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Abstract— Anticipating the future trajectories of other traffic
agents, i.e., motion prediction, is crucial for self-driving vehicles
to operate safely in dynamic environments. In this work,
we introduce a novel self-supervised pre-training method for
motion prediction. Our method is based on Barlow Twins
and applies the redundancy reduction principle to embeddings
generated from HD maps. Through our method, deep learning
models learn augmentation-invariant features of HD maps. We
hypothesize that an understanding of the environment can
be learned faster using these features. We pre-train several
large transformer models and subsequently fine-tune them on
motion prediction. Our experiments reveal that the proposed
pre-training method can improve mADE and mFDE by 12%
and 15% and outperform contrastive learning with PreTraM
and SimCLR in a semi-supervised setting.

I. INTRODUCTION

Understanding the trajectories of different traffic agents is
critical for self-driving vehicles to operate safely in dynamic
environments. Motion prediction in self-driving applications
aims to predict the future trajectory of traffic agents based on
past trajectories and the given traffic scenario. Recent state-
of-the-art methods for motion prediction (e.g., [8], [20], [23])
are deep learning methods trained using supervised learning.
As the performance of deep learning methods scales well
with the amount of training data [12], [24], [28], there is a
great research interest in self-supervised learning methods,
which generate supervisory signals from unlabeled data. In
the field of computer vision, self-supervised methods are
well established (e.g., [5], [9], [21]). For motion prediction
in self-driving applications, self-supervised learning is only
recently emerging (e.g., [1], [26]). The main reason for
this is that until recently the datasets for motion prediction
were fewer and considerably smaller (e.g., highD [14] 147
hours recorded vs. Woven Prediction dataset [11] 1001 hours
recorded).

In this work, we focus on HD map assisted motion
prediction and introduce a novel self-supervised pre-training
method. Our hypothesis is that an understanding of the
environment can be learned faster when using augmentation-
invariant features of HD maps during subsequent fine-tuning.
Our method applies the redundancy reduction principle from
Barlow Twins [27] to embeddings generated from HD maps.
We specifically target transformer models [25] for three rea-
sons: (a) Transformers are flexible foundation models. They
are successfully applied to a wide range of applications in
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Fig. 1. Road Barlow Twins model. During pre-training, plain map
data is used. During fine-tuning, annotated samples with past traffic agent
trajectories are used. Further details are in Section III-B. Best viewed
zoomed-in.

natural language processing (e.g., [2], [19], [25]), computer
vision (e.g., [3], [6], [18]), and time-series prediction (e.g.,
[29], [30]). Therefore, it is likely that an improvement in
training mechanisms in a particular application will also ap-
ply to other applications. (b) Transformers have no inductive
biases for generating features based on spatial correlations
[22]. Therefore, appropriate mechanisms must be learned
from data. (c) The performance of transformers on various
downstream tasks scales very well with datasets [12], [28].

In contrast to related methods, our method does not require
annotations of traffic agents [26] and can be trained end-to-
end [17]. Overall, our contributions are twofold:

1) We propose and evaluate a novel self-supervised pre-
training objective for motion prediction.

2) We introduce two deep learning models for motion
prediction, which are based on the foundation model
vision transformer.

II. RELATED WORK

There are several recent works utilizing self-supervised
learning for motion prediction in self-driving. PreTraM [26]
exploits for contrastive pre-training that a traffic agent’s
trajectory is correlated to the map. Inspired by CLIP [21],
the similarity of embeddings generated from rasterized HD
map images and past agent trajectories is maximised as
pre-training. Therefore, past trajectories are required, which
limits the application of this method to annotated datasets.

Ma et al. [17] improve modeling interactions between traf-
fic agents via contrastive pre-training with SimCLR [5]. They
rasterize images of intersecting agent trajectories and pre-
train the corresponding module by maximizing the similarity
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of different views of the same trajectory intersection. Accord-
ingly, only a small part of the motion prediction pipeline
is pre-trained and annotations are required to determine the
trajectory intersections.

Azevedo et al. [1] use use graph representations of HD
maps to generate possible traffic agent trajectories. Trajecto-
ries are generated based on synthetic speeds and the connec-
tivity of the graph nodes. The pre-training objective is the
same as for the subsequent fine-tuning: motion prediction.
While this method is well adapted to motion prediction, it
requires non-trivial modeling of agent positions and synthetic
velocities when applied to non-annotated data.

