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Abstract
Recent work has unveiled how average generalization frequently relies on superfi-
cial patterns in data. The consequences are brittle models with poor performance
in the presence of domain shift in group distribution at test time. When the sub-
groups in the training data are known, we can use tools from robust optimization
to tackle the problem. However, group annotation and identification are time-
consuming tasks, especially on large datasets. A recent line of research [12] is
trying to solve this problem with implicit group distribution at training time, lever-
aging self-supervision and oversampling to improve generalization on minority
groups. Following such ideas, we propose a new class-conditional variant of
MixUp [21] for worst-group generalization, augmenting the training distribution
with a continuous distribution of groups. Our method, called Just Mix Once (JM1),
is domain-agnostic, computationally efficient, and performs on par or better than
the state-of-the-art on worst-group generalization.

1 Introduction
In supervised learning, the goal is to fit a model on a training set to maximize a relevant global
metric at test time. However, the optimization process can exploit spurious correlations between
the target y and superficial input patterns in the data. We are interested when undesirable patterns
can be categorized in groups g, and study the generalization performance in the presence of group
distribution shift at test time. For example, in the case of colored MNIST (Fig. 1), a model can
use information about the color (spurious correlation with the target class) instead of the shape to
classify a digit (almost all 6s are blue at train time) during training. Then the model uses this bias
at test time with a considerable decrease in generalization performance with a significant shift in
the group distribution (for example, 6s are green and blue with equal proportion at test time). It is
well-known that a powerful DNN model [7] tends to exploit easy superficial correlations, like texture,
color, background, to solve a task if not constrained in some way [20, 8, 19, 2, 14, 5]. Similarly, in
the presence of minority groups in a dataset, the model will tend to disregard such groups, relying on
patterns that are frequent in majority groups. Recent work has shown how to tackle this problem in
a supervised [16] and self-supervised [13] way. In this work, we focus on improving worst-group
generalization with implicit group distribution. Self-supervision and oversampling have successfully
been employed to deal with implicit group distribution in Just Train Twice (JTT) [12].

Contribution. Following this line of work, our contributions are: I) We propose a simple mecha-
nism, called Just Mix Once (JM1), based on a class-conditional variant of MixUp [21] to improve
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generalization on minority groups in the data. II) Our method does not rely on computationally expen-
sive oversampling or the need to tune the oversampling rate. III) We perform extensive experiments
with different levels of group annotation, demonstrating that JM1 outperforms the state-of-the-art
(SOTA) on vision and language datasets.

Figure 1: Groups Identification Phase. Left: training set. Right: training set partitioned. In the first phase, the
training dynamics are exploited to split the data into two partitions. The assumption is that, among the samples
identified as difficult (samples in the orange circle), there are typically samples from minority groups. The
misclassification rate in the early stage of training is used as a clustering signal to estimate the group distribution:
patterns that are superficially frequent in the data (e.g., color, texture, background) are easy to classify and have
a small loss, partitioning a majority group; infrequent patterns (e.g., shape) are challenging to model and are
misclassified during the early stage of training, partitioning a minority group.
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Figure 2: Class-conditional Mixing Phase. After the identification phase, we exploit label information to
augment the training data, using a MixUp-inspired strategy to augment samples from different partitions. We
use the label information to select two samples from different partitions, i.e., (hi

g, y
i
g) and (hj

ḡ, y
j
ḡ) where yi

g =

yj
ḡ = y, g ̸= ḡ. Then we create a mixed-up sample (hmix, ymix) s.t. hmix = α hi

g + (1− α) hj
ḡ, ymix = y.

Note that h can either be an input [21] or a learned representation [17]. This simple mechanism gives us a
principled and domain-agnostic way to augment samples marginalizing the group information in the data: by
sampling α, we augment the training data and build a continuous distribution of groups in the data. Therefore,
the model cannot rely on frequent patterns because each sample has a "slightly different" group pattern.

