxW×NMaxW , m{2,...,L−1} ∈ {0, 1}NMaxW×NMaxW

(11)

3. Final Layer:

θLS ∈ RNW×O , θLS ∈ RNMaxW×O , mL ∈ {0, 1}NMaxW×O (12)

, where NMaxW is maximum width of the sparse layer, NW is the comparison width, I is the input
dimension, O is output dimension, L is the number of layers in the network, θlS is the weights in
layer l of sparse network S and θlD is the weights in layer l of dense network D.

This process would be the same for convolutional layers, but there would be a third dimension to
handle the different channels. In figure 4, we provide an illustrative example showing how to ensure
sparse and dense networks are compared fairly.

Figure 4: Fair comparison of sparse and dense neural networks

A.2 BENEFITS

The benefits of SC-SDC can be summarized as follows:

• We can better understand sparse network optimization. SC-SDC allows us to identify
which optimization or regularization methods are poorly suited to sparse networks in a con-
trolled setting, ensuring the results are a direct result of the sparse connections themselves.

• Learn at what parameter and size budget, sparse networks are better than dense.
Comparing sparse and dense networks of the same capacity allows us to see which archi-
tecture is better at different configurations. In configurations where sparse architectures
perform better, we could exploit advances in sparse matrix computation and storage (Zhao
et al., 2018; Merrill & Garland, 2016) to simply default to sparse architectures.

16

Under review as a conference paper at ICLR 2021

Figure 5: Comparing sparse and dense neural network fairly at different widths

B GRADIENT FLOW

B.1 EGF RESULTS ON FMNIST

We extend our experiments to Fashion MNIST (Xiao et al., 2017), a dataset that is distinctively
different to the CIFAR datasets we used in section 2.2. We ran 450 experiments with networks with
four hidden layers, using 0.001 as a learning rate and for 500 epochs. We varied configurations as
follows:

• Optimizers - Adagrad, Adam and SGD with momentum.
• Regularization methods - no regularization, batchnorm, skip connections, l2 (0.0001) and

data augmentation.

From table 4, we see that out of the gradient flow formulations, EGF still correlates better to gener-
alization performance.

For completeness, we present the full set of results using the different formulations of gradient flow
on CIFAR-100. Namely, we show ||g||1 (5) (Figure 6) ,||g||2 (5) (Figure 7) ,egf1 (6) (Figure 8) and
egf2 (6) (Figure 9).

17

Under review as a conference paper at ICLR 2021

Table 4: The average correlation between gradient flow measures and generalization performance
for FMIST

Measure Correlation to Test Loss Correlation to Test Accuracy
Sparse Dense Sparse Dense

FM
N

IS
T ||g||1 (5) 0.3259 0.2522 0.3536 0.3487

||g||2 (5) 0.3207 0.2702 0.3139 0.3318
egf1 (6) 0.3534 0.2522 0.3748 0.3487
egf2 (6) 0.3672 0.3017 0.2314 0.3335

Figure 6: Gradient Flow in CIFAR-100 using ||g||1

C DETAILED RESULTS FOR SC-SDC

In this section, we presented the detailed results for our experiments.

1. Detailed Results with a low learning rate (0.001).
2. Detailed Results with a high learning rate (0.1).
3. Results for different activation functions.

18

Under review as a conference paper at ICLR 2021

Figure 7: Gradient Flow in CIFAR-100 using ||g||2

Figure 8: Gradient Flow in CIFAR-100 using egf1

19

Under review as a conference paper at ICLR 2021

Figure 9: Gradient Flow in CIFAR-100 using egf2

Figure 10: Effect of Regularization on Accuracy and Gradient Flow for Dense and Sparse Networks
on CIFAR-100, with low learning rate (0.001)

(a) Test Accuracy for Dense and Sparse Networks on CIFAR-100

(b) Gradient Flow for Dense and Sparse Networks on CIFAR-100

20

Under review as a conference paper at ICLR 2021

Figure 11: Effect of Activation Functions on Accuracy and Gradient Flow for Dense and Sparse
Networks on CIFAR-100, with large learning rate (0.1)

(a) Test Accuracy for Dense and Sparse Networks on CIFAR-100

(b) Gradient Flow for Dense and Sparse Networks on CIFAR-100

Figure 12: Test Accuracy for Dense and Sparse Networks on CIFAR-100. Each configuration is the
best configuration for that optimizer. For Adagrad, Adam and RMSProp we use BN, SC and DA,
while for SGD, we use BN, SC, L2 and DA.