Luo et al. [16] fuse information from camera and LiDAR
sensors for self-supervised motion prediction. Their method
exploits the structural consistency of LiDAR point clouds
and cross-sensor motion regularization for motion prediction.
Correspondingly, the application of this method requires
datasets that contain both camera and LiDAR data.

III. METHOD

A. Model architectures

In this work, we use a deep learning model similar
to MotionCNN [13]. MotionCNN is a baseline model for
motion prediction that at the same time achieves compet-
itive performance. Thus, it shares properties with ResNet-
50 models [10], which are typically used to evaluate self-
supervised methods in computer vision (e.g., [5], [27]). The
model is composed of a convolutional neural network (CNN)
backbone and a head with a single fully connected layer.
As input, rasterized HD map images and rasterized past
agent trajectories from the birds-eye view perspective are
used. As output, six trajectory proposals and the associated
confidences are predicted per traffic agent. All outputs are
normalized with the softmax operator. For our first proposed
architecture (MotionViT), we replace the CNN backbone in
the model architecture with a vision transformer (ViT) [6].
Accordingly, the 224x224 pixel HD map images are split into
16x16 pixel patches and processed by a transformer encoder
[25] along positional embeddings and a learned class token
(cf. Figure 2). The class token learns a representation of the
whole traffic scene as a combination of the patch tokens.
Therefore, we use the class token as input for the motion
head, which predicts the trajectory proposals.

Inspired by CLIP, we propose a second model architecture
(DualMotionViT). The DualMotionViT architecture contains
separate transformer encoders for map and agent data. The
map and agent tokens, which are generated by the two
encoders, are fused in an additional fusion block (cf. Figure
2). We use a memory efficient version of cross-attention [4]
to fuse information from both token sets. In detail, the class
token from the agent token set attends to the patch tokens of
the map token set. Therefore, the computational complexity
of the attention mechanism is reduced from O(n2) to O(n),
where n is the number of tokens in either set. Finally, the
fused class token serves as input for the motion head.

Transformer
encoder Motion head

...

Patches & pos.
embeddings

...

Map & past
agent trajectories

MotionViT

Map
transformer

encoder
...

Map

Agent
transformer

encoder
...

Patches & pos.
embeddings

Past agent
trajectories

Fusion
block Motion head

DualMotionViT

CLS

...
Class &

patch tokens

...

K V

QPatches & pos.
embeddings

Fig. 2. Proposed model architectures. MotionViT: A shared transformer
encoder to encode both map data and past agent trajectories. DualMo-
tionViT: Separate transformer encoders for map and agent data. Generated
embeddings are fused via cross-attention (Queries Q, Keys K, Values V ).

B. Pre-training objective

Our proposed pre-training objective, Road Barlow Twins
(RBT), is based on Barlow Twins [27]. Barlow Twins is
a self-supervised learning method, which aims to learn
augmentation-invariant features via redundancy reduction.
For each training sample, two views are created by augmen-
tation (XA and XB in Figure 1). Afterwards, both views are
transformed into feature vectors (ZA and ZB) by an encoder
model and a projector head. For the two feature vectors, a
cross-correlation matrix is created. The pre-training objective
is to approximate this cross-correlations matrix to the identity
matrix and thus to learn similar feature representations for
both views. We adapt this method for motion prediction by
pre-training encoder models with map-only data. Compared
to annotated samples with map and traffic agent data, these
can be created directly from HD maps. During pre-training,
our models learn augementation-invariant features from HD
maps.

To adapt to the new modality of HD maps, we reduce the
strength of pre-training augmentations. We remove gaussian
blurring as our models will never process blurred HD map
images during fine-tuning or inference for motion prediction.
Furthermore, we remove image flipping and limit geometric
transformations to moderate rotations (max. +/- 10°) and
zooming (max. +/- 30%). The motivation for this is that
geometrically highly modified maps should be interpreted
differently during the fine-tuning process. Accordingly, the
corresponding feature representations should be different as
well. Additionally, we use color jitter and color drop as
augmentation. Figure 3 shows examples of the augmentations
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Fig. 3. Gray: Proposed weaker augmentations for HD maps. Blue: Stronger vanilla Barlow Twins augmentations.

we use and the stronger vanilla Barlow Twins augmentations.

IV. EXPERIMENTS

A. Choosing a baseline model

To choose a baseline model, we train our model from
scratch using a small ViT (ViT-S/16) and a large ViT model
(ViT-L/16) as backbones.

