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ABSTRACT

“Benign overfitting”, where classifiers memorize noisy training data yet still
achieve a good generalization performance, has drawn great attention in the ma-
chine learning community. To explain this surprising phenomenon, a series of
works have provided theoretical justification in over-parameterized linear regres-
sion, classification, and kernel methods. However, it is not clear if benign overfit-
ting still occurs in the presence of adversarial examples, i.e., examples with tiny
and intentional perturbations to fool the classifiers. In this paper, we show that
benign overfitting indeed occurs in adversarial training, a principled approach to
defend against adversarial examples. In detail, we prove the risk bounds of the
adversarially trained linear classifier on the mixture of sub-Gaussian data under
£, adversarial perturbations. Our result suggests that under moderate perturba-
tions, adversarially trained linear classifiers can achieve the near-optimal standard
and adversarial risks, despite overfitting the noisy training data. Numerical exper-
iments validate our theoretical findings.

1 INTRODUCTION

Modern machine learning methods such as deep learning have made many breakthroughs in a vari-
ety of application domains, including image classification (He et al., 2016} [Krizhevsky et al.l|2012),
speech recognition (Hinton et al.| [2012) and etc. These models are typically over-parameterized:
the number of model parameters far exceeds the size of the training samples. One mystery is that,
these over-parameterized models can memorize noisy training data and yet still achieve quite good
generalization performances on the test data (Zhang et al., 2017). Many efforts have been made
to explain this striking phenomenon, which against what the classical notion of overfitting might
suggest. A line of research works (Soudry et al., 2018; J1 & Telgarsky, [2019b; [Nacson et al.| [ 2019;
Gunasekar et al., 2018bza) shows that there exists the so-called implicit bias (Neyshabur, [2017): the
training algorithms tend to converge to certain kinds of solutions even with no explicit regulariza-
tion. Specifically, [Soudry et al.| (2018)); Ji & Telgarsky| (2019b); [Nacson et al.| (2019) demonstrate
that gradient descent trained linear classifiers on logistic or exponential loss with no regularization
asymptotically converge to the maximum L, margin classifier. Recent works (Bartlett et al., [2020;
Chatterji & Longl [2020; |Cao et al., [2021; Wang & Thrampoulidis} 2021} [Tsigler & Bartlett, [2020)
further shows that over-parameterized and implicitly regularized interpolators can indeed achieve
small test error, and formulate this phenomenon as “benign overfitting”. More concretely, suppose
the classification model f is parameterized by 6 € © and the loss is denoted as £(-). The population
risk is define as

Px.y)~plfo(X) # yl,

where data pair (x,y) is generated from certain data generation model. [Chatterji & Long| (2020)
shows that with sufficient over-parameterization, gradient descent trained maximum Lo margin
classifier can achieve nearly optimal population risk on noisy data for data generated from a
sub-Gaussian mixture model. This suggests that the overfitting can be “benign” in the over-
parameterized setting.

Besides these studies on the benign overfitting phenomenon, another well-known feature of mod-
ern machine learning methods is that they are vulnerable to adversarial examples. Recent studies
(Szegedy et al., [2013]; |Goodfellow et al.l [2015) show that modern machine learning systems are
brittle: slight input perturbation that is imperceptible to human eyes could mislead a well-trained
classifier into wrong classification result. These malicious inputs are also known as the adversarial
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examples (Szegedy et al.| |2013; |Goodfellow et al.l 2015). Adversarial examples raise severe trust-
worthy issues and security concerns on the current machine learning systems especially in security-
critical applications. Various methods (Kurakin et al., 2016; Madry et al., 2018};|[Zhang et al., 2019;
Wang et al., 2019; [2020) have been proposed to defend against the threats posed by adversarial ex-
amples. One of the notable approaches is adversarial training (Madry et al.l 2018)). Specifically,
adversarial training solves the following min-max optimization problem,

1

min — max /£ <. v
oo n i "EEBE}((xi) (Fo(x3), v2),

n

where {(x;,y;)}7—, is the training set and BP(x;) = {x : ||x — x;||, < €} denotes the e-ball around
x; in £, norm (p > 1). Many empirical or theoretical studies have been conducted trying to analyze
or further improve adversarial training robustness (Zhang et al.|[2019; Rice et al.,|2020; [Wang et al.,
2020; (Carmon et al., 2019; Wang et al.} 2019; [Raghunathan et al., 2020). A recent work (Sanyal
et al.,[2021)) also pointed out that normally trained interpolators with the presence of label noise are
unlikely to be adversarially robust, while adversarially robust classifiers cannot overfit noisy labels
under certain conditions. However, it is still not clear whether the benign overfitting phenomenon
occurs for extremely over-parameterized models in the presence of adversarial examples.

In this paper, we show that benign overfitting indeed occurs in adversarial training. In order to
properly characterize the benign overfitting phenomenon on adversarial training, we also define the
population adversarial risk, which is the counterpart for population risk in standard training scenario:

Pix,y)~p [3x" € BE(x) s.t., fo(x') #y].
The adversarial risk measures the misclassification rate of the target classifier under the presence
of /,-norm adversarial perturbations. It is easy to observe that the adversarial risk is always larger
than standard risk as it requires the classifier to correctly classify the data examples within the entire
local ¢, norm ball.

