
SATA-BENCH: Select All That Apply Benchmark for
Multiple Choice Questions

Weijie Xu1∗, Shixian Cui1∗, Xi Fang1∗, Chi Xue1, Stephanie Eckman1, Chandan K. Reddy1

1Amazon

Abstract

Large language models (LLMs) are increasingly evaluated on single-answer
multiple-choice tasks, yet many real-world problems require identifying all correct
answers from a set of options. This capability remains underexplored. We introduce
SATA-BENCH, the first dedicated benchmark for evaluating LLMs on Select All
That Apply (SATA) questions across diverse domains, including reading compre-
hension, law, and biomedicine. Our evaluation of 30 open-source and proprietary
models reveals a significant gap: even the strongest model achieves only 41.8%
exact match, exposing LLMs’ inability to reliably identify all correct answers. We
find that this weakness stems from two core challenges: selection bias - models
favor certain choices regardless of content, and count bias — models fail to predict
the correct number of answers. To address these issues, we propose Choice Funnel,
a decoding strategy that combines token debiasing with adaptive thresholding to
guide models toward complete and accurate selections. Choice Funnel achieves up
to 29% higher exact match than competitive baselines while reducing inference cost
by over 64%. Our findings expose fundamental limitations in current LLMs and
introduce a new framework for diagnosing and improving multi-answer reasoning.
We release SATA-BENCH and Choice Funnel to promote LLM development for
robust decision-making in realistic, multi-answer applications.

Data & Code: github.com/sata-bench/sata-bench
Data & Dataset Card: huggingface.co/datasets/sata-bench/sata-bench

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable success across a variety of natural
language processing tasks, with multiple-choice question (MCQ) answering emerging as a prominent
evaluation setting [40, 55]. However, most LLM benchmarks and training pipelines focus on
questions with a single correct answer among a fixed set of options (typically four answer choices).
This design choice introduces a structural bias, limiting the models’ ability to generalize to more
flexible, real-world tasks that require identifying multiple correct answers.

Many real-world scenarios demand such flexibility. For instance, a social media moderator might
need to evaluate a post for several types of toxic content—such as threats, hate speech, or of-
fensive language—and accurately tag all applicable categories. Similarly, journalists extracting
information from news articles or biomedical researchers annotating scientific papers with multiple
relevant subdomains face tasks that extend beyond single-choice frameworks. These are instances
of Select All That Apply (SATA) questions, where more than four choices are presented and
multiple answers are required. Existing LLMs often struggle in such scenarios by inaccurately
selecting valid options. Figure 1 illustrates this bias and the shortcomings of even advanced LLMs.
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Figure 1: This is a representative example to show that LLMs
struggle with SATA (Select All That Apply) questions. The
models often provide wrong answers when multiple correct
options are present.

Despite the relevance of SATA-style
tasks, there is a lack of standard-
ized benchmarks and evaluation meth-
ods tailored to this setting. Existing
MCQ benchmarks predominantly as-
sess single-answer selection, leaving
a gap in our understanding of how
well LLMs perform in multi-answer
scenarios. To address these chal-
lenges, we introduce SATA-BENCH,
a new benchmark suite specifically
designed to evaluate and enhance
LLM performance on SATA tasks.
SATA-BENCH is uniquely character-
ized by multiple correct answers to
reflect real-world scenarios, and a
diverse set of knowledge-based and
reasoning-driven questions. By pre-
senting LLMs with varying numbers
of options and multiple valid answers, SATA-BENCH enables the assessment of their ability and
biases in more realistic scenarios. SATA-BENCH extends the applicability of LLMs to diverse and
complex real-world tasks.

Our Contributions. The primary contributions of this paper are:

1. SATA-BENCH Data Curation: We curate a high-quality, diverse benchmark dataset explicitly de-
signed to challenge LLMs on multi-answer tasks. SATA-BENCH features 1,604 human-validated
questions with varying difficulty levels, multiple correct answers, and carefully constructed distrac-
tor options. We provide readability, confusion, and similarity analyses to ensure clarity, diversity,
and task complexity across six real-world domains: reading comprehension, news classification,
event detection, toxicity identification, biomedical concept tagging, and legal document analysis.

2. Comprehensive Evaluation of 30 LLMs on SATA Tasks: We conduct the largest-to-date evaluation
of 30 state-of-the-art proprietary and open-source LLMs on SATA questions, revealing that even
top-performing models achieve a maximum exact match of only 41.8%. Our analysis highlights
two key failure modes—selection bias and count bias—and demonstrates how current LLMs
systematically underestimate the number of correct answers. We also break down performance
across domains, showing that no single model dominates across all task types, underscoring the
diversity and difficulty of SATA-BENCH.

3. Choice Funnel Decoding Algorithm: We propose Choice Funnel, a novel iterative decoding
strategy that combines token debiasing and adaptive thresholding to mitigate selection and count
bias. Choice Funnel outperforms three competitive baselines across 7 open-source models,
achieving up to 29% improvements in exact match accuracy while reducing inference costs by
over 64%. We demonstrate that Choice Funnel enables smaller models to rival or outperform much
larger models on SATA tasks, offering a scalable solution for improving multi-answer reasoning.

2 SATA-BENCH Data Curation

Our objective is to develop a dataset that encompasses a diverse range of tasks and domains and
poses sufficient challenges to differentiate the capabilities of LLMs. The data curation process
consists of three stages: selection of relevant source datasets, transformation of the data into SATA
format, and filtering of questions for readability, diversity, and clarity (see Figure 2). We developed
SATA-BENCH questions to include tasks in Reading Comprehension [28], Text Classification (News
[38], and Events [19]), and Domain Understanding (Toxicity [21], Biomedicine [41], and Laws
[7]). Detailed descriptions of each source dataset are provided in Appendix A.