Experimental setup. We use a patch size of 16x16 pixels
for both variants. For the ViT-S/16 backbone, the first fully
connected layer in the motion head has 384 nodes. For
the ViT-L/16 backbone, the first fully connected layer in
the motion head has 1024 nodes. For both backbones the
second fully connected layer has six nodes to predict six
trajectory proposals. We train all models with AdamW [15]
as optimizer for 190 epochs. The initial learning rate is set to
10−4 and reduced to 10−6 using a cosine annealing learning
rate scheduler. As loss, we are minimizing the negative
multivariate log-likelihood loss. We use a global batch size
of 512 for the ViT-S/16 model and 384 for the ViT-L/16
model. We train in a data-distributed-parallel (ddp) manner
with per GPU batch sizes of 128 for the ViT-S/16 models
and 96 for the ViT-L/16 models.

Dataset. We use the official training and validation splits
of the Waymo Open Motion [7] dataset as training and
validation data. Correspondingly, we train with 2.2M training
samples. Validation and evaluation are performed on 200K
samples. In addition to the map, the trajectories of all traffic
agents from the last second are used as input during fine-
tuning for motion prediction. The data set is sampled with
10 Hz, accordingly 10 time points are used as input.

Evaluation metrics. We use the negative multivariate log-
likelyhood (NLL), the average displacement error (ADE),
the final displacement error (FDE), and mean squared error
(MSE) to evaluate the trajectory proposals. The ADE and
FDE scores are evaluated in the oracle/minimum mode.
Accordingly, the distance errors of the trajectory proposal
with the lowest distance error are measured. Following [7],
all metrics are computed at different prediction horizons of
3s and 5s and averaged.

Results. Table I shows the achieved evaluation metrics.
The larger ViT-L model consistantly yields better (lower)
scores for all considered metrics. Therefore, we choose this
model as baseline in the following experiments.

TABLE I
SCALING VIT BACKBONES TO CHOOSE A BASELINE MODEL

Backbone NLL ↓ mADE ↓ mFDE ↓ MSE ↓ #Params

ViT-S 64.4 0.897 2.069 1.852 24.2M
ViT-L 49.6 0.794 1.865 1.134 310M

B. Comparing pre-training methods

In this set of experiments, we compare our proposed pre-
training method with contrastive learning. As examples for
contrastive learning, we use two configurations of PreTraM
and the vanilla SimCLR. The first configuration of PreTraM
is a combination of map contrastive learning (MCL) via
SimCLR and trajectory-map contrastive learing (TMCL). For
TMCL, the similarity of embeddings from map data and past
agent trajectories of the same scene is maximized. As second
configuration of PreTraM, we evaluate TMCL without MCL.
Following MotionCNN, which is pre-trained on ImageNet,
we additionally evaluate a combination of our method and
ImageNet pre-training. In this case, we initialize the ViT-L
model with ImageNet weights before pre-training with our
method. This approach can be seen as a form of two-stage
pre-training.

Dataset. Initially, we use the same dataset configuration
as in the previous experiment. Afterwards, we reduce the
number of training sample to a fraction of 30% (fds).

Evaluation metrics. In addition to the mADE and mFDE
scores, we introduce the ∆mADErel and ∆mADErel scores.
∆mADErel and ∆mFDErel measure the relative change w.r.t.
the baselines without pre-training. Trel measures the relative
change in training time w.r.t. the baselines.

Experimental setup. For fine-tuning on motion predic-
tion, we use the same experimental setup as in the previous
experiment. For TMCL pre-training, we use the fine-tuning
dataset without trajectory labels. For the RBT, MCL, and
SimCLR pre-training, we use the same dataset, but remove
all data related to traffic agents. For all three methods
and backbone models, we add a projection head with 3
fully connected layers. The first layer has 1024 nodes, the
following two layers have 2048 nodes. The training samples
are augmented using the weaker augmentations shown in
Figure 2. For the DualMotionViT models, we use two ViT-
B/16 models as map and agent encoders.

Results. Table II shows the results of this experiment.