We summarize our contributions of this paper in the following

* We show that the benign overfitting phenomenon can occur in adversarially robust linear classi-
fiers with sufficient over-parameterization. Specifically, under moderate £, norm perturbations,
adversarially trained linear classifiers can achieve the near-optimal standard and adversarial
risks, in spite of overfitting the noisy training data.

* When the perturbation strength € is set to be 0, our adversarial risk bound reduces to the stan-
dard one. The resulting standard risk bound extends (Chatterji & Long| (2020)’s risk bound to
further characterize the behavior of the linear classifier trained by ¢-step gradient descent.

* We show that depending on the value of p (perturbation norm), the adversarial risk bound can
be different. The higher value of p (typically for p > 2 case) actually leads to a larger gap
between the adversarial risk and the standard risk with the same e.

Notation. we use lower case letters to denote scalars and lower case bold face letters to denlote
vectors. For a vector x € RY, we denote its £, norm (p > 1) of x by ||x|, = (20, |a:]?) /r

the £, norm of x by |||l = max®_, |z;|. We denote x°? as the element-wise p-power of x. For
p > 1, we denote BP(x) as the £, norm ball of radius r centered at x. Given two sequences {ay, }
and {b, }, we write a,, = O(b,,) if there exists a constant 0 < C' < +o0 such that a,, < C'b,,. We
denote a,, = Q(by,) if b, = O(a,). We denote a,, = O(b,,) if a,, = O(by,) and a,, = Q(by,).

2 RELATED WORK

There exists a large body of works on adversarial training, implicit bias and benign overfitting. In
this section, we review the most relevant works with ours.

Adversarial Training. Adversarial training (Madry et al.,|2018)) and its variants (Zhang et al.,[2019j
Wang et al.,|2019; [2020) are currently the most effective type of approaches to empirically defend
against adversarial examples (Szegedy et al.| 2013} |(Goodfellow et al., 2015). And many attempts
have been made to understand its empirical success. (Charles et al.[(2019); |Li et al.| (2020) showed
that the adversarially trained linear classifier directionally converges to the maximum margin classi-
fier. |Gao et al.[(2019);[Zhang et al.|(2020b) showed that adversarial training with neural networks can
achieve low robust training loss. Yet these conclusions cannot explain the test (population) perfor-
mances. Another line of research focuses on the generalization performance of adversarial training
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and the number of training samples. Schmidt et al.| (2018) showed that adversarial models require
more data than standard models to achieve certain test accuracy. (Chen et al.| (2020) showed that more
data may actually increase the gap between the generalization error of adversarially-trained models
and standard models. |Yin et al.| (2019); |Cullina et al.| (2018) studied the adversarial Rademacher
complexity and VC-dimensions. Some other works focus on the trade-off between robustness and
natural accuracy (Zhang et al.l 2019; Tsipras et al.,|2019; |Wu et al., [2020} [Raghunathan et al., 2020;
Yang et al.| [2020; [Dobriban et al., [2020; Javanmard & Soltanolkotabi, 2020), adversarial model
complexity lower bound (Allen-Zhu & Lil [2020), as well as the provable robustness upper bound
(Fawzi et al., 2018} Zhang et al., [2020a)).

Recently, some works also focus on studying the learning of robust halfspaces and linear models.
Montasser et al.| (2020) studied the conditions on the adversarial perturbation sets under which halfs-
paces are robustly learnable in the presence of random label noise. Diakonikolas et al.[(2020) studied
the computational complexity of adversarially robust halfspaces under ¢, norm perturbations. [Zou
et al.| (2021) showed that adversarially trained halfspaces are provably robust with low robust clas-
sification error in the presence of noise. |Dan et al.| (2020) proposed an adversarial signal to noise
ratio and studied the excess risk lower/upper bounds for learning Gaussian mixture models. [Taheri
et al.[(2020); Javanmard & Soltanolkotabi| (2020) studied adversarial learning of linear models on
Gaussian mixture data where the data dimension and the number of training data points have a fixed
ratio.

Implicit Bias. Several recent works studied the implicit bias of various training algorithms in over-
parameterized models. [Soudry et al.|(2018) studied the implicit bias of gradient descent trained on
linearly separable data while Ji & Telgarsky| (2019b) studied the non-separable case. |Gunasekar
et al.| (2018a) studied the implicit bias of various optimization methods in linear regression and
classification problems. Ji & Telgarsky|(2019a) studied the implicit bias for deep linear networks and
Arora et al.|(2019); |Gunasekar et al.| (2018b)) studied the implicit bias for matrix factorization. Lyu
& Li (2020) studied the implicit regularization of homogeneous neural networks with exponential
loss and logistic loss.