2.1 SATA Transformation

We transformed the original question/text to SATA questions following the steps below: 1. Collect text
content, labels, and the total number of options for each question. 2. Maintain the option-to-answer
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Figure 2: SATA-BENCH Data Curation Process. The source data is converted to SATA format and
then filtered for readability, diversity (via question similarity), difficulty (via confusion scoring),
and clarity (via human validation). Additional dataset-specific transformation steps are described in
Appendix B.

Table 1: Statistics of the SATA-BENCH dataset (by data source). We report the following metrics:
n: number of instances, LC: label cardinality, m: mean number of correct answers, me: median
number of correct answers, min: minimum number of correct answers, max: maximum number
of correct answers, r: ratio of the number of choices to the median number of correct answers
(LC/me), w: mean word count, FRE: Flesch Reading Ease score, FGL: Flesch-Kincaid Grade Level
score, ARI: Automated Readability Index, DCR: Dale-Chall Readability score, GFI: Gunning Fog
Index, Confusion: mean confusion score. The final row summarizes these metrics across the entire
SATA-BENCH dataset.

Data Source n LC m me min max r w FRE FGL ARI DCR GFI Confusion
Reading Comprehension 328 3–15 2.8 2 2 10 na 2018.46 59.94 9.22 12.57 9.27 9.75 0.33
Toxicity 255 8 2.56 2 2 6 4 1015.32 37.83 12.28 13.33 10.49 12.57 0.27
News 248 6 2.36 2 2 5 3 785.93 62.51 8.92 11.15 11.1 10.94 0.26
Biomedicine 260 15 5.67 5 2 12 3 1540.47 40.82 10.95 12.41 10.83 12.29 0.21
Laws 311 15 5.3 5 2 10 3 5761.69 45.09 12.29 14.06 8.75 12.07 0.14
Events 202 6 2.63 2 2 5 3 3644.06 50.64 10.83 13.08 9.7 11.8 0.25

SATA-BENCH 1604 3-16 3.55 3 2 10 3.2 2491.01 49.56 10.75 12.80 9.96 11.51 0.24

ratio between 2 and 3 for consistency and improved difficulty [50], and determine the number of
options (k) based on the number of correct answers for each question. 3. Generate distractor options
for each question, consisting of the c correct options and k − c options randomly selected from the
pool. 4. Shuffle the list of options to eliminate any label imbalance.

2.2 Question Filtering

From the original SATA questions (characteristics shown in Table 5 in Appendix), we filter them
using the following steps (see Figure 2):

Initial Filtering. To clean the original source data, questions with fewer than ten words were
eliminated [43, 26]. Additionally, to ensure each question is understandable and solvable, we excluded
those containing ambiguous, vague, or subjective terms (details are provided in Appendix B.1) [33].

Readability. To ensure SATA-BENCH questions are understandable and challenging, we assessed
the readability of each question using the Flesch Reading Ease (FRE) score [20] and the Gunning Fog
Index (GFI) [22]. We retained questions with an FRE score between 20-100 (inclusive), filtering out
extremely easy or difficult questions [29], and a GFI score between 6-17, corresponding to 6th grade
to graduate level difficulty [22]. This filtering removed unclear or trivial questions while maintaining
a range of difficulties. 2

2We also included four additional measures of readability (Flesch-Kincaid Grade Level (FGL) [29], Auto-
mated Readability Index (ARI) [29], and Dale Chall Readability (DCR) [12]) in the SATA-BENCH dataset.
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Question Similarity. Some of the original questions were too similar to each other, adding redundancy
to the dataset. Following [57], we calculated the similarity score for each question pair using the
cosine similarity score of the term frequency-inverse document frequency (TF-IDF) matrix [46] due
to its efficiency. We removed questions sharing at least 80% cosine similarity to reduce duplication.

Confusion Score. The difficulty of SATA questions is largely related to how confusing the provided
options are. We assessed the semantic similarity between the correct answers and the distractors
as a measure of question-level confusion score [6]. We used ST5-XXL [36] for semantic similarity
calculation, as it performed best in [34]. Then, to balance the confusion level, we grouped the
questions into 10 bins according to the confusion score and sampled between 50-300 records from
each bin to ensure SATA-BENCH contains a diverse range of difficulty levels. Figures 5 and 6 show
the distribution of the confusion scores before and after filtering as well as by source dataset. We
release a dataset comprising 7,983 pre-validation questions as a by-product of our work.

Human Validation. Human evaluation was conducted in two stages. First, we used it to identify and
remove questions containing ambiguous information as detailed in Appendix B.2. In the final stage,
three human annotators reviewed all remaining questions to correct labeling errors; questions lacking
consensus among all three annotators were excluded, as detailed in Appendix B.3. Statistics of the
final SATA-BENCH is shown in Table 1.