Table 5: Test Accuracy summary for CIFAR-10 with low learning rate (0.001)

(a) One Hidden Layer

No Regularization Data Augmentation L2 Batchnorm
Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Adagrad 54.537 +/- 0.91 55.259 +/- 0.36 56.098 +/- 2.395 55.497 +/- 3.022 54.565 +/- 0.909 55.269 +/- 0.545 54.279 +/- 2.034 55.981 +/- 0.349
Adam 51.391 +/- 1.066 52.476 +/- 0.48 37.955 +/- 2.874 42.404 +/- 6.494 48.671 +/- 0.766 49.312 +/- 1.033 52.668 +/- 1.275 53.321 +/- 0.892
RMSProp 48.999 +/- 0.76 51.507 +/- 0.817 36.289 +/- 4.053 40.62 +/- 7.105 47.7 +/- 1.926 48.145 +/- 2.468 52.581 +/- 1.617 53.045 +/- 1.282
SGD 53.714 +/- 1.564 55.023 +/- 0.48 57.091 +/- 1.524 55.089 +/- 3.08 53.775 +/- 1.559 55.091 +/- 0.46 54.364 +/- 2.363 55.996 +/- 0.696
SGD with mom(0.9) 53.774 +/- 1.968 54.746 +/- 0.804 56.98 +/- 1.027 57.849 +/- 0.754 54.083 +/- 1.72 55.051 +/- 1.06 54.684 +/- 2.083 55.951 +/- 0.604

(b) Two Hidden Layers

No Regularization Data Augmentation L2 Batchnorm
Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Adagrad 54.179 +/- 1.92 55.333 +/- 0.558 59.739 +/- 3.03 58.967 +/- 4.313 53.813 +/- 1.783 55.123 +/- 0.301 53.703 +/- 2.711 56.471 +/- 0.317
Adam 52.003 +/- 0.91 53.785 +/- 1.146 42.095 +/- 7.723 49.468 +/- 7.948 50.588 +/- 0.683 51.681 +/- 0.668 57.541 +/- 1.525 57.886 +/- 1.171
RMSProp 51.352 +/- 1.198 53.499 +/- 1.5 46.872 +/- 4.916 51.919 +/- 5.436 50.382 +/- 0.602 50.52 +/- 0.918 57.432 +/- 1.512 57.974 +/- 1.151
SGD 52.895 +/- 1.918 53.905 +/- 1.735 59.893 +/- 2.16 55.865 +/- 5.475 52.931 +/- 1.852 53.941 +/- 1.724 54.153 +/- 2.259 56.459 +/- 0.413
SGD with mom(0.9) 53.777 +/- 1.583 53.357 +/- 3.18 61.814 +/- 1.959 62.367 +/- 2.177 53.835 +/- 1.728 53.26 +/- 3.309 56.081 +/- 2.158 57.575 +/- 0.428