2 Just Train Twice
Our work tackles the problem of worst-group generalization with implicit group distribution during
training. This is different from the standard case, where we measure the average error among groups.
In this section we discuss a closely related work, Just Train Twice (JTT) [12]. JTT is a SOTA
approach that solves such a problem in a simple two-stage approach:

I) Groups Identification. The goal is to partition the data into two clusters: one with majority
groups (frequent superficial patterns); and one with minority groups (uncommon patterns of interest).
The assumption is that samples from minority patterns are difficult to model and frequently misclassi-
fied in early-stage of training. JTT uses the misclassified samples in the early stage of training as a
signal to partition the data. Specifically, a supervised learner, parameterized by θ, is trained on the
data D = {(xi, yi)}ni=1 using ERM loss (up to constant) JERM(θ) :=

∑
(x,y)∈D l(x, y; θ) with early

stopping. To avoid overfitting, a small validation set with group annotation is employed to select
the best identification epoch T in order to create appropriate partitions. Then misclassified samples
(samples with with high loss [13]) are saved in a buffer B := {(xb, yb) s.t. f̂T (xb) ̸= yb}.

II) Groups Re-weighting. Once the partitions are identified, the same learner is trained, for a
second time, on a re-weighted version of the data, where samples in B are oversampled λ ≫ 1
times. The hope is that if the examples in the error set B come from challenging groups, such
as those where the spurious correlation does not hold, then up-weighting them will lead to better
worst-group performance [12]. Specifically, the loss for phase II) can be written as (up to constant):
JJTT(θ) := λ

∑
(xb,yb)∈B l(xb, yb; θ) +

∑
(xb̄,yb̄)/∈B l(xb̄, yb̄; θ), where λ is the up-sampling rate for

samples in B identified from phase I).

Limitations. For JTT to work, the authors emphasize that the two hyper-parameters are crucial to
guarantee the success of JTT: the number of identification epochs T in phase I) and re-weighting
λ in phase II). This requires careful hyper-parameter tuning using a small annotated validation set.
Another caveat is that naively oversampling a portion of the training data λ ≫ 1 times can make
training JTT much slower than ERM.
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3 Just Mix Once
We address some of the limitations of JTT by proposing Just Mix Once (JM1). Remind that our goal
is to improve the classification accuracy of minority groups, (with or) without explicit annotation on
the groups at training time.

I) (Optional) Groups Identification. If the explicit group annotation is unavailable on the training
set, similarly to phase I) of JTT, we assume that we have annotated groups on a small validation set
and resort to using the same self-supervised signal [13, 1] based on the misclassification rate (and the
loss magnitude) in the early stage of training like JTT. Fig. 1 illustrates how relevant samples from
the minority groups are identified.

II) Class-conditional Mixing. To generalize on minority groups at test time, a model should not
rely on spurious correlations during training (e.g., texture or color) but on the signal of interest (e.g.,
shape). Unlike the oversampling approach taken by JTT, we resort to a better augmentation (Fig. 2)
to improve generalization for low-density groups. Our mixing strategy is inspired by the MixUp
strategy [17, 21], and we propose a novel class-conditional variant that achieves robust worst-group
generalization. Specifically, for any two samples (hi

g, h
j
ḡ) in the input (or representation) space from

the two partitions g, ḡ (i.e., difficult/misclassified/minority group g vs the other majority group ḡ)
with the same class label yig = yjḡ = y, we mix them up using a convex interpolation [17, 21]:

hmix = αhi
g + (1− α)hj

ḡ, ymix = y, (1)

where α is the mixing parameter (details of how to choose α are deferred to Sec. 4). Notably, we
empirically show that naively implementing the standard MixUp without the proposed two-stage
approach fails to generalize in terms of worst-group performance (Fig. 3).

How JM1 works. We briefly discuss how our mixing strategy enables JM1 to build a "continuous"
spectrum of groups in data by sampling α. Assume the training data D = {xi, yi}ni=1 are partitioned
into (non-overlapping) groups G1, . . . ,Gm, through sub-populations represented by tuples (y, c) of
label y and confounding factor(s) c, we can define the following per-group and group-average loss:

J(θ;G) := 1

|G|
∑

(xg,yg)∈G

l(xg, yg; θ), J(θ) :=
1

m

m∑
k=1

J(θ;Gk). (2)

Notice that in case m = n, each group contains a single data point, and the group-average loss
collapses to the standard ERM loss JERM. Note that, if we define a uniform per-group loss weight
pk = 1/m, k = 1, . . . ,m, we can re-write the group-average loss as:

J(θ) =
∑
k

pkJ(θ;Gk) = Ep(G)J(θ;G). (3)