Benign Overfitting and Double Descent. A series of recent works have studied the “benign over-
fitting” phenomenon [Bartlett et al.|(2020) that when training over-parameterized models, classifiers
can still achieve good population risk even when overfitting the noisy training data. Bartlett et al.
(2020); [Tsigler & Bartlett| (2020) studied the risk bounds for over-parameterized linear (ridge) re-
gression and showed that under certain settings, the interpolating linear model with minimum param-
eter norm can have asymptotically optimal risk. |(Chatterji & Long|(2020);/Cao et al.[(2021)); Wang &
Thrampoulidis| (2021) studied the risk bounds in linear logistic regression and linear support vector
machines. Belkin et al.|(2018;[2019a;b)); [Hastie et al.|(2019); Wu & Xu!(2020) further quantified the
dependency curve between the population risk and the degree of over-parameterization and showed
that the curve has a double-descent shape.

3 PROBLEM SETTING AND PRELIMINARIES

We consider a sub-Gaussian mixture data generation model in our work. Specifically, the clean data
(X,%) ~ D is generated such that, for each data point (X, 7) € RYx {41}, we have § ~ Unif({£1})

and X = yp + & where € € R% and £, &, ..., & are i.i.d. zero-mean sub-Gaussian variables with
sub-Gaussian norm at most 1. The actual data examples are sampled from a noisy distribution D

which is close to the clean distribution D. Specifically, D can be any distribution over R? x {+1}

who has the same marginal distribution on R? and the total variation distance drv (D, D) < 1 where
7 denotes the noise level.

Note that our data generation model is standard for studying the population risk of over-
parameterized linear classification. In fact, it is exactly the same as the one studied in |Chatter;ji
& Long| (2020). In this model, following standard coupling lemma (Lindvall, 2002), there always
exists a joint distribution on original data and noisy data ((X,¥), (x,y)) such that the marginal dis-

tribution for (X, §) is D, the marginal distribution for (x,y) is D, P[x = X] = 1 and Py # 3] < .

In this paper, we study the problem of robust binary classification with training data {(x;,y:)}{,

drawn i.i.d. from the distribution D. Let’s denote the “clean” sample index as C := {k : yx = yx}
and the “noisy” sample index as N := {k : y, # Ui }. We consider the adversarially trained linear
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Algorithm 1 Gradient Descent Adversarial Training

1: input: Training data {x;,y;}" ;, number of training iterations 7', maximum perturbation
strength e, training step sizes ay;
initialize model parameter 8y = 0
fort=1,....,Tdo

for each {x;,y;} do

X = argmax, ¢ gr(x;) exp(—yi0,_;x})

end for

0, =0,_1—0o;-VoL(6;_1)
end for

classifier under exponential loss. In such case, the adversarial loss can be explicitly written as
n

L(0) = max exp(—y;0' x%). 3.1
(9) izlxéegl’}({xﬂ xp(—yi0 ' x;) (3.1)

In gradient descent adversarial training algorithm, the adversarial loss L(0) is minimized by first
solving the inner maximization problem in with respect to the current model parameter 6;_;
and then update the model parameter 6; by performing gradient descent to minimize the adversarial
loss in each iteration. We summarized the training procedure for gradient descent adversarial train-

ing'[in Algorithm Note that in the linear classifier setting, the inner maximization problem in
has the following property

argmax eXp(—yiOTx;) = argmax exp(—inT(xi +u;)) = argmin y:0 " u;. 3.2)
x,eBE(x;) u; €BZ(0) [l <e
By Holders’ inequality it is easy to observe that the optimal adversarial loss and the corresponding
gradient can be written as

L(6) =) exp(—yi0 x; + €[0lly), VoL(8) = = (yixi — ¢ ||0]lq) exp(~y:0 xi + ]| 0]]),
1=1 i=1
where 1/p+1/q = 1. Also note that in the over-parameterized settings, training examples draw from
our data generation model are linearly separable with high probability (See Lemma [5.1]in Section
[B). Linearly separable property ensures that the training samples have a positive margin (with high
probability). Following |Li et al.|(2020), we also define the standard and adversarial margin as
— . T . . T..7
‘= max miny;0 x;, +7:= max min min y;0 x;, 3.3)
16]l4=1i€[n] 6ll2=1i€[n] x;€BE (x:)

which are useful in our later analysis. We also define the unique linear classifier § that achieves
adversarial margin - defined above as w.

4 MAIN RESULTS

In this section, we study both the behavior of the population risk and the population adversarial risk
for adversarially trained linear classifiers.

Assumption 4.1. The adversarial perturbation radius e is upper bounded by a constant R and is
smaller than the ¢,, data margin 7, i.e., ¢ < min{R, 5}

The goal of adversarial training is to obtain high-accuracy classifiers that are also robust to small
input perturbations which can be ignored by human beings (e.g., small £,,-norm perturbations that
are invisible to human eyes). Therefore, Assumption[d.T]is reasonable by constraining the maximum
allowable perturbation magnitude.

Assumption 4.2. The noise £ in the data generation model satisfies that E[||£||3] > xd for some
constant k.

Assumption[4.2]is a common condition that has also been considered in|Chatterji & Long|(2020). It
ensures that the summation of the variances of the data input increases in the order of ©(d). Clearly,
this assumption covers the most common setting where the entries of ¢ are i.i.d. and have a variance
larger than or equal to .