(c) Four Hidden Layers

No Regularization Data Augmentation L2 Batchnorm Skip Connections
Dense Sparse Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Adagrad 53.933 +/- 3.137 53.837 +/- 2.903 58.118 +/- 2.059 56.836 +/- 5.211 53.755 +/- 3.108 44.738 +/- 18.207 55.204 +/- 3.483 57.153 +/- 1.194 53.896 +/- 3.159 55.491 +/- 1.362
Adam 24.538 +/- 17.34 36.206 +/- 22.015 46.911 +/- 5.617 49.115 +/- 6.169 50.875 +/- 0.63 43.025 +/- 17.121 58.379 +/- 1.538 58.947 +/- 1.261 52.981 +/- 0.918 54.54 +/- 0.895
RMSProp 24.241 +/- 15.653 45.916 +/- 12.861 53.122 +/- 3.217 54.358 +/- 3.115 50.249 +/- 0.631 41.931 +/- 17.325 58.101 +/- 1.318 58.665 +/- 1.248 52.356 +/- 1.692 53.987 +/- 0.756
SGD 50.469 +/- 1.471 36.697 +/- 16.941 60.295 +/- 1.784 46.193 +/- 18.397 50.389 +/- 1.562 36.478 +/- 16.985 52.78 +/- 2.313 55.299 +/- 0.347 51.949 +/- 1.698 53.941 +/- 1.082
SGD with mom(0.9) 54.749 +/- 1.473 45.291 +/- 14.629 61.43 +/- 2.792 53.408 +/- 19.158 54.382 +/- 1.506 44.661 +/- 14.911 56.496 +/- 2.326 58.336 +/- 0.632 54.298 +/- 1.738 53.312 +/- 3.529

21

Under review as a conference paper at ICLR 2021

Figure 13: Effect of Different Interventions on Accuracy and Gradient Flow for Dense and Sparse
Networks on CIFAR-100, with large learning rate (0.1) - All Optims

(a) Test Accuracy for Dense and Sparse Networks on CIFAR-100

(b) Gradient Flow for Dense and Sparse Networks on CIFAR-100

Figure 14: WideResNet50 Grad Flow on CIFAR-100. The density ranges from 1% to 100%.

22

Under review as a conference paper at ICLR 2021

Table 6: Test Loss summary for CIFAR-10 with low learning rate (0.001)

(a) One Hidden Layer

No Regularization Data Augmentation L2 Batchnorm
Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Adagrad 1.768 +/- 0.156 1.677 +/- 0.216 1.274 +/- 0.066 1.29 +/- 0.084 1.712 +/- 0.127 1.615 +/- 0.18 1.564 +/- 0.033 1.548 +/- 0.079
Adam 142.604 +/- 46.942 102.403 +/- 61.214 11.263 +/- 6.312 9.691 +/- 7.296 6.296 +/- 1.944 5.542 +/- 1.923 6.242 +/- 0.969 6.144 +/- 0.972
RMSProp 70.0 +/- 15.672 62.098 +/- 25.008 12.061 +/- 8.758 25.578 +/- 26.538 4.582 +/- 1.216 5.503 +/- 1.938 6.644 +/- 1.002 7.31 +/- 1.16
SGD 1.977 +/- 0.168 1.616 +/- 0.161 1.253 +/- 0.04 1.306 +/- 0.084 1.939 +/- 0.166 1.595 +/- 0.151 1.699 +/- 0.069 1.663 +/- 0.017
SGD with mom(0.9) 3.076 +/- 0.56 2.598 +/- 0.047 1.438 +/- 0.112 1.407 +/- 0.113 2.42 +/- 0.413 2.092 +/- 0.055 2.208 +/- 0.122 2.145 +/- 0.021

(b) Two Hidden Layers

No Regularization Data Augmentation L2 Batchnorm
Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Adagrad 2.962 +/- 0.329 2.53 +/- 0.679 1.178 +/- 0.067 1.198 +/- 0.107 2.621 +/- 0.2 2.151 +/- 0.442 2.62 +/- 0.089 2.161 +/- 0.339
Adam 116.26 +/- 25.299 143.085 +/- 69.247 2.006 +/- 0.305 2.232 +/- 0.474 3.698 +/- 0.234 3.379 +/- 0.4 7.469 +/- 1.768 7.309 +/- 1.877
RMSProp 148.115 +/- 30.097 161.511 +/- 74.983 2.192 +/- 0.179 2.832 +/- 0.981 4.339 +/- 0.144 3.985 +/- 0.514 7.416 +/- 1.368 7.193 +/- 1.495
SGD 2.917 +/- 0.488 2.008 +/- 0.366 1.157 +/- 0.051 1.268 +/- 0.145 2.809 +/- 0.47 1.959 +/- 0.336 2.41 +/- 0.249 2.01 +/- 0.134
SGD with mom(0.9) 4.054 +/- 0.818 3.971 +/- 1.438 2.442 +/- 0.452 1.79 +/- 0.503 2.95 +/- 0.574 2.948 +/- 1.025 2.788 +/- 0.359 2.376 +/- 0.128