Distributional Robust Optimization (DRO) [16] aims to optimize: JDRO = maxkJ(θ,Gk), which
corresponds to a pointwise Dirac distribution pk = 1 if k = argmaxk J(θ;Gk) else 0 in Eq. 3. Using
MixUp with α mixing rate, we generate new samples drawn from a continuous mixture (Eq. 1), which
has as limiting case the training distribution. In this view, we can interpret each mixed-up sample as
drawn from a "mixed-up group" Gα parametrized by α. This means, assuming an oracle partitioning
in phase I), JM1 mixes a majority and a minority group in the data at each iteration while generating
a continuous group distribution. We denote by J(θ;Gα) our per-group loss for a "mixed-up" group
Gα, and write the group-average loss by marginalizing out the group distribution:

Jmix(θ) := EαEp(G;α)[J(θ;G)] =
∫
α

∫
Gα

p(α)p(G;α)J(θ;G)dαdG. (4)

Note that, first sampling α and then applying MixUp with rate α (Eq. 1) is equivalent to drawing
samples directly from a mixed-up group Gα drawn implicitly from p(G;α). Therefore, we can
approximate Eq. 4 by a simple MC sampling process in practice: sample α, apply MixUp [21, 17]
with rate α, compute the loss using the mixed-up samples; repeat for each mini-batch in SGD updates.
This simple mechanism enables to augment data by marginalizing group information, hence the
training cannot rely on spurious group patterns because each sample belongs to a "slightly different"
group. For intuitions behind the class-conditional mixing of JM1’s phase II) in the presence of
minority groups, refer to the visualization in Appendix C. We leave thorough theoretical study of
JM1 to future work.
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4 Experiments
Benchmark Datasets. Our focus for all the experiments is to improve worst-group performance
for classification problems across vision and language domains (with or) without group annotation at
train time. We report experiments on the benchmark proposed in [16]. The benchmark consists of
two vision and one language dataset (Appendix B). In these datasets, the model can easily exploit
superficial, majority group patterns (background in CUB, sex in CelebA, negation in MultiNLI) to
solve the classification tasks at train time. However, when tested on a set with a different group
distribution (same groups but represented in significantly different proportions), the performance
drops, showing a lack of generalization capacity. JTT [12]) is SOTA on this benchmark, and we
primarily compare JM1 to JTT.

JM1 Implementation Details. For JM1, we initially found that mixing groups by sampling
α ∼ U(0, 1) uniformly, even though improving worst-group accuracy over ERM, underperforms
compared to JTT. Therefore, we use a mixing strategy with a slight emphasis on the region closer
to the minority groups and propose a coupled strategy: we sample α ∼ U(0, 1) for half of the
epochs, and α ∼ Beta(2, 5) for the other half. This simple heuristic ensures that the full mixing
domain is spanned, with a focus on the region closer to the misclassified samples in phase I). We
use this coupled sampling strategy for CUB and CelebA. For MultiNLI, we sample α only from the
uniform prior because the mixing phase runs for a very small number of epochs. More training details
of JM1 are described in Appendix E. It is worth noting that: I) like JTT, JM1 is domain-agnostic
and can be applied to vision and language datasets with minimal architectural changes; II) unlike
JTT’s oversampling approach, JM1 is a highly scalable approach, which removes the need for tuning
the oversampling rate and only introduces an interpolation operation between samples with little
computational overhead. Note that we can apply JM1 to mix samples at different levels of abstraction:
either the input [21] or the representation space [17]. As the comparison of different MixUp levels is
not the focus of our study, we refer the readers to Appendix D for additional ablations.

Worst-Group Generalization. The first set of experiments evaluate JM1 vs JTT in the setting
of implicit group distribution on the training set. We assume that the models have access to a
small validation set with group annotation to guide group identification in phase I). To ensure a
fair comparison between methods, we use the same identified set for both JTT and JM1 in all our
experiments. Results in Table 1 show that our approach is competitive with the SOTA on improving
worst-group performance on all three datasets with comparable average accuracy. In Table 2 we report
the per-group accuracy on CUB for JTT and JM1 under the same setting. We see that, compared
to JTT, not only does JM1 improve worst-group accuracy, but it improves accuracy on both of the
minority groups with little to no loss in performance on the other two majority groups. Overall, JM1
is competitive or better than SOTA in terms of worst-group performance on this benchmark.