2.3 SATA-BENCH Characteristics

After these curation steps, SATA-BENCH has the following characteristics: (i) Multiple choices with
multiple correct answers. All questions have multiple choices and more than one correct answers.
(ii) Diversity. The questions come from various disciplines, including knowledge-based tasks such as
domain understanding and reasoning-driven questions such as reading comprehension (see Figure 3).
(iii) Human validation. All questions are manually validated to ensure they are clear and correct by
readability scores and human validation. SATA-BENCH removes ambiguous or overly simplistic
items while maintaining a range of reading levels (from 6th grade to graduate level) (see Figure 3).
(iv) Challenging. We constructed the SATA-BENCH benchmark so that 76% have a FRE score
within the standard range (60-70) and the average GFI score is approximately 13th grade (equivalent
to the first year of college/university). The mean semantic similarity between correct answers and
distractors (incorrect options) is 0.24, exhibiting a right-skewed distribution (skewness = 1.8). Most
questions cluster around a similarity score of 0.22, with a few more difficult questions extending the
tail towards the higher end (see Figure 3).

Figure 3: SATA-BENCH Dataset Overview. SATA-BENCH covers a diverse set of topics and
achieves a balance between readability and difficulty (measured by confusion score). d1: Reading
Comprehension, d2: Toxicity, d3: News, d4: Biomedicine, d5: Laws, and d6: Events.

3 Experiments

This section presents the experiments conducted to assess the capabilities of LLMs on SATA questions.
The benchmark includes 16 proprietary models and 14 open-source models. (See Table 7 for full
model cards.)

Experimental Setup. Because our benchmark contains diverse questions, we use a zero-shot
evaluation. The system prompt specifies that each question has at least two correct answers, and we
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instructed the LLM to output the labeled result in JSONL format [25, 56]. Furthermore, we utilize a
CoT prompting strategy as described in [37]. We then extract the answer from the JSONL file using
both exact match and fuzzy match. For cases where JSONL extraction fails (fewer than 3% of cases),
we use Claude 3 Haiku and Human Labelers to extract the correct options from the answers provided.
For smaller models, the percentage of cases where JSONL extraction fails exceeds 5%, making the
above methods less reliable. Following [24], we remove CoT and use the probability of the first
output token to retrieve options. We hold out a dataset of 100 randomly sampled instances from the
benchmark dataset to generate a threshold for each model with optimal Jaccard Index [5]. We select
all options with a probability greater than that threshold value. Note that this method applies only to
models with accessible token probabilities. We have also included the performance of non-expert
humans on the benchmark (see Appendix E).

Metrics. We evaluate models using metrics across three categories: performance, selection bias, and
count bias (details in Appendix F). Performance is measured using Exact Match (EM), Jaccard Index
(JI), Mean Average Precision (Precision), and Mean Average Recall (Recall). Selection bias includes
RStd [55] and RSD [11, 42]. We also introduce Selection Probability Divergence (SPD) to quantify
unselection bias, a form of selection bias where models consistently avoid certain options. Count
bias is assessed using the mean count difference (CtDif), mean absolute count difference (CtDifAbs),
and count accuracy (CtAcc).
Table 2: Performance comparison of 30 different LLMs across various metrics on SATA-BENCH. We
highlight the best (bold) and second-best (underline) values. Columns labeled [(↑)] indicate higher-
is-better; columns labeled [(↓)] indicate lower-is-better. Models with explicit reasoning capabilities
are highlighted in italic. All numeric values are rounded to two decimal places. We retrieve exact
labels for models evaluated using Inference-Based Retrieval + CoT prompting. For models evaluated
under Probability-Based Retrieval, we select labels based on token probability thresholds.

Performance Selection Bias Count Bias
Model Name EM↑ Precision↑ Recall↑ JI↑ SPD↓ RStd↓ RSD↓ CtDif CtDifAbs↓ CtAcc↑

Inference Based Retrieval + CoT
O3 41.77 87.50 81.22 73.91 0.38 6.79 0.06 -0.39 0.94 46.12
GPT4.1 40.49 85.52 85.66 75.23 0.13 5.98 0.06 -0.04 0.85 45.52
Grok 3 Think 39.71 83.93 86.31 74.40 0.30 6.26 0.07 0.06 0.93 44.24
GPT4 39.47 85.90 83.17 74.11 0.21 6.63 0.06 -0.20 0.82 46.61
Claude 3.7 Think 37.92 85.03 78.77 70.96 0.46 18.77 0.34 -0.32 0.87 44.48
Claude 3.7 37.82 85.35 77.15 70.98 0.49 6.59 0.25 -0.43 0.93 43.58
Claude 3 Sonnet 36.49 84.58 78.81 70.72 0.36 7.37 0.07 -0.35 0.83 48.00
Geimini 2.5 Think 36.46 84.58 83.25 72.58 0.12 4.76 0.06 -0.01 0.88 43.76
Claude 3.5 Haiku 35.89 80.26 85.08 71.12 0.33 7.31 0.35 0.18 1.01 42.61
Claude 3 Haiku 35.64 83.59 80.16 70.63 0.42 6.24 0.07 -0.22 0.85 47.15
Claude 3 Opus 35.59 86.97 77.19 70.15 0.62 8.26 0.07 -0.52 0.93 44.36
Gemini 2 Flash 34.60 85.01 79.98 70.71 0.17 6.14 0.06 -0.23 0.91 39.94
GPT 4.1 mini 33.46 86.05 78.23 69.90 0.30 6.69 0.06 -0.39 0.97 38.61
Nova Pro 32.95 87.37 75.94 68.92 0.52 7.92 0.07 -0.55 1.01 39.27
Claude 3.5 Sonnet 32.22 87.57 75.25 67.15 0.43 8.41 0.09 -0.46 1.06 38.55
Llama 3.1 405B 30.17 86.24 75.31 67.18 0.33 6.90 0.45 -0.39 1.02 36.30
Nova Lite 29.11 82.51 72.42 63.75 0.52 9.12 0.45 -0.51 1.17 37.39
Deepseek R1 28.17 84.62 72.36 64.49 0.94 17.44 0.03 -0.57 1.13 33.52
Mistral Large V2 22.83 88.20 62.59 57.16 1.33 10.89 0.12 -1.10 1.47 27.27
Qwen Plus 21.12 88.54 59.53 55.74 2.24 10.72 0.11 -1.18 1.43 24.85
Nova Micro 18.37 86.06 60.99 55.77 1.84 11.10 0.27 -1.09 1.41 24.30
Llama 3.2 90B 18.30 89.56 60.80 55.78 1.84 11.10 0.27 -1.09 1.41 24.30
Llama 3.1 70B 17.94 89.56 60.64 55.59 1.81 10.06 0.10 -1.12 1.48 22.12
Non-expert Human 17.93 60.62 54.44 45.02 1.46 15.32 1.46 -0.6 1.44 34.12