(c) Four Hidden Layers

No Regularization Data Augmentation L2 Batchnorm Skip Connections
Dense Sparse Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Adagrad 5.158 +/- 0.637 4.361 +/- 1.604 2.021 +/- 0.752 1.838 +/- 0.697 3.819 +/- 1.308 3.172 +/- 0.743 2.802 +/- 0.29 2.396 +/- 0.225 4.897 +/- 0.682 3.625 +/- 1.131
Adam 11.182 +/- 11.38 95.498 +/- 157.421 2.722 +/- 0.382 2.816 +/- 0.681 3.608 +/- 0.171 3.51 +/- 0.671 7.204 +/- 0.9 7.181 +/- 1.162 244.704 +/- 90.922 247.345 +/- 134.383
RMSProp 12.352 +/- 9.63 191.175 +/- 318.66 5.452 +/- 2.659 6.504 +/- 4.251 3.647 +/- 0.322 3.718 +/- 0.857 7.645 +/- 0.867 7.623 +/- 1.159 194.814 +/- 77.03 199.102 +/- 106.311
SGD 5.139 +/- 0.855 3.578 +/- 1.253 1.173 +/- 0.033 1.518 +/- 0.472 4.812 +/- 0.829 3.458 +/- 1.102 2.779 +/- 0.365 2.243 +/- 0.132 4.311 +/- 0.815 2.442 +/- 0.788
SGD with mom(0.9) 5.206 +/- 0.935 4.974 +/- 1.657 3.395 +/- 0.357 2.471 +/- 0.69 3.496 +/- 0.636 3.499 +/- 0.903 2.927 +/- 0.569 2.453 +/- 0.057 4.931 +/- 0.974 4.506 +/- 1.304

Figure 15: Test Accuracy for CIFAR-10 with 0.001 Learning Rate

23

Under review as a conference paper at ICLR 2021

Table 7: Test Accuracy summary for CIFAR-100 with low learning rate (0.001)

(a) One Hidden Layer

No Regularization Data Augmentation L2 Batchnorm
Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Adagrad 26.76 +/- 0.886 27.39 +/- 0.644 26.958 +/- 2.287 26.22 +/- 2.659 27.023 +/- 1.035 27.588 +/- 0.874 21.491 +/- 1.413 22.974 +/- 0.299
Adam 23.016 +/- 1.688 24.185 +/- 0.657 13.401 +/- 1.361 16.3 +/- 4.214 21.771 +/- 1.059 22.191 +/- 0.493 24.255 +/- 2.204 25.111 +/- 0.906
RMSProp 22.115 +/- 1.05 23.764 +/- 0.737 12.805 +/- 1.663 15.415 +/- 3.953 20.953 +/- 1.012 22.063 +/- 0.747 24.009 +/- 2.011 24.715 +/- 1.092
SGD 26.911 +/- 1.177 27.043 +/- 1.958 26.525 +/- 1.234 24.081 +/- 3.158 27.051 +/- 1.155 27.086 +/- 2.041 21.014 +/- 2.475 23.002 +/- 0.659
SGD with mom(0.9) 25.155 +/- 2.71 26.243 +/- 1.264 29.007 +/- 1.125 29.577 +/- 1.318 25.663 +/- 2.55 26.632 +/- 1.299 21.649 +/- 2.645 23.565 +/- 0.631