Table 1: Results on CUB, CelebA and MultiNLI datasets for average accuracy and worst-group accuracy. JM1
performs comparably or better than the SOTA in worst-group performance with implicit group distribution,
closing gap to upper anchor GroupDRO requiring full group annotations on the training set. JM1 confidence
intervals are evaluated on 5 different runs.

CUB CelebA MultiNLI group
avg acc worst acc avg acc worst acc avg acc worst acc labels

ERM [12] 97.6 72.6 95.6 47.2 82.4 67.9 ✗
CVaR-DRO [10] 96.5 69.5 82.4 64.4 82.0 68.0 ✗
LfF [13] 97.3 75.2 86.0 70.6 80.8 70.2 ✗
EIIL [5] 96.9 78.6 - - - - ✗
JTT [12] 93.3 86.7 88.0 81.1 78.6 72.6 ✗
JM1 (ours) 93.0 ± 0.4 87.5 ± 0.6 86.6 ± 0.6 83.3 ± 0.7 80.3 ± 0.2 72.5 ± 0.6 ✗

GroupDRO [16] 93.5 91.4 92.9 88.9 81.4 77.7 ✓

Oracle Groups. The second set of experiments compare JM1 vs JTT in a different scenario: we
assume to have access to the ground-truth minority group assignment on the training set. Note that
this does not mean the full group annotation: we only need to know which sample has a group-
conflicting confounder against its label (see a comparison of JM1-inspired GroupJM1 and GroupDRO
in Appendix D in a setting given full group annotation on training data). Now we can use such oracle
majority vs minority groups in place of the identified set from phase I). As noted in Appendix C.2
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Table 2: Per-group accuracy on CUB dataset. The goal is to classify land birds yl vs water birds yw in the
presence of a confounders: land background cl vs water background cw. JM1 is competitive with JTT improves
accuracy on both minority groups (yl, cw) and (yw, cl) and competitive on the other two majority groups.

(yl, cl) (yl, cw) (yw, cl) (yw, cw) avg acc worst acc
JTT 94.3 86.7 87.5 91.6 93.3 86.7
JM1 94.2 88.5 88.9 90.5 93.1 88.5

in [12], the performance of JTT drops if not using identified error sets from phase I), since JTT can
excessively oversample the minority group. Given its inner working of mixing groups rather than
oversampling, we expect JM1 to outperform JTT in this oracle configuration. Table 3 validates our
intuition. In fact, JM1 (oracle) outperforms JTT (oracle) on both datasets.

Class-conditional MixUp. We compare the proposed JM1 with standard (unconditional) MixUp
and a class-conditional MixUp baseline, where we mix samples from random groups (i.e., JM1
without group identification phase). Note that we use an oracle configuration for simplicity in these
experiments. Fig. 3 shows that, while standard MixUp fails to improve worst-group performance, the
proposed mixing strategy performs significantly better than both MixUp baselines by a large margin,
despite that all three methods perform very similarly in terms of average performance.

c-mixup mixup JM1 c-mixup mixup JM1
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0.2
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Figure 3: Results on CUB dataset JM1 vs class-
conditional (c-MixUp) and standard MixUp base-
lines. Note that standard MixUp fails to improve
worst-group accuracy.

Table 3: Results on CUB and CelebA datasets in an or-
acle configuration, where we replace identified sets with
ground-truth majority and minority groups. JM1 with class-
conditional mixing generalizes better than oversampling-
based JTT.

CUB CelebA
avg worst avg worst

JTT (oracle) [12] 92.8 75.9 93.4 57.2
JM1 (oracle) 95.0 86.1 92.3 85.6

Robustness. While JTT and JM1 do not use full group annotation on the training set, they both
rely on group annotation on a small validation set to guide group identification (i.e., choosing early
stopping epoch). A natural question to investigate is if we can remove the need for group annotation
at all, and JM1 can still perform reasonably well. To that end, we test the robustness of JM1 to
different identification epochs/sets in phase I) using the CUB dataset. Specifically, we checkpoint
three different identification scenarios (20, 40, 60 epochs) in phase I) for both JM1 and JTT. Then,
we select for JM1 the best phase II) model in terms of average accuracy, while we tune the best-
performing JTT using group annotation on a validation set in terms of worst-group accuracy. Note
that JM1 is now completely free from group annotations. Table 4 shows that JM1 without group
annotation at all loses only around 5% compared to the full-suite JTT with access to group annotation
on a validation set. This is a preliminary result that indicates the potential of training group-robust
models in a fully self-supervised manner. We can hope to achieve worst-group robust generalization
with no more data requirement than what we need to train typical ML models.