Probability Based Retrieval
Mistral 8B 14.73 81.46 53.23 46.63 11.42 19.47 1.27 -1.35 1.95 21.01
Llama3 8B 13.82 80.30 47.37 43.64 12.09 17.85 1.09 -1.59 1.88 22.00
Bloomz 7B 11.27 66.09 50.80 41.15 20.62 29.00 1.51 -0.87 1.71 20.09
DeepSeek R1 Distill 8B 8.85 72.20 45.81 40.02 13.38 21.62 1.14 -1.29 1.75 20.42
Qwen2.5 14B 6.30 87.84 38.76 37.58 21.01 18.02 1.06 -2.24 2.26 11.93
Phi3 7B 2.97 87.25 35.67 34.57 23.22 18.57 1.22 -2.33 2.35 7.22
Phi4-mini-reasoning 2.12 77.98 30.82 29.69 21.62 13.90 1.59 -2.37 2.39 7.35

3.1 Key Observations

SATA-BENCH is challenging and different. All models have a precision greater than 80%, but
none achieves an EM score above 42%. This indicates that while models often select some correct
answers, they fail to consistently identify all of them.
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In general, proprietary models have higher EM and Precision than their open-source counterparts.
Unlike in other benchmarks, there is no single model that dominates across all performance metrics.
Some large reasoning models (LRM), such as O3 and Grok 3 Think, have higher EM and Recall
than non-reasoning models. Interestingly, larger and more recent models do not necessarily perform
better. For example, Claude 3 Sonnet performs better than Claude 3.5 Sonnet V1 and Claude 3
Opus in exact match rate. However, within the Claude family, larger models always have higher
precision. For example, Claude 3 Opus has the highest precision among the Claude 3 model family.
According to [4, 13], these results contrast with existing single-choice MCQ LLM performance, such
as MMLU [24] and ARC [10], where larger or more recent models tend to show clear improvements.

Models choose too few answers. Nearly all LLMs tend to select fewer answers than required. As an
extreme example, Llama 3.1 70B on average, selects one fewer option per question than the correct
number. Accordingly, Llama 3.1 70B achieves the highest precision but the lowest exact match (EM).
The tendency to under-select increases as the number of correct answers grows (see Figure 11). This
behavior negatively impacts the EM rate for questions with many correct choices (see Figure 12).
The highest CtAcc is only 48%, even the best model predicts the correct number of answers in fewer
than half of the questions. We hypothesize that this behavior results from models being primarily
trained and evaluated on benchmarks where each question has only one correct answer, making them
poorly suited for SATA tasks. Through a t-test, we observe that the mean of the CtDif column is
significantly lower than 0, with a p-value of 1.70 × 10−6, supporting the observation that models
consistently under-select answers.

Unselection bias exists. Some models exhibit a tendency to avoid selecting specific labels, even when
they are correct.3 When comparing Selection Probability Divergence (SPD) from our benchmark
with 1,000 randomly simulated SPDs, Welch’s t-test reveals that LLMs’ SPD is significantly higher
than random, with a p-value of 0.0467. Even the best model in terms of selection bias (Gemini)
underperforms on label M, with its recall rate being 6.3% lower than its average recall (Figure 10).

There is no clear winner across datasets. When breaking down the benchmark by its six datasets,
different models excel in different domains. Top-performing models vary by dataset, showcasing
the diversity of SATA-BENCH. Considering exact match rate (see Figure 13): O3 excels in News
and Events classification. DeepSeek R1 leads in Biomedicine, GPT-4.1 performs best in reading
comprehension, and Claude 3.7 dominates in toxicity and laws. This highlights the importance of
domain-specific evaluation and the breadth of challenges covered by the benchmark.

3.2 Ablation Studies

Table 3: Average performance of three models: Nova Pro, Llama
3.1 405B, and Claude Haiku 3.5. The first column shows row
numbers for reference.

Experiment EM Precision RStd CtDif
1 1/2/3/4 35.50 82.99 10.22 -0.37
2 a/b/c/d 30.69 83.10 11.56 -0.26
3 default 33.00 84.62 7.37 -0.25
4 few shots 28.35 76.61 17.33 -0.42
5 option by option 30.50 86.28 4.81 -0.64
6 option few shots 30.87 85.80 7.93 -0.48
7 with avg count 27.33 76.17 14.90 -0.40
8 with count number 53.95 83.30 3.45 -0.08
9 single choice 45.53 NA NA NA

We conducted ablation studies
to test different strategies for im-
proving model performance. We
report the average results across
three models selected for diverse
profiles in terms of cost, open-
source availability, and overall
performance. The complete
prompts are provided in Ap-
pendix H.3.