(b) Two Hidden Layers

No Regularization Data Augmentation L2 Batchnorm
Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Adagrad 28.21 +/- 1.497 28.748 +/- 1.701 28.773 +/- 2.741 27.423 +/- 4.207 28.495 +/- 1.572 29.063 +/- 1.805 24.932 +/- 3.263 27.318 +/- 1.216
Adam 20.423 +/- 1.323 23.28 +/- 2.231 12.156 +/- 4.33 17.349 +/- 6.332 20.977 +/- 0.507 22.596 +/- 1.217 28.15 +/- 1.968 28.558 +/- 1.696
RMSProp 18.585 +/- 2.791 21.013 +/- 4.295 12.551 +/- 4.858 16.499 +/- 5.901 21.065 +/- 0.566 21.967 +/- 1.24 28.151 +/- 2.113 28.132 +/- 1.841
SGD 27.125 +/- 1.31 24.099 +/- 7.827 27.951 +/- 1.625 22.25 +/- 6.112 27.271 +/- 1.262 24.039 +/- 7.938 23.861 +/- 4.083 26.622 +/- 1.036
SGD with mom(0.9) 26.972 +/- 2.252 26.289 +/- 3.761 31.985 +/- 2.717 31.633 +/- 2.95 27.328 +/- 2.375 26.621 +/- 3.86 25.421 +/- 3.022 27.196 +/- 1.268

(c) Four Hidden Layers

No Regularization Data Augmentation L2 Batchnorm Skip Connections
Dense Sparse Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Adagrad 24.956 +/- 1.686 22.189 +/- 2.633 25.479 +/- 1.175 22.624 +/- 3.991 24.556 +/- 1.343 16.263 +/- 8.572 27.008 +/- 4.51 29.011 +/- 2.027 26.852 +/- 1.781 27.279 +/- 1.334
Adam 15.583 +/- 3.736 22.713 +/- 3.209 8.865 +/- 3.933 10.306 +/- 6.494 19.646 +/- 0.889 17.555 +/- 8.751 29.652 +/- 1.801 30.013 +/- 1.688 23.748 +/- 1.504 25.151 +/- 0.657
RMSProp 4.97 +/- 8.083 17.983 +/- 9.803 11.597 +/- 7.201 20.396 +/- 3.643 19.835 +/- 0.637 16.678 +/- 9.06 29.501 +/- 1.853 29.667 +/- 1.86 21.43 +/- 7.297 21.363 +/- 9.074
SGD 20.809 +/- 0.911 11.776 +/- 8.53 26.802 +/- 1.492 14.004 +/- 10.133 20.695 +/- 0.743 11.375 +/- 8.282 24.511 +/- 3.541 27.515 +/- 1.428 23.805 +/- 1.551 22.871 +/- 7.053
SGD with mom(0.9) 25.269 +/- 1.456 17.466 +/- 8.93 29.958 +/- 3.146 24.143 +/- 12.147 24.741 +/- 1.38 16.867 +/- 8.621 27.301 +/- 3.007 28.893 +/- 1.526 26.817 +/- 1.83 25.595 +/- 3.516

Table 8: Test Loss summary for CIFAR-100 with low learning rate (0.001)

(a) One Hidden Layer

No Regularization Data Augmentation L2 Batchnorm
Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Adagrad 3.715 +/- 0.262 3.581 +/- 0.301 3.147 +/- 0.1 3.177 +/- 0.116 3.631 +/- 0.215 3.491 +/- 0.255 3.922 +/- 0.107 3.846 +/- 0.171
Adam 440.694 +/- 189.721 342.236 +/- 207.693 38.232 +/- 23.824 84.171 +/- 110.671 46.989 +/- 22.993 26.927 +/- 22.742 15.53 +/- 2.784 15.77 +/- 2.959
RMSProp 261.914 +/- 81.721 358.131 +/- 234.544 39.084 +/- 24.3 743.694 +/- 668.044 37.436 +/- 14.38 48.654 +/- 47.815 15.824 +/- 1.809 16.68 +/- 1.186
SGD 3.655 +/- 0.03 3.305 +/- 0.141 3.184 +/- 0.062 3.283 +/- 0.134 3.617 +/- 0.03 3.289 +/- 0.13 4.015 +/- 0.101 3.867 +/- 0.052
SGD with mom(0.9) 7.038 +/- 1.577 5.627 +/- 0.09 3.538 +/- 0.221 3.373 +/- 0.195 5.608 +/- 1.201 4.62 +/- 0.016 5.008 +/- 0.495 4.609 +/- 0.039