'Note that in practice people often initialize 8 by a small random vector (e.g., Xavier initialization (Glorot
& Bengio,2010)), while we follow |Li et al.|(2020) and set 8y = O for the ease of theoretical analysis.
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Assumption 4.3. The gradient descent starts at 0, and the step sizes are set as a9 = 1/(Gdn),

ar = a < 1/(GdnM) for M = max{[2d + e(q — 1)d? /y] exp(—7%/(Gd) + ¢/G), 1} and a
constant G.

Assumption4.3|summarizes our assumptions about the gradient descent algorithm on the adversarial
loss. The learning rate conditions here are to ensure the convergence of adversarial training, and is
inspired by [Li et al.|(2020).

We first present our theorem for standard risk of adversarial training method (Algorithm [T).

Theorem 4.4 (Standard Risk of Adversarial Training). For any p € [1,400), suppose that As-
sumptions H ! 4.2| and 4.3 - hold with x € (0, 1] and large enough constants R and G. Moreover,
for any § € suppose the number of training samples n > C'log(1/6), the dimension d >
C-max{n||p||3,n?log(n/d)}, the noise level n < 1/C, and ||p||3 > C max{log(n/4), €| pl } for
a large enough constant C'. Then with probability at least 1 — §, adversarially trained linear cla551ﬁer
fo, for sufficiently large ¢ under £,-norm e-perturbation satisfies the following standard risk

(lleell3 = delliella) C”’I/ullglogn>2
(C" + €)Vd logt ’

where C’,C",C""" > 0 are absolute constants, 1/p + 1/¢ = 1.

Remark 4.5. Theorem presents the standard risk of adversarial training under £,, norm pertur-
bations. Note that adversarially trained linear classifier enjoys a bounded population risk which
decreases as the number of training iterations ¢ increases. Specifically, when ¢ — oo, we have

2 _4e 2
tQ&wawdhxﬂ;ﬂﬂ§n+em<—47<m€;+f£ga))- (4.1)

Remark 4.6. For (.1)), consider the case when the sample size n is fixed but dimension d and || |2
are growing, we discuss the conditions to reach minimum standard risk of noise level 7. Note that
when 1 < p < 2 we have ¢ > 2 and |||, < ||p]|2- In this case, if |||z = Q(d'/*), the standard
risk will come close to the noise level 7 when d is sufficiently large. When p > 2 and therefore ¢ < 2,
we have |||, < d*/971/2||p||o. In this case, if ||u]s = Q(d/*) and € = O(||p||2/d*/91/2), the
standard risk will come close to the noise level n with sufficiently large d. Note that our theorem
condition also requires that ||u||2 = O(v/d). Therefore, in order to reach the standard risk of 7, we
need ||p||2 = ©(d") for some r € (1/4,1/2].

Remark 4.7. Choosing € = 0 will reduce to the standard training case. Specifically, if we set € = 0
in @]), it reduces to the same conclusion as Theorem 3.1 in [Chatterji & Long| (2020). However,
our result is more general, as it covers the setting of adversarial training and gives risk bounds for
the linear model obtained with a finite number of gradient descent iterations.

Pix,y)~Dlfo,(X) # y] <1+ exp ( - c’(

Theorem 4.8 (Adversarial Risk of Adversarial Training). For any ¢ € (0, 1), under the same con-
ditions as in Theorem [4.4] with probability at least 1 — ¢, the adversarially trained linear classifier
fo, for sufficiently large ¢ under £,-norm e-perturbation satisfies the following adversarial risk if
1<p<2

]P)(x,y)ND [HX/ € BS(X) s.t., fg (X/) 75 y}

. C,<(||u|% —dellpllq)  C"|pll2logn 6)2
- (C" +e)Vd logt ’

andif p > 2,
P(x,y)ND [Elxl € Bg(x) S't'a fO(X,) 7& y]
ull3 — 4ellplly)  C”||p|l2logn 11\
< —C’( 9 —edi?
< n+exp < ( (C”Jre)\/g Jog ¢ € ,

where C’,C", C""" > 0 are absolute constants, 1/p + 1/q = 1.

Remark 4.9. Theorem 4.8] m shows the adversarial risk of adversarial tralmng under £, norm per-
turbations. The major difference from the standard risk (Theorem [{.4) lies in the addltlonal € or
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ed'/271/2 term in the exponential function. This aligns with common sense that adversarial risk
should always be larger than the standard risk. This also suggests that for larger p-norm (p > 2)
perturbation, the same magnitude of perturbation would lead to a larger gap between the adversarial
risk and the standard risk. In terms of the perturbation strength, we can also observe that with a
larger €, adversarially trained classifiers obtain worse adversarial risk. This has been verified by
many empirical observations of adversarial training (Madry et al.| 2018} Zhang et al., 2019).