Table 4: Results on CUB dataset for average accuracy and worst-group accuracy without validation set. We
checkpoint three identification epochs in the phase I) (20, 40, 60 epochs for identification). We select JM1 using
average accuracy, and tune JTT using worst-group accuracy. JM1 handles reasonably well misspecification of
the identified error set. (S: number of error samples / possibly spurious correlations detected. NS: number of not
spurious correlations detected. P: precision. R: recall.)

JM1 JTT-best ∆%
avg worst avg worst avg worst S NS P R

20id 92.3 72.9 78.9 67.5 + 17.0 + 8.0 107 290 0.269 0.445
40id 93.6 83.0 90.0 86.9 + 4.0 - 4.5 115 153 0.429 0.479
60id 93.2 82.2 90.3 86.7 + 3.2 - 5.2 110 128 0.462 0.458
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A Related Work
Robust Classification and Implicit Group Distribution. Optimizing average accuracy with
overparametrized neural networks tends to get rid of minority group information. This fact is
related to how the model is trained and the way the model exploits superficial correlations in the
data [7]. Recently approaches to preserve group information have been proposed [16] when full
group annotation is available. However assuming sub-population annotation in large diverse datasets
is unrealistic both in terms of time effort and most important because the process is prone to errors.
Learning from Failure [13] proposes an annotation-free and domain agnostic procedure to improve
worst-group performance. The authors propose a self-supervised approach to identify bias-aligned
(majority) vs bias-contrastive (minority) groups in the data. The self-supervised signal consists
of the per-sample loss magnitude in the early stage of training; Then the dataset is re-weighted
based on the loss magnitude and the procedure applied multiple times during training. Inspired by
this approach Just Train Twice [12] proposes a similar solution, where the identification phase is
performed one time, and then a reweighting phase is trained. Just Train Twice is effective but relies
on an annotated and noise-free validation set for the groups. Invariant Learning [2, 5] is another
approach that can be used to improve worst-group performance. The goal is to obtain a learner that
performs well in different environments, where in each environment we have the same classes but
different confounders.

Equality of Opportunities in Machine Learning. Mixing information from different groups
generates a mixture of distributions with a continuous amount of groups. Having an infinite collection
of groups means that the model cannot rely on group information during training and samples in
different groups should be considered similarly. In this setting, we assume to have full annotation
for the groups, and robust optimization methods are employed. The supervised scenario is closely
related to the fairness one [14]: wherewith distribution shift we want to improve the worst-group
generalization, in fairness we want to learn features and distributions that are invariant to different
groups, using explicit constraints [19, 18, 2], auxiliary tasks [6, 9], and causal structure [15, 14]. In
the causality literature [15] the group information is interpreted as a confounder. If we have access to
the confounder (group annotation) we can control for it using intervention. The mixing procedure is
augmenting the training data with plausible scenarios not present in the data. This approach generates
counterfactual scenarios interpolating groups in the data and exploits these imaginative scenarios to
account for minority groups. In the case of implicit groups, confounder effects are unknown. We can
still use our approach exploiting loss magnitude and pattern formation during early training.

Self-Supervised Learning. Recently a large corpus of works dealt with self-supervised learning.
With the amount and complexity of the data increasing exponentially, the availability of annotation
is decreasing fast. Self-supervised learning tries to exploit structure in the data to cluster data and
improve generalization. Loss magnitude [13, 7, 12, 1] can be used to cluster data. MixUp [21] is
frequently employed to improve generalization and robustness to noise. The idea is to increase the
variety in the data interpolating the training distribution in sample or representation space [17]. MixUp
based methods have been extensively used for semi-supervised learning [11, 3, 1, 10] and improve
generalization [22, 4]. Notice that in this work the self-supervision is wrt the group annotation and
not label annotation as usual.