(b) Two Hidden Layers

No Regularization Data Augmentation L2 Batchnorm
Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Adagrad 4.687 +/- 0.772 4.178 +/- 0.871 3.128 +/- 0.081 3.154 +/- 0.152 4.351 +/- 0.559 3.884 +/- 0.623 4.17 +/- 0.129 3.784 +/- 0.154
Adam 441.033 +/- 76.035 493.788 +/- 215.952 4.593 +/- 0.368 5.09 +/- 1.28 12.361 +/- 0.424 9.121 +/- 2.275 17.406 +/- 4.665 17.608 +/- 4.662
RMSProp 346.064 +/- 99.04 460.908 +/- 212.828 4.157 +/- 0.293 6.024 +/- 1.985 13.274 +/- 0.776 11.817 +/- 3.779 16.036 +/- 2.394 17.701 +/- 1.539
SGD 4.395 +/- 0.151 3.551 +/- 0.445 3.048 +/- 0.077 3.327 +/- 0.31 4.303 +/- 0.142 3.53 +/- 0.434 4.293 +/- 0.714 3.733 +/- 0.025
SGD with mom(0.9) 8.28 +/- 2.146 7.393 +/- 1.534 6.507 +/- 1.228 4.739 +/- 1.349 6.048 +/- 1.465 5.623 +/- 1.288 5.096 +/- 0.873 4.337 +/- 0.068

(c) Four Hidden Layers

No Regularization Data Augmentation L2 Batchnorm Skip Connections
Dense Sparse Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Adagrad 9.714 +/- 3.113 10.018 +/- 5.165 4.584 +/- 1.222 4.181 +/- 1.036 9.112 +/- 2.96 10.83 +/- 4.376 4.275 +/- 0.491 3.784 +/- 0.042 7.227 +/- 2.173 6.592 +/- 2.377
Adam 209.854 +/- 400.362 10867.689 +/- 10783.68 5.044 +/- 0.288 8.551 +/- 3.795 32.786 +/- 12.029 15.217 +/- 12.419 19.798 +/- 6.003 20.605 +/- 6.057 779.235 +/- 319.831 715.685 +/- 395.333
RMSProp 222.053 +/- 450.311 3680.784 +/- 5265.27 14.482 +/- 16.75 5.609 +/- 0.51 22.649 +/- 5.115 15.09 +/- 9.165 20.313 +/- 5.053 21.787 +/- 3.96 649.551 +/- 366.815 443.976 +/- 348.581
SGD 10.394 +/- 1.219 5.936 +/- 2.56 3.082 +/- 0.064 3.786 +/- 0.619 10.222 +/- 1.053 5.961 +/- 2.521 4.286 +/- 0.652 3.704 +/- 0.128 8.212 +/- 0.61 4.608 +/- 1.706
SGD with mom(0.9) 13.425 +/- 2.123 12.899 +/- 4.883 7.215 +/- 0.572 5.239 +/- 1.298 9.114 +/- 1.778 9.882 +/- 3.843 4.724 +/- 0.861 4.135 +/- 0.203 10.16 +/- 1.981 8.783 +/- 0.955

Table 9: Test Accuracy summary for CIFAR-10 with high learning rate (0.1)