Remark 4.10. Note that when ¢ — oo, if 1 < p < 2, we have the following adversarial risk bound:

2
| - , k3 = delal,)
tliglo P(x,y)wD [E'X € Be (X)va(x ) 7é y] S U +exp < C < (CU T 6)\/& € )

and if p > 2, we have

1

: P , o Ul —dellple) 1 s\
tlglolo Px,y)~D [EIX € BP(x), fo(x') # y] <n-+exp < C < s e)\/& ed .
Similar to the standard risk case (Remark {.6), when 1 < p < 2, if ||ulls = ©(d") for some
r € (1/4,1/2], the adversarial risk will also come close to the noise level 1 with sufficiently large
d. When p > 2, if we have |||l = ©(d") for some r € (1/4,1/2] and € = O(||p|2/d*/?), the
adversarial risk will be close to n with sufficiently large d. Note that compared to the standard risk,
this requirement on ¢ is slightly stronger.

Remark 4.11. Note that our results imply a striking fact that unlike those observed in previous stud-
ies (e.g., Rice et al.|(2020) showed that overfitting leads to worse empirical robustness on real image
distributions), overfitting in adversarial training can be benign for certain distributions. Specifically,
Remark @] shows that for linear models with sub-Gaussian mixture data, the overfitting effect
is indeed benign. This is later empirically verified in the experiments for both linear and neural
network models.

5 PROOF OUTLINE OF THE MAIN RESULTS
In this section, we present the proofs of our main theorems, which consists of three main steps.

Statistical properties of the training data points. We first list some basic properties of the training
data points based on our data model defined in Section

Lemma 5.1 (Lemma 4.7 in (Chatterji & Long (2020)). Let z; = yrxj. There exist absolute con-
stants R, x and G and C, such that if the assumptions in Theoremhold, then with probability at
least 1 — 6,

d

. < ||zx||3 < cod forall k € [n], 3.1
0

2] z;| < co(||pl|3 + \/dlog(n/d)) forall i # j, (5.2)
"z — [[pll3] < [|pll3/2 forall k € C, (5.3)
"z — (—[[pl3)] < l|pll3/2 forall k € N, (5:4)

the number of noisy samples || < (n+c¢1)n, and all training samples are linearly separable, where
co > 1 is an absolute constant.

Lemma [5.1] directly follows Lemma 4.7 in [Chatterji & Long| (2020). It provides direct high proba-
bility bounds for ||z (|2 and g ' z;, and also suggests that z;, vectors are nearly pairwise orthogonal
in over-parameterized settings. It also guarantees that training examples are linearly separable with
high probability.

Landscape properties of the training objective function. Given the properties of the training data
points, we proceed to establish landscape properties of the objective function L(81). The following
lemma bound the loss for the adversarially trained classifier in step 1.

Lemma 5.2. [Theorem 3.4 in|Li et al] (2020)] Under the same conditions as in Theorem [4.4] with
probability at least 1 — d, we have L(60,) < 2n, and

L(6:41) < L(6:), (5.5)
B 0w _ c3logn
[0z — logt

for all t > 0, where c3 is an absolute constant.

1 (5.6)
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By Lemma [5.2] one can easily observe that the adversarial training loss is bounded by 2n along
the entire training trajectory. Lemma[5.2] also suggests that when ¢ — oo, the adversarially trained
classifier 8; will converge in direction to the max adversarial margin classifier w defined in (3.3).

Length and direction of the adversarial training iterates ;. We also establish properties of the
adversarial training iterates 8;. We have the following lemmas.

Lemma 5.3. Under the same conditions as in Theorem for all adversarial training iteration

t > 0, with probability at least 1 — §, we have ||0;11]2 < (y/co + 6)\/g2:n:0 amL(0,), where
¢o is the absolute constant in Lemma[5.1}

Lemma upper bound the Lo norm of adversarially trained classifier 8; by the summation of
training losses along the training trajectory.

Lemma 5.4. Let z;, = yiXy, under the same conditions as in Theorem [#.4] for all adversar-
ial training iteration ¢ > 0, with probability as least 1 — §, we have max}_, exp(—H;r z) <
c3 min}_, exp(—0, zx), where c3 > 0 is an absolute constant.

Lemma [5.4] provides us a way to control the loss the noisy examples during the training procedure.
Note that if max?_, exp(—0, z;) < c3 min}_, exp(—8, zy), we also have max}_, exp(—6, zj +
€l|l0:lly) < c3minj_; exp(—6, zi, + €]|0;]|,). Therefore, the worst example training loss can be
bounded via the best example training loss and further be bounded by the average training loss
L(8,). In this way, we can guarantee that those noisy examples will not have major influence on
model training even in later training stages.

By using Lemmas [5.1}H5.4] we establish the following key lemma for our main theorems.

Lemma 5.5. Under the same condition as in Theorem with probability at least 1 — 4, the
adversarially trained linear model parameter 6, satisfies

iu’Tet > ||H’||§ || || 1 C3||MH210gn
0., = \ 2 €Ml T logt
10+ (v/éo +e)Vd og

where ¢y is the absolute constant in Lemma[5.1]

Lemma|5.5]provides the lower bound for the inner product of x and the direction of 6. This lemma
extends Lemma 4.4 in |Li et al.| (2020) by considering the training iteration ¢ rather than just the
converged classifier w, and also extends to the adversarial training setting. Notice that this lower
bound actually gets larger with the increase of iteration .