B Benchmark
We report experiments on the benchmark proposed in [16]. The benchmark consists of two vision
and one language dataset. In all three datasets, there are factors or confounders (background, sex,
hair color) that strongly correlate with the label information. In particular, for the image datasets: in
Waterbirds (CUB) the task is to classify land birds vs water birds. The class information is spuriously
correlated with the background (land vs water) generating 4 relevant groups in the training set; in
CelebA the task is to classify blond vs not-blond hairs. The class information is spuriously correlated
with the sex information (male vs female) generating 4 relevant groups. For the language dataset,
MultiNLI, the task is to classify a reasoning process (two sentences) as entailment, contradiction, or
neutral. The class information is spuriously correlated with the presence of negation in the sentences.
In all these datasets the model can easily exploit superficial, majority patterns (background, sex,
negation) to solve the tasks at train time. However, when tested on a set with a different group
distribution (same groups but represented in different proportions), the performance drops, showing a
lack of generalization capacity.
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Figure 4: Figure adapted from [12]. Examples from the benchmarks. Label information y is spuriously
correlated with confounding factors a.

Waterbirds (CUB). The task is to classify land birds yl and water birds yw. The label information
is correlated with a confounding factor: land background cl and water background cw. The majority
groups are (land bird, land background) - (yl, cl) and (water bird, water background) - (yw, cw). The
minority groups are (land bird, water background) - (yl, cw) and (water bird, land background) -
(yw, cl). During training, the minority groups are present in 5% of the data. At test time the groups
are evenly distributed in the data.

CelebA. The task is to classify blond person yb and not blond person ynb. The label information
is correlated with a confounding factor: male cm and female cf . The majority groups are (not
blond, male) - (ynb, cm) and (blond, female) - (yb, cf ). The minority groups are (not blond, female) -
(ynb, cf ) and (blond, male) - (yb, cm).

MultiNLI. The task is to classify an inference procedure as entailment ye, contradiction yc and
neutral yn. The label information is correlated with a confounding factor: the presence of a negation
cneg and absence of a negation cnneg in the reasoning.

C Modelling the Augmented Group Distribution
In this section, we present a toy visualization and a simple idea to better understand the mixing
procedure versus an oversampling strategy. Given two classes (blue and brown points) some of the
groups are underrepresented on the train set (Fig. 5). These underrepresented groups are the minority
groups. On the test set, all the groups are equally represented (Fig. 6). JTT oversamples the minority
groups (Fig. 7) and trains on the augmented distribution. JM1 mixed minority and majority groups
(Fig. 8) and trains on the augmented distribution. We see that both methods generate a training
distribution closer to the target one in Fig. 6.

Figure 5: Source domain. Figure 6: Target domain.

Mixing Groups. Consider that group is encoded as a 2d variable g that is represented jointly by two
1d variables confounder c ∈ {0, 1} and label y ∈ {0, 1}. Suppose that a 2d sample representation
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Figure 7: Oversampling (JTT). Figure 8: Mixing (JM1).

is sampled from the conditional distribution h|c, y ∼ N((c, y), 1) where we denote by g := (c, y).
Since minority groups (c = 0, y = 1) and (c = 1, y = 0) are only present in the source domain
(Fig. 5) but not in the target domain (Fig. 6), the decision boundary if naively trained on the source
domain will perform very poorly in the target domain. For a pair of samples from a minority group g
(under-represented) and a majority group ḡ (over-represented) respectively, now that h ∼ N(g, 1)
and h̄ ∼ N(ḡ, 1), we have that the mixed-up sample with rate α follow an augmented distribution:

hmix = α h+ (1− α) h̄ ∼ N(α g + (1− α) ḡ︸ ︷︷ ︸
:=gmix

, α2 + (1− α)2︸ ︷︷ ︸
≤1

).

We can see that, given a continuous distribution for α, gmix is a sample from a continuous distribution
that augments the training groups by convex combination. It is easy to see that a group sampled from
the mixing distribution conditional on the same class y (Fig. 8) will be closer to the target than the
source domain, achieving a similar effect of the oversampling approach taken by JTT (Fig. 7). It is
also clear that, without the class-conditional constraint, the mixing will result in an augmented source
distribution whose decision boundary will be inconsistent with the target distribution.