(a) Four Hidden Layers

No Regularization Data Augmentation L2 Batchnorm Skip Connections
Dense Sparse Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Adagrad 19.469 +/- 10.563 31.377 +/- 15.801 22.62 +/- 16.083 37.885 +/- 17.664 19.739 +/- 12.699 40.133 +/- 14.52 56.194 +/- 1.319 57.536 +/- 0.712 15.615 +/- 9.853 30.756 +/- 17.113
Adam 10.0 +/- 0.0 10.0 +/- 0.005 10.0 +/- 0.0 10.0 +/- 0.0 9.998 +/- 0.012 9.98 +/- 0.036 53.191 +/- 2.687 54.964 +/- 1.88 9.999 +/- 0.003 10.001 +/- 0.005
RMSProp 9.999 +/- 0.003 10.001 +/- 0.01 10.0 +/- 0.0 10.001 +/- 0.003 10.0 +/- 0.0 10.191 +/- 0.578 53.328 +/- 1.022 53.62 +/- 1.056 10.0 +/- 0.004 10.001 +/- 0.011
SGD 57.603 +/- 1.546 56.487 +/- 3.866 51.81 +/- 6.396 60.065 +/- 1.465 8.255 +/- 19.659 30.631 +/- 26.518 59.191 +/- 1.805 60.295 +/- 0.949 57.599 +/- 1.302 56.398 +/- 2.893
SGD with mom(0.9) 9.303 +/- 2.608 12.872 +/- 14.06 10.0 +/- 0.0 19.086 +/- 18.81 10.579 +/- 10.646 35.2 +/- 23.74 57.822 +/- 1.012 59.058 +/- 0.886 9.334 +/- 2.582 9.117 +/- 9.037

Table 10: Test Loss summary for CIFAR-10 with high learning rate (0.1)

(a) Four Hidden Layers
No Regularization Data Augmentation L2 Batchnorm Skip Connections

Dense Sparse Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Adagrad 4.332 +/- 3.705 6.299 +/- 3.469 2.036 +/- 0.344 1.895 +/- 0.263 3.21 +/- 1.888 3.186 +/- 1.288 5.979 +/- 0.403 5.19 +/- 1.109 3.934 +/- 2.999 5.788 +/- 3.694
Adam 2.328 +/- 0.066 6.323 +/- 11.003 2.303 +/- 0.0 2.303 +/- 0.0 405749.405 +/- 1051430.43 343515.597 +/- 1330067.381 51.96 +/- 34.783 60.026 +/- 18.807 4.174 +/- 7.207 2.366 +/- 0.17
RMSProp 1339.999 +/- 5147.876 275.11 +/- 831.374 2.303 +/- 0.0 2.303 +/- 0.002 212.06 +/- 812.388 43851.25 +/- 122539.555 40.846 +/- 17.869 107.835 +/- 42.366 30.677 +/- 104.926 349.709 +/- 1315.569
SGD 6.609 +/- 1.155 7.01 +/- 2.525 4.964 +/- 1.373 3.744 +/- 1.348 0.339 +/- 0.897 1.659 +/- 1.237 3.758 +/- 0.389 3.254 +/- 0.341 4.634 +/- 0.791 4.674 +/- 1.132
SGD with mom(0.9) 2.138 +/- 0.615 3.166 +/- 4.273 2.303 +/- 0.0 2.129 +/- 0.359 1.797 +/- 0.975 2.175 +/- 0.895 6.208 +/- 0.244 5.396 +/- 0.905 2.149 +/- 0.595 4.388 +/- 8.928

24

Under review as a conference paper at ICLR 2021

Figure 16: Test Accuracy for CIFAR-100 with 0.001 Learning Rate

Figure 17: Test Accuracy for CIFAR-10 with 0.1 Learning Rate

Table 11: Test Accuracy summary for CIFAR-100 with high learning rate (0.1)