Finalizing the proof. We now present the proof for Theorems [4.4]and [4.8]

Proof of Theorem First, following standard coupling lemma (Lindvall| 2002), there always ex-
ists a joint distribution on original data and noisy data ((X,y), (x,y)) such that the marginal distri-

bution for (X, 7) is D, the marginal distribution for (x,) is D, P[x = X] = 1 and Py # 7] < 7.
Notice that the standard population risk can be written as

Pix,y)~plfo,(x) # y| = Pix,y)~ply - 0, x < 0]
<N+ Pryoply -0/ x <0,y =17
=10+ Py)~plf - 0 x <0, (5.7)

where the inequality holds since P[y # y] < 7. Since ¥ is the clean label for x, yx follows the same
distribution as € + p and E[y - 0" x| = o7 p. Therefore, (5.7) can be further written as

Pixy)oplfo, () # Y] <0+ Prxyop[i- 0, x —E[j- 0, x] < -6, ]
=10+ Prxy)~n 0] (§x — E[jx]) < —6, ]

BT 2
<7n-+exp —c( t'ug s (5.8)
1164113

where the last inequality holds by applying a Hoeffding-type concentration iuality (Theorem|C.1))

with t = (6, p)2. This bound in enables the application of Lemma [5.5| which characterizes
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how the direction of 6, aligns with p during training. By direct calculation, we have
2
(M52 —ellplla) C3|M||210gn>2
(v/eo +e)vd logt
This concludes the proof. O

Px,y)~p[fo,(X) # y] <1+ exp ( - c<

Proof of Theorem{.8] Similar as in the proof of Theorem .4 we start with a calculating an upper
bound of the population risk based on the formulation of the label noise. By the definition of the
adversarial risk, we have

Py~ [Fx' € BY(X) sty fo.(X) # y] = Pocyynn[3x € BI(x) st y- 0, x < 0]
<1+ Pry)on[3x € BY(x) s, y- 6 x' <0,y =7]

=0+ Ppy)~p L min y-0/ (x+u) < 0}

= 11+ Py |- 6% — e, < 0], (59)

where the inequality holds in the same way as in (5.7). Since ¥ is the clean label for x, yx follows
the same distribution as £ + p and E[y - 6,/ x] = 6, . Therefore, (5.9) can be further written as

Py~ [3% € BE(x) 5.ty fo,(x') # y] <01+ Pixyyon[V- 0, x —E[J- 0/ x] < =0 pu + €[04
=1+ Pixy)on [0 (7% — E[Jx]) < ~0/ p+ €] 0:]|]
T, _ 2
Wfll)) (5.10)
16:113

where the second inequality holds by applying the Hoeffding-type concentration inequality (Theo-
rem|C.1) with t = (8,' u — €[|6;]|,)?. Based on (5.10) and Lemma we can further give bounds
of the adversarial risk. We consider the two settings 1 < p < 2 and 2 < p < oo separately.

When 1 < p < 2, we have ¢ > 2 and [|0]|; < [|0]|2. In this case, by Lemma 5.5] we obtain

<n+exp<—c

llll3

1 d | 5 R 2
Pyl fo, (X) # y] < 1+ exp < c< ( (\4/%:!')7/'5) - C?’H’ﬂgiogn _ e> )

When p > 2 and therefore ¢ < 2, we have |||, < d'/971/2| u||2. In this case, by Lemmawe
obtain

(Vo +e)Vd log?
This concludes the proof. O

lleell 2
— 1 1
Pix,y)~plfo, (X) # y] < 1+ exp ( c<( 4 6||lv‘Hq) B c3||p)|2 logn B edq_5> )

6 EXPERIMENTS

In this section, we experimentally study the behavior of the adversarially trained linear classifier in
the over-parameterized regime on synthetic data. Specifically, we generate 50 training samples and
2000 test samples and set the label noise ratio = 0.1 for all experiments. Each clean sample (X, 3)
is drawn from a Gaussian mixture model such that § ~ Unif({£1}) and X = yu + & where € € R?
and &1, &3, ..., &g are i.i.d. standard Gaussian variables and g simply shares the same direction as
an all-one vector but has various different magnitudes. This aligns with our model assumptions in
Section 3] For the adversarial training algorithm, we directly follows Algorithm [T] except using a
more practical Xavier normal initialization (Glorot & Bengio, 2010), i.e., sampling 6 i.i.d. from
from \(0, 1/+/d). We set the learning rate o; = 0.001 and the total number of iterations 7' = 1000
for all experiments. All results are obtained by averaging over 10 independent runs (both data
sampling and training).

In the first set of experiments, we verify our main conclusions in this paper, that benign overfitting
can occur in adversarial training. Figure |1|(a-d) illustrates the risk and the adversarial risk of ad-
versarially trained linear classifiers versus the dimension d under different scalings of p for both
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Figure 1: (a-d) Risk and adversarial risk of adversarially trained linear classifiers versus the di-
mension d under different scalings of p. (a)(b) show the results for {5 perturbation with e = 0.1
and (c)(d) show the results for ¢, perturbation with ¢ = 0.01. (e-f) Adversarial risk of adversarially
trained linear classifiers versus the training iterations ¢ for different € with d = 200 and || |2 = d°-°.
The training error reaches 0 for all experiments.