D Additional Experiments
In this section, we report additional ablation experiments.
In Section 4 we have considered only the minority groups in the oracle setting, but potentially we can
have access to full group annotation on the train set. Consequently, methods like GroupDRO [16]
can be employed. We compare a variant of JM1, called GroupJM1, and GroupDRO. In Table 5 we
consider the configuration with full group annotation on the train set and we evaluate a variant of
JM1, GroupJM1, with GroupDRO [16]. GroupJM1 is competitive in this scenario, corroborating
the idea that the mixing procedure is a general approach to improve worst-group accuracy. In
Figure 9 we investigate the performance of JM1 with and without class-conditional constraint. We
see that empirically the conditional JM1 performs better than the unconditional one. The worst-group
accuracy decreases increasing the dataset complexity (in terms of the number of samples, classes, and
groups) for both models. In Table 6 we consider the performance of JM1 mixing samples at different
levels of abstraction, where the layer indicates mixing in input space, inside the encoder, in output
space, or choosing a layer at random. We also test different sampling distributions. In Figure 10 and
Table 10 we study the behaviour of the models varying the number of identification epochs in phase
I).
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Table 5: Experiments using GroupDRO and JM1 variants. We assume fine-grained group annotation on the
train set. We find the worst performing group in each mini batch and use such information to improve JM1. We
samples α ∼ U(0, 1). GroupDRO results from [16].

CUB CelebA MultiNLI L
avg worst avg worst avg worst

GroupDRO 93.5 91.4 92.9 88.9 81.4 77.7 DRO
GroupJM1 90.9 90.5 92.0 86.1 82.1 81.5 ERM
GroupJM1 93.3 91.3 93.0 90.0 81.9 79.3 DRO

CUB (2cl 4g) CelebA (2cl 4g) MultiNLI (3cl 6g)
dataset complexity
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Figure 9: Unconditional vs conditional JM1 on the benchmark. The worst-group performance decreases
increasing the dataset complexity (dataset size, number of groups, variety of the data).

Table 6: Ablation on CUB dataset split by group. The goal is to classify land birds yl vs water birds yw in the
presence of a confounders: land background cl vs water background cw. JM1+ is a variant of JM1 with a fixed
amount of oversampling.

layer α (yl, cl) (yl, cw) (yw, cl) (yw, cw) worst acc
JTT - - 94.3 86.7 87.5 91.6 86.7

JM1 input U 98.4 84.2 77.7 93.0 77.7
JM1 input U(0.5) 96.7 84.8 86.8 93.5 84.8
JM1 early U 97.5 84.7 80.1 92.2 80.1
JM1 output U 97.3 85.9 84.7 92.7 84.7
JM1 random U 93.8 87.8 89.7 90.8 87.8
JM1 random U/B 94.2 88.5 88.9 90.5 88.5
JM1+ input U 91.9 89.4 90.5 84.9 84.9
JM1+ input U/B 96.3 87.6 88.8 93.3 87.6
JM1+ early U 92.5 87.9 87.5 89.9 87.5
JM1+ random U/B 94.0 89.6 90.7 90.2 89.6
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Figure 10: Worst-group and average accuracy for differ-
ent setups. On the x-axis we have different epochs we
evaluate the model performance in the II phase. Each
line represents a different epoch to identify samples in
the I phase.

Figure 11: Results on CUB for different identification
epochs. For JM1-avg we choose the model based on
average accuracy.

JM1-avg JM1-robust
avg worst avg worst

10id 86.6 39.7 80.6 64.2
20id 92.2 72.7 89.8 84.4
30id 93.6 81.8 90.8 86.4
40id 93.7 81.8 90.3 87.5
50id 94.1 82.6 90.8 87.5
60id 93.3 82.7 91.1 87.0
70id 93.3 79.1 90.2 85.8
80id 92.8 79.3 90.2 85.0
90id 93.0 78.0 89.9 84.7
100id 91.2 69.0 86.3 81.3
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E Experimental Details

Table 7: Training details for JM1. CE: cross-entropy. U: uniform distribution U(0, 1). B: beta distribution
B(2, 5). For all the other hyper-parameters we use the one proposed in [12]

CUB CelebA MultiNLI CUB (oracle) CelebA (oracle)

Batch Size 32 64 32 32 64
Identification Epoch 40 1 2 - -
Early stopping ✓ ✓ ✓ ✓ ✓
Epochs (I Phase) 200 40 4 - -
Epochs (II Phase) 200 40 4 200 80
α U/B U/B U U/B U/B
Learning Rate 1e-5 1e-5 1e-5 1e-5 1e-5
L CE CE CE CE CE
Number Groups 4 4 6 4 4
Number Classes 2 2 3 2 2
Mixing Layer random early layer output random early layer
Pretrained Encoder ResNet50 ResNet50 BERT ResNet50 ResNet50
Weight Decay 1.0 0.1 0.1 1.0 0.1
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