Improving performance on
SATA-BENCH is challenging.
We tried several approaches to
improve performance, but none yielded consistent or significant improvements.

• Changing the symbol used for each answer choice did not improve the selection bias. We replaced
the default option IDs from A/B/C/D to a/b/c/d and 1/2/3/4. While the 1/2/3/4 format achieved
slightly better exact match accuracy, it also increased selection bias and reduced precision. Overall,
we did not observe performance improvement by changing symbols (see rows 1-3 in Table 3).

• We provided few-shot examples in the prompt before the test models. However, this strategy did
not lead to meaningful improvements in performance (see row 4 in Table 3).

3However, we cannot exclude position effect [55].
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• Inspired by survey science [45, 39], we instructed the models to examine each option individually.
However, the models still selected too few options overall and did not improve performance (see
rows 5-6 in Table 3).

Given more information, two approaches do improve performance and can provide additional insights
into why the models struggle.

• Providing the number of correct choices improves performance. To understand how much error
is due to the models’ lack of knowledge regarding the number of correct options, we explicitly
provided this information in the instruction for each question. This increased the exact match rate
by 20.95 percentage points and reduced the selection bias metric RStd. However,when we instead
provided the average number of correct choices across all questions in SATA-BENCH, performance
declined (see rows 7-8 in Table 3).

• Converting questions to multi-choice question with one correct answer. For example, consider
a question with three correct answers and six incorrect answers: we expanded it into three separate
single-choice questions, each with one correct answer and six incorrect answers. We redefined
the exact match rate as the percent of all original questions where a model answered all expanded
questions correctly. This approach improved performance by 12.53% (see row 9 in Table 3),
demonstrating that SATA questions are significantly harder for LLMs than single choice questions.

Both results suggest that while models can often identify individual correct answers, they lack
awareness of how many correct answers exist, which contributes to their low performance.

4 Improving Performance on SATA Questions

Algorithm 1: Choice Funnel
Input :LLM πθ , SATA problem T , option set O,

NOTA stop option, τ confidence threshold
# Initialize the selected option set
R← ∅
while O ≠ ∅ do

# Generate prompt with available options
P← MakeSATAPrompt(T ,O)
# Get first token probability distribution and apply

token debiasing
p← DebiasingFunction(πθ(·|P))
# Select option with highest probability
o← argmaxo∈O p(o)
# 1. stop when "None of the above" is selected
if o = NOTA then

break
end
R← R∪ {o}
# 2. stop when the confidence threshold is reached
if p(o) > τ then

break
end
if length(R) = 1 then
O ← O ∪ {NOTA}

end
O ← O \ {o}

end
Output :R

The experimental results in Section 3 demon-
strate that Selection Bias and Count Bias de-
grade LLM performance on SATA-BENCH, and
that simple prompting strategies do not lead to
significant improvements. This section focuses
on improving performance on open-source mod-
els, which allows us to leverage token-level log-
its or probability estimates from the first token
prediction.

To address Selection Bias, we draw from prior
research on token debiasing methods [9, 55]
in the MCQ setting, where selection bias is at-
tributed to the a priori probability mass assigned
by the model to specific option IDs. These meth-
ods propose various techniques to capture and
remove such biases. We hypothesize that simi-
lar debiasing techniques can be adapted to miti-
gate unselection bias in SATA tasks. To address
Count Bias, we retrieve the predicted probabili-
ties of option IDs and select options whose prob-
abilities exceed a predefined threshold. How-
ever, because SATA-BENCH includes a large
option set, the probability distribution tends to
decay rapidly, with most options receiving near-zero probability mass beyond the first few choices.
This makes it challenging to establish a reliable threshold. Converting SATA questions into multiple
binary classification problems helps but significantly increases inference cost.

Choice Funnel Algorithm. To improve model performance on SATA problems, we propose a
decoding method called Choice Funnel (see Algorithm 1). This approach first adds an auxiliary
option “None of the above”. It then selects the option with the highest first debiased token probability
and removes it from the option set. This process repeats iteratively until one of two stopping
conditions is met: (i) the model selects the “None of the above” option or (ii) the probability of the
next selected option falls below a predefined confidence threshold.
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The idea of introducing “None of the above" (NOTA) comes from the traditional survey science
domain, where options like “I don’t know" (idk) are commonly included to improve the data collected
in surveys [44]. Recent research shows that survey design principles can inform LLM development
[17] and that LLMs exhibit similar biased response behaviors as humans [9, 16]. In our case NOTA
outperforms idk (see ablation study in Appendix M.1).

The intuition behind the second stopping condition comes from our observation of model output
probabilities, where the highest token probability tends to be lower at the beginning of iterations,
since the model treats multiple options as equally correct. Later in the process, relatively higher
probability is assigned to the final remaining correct option in the option set. We also show that
Choice Funnel performs best when both stopping conditions are used together (see ablation study in
Appendix M.3). Regarding the choice of DebiasingFunction in Algorithm 1, Choice Funnel is flexible
and can incorporate any token debiasing method proven effective in MCQ settings. We demonstrate
one such debiasing method in Section 4. Additional ablation results on each sub-component of
Choice Funnel are provided in Appendix M.2. Finally, the inference cost of Choice Funnel, measured
by the number of model forward passes, scales linearly with the number of correct labels rather
than the total number of labels. This makes the method particularly efficient when the correct labels
represent a small fraction of the option set.