{5-norm and /-norm perturbations. We can observe that when ||u||2 = d°2, the (adversarial) risk
starts to increase as the dimension d increases after an initial dive for both /5-norm and ¢..-norm
perturbations. While for cases where |||z = d*-3 and ||p||2 = d°%, we can observe that the (adver-
sarial) risk decreases steadily to the optimal risk 7 as the dimension d increases. This results backup
our theory in Section 4] that the optimal risk is achievable when ||| = ©(d") and r € (1/4,1/2].
Note that the training error reaches 0 for all settings in Figure [T}

In Figure (e-f), we present the adversarial riskE| of adversarially trained linear classifiers versus the
training iterations ¢ with different e but fixed dimension d and || p||2 for both £5-norm and £.,-norm
perturbations. We can also observe that in general, a larger € will lead to the worse adversarial risk
of the adversarially trained classifier. This also backs up our theory in Theorem 4.8

As our ultimate goal is to study the benign overfitting phenomenon in real-world adversarial training
settings, we also conducted experiments on 2-layer neural networks with ReL U activation functions.
In fact, the performances on the 2-layer ReLU network suggest very similar trends as the linear
model. Due to space limit, we display these results in the supplemental materials.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we show that the benign overfitting phenomenon also occurs in adversarial training, a
principled approach to defend against adversarial examples. Specifically, we derive the risk bounds
of the adversarially trained linear classifiers and show that under moderate ¢,-norm perturbations,
they can achieve the near-optimal standard and adversarial risks, despite overfitting the noisy training
data. The numerical experimental results also validate our theoretical findings.

Our current analysis is limited to linear classifiers, while in practice, adversarial training is com-
monly used with neural networks. We believe our work is the first step towards analyzing benign
overfitting in adversarially trained neural networks. Yet extending our current analysis to adversari-
ally trained neural networks is highly non-trivial and we leave it as a future work.
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A COMPARISON WITH DAN ET AL. (2020), TAHERI ET AL. (2020) AND
JAVANMARD SOLTANOLKOTABI (2020)

proposed an adversarial signal to noise ratio and studied the excess risk lower/upper
bounds for learning Gaussian mixture models. Compared to the setting studied in (2020),
our setting covers additional label flipping noises. More importantly, we study an estimator found
by gradient descent that overfits the training data, while [Dan et al.| (2020) studied a specific plug-in
estimator which does not overfit the training data. Due to these differences, there is a discrepancy in
the risk bounds derived in both papers.

[Taheri et al.|(2020); Javanmard & Soltanolkotabi| (2020) studied adversarial learning of linear mod-
els in the proportional limit setting, i.e., d/n = O(1). In this setting, the data Gram matrix and
the sample covariance matrix can be studied based on random matrix theory/Gaussian comparison
inequalities/convex Gaussian min-max theorem. In contrast, in our setting where d > O(n?), the
sample covariance matrix is singular but the n x n Gram matrix concentrates around its expecta-
tion. Therefore, our setting is different from the proportional limit setting in |Taheri et al.| (2020);
|Javanmard & Soltanolkotabil (2020), and these results are not directly comparable.

B PROOF OF KEY TECHNICAL LEMMAS
B.1 PROOF OF LEMMA/[5.2)]
Proof. We first prove that L(61) < 2n. To show this, we observe that 8; = «g ZZ=1 zj,. Therefore

n
L(61) = ) exp(—0{ z + €l|61 )
k=1

n n n
= g exp(—ao g zjzk—i—aoeH g Z; )
k=1 i=1 i=1 ¢

< En:exp (aon(Co(IIltI% + Vdlog(n/9)) + “/ad)>

k=1

<) exp(1/16) < 2n,
k=1
where the first equality holds due to Lemma and the fact that for any u € R, |juf|, < [Julj; <

Vd ||ul|2, while the second inequality is by the choice of sufficiently small «p and the assumptions
that d > Cn/||p||3 and € < R for some absolute constants C' and R.

The rest part of Lemma [5.2] summarizes parts of the results in (2020). However, the results
in (2020) are derived under the setting that ||x;||2 < 1, Therefore to prove lem we
(2020)).

re-scale our data and model parameters and convert our setting to the setting in
By lemma with probability at least 1 — 6, ||x;]|3 < cod for all i € [n]. We therefore denote

B := \/cod, and then X; := x;/B has £5-norm less than or equal to one. Further denote by 3; the
linear model parameters in (2020)’s algorithm, z; = y,;X;, n; as their step sizes, € as their
perturbation strength, and

5 := max miny0'X;
18]]2=1 i€[n]
as the £, margin. Then the adversarial training update rule in|Li et al | (2020) is
BN .
Bri1 =Bt — Et Z Vg exp(—B; z + €lBellq)-
i=1

Note that our update rule is

041 =0, —y Z Vo GXP(—OtTZk + 6||‘9t||q)-
k=1
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Now in order to apply the results in|Li et al.|(2020), we convert our parameters to match their scaling.
Since

001 =0; — ng exp(—B0O/ z1./ B + ¢||B8,|,/B)

nBcut

=0, - Z V(Be) exp(—B0/ 2/ B + €| B8, |,/ B).