TABLE II
COMPARING PRE-TRAINING METHODS USING DIFFERENT MODELS AND DATASET SIZES

Model Pre-training Config fds NLL ↓ mADE ↓ ∆mADErel mFDE ↓ ∆mFDErel Trel #Params

MotionViT None 100% 49.6 0.794 1.865 1.0 310M
RBT (Our) 100% 39.2 0.697 -12.22% 1.584 -15.07% 2.0 310M
SimCLR 100% 76.4 1.172 +47.61% 2.483 +33.14% 2.0 310M
RBT + ImageNet 100% 65.1 0.942 +18.64% 2.297 +23.16% 2.0 310M

MotionViT None 30% 87.3 1.096 2.554 1.0 310M
RBT (Our) 30% 87.8 1.089 -0.64% 2.552 -0.08% 2.0 310M
SimCLR 30% 434.9 2.921 +166.51% 11.494 +350.04% 2.0 310M
RBT + ImageNet 30% 87.8 1.107 +1.00% 2.602 +1.88% 2.0 310M

DualMotionViT None 100% 43.7 0.723 1.672 1.0 190M
RBT (Our) 100% 38.7 0.691 -4.43% 1.565 -6.40% 2.0 190M
PreTraM MCL + TMCL 100% 45.6 0.718 -0.69% 1.643 -1.73% 2.0 190M
PreTraM TMCL 100% 36.0 0.679 -6.09% 1.529 -8.55% 2.0 190M

Fig. 4. Trajectory proposals of our MotionViT model. Past trajectories of traffic agents are visualized as red bars, the ground truth future trajectory
as blue lines and the trajectory proposals of our model are in decreasing order of confidence scores: orange, green, red, brown, pink and grey. Discrete
predicted agent locations are marked as dots.

When fine-tuning on the complete training dataset, our pre-
training method improves the mADE score by 12% and
the mFDE score by 15% compared to the baseline without
pre-training. Contrastive pre-training performs worst in this
setup. We hypothesize that this due to the fact that augmented
views of different HD maps are still rather similar to each
other compared to images of different classes in ImageNet
(e.g., cars and birds). During contrastive pre-training, all
samples in a batch other than the current one are treated
as negative examples. Therefore, the pre-training objective
becomes to learn dissimilar embeddings for rather similar
samples. Initializing the model with weights learned form
training on ImageNet worsens the performance as well. This
highlights the domain gap between general purpose vision
datasets and motion prediction datasets with HD maps. This
gap also seems to have a stronger impact on our architecture
than, for example, on MotionCNN. One possible interpreta-
tion is that the learned feature extraction mechanisms in a
ViT adapt more to the training data than in CNNs [22]. Fine-
tuning on 30% of the training split yields similar results,
but the differences in performance are less significant and
all methods perform worse. This could be due to the fact
that our pre-training method learns useful feature extraction
mechanisms only for environment perception. However, for
motion prediction, the information about traffic agents is
crucial. This needs to be learned by a large transformer
model, for which sufficient data is needed.

The third block in Table II shows the results achieved with
the DualMotionViT model. Already without pre-training,
10% lower mADE and 9% lower mFDE scores are achieved
than with the MotionViT model. The DualMotionViT model
also requires 120M fewer parameters to achieve these scores.

This shows that it is advantageous for motion prediction to
first process map and agent data individually and then merge
them in the embedding space. Our pre-training method can
reduce the mADE and mFDE scores by a further 4% and
6% respectively. Vanilla PreTraM with MCL and TMCL
improves the mADE and mFDE scores only by 1% and
2%. Therefore, our method can outperform vanilla PreTraM
in this semi-supervised setting. Overall, however, our new
variation of PreTraM without MCL performs best in this
experiment.

In real-world scenarios, the usefulness of motion predic-
tion methods can also be assessed based on the plausibility
of the multiple trajectory proposals. Therefore, we show
qualitative results of our MotionViT model (ViT-L/16 pre-
trained on a full dataset with RBT) in Figure 4. Overall,
our model is able to predict a diverse set of possible future
trajectories in different traffic scenarios.

V. CONCLUSION

We have introduced a novel self-supervised pre-training
method for motion prediction in self-driving applications.
The proposed method builds up-on Barlow Twins and learns
augmentation-invariant features of HD maps. In contrast to
related methods, our method does not require annotations
of traffic agents and can be trained end-to-end. Our experi-
ments revealed that our pre-training method can improve the
accuracy of motion prediction and outperform contrastive
learning. Furthermore, we proposed two transformer-based
baseline models for motion prediction. Future steps include
evaluating if our pre-training method can be extended to
graph representations of HD maps, which have a higher
information density and are more memory efficient.
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