Experimental Setup. We adapted the PriDe algorithm [55] as the token debiasing method in our
experiments due to its label-free and computationally efficient implementation. It works by first
estimating the model’s prior bias towards specific option ID tokens (e.g., A, B, C) through random
permutations of option contents in a small subset of test samples (10% in our experiments). We then
use this estimated prior to adjust the prediction distribution on the remaining samples, separating
the model’s inherent positional and token biases from its task-specific predictions. Because the
original PriDe algorithm was designed for standard single-answer MCQ settings, we modified it to
better fit our SATA setting (see Appendix K). We evaluate the performance of Choice Funnel against
three baseline methods that rely on first-token probabilities: (i) First token probability with a fixed
threshold, as defined in Section 3 (referred to as first token). (ii) Building on method 1, we apply
PriDe debiasing method [55] (referred to as first token debiasing). (iii) Convert each option into an
individual binary yes/no question (referred to as yes/no). We expect yes/no to be a strong baseline, as
it evaluates each choice independently. In this study, we use basic prompts (see Appendix H) and
experiment with 7 LLMs from Table 2 that fall under the Probability Based Retrieval category (more
details in Appendix L). For each model, we compute metrics reported in Table 2, and additionally
report an InfCost metric to capture the number of model forward passes required for each method.

Key Observations. Choice Funnel consistently outperforms all three baselines across all 7 models
in EM, SPD, and CtAcc (see Table 4). Choice Funnel reduces unselection bias and count bias –
compared to the first token baseline, Choice Funnel achieves an average 56.16% reduction in SPD
and 154.62% improvement in CtAcc, resulting in a 277.48% gain in Exact Match (EM) performance.
While reasoning models also show improvements with Choice Funnel, we exclude these from
aggregate calculations as their exceptionally low baselines would artificially inflate gains. When
compared to our strongest baseline, the yes/no approach, Choice Funnel achieves a substantial
29.87% improvement in EM while reducing model forward passes by 64.48% thanks to its early
stopping mechanism, demonstrating efficient inference scalability. Statistical significance testing
(t-test) confirms that Choice Funnel significantly outperforms both yes/no and first token debiasing in
EM and CtAcc, with a maximum p-value of 0.0079. While our models’ parameter sizes (7B-14B)
limit direct comparison to much larger proprietary models, Choice Funnel’s performance on the
phi3-small model still exceeds that of larger models such as Llama-90B and Mistral-Large V2 (see
Table 2). This further underscores the effectiveness of our method. Additional ablation studies on the
individual components of Choice Funnel are provided in Appendix M.

5 Related Work

SATA Benchmark. Many existing MCQ benchmarks have only one correct answer and thus cannot
test LLMs’ ability to select multiple correct choices. On the one hand, existing SATA datasets, such as
[31, 30, 3, 27, 8], have more than 30 labels per question to choose from. This makes it impractical for
LLMs to identify all correct labels from such large label pools. Other SATA-style datasets test narrow,
specialized capabilities, such as emotional understanding [15] or music style understanding [54],
which are less emphasized in mainstream LLM benchmarks. Since most existing methods to solve
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Table 4: Performance of various models on SATA-BENCH using different decoding methods. Choice
Funnel achieves generally better performance, effectively reducing selection and count bias compared
to three baseline methods. Best values in each column are highlighted in bold. Columns labeled [↑]
indicate higher-is-better; columns labeled [↓] indicate lower-is-better. All numeric values are rounded
to two decimal places.

Model Name EM↑ Precision↑ Recall↑ JI↑ SPD↓ CtDifAbs↓ CtAcc↑ InfCost↓
Mistral-8B + first token 14.73 81.46 53.23 46.63 11.42 1.95 0.21 1650
Mistral-8B + first token debiasing 8.91 65.17 37.97 34.27 152.23 2.34 0.14 2534
Mistral-8B + yes/no 16.48 75.49 55.91 48.80 12.88 1.94 0.21 15517
Mistral-8B + choice funnel 20.24 86.03 55.78 52.56 8.50 1.74 0.27 4803
Phi3-7B + first token 2.97 87.25 35.67 34.57 23.22 2.35 0.07 1650
Phi3-7B + first token debiasing 1.76 67.92 28.24 27.47 175.24 2.50 0.05 2534
Phi3-7B + yes/no 25.45 78.41 72.40 60.03 1.39 1.64 0.30 15517
Phi3-7B + choice funnel 29.27 83.27 70.24 61.85 3.47 1.42 0.38 6339
Qwen2.5-14B + first token 6.30 87.84 38.76 37.58 21.01 2.26 0.12 1650
Qwen2.5-14B + first token debiasing 4.61 67.95 31.49 30.36 154.26 2.43 0.09 2534
Qwen2.5-14B + yes/no 25.64 79.80 60.56 56.18 2.76 1.52 0.31 15517
Qwen2.5-14B + choice funnel 27.82 85.69 67.07 61.12 3.80 1.42 0.35 6005
Bloomz-7B + first token 11.27 66.09 50.80 41.15 20.62 1.71 0.20 1650
Bloomz-7B + first token debiasing 7.09 59.07 38.41 32.05 149.17 2.19 0.15 2534
Bloomz-7B + yes/no 11.93 39.80 42.67 29.40 17.78 3.24 0.13 15517
Bloomz-7B + choice funnel 20.18 66.62 54.90 46.15 9.82 1.71 0.32 5440
Llama3-8B + first token 13.82 80.30 47.37 43.64 12.09 1.88 0.22 1650
Llama3-8B + first token debiasing 7.58 62.83 32.28 30.38 151.74 2.34 0.14 2534
Llama3-8B + yes/no 14.85 70.30 65.61 51.43 1.91 1.78 0.23 15517
Llama3-8B + choice funnel 19.88 78.69 56.19 50.36 7.75 1.66 0.33 4975
Phi4-mini-reasoning + first token 2.12 77.98 30.82 29.69 21.62 2.39 0.07 1650
Phi4-mini-reasoning + first token debiasing 1.27 59.77 25.74 24.51 156.16 2.32 0.07 2534
Phi4-mini-reasoning + yes/no 4.36 51.08 81.59 45.24 7.09 3.19 0.10 15517
Phi4-mini-reasoning + choice funnel 18.42 74.87 54.84 49.14 3.30 1.59 0.27 6003
DeepSeek-R1-Distill-Llama-8B + first token 8.85 72.20 45.81 40.02 13.38 1.75 0.20 1650
DeepSeek-R1-Distill-Llama-8B + first token debiasing 5.45 59.29 31.12 28.48 134.36 2.14 0.14 2534
DeepSeek-R1-Distill-Llama-8B + yes/no 0.12 40.31 89.51 40.19 27.96 5.73 0.01 15517
DeepSeek-R1-Distill-Llama-8B + choice funnel 14.36 75.56 45.56 42.87 12.37 1.87 0.21 4630