Therefore

nB2ay

BO,,, = BO, — Z V(o) exp(—BO, zi /B + €| BO|,/B).

It is easy to observe that we can now apply Theorem 3.3 and Theorem 3.4 in |L1 et al.| (2020) by
setting 3; = BO;,n; = nB?ay, € = ¢/B. Moreover, by X; = x;/B, € = ¢/B and the definition of
~, we have 7 = 77/ B. Based on these relations, it is easy to see that under the conditions of Lemma
Xi, N, €, 7 satisfy the assumptions of Theorems 3.3 and 3.4 in|Li et al.| (2020). Now (5.3) is an
intermediate result of the proof of Theorem 3.3 in|Li et al.|(2020), and @]} follows by Theorem 3.4
in|L1 et al.| (2020). ]

B.2 PROOF OF LEMMA
Proof. We have

0112 =

i Q- VL(O)

m=0

< Z am ||V L(Om)]2

Szam

m=0

2

2

Z (Zk — € aHBWHQ) + €Xp ( — Zy 0m + 6Hamn )
k=1
where the first three inequality hold by triangle inequality. By Lemma[C.2] we have

t n
||0t+1||2 < Z Ay, Z(HZkHQ + f\/g) - exp ( - Zgom + €||0’VVLHQ)

m=0 k=1
t n
< (Ve + VA om Y cexp( =z 0 + €]0llq)
m=0 k=1
¢
=(Vao+eVd Y anL(®n),
m=0
where the second inequality is due to Lemma[5.1] O

B.3 PROOF OF LEMMA
Proof. We will prove this lemma by induction.

Let’s denote Ef = exp(— OTzk) Without loss of generality, let E! denotes the maximum of
{E}}7_, and EY denotes the minimum of {E}}7_,. We also define At := F!/E} and the goal is
to show that A; < 5c2.

For the base case (t = 0), we have Ek = exp(0) = 1. Therefore we have Ag = 1 < 5¢Z.
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For t > 0, notice that

Ay = eXp(*etTHZl) 7 exp(thTzl) exp(atVL(Ot)Tzl)
o1l = - .
+ exp(fOt-':rle) exp(—0, z3) exp(a;VL(0;) zs)

exp(—ot 3o (2 — €0]|0tlq) "1 - exp(—0, 7k + €[|64ly))

= A, - k
" exp(—ay Sop_y (zk — €0]|0]]g) T2 - exp(—0] 2y, + €]|0,]4))
_ g, p(=au(z = Ol6,]) "1 - exp(=6, 2k + €l|64ll,))
oxp(—ai (2o — €00, ]4) 2o - exp(—0] 2y, + €] 0,]],))

I
Cexp(—ay 3 (2 — €0]|04llg) "1 - exp(—0/ 2k + €]64]]4))

k . @B
exp(—a Y 2o (zn — €0||04]lg) T 2o - exp(—0/ zx + €6:]4))
Iz

For term I7, note that by Lemma 5.1 we have

d

\/— < lzxll2 < Veod.

Co

Also since by Lemma we have H8||0t||q||p =1,
12, 2110:llq| < llzrllq - 016:llall,, = Iz1llq < llzelli < Vdl|zell2 < v/eod. (B.2)

Therefore, we have

d
I <exp ( - at(a - e\/%d) exp(—0, z1 + €|0:|,) + o (cod + Q/%d) exp(—0, z + e|0t||q)>

d
— exp ( — a,E ((CO - e\/ad)At - (cod + wm)) exp (e||et||q)>. (B.3)
For term I, by (5.2) and (B.2)) we have
n n
I < exp (at (co(leal3 + V/dlog(n/8)) + ev/egd) (D exp(~8] . + ell0ull) + 3 exp(~8] . + eotnq)))

k#1 k#2
< exp <2atL(9t) (cO(||u|\§ ++/dlog(n/3)) + emd)> (B.4)
Substitute (B-3) and (B.4) into (B.I), we have

d
A < Ay -exp ( — B <<Co - e\/%d)At — (cod + e\/cT)d)) exp (e||9tq)>

- exp (2atL(0t)(co(||u||§ + /dlog(n/é)) + Q/%d)). (B.5)

Let us consider two cases here. If (d/co — €,/cod) A — (cod + €\/cod) > cod, ie., Ay > (2¢o +
€4/0)/(1/co — €y/co), we further have

Avr < Ar-exp (= arBheodexp (€|6l,) ) - exp (m(ot) (co(llual3 + V/dlog(n/5)) + e\/ad))
< A;-exp ( — oy Ecodexp (e||0th))
exp <2atnE§ (co(llll3 + V/@10g(n/3)) + e/eod) exp (€||0tq)>

= A; - exp ( — oy FSco(d