(a) Four Hidden Layers

No Regularization Data Augmentation L2 Batchnorm Skip Connections
Dense Sparse Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Adagrad 4.832 +/- 3.339 11.731 +/- 7.078 10.304 +/- 7.42 14.827 +/- 8.334 5.383 +/- 5.543 14.899 +/- 9.16 28.804 +/- 1.905 29.826 +/- 1.857 5.885 +/- 3.829 11.649 +/- 6.443
Adam 1.0 +/- 0.0 1.0 +/- 0.0 1.0 +/- 0.0 1.0 +/- 0.0 1.0 +/- 0.0 0.999 +/- 0.007 22.995 +/- 1.308 23.792 +/- 2.673 1.0 +/- 0.0 1.001 +/- 0.003
RMSProp 1.0 +/- 0.0 1.001 +/- 0.004 1.0 +/- 0.0 1.0 +/- 0.0 1.0 +/- 0.0 1.0 +/- 0.008 24.424 +/- 1.281 25.13 +/- 1.514 0.999 +/- 0.003 0.999 +/- 0.005
SGD 25.719 +/- 11.926 23.833 +/- 11.53 11.46 +/- 5.91 22.79 +/- 10.489 28.546 +/- 8.056 24.077 +/- 11.917 30.83 +/- 2.898 31.749 +/- 1.631 26.638 +/- 9.891 28.838 +/- 3.675
SGD with mom(0.9) 1.0 +/- 0.0 5.53 +/- 6.788 1.0 +/- 0.0 8.005 +/- 9.069 4.471 +/- 5.342 12.283 +/- 10.29 31.041 +/- 2.264 31.778 +/- 1.709 1.003 +/- 0.009 1.689 +/- 2.477

25

Under review as a conference paper at ICLR 2021

Figure 18: Gradient Flow for CIFAR-10 with 0.1 Learning Rate

Table 12: Test Loss summary for CIFAR-100 with low learning rate (0.1)

(a) Four Hidden Layers

No Regularization Data Augmentation L2 Batchnorm Skip Connections
Dense Sparse Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Adagrad 7.667 +/- 4.947 14.836 +/- 8.468 4.13 +/- 0.358 5.685 +/- 2.939 6.024 +/- 3.425 6.571 +/- 2.298 9.474 +/- 0.926 8.717 +/- 1.854 9.247 +/- 5.927 15.916 +/- 9.915
Adam 4.664 +/- 0.201 8.052 +/- 8.361 4.605 +/- 0.0 4.605 +/- 0.0 27.215 +/- 87.569 64.341 +/- 137.011 170.973 +/- 84.218 367.302 +/- 141.566 4.631 +/- 0.081 4.752 +/- 0.508
RMSProp 11.792 +/- 23.242 57.154 +/- 202.471 4.605 +/- 0.0 4.606 +/- 0.003 4.605 +/- 0.0 5404.823 +/- 14437.166 146.552 +/- 73.377 748.996 +/- 361.425 5734.776 +/- 20650.808 5.919 +/- 3.307
SGD 10.48 +/- 2.908 11.058 +/- 3.433 9.797 +/- 5.488 11.97 +/- 5.69 5.7 +/- 1.647 5.322 +/- 0.59 5.587 +/- 0.934 5.004 +/- 0.265 11.017 +/- 7.566 8.611 +/- 1.653
SGD with mom(0.9) 4.605 +/- 0.0 12.49 +/- 11.831 4.605 +/- 0.0 4.367 +/- 0.342 3.903 +/- 1.591 4.965 +/- 0.518 10.612 +/- 1.41 9.014 +/- 2.289 4.607 +/- 0.005 16.577 +/- 29.665

Figure 19: Test Accuracy for CIFAR-100 with 0.1 Learning Rate

Figure 20: Gradient Flow for CIFAR-100 with 0.1 Learning Rate

Figure 21: Test Accuracy for Different Activation Functions

26

Under review as a conference paper at ICLR 2021

Figure 22: Gradient Flow for Different Activation Functions

27

	Introduction
	Methodology
	Same Capacity Sparse vs Dense Comparison
	Measuring Gradient Flow
	Architecture, Normalization, Regularization and Optimizer Variants

	Empirical Set-up
	Results and Discussion
	Comparison of dense and sparse interventions using SC-SDC
	Generalization of results across architecture types.

	Related work
	Conclusion and Future Work
	SC-SDC
	SC-SDC implementation details
	Benefits

	Gradient Flow
	EGF results on FMNIST

	Detailed Results for SC-SDC