SATA questions require converting questions to a bag-of-words [32], and as a result, most of the
above datasets exist only in bag-of-words format, making them unsuitable for evaluating LLMs in our
benchmark setting. To our knowledge, there is currently no existing LLM benchmark that consists
exclusively of SATA questions.

Selection Bias. Many previous papers have discussed the tendency of LLMs to favor choices based
on option order or specific symbols when answering MCQs [23, 52]. However, these papers have
primarily focused on single-answer questions. A common approach to reducing selection bias
involves calibrating output probabilities using the prior bias of an option ID [55]. However, it remains
unclear how to define or compute such priors in SATA questions.

6 Conclusion

We introduced SATA-BENCH, a carefully curated suite of “Select All That Apply" (SATA) questions
designed to evaluate LLMs in scenarios where multiple correct answers must be identified. Spanning
diverse question types—from reading comprehension to text classification—and covering domains
such as law and biomedicine, SATA-BENCH presents a comprehensive challenge for current LLMs.
Our benchmarking study of both open-source and proprietary models revealed a best exact-matching
accuracy of only 41.8%, highlighting the difficulty of selecting all the correct options. Our ablation
studies indicate that a simple prompting strategy alone cannot boost exact match performance,
primarily because LLMs struggle to determine the correct number of answers. This limitation stems
from the fact that SATA-style questions are rarely included in LLMs’ benchmark datasets, making
LLMs prone to selection and count biases even when they recognize some correct options. To address
this limitation, we proposed the Choice Funnel algorithm, which significantly improves exact match
performance by systematically guiding the selection process. Our findings highlight the need for
more focused research on handling multiple answer tasks, where partial correctness is insufficient.
We hope that SATA-BENCH and the choice funnel methodology will encourage the development of
more robust LLMs capable of handling realistic, multi-answer scenarios, ultimately improving their
effectiveness in real-world applications that require identifying all relevant answers.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper has three core claims (dataset curation, dataset benchmark, and
iterative decoding). We describe the dataset curation in section 2, dataset benchmark in
section 3, and our iterative decoding method and its effectiveness in section 4. The main
contributions are the introduction of SATA-BENCH, a curated benchmark for evaluating
LLMs on multi-answer "Select All That Apply" (SATA) questions across multiple domains,
and the development of Choice Funnel, a decoding strategy designed to improve selection
accuracy by addressing selection and count biases. These claims are supported by the
methodological details and experimental results provided in the paper. The introduction also
properly frames the work as addressing an underexplored evaluation gap rather than solving
multi-answer reasoning in general. While the paper briefly mentions broader potential
applications (e.g., other modalities or free-text tasks) in the impact statement, these are
presented as future directions rather than claims of achievement in the current work. Overall,
the claims in the abstract and introduction are consistent with the scope and contributions
presented in the rest of the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We summarize the limitations in the limitations section on page 17.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: [NA]

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided detailed steps for data curation in Section 2. We have
given detailed descriptions of initial filtering in Appendix A. We have also provided detailed
descriptions of human annotations in Appendix B. We released the code used in data curation,
evaluation, metrics computation, and methods implementation at https://github.com/
sata-bench/sata-bench.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in the supplemental
material?

Answer: [Yes]

Justification: We provide the code to run experiments: https://github.com/
sata-bench/sata-bench We have provided raw data (https://huggingface.co/
datasets/sata-bench/sata-bench-raw) ( 7.98k questions) and human labelled
data (https://huggingface.co/datasets/sata-bench/sata-bench) ( 1.6k ques-
tions) in huggingface. We have also provided raw data for single answer questions
(sata-bench/sata-bench-single) ( 1.57k questions) in Huggingface. All used
prompts are attached in Appendix H.
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided detailed hyperparameters in Appendix C. We have provided
all evaluation and ablation study prompts in Appendix H, metrics computation in Appendix
F and G. Experiment Setup for the evaluation of 30 LLMs is covered in Section 3.1. The
setup of the experiment to evaluate the choice funnel algorithm is explained in Section 4.2
and Appendix K, L.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined, or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We show error bars in Figure 3 to present the SATA-BENCH data character-
istics. We run statistical tests in Section 3.1 to show that existing LLMs choose too few
answers and have unselection bias. We run statistical tests in section 4 to show that Choice
Funnel is better than its counterpart in exact match rate and count accuracy.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have documented the accelerator types and software frameworks in Ap-
pendix D about what machine we use for inference opensource model/run our algorithm,
and what platform we use for inference closed-source model.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All human research subjects or participants received appropriate compensation.
All human research subjects or participants receive appropriate compensation. For human
question validation annotation, the price is 0.12 dollars per labeling task, which on average
takes 20 seconds. The hourly wage is 21.6 dollars. For non-expert human benchmark, the
price is 0.92 per labeling task, which takes 120 seconds to complete. The hourly wage is 27.6
dollars. For label correctness validation, we leverage internal corporate human annotators
with an hourly wage of over 35 dollars. The curated data set does not include any real
personally identifiable information, as mentioned in Appendix B.2.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have a section for the impact statement. The paper discusses how SATA-
BENCH enables more realistic evaluation of LLMs in multi-answer decision-making tasks
that arise in high-stakes domains such as journalism, biomedical research, and content
moderation. By highlighting systematic selection and count biases in current LLMs and
proposing methods to mitigate them, this work promotes the development of more trust-
worthy AI systems. While the work primarily focuses on evaluation and methodological
improvements, we recognize that over-reliance on automated multi-answer selection sys-
tems without human oversight could lead to misclassification or decision errors in practice.
We recommend that SATA-BENCH and Choice Funnel be used to complement human
judgment, not replace it, especially in sensitive applications. The public release of data,
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code, and evaluation tools promotes transparency, reproducibility, and responsible research
advancement in the community.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for the responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not contain unsafe image nor scraped data from the internet.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited, and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All code is cited in Section 2. All websites and licenses are documented in
Appendix A. The datasets used in this work (e.g., EurLex, PubMed-MeSH, RealToxici-
tyPrompts, Event Classification) are publicly available and cited appropriately in the paper
and Appendix A. These datasets are distributed under public or research-friendly licenses
as described by their respective maintainers. All evaluated models are publicly released by
their respective organizations and used in accordance with their published terms of use. We
cite all models and datasets accordingly.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The curated dataset is introduced in Section 2. All original data sets are
documented in Appendix A. All pre-processing steps are documented in Appendix B.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We have provided comprehensive instructions to human annotators in all
manual annotation tasks. Details are presented in Appendix B and Appendix E. All human
research subjects or participants receive appropriate compensation. For human question
validation annotation, the price is 0.12 dollars per labeling task, which on average takes
20 seconds. The hourly wage is 21.6 dollars. For non-expert human benchmark, the price
is 0.92 per labeling task, which takes 120 seconds to complete. The hourly wage is 27.6
dollars. For label correctness validation, we leverage internal corporate human annotators
with an hourly wage of over 35 dollars.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigor, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only use LLM in formatting and correcting grammar.
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Impact Statement

The introduction of SATA-BENCH marks a crucial advancement in evaluating Large Language
Models (LLMs) on “Select All That Apply" (SATA) multiple-choice questions. By addressing a
significant gap in existing benchmarks, which predominantly focus on single-answer multiple-choice
tasks, SATA-BENCH challenges LLMs with real-world scenarios requiring multiple correct responses
across domains such as reading comprehension, law, and biomedicine. This benchmark highlights
the limitations of current LLMs, which struggle to accurately determine all valid answers, achieving
a best-case exact match accuracy of only 41.8%.

SATA-BENCH ’s impact extends beyond evaluation, as it reveals key biases in LLM decision-making,
such as count bias and selection bias, which hinder performance on multi-answer tasks. To address
these shortcomings, the development of the Choice Funnel algorithm demonstrates a novel approach
to systematically improving LLM selection accuracy, significantly enhancing model performance in
SATA tasks.

While the current focus is on knowledge-intensive domains, the potential for expansion into additional
fields such as mathematics, coding, and instruction following is vast. SATA-BENCH can also be
extended to free-text tasks, where the set of correct responses is not explicitly provided, and to other
modalities, such as voice and vision. This would further refine LLM capabilities in handling complex,
multi-faceted decision-making tasks. By pushing the boundaries of LLM evaluation, SATA-BENCH
lays the foundation for the next generation of AI systems capable of more nuanced, flexible reasoning
in diverse real-world applications.

Limitations

Memorization. While we believe most questions in SATA-BENCH have not been seen during
pretraining, we cannot fully rule out the possibility that some LLMs may have been exposed, even
partially, to the source datasets. We do not have access to the pretraining data of proprietary models
and therefore cannot conclusively assess memorization.

Domain Coverage. SATA-BENCH spans six diverse domains, including reading comprehension,
biomedicine, and law. However, the total number of domains remains limited compared to larger-scale
benchmarks such as MMLU, indicating that further expansion is needed for broader generalization.

Text Modality. Our benchmark is text-only. Real-world tasks often require multimodal reasoning
(e.g., interpreting charts, images, or audio), which SATA-BENCH does not evaluate. We also do not
address other data modalities, such as structured tabular data or sensor data, which are common in
practical applications.

Label Correctness. Although we perform rigorous human validation and evaluations, we ac-
knowledge that human beings can make mistakes. Some domains, such as biomedicine and law,
are inherently complex and may contain subtle ambiguities. Thus, we cannot guarantee perfect
correctness of all labels despite triple human annotation and agreement filtering.

Language Limitation. SATA-BENCH includes only English-language questions. Evaluating
multilingual capabilities or cross-lingual transfer remains a work for the future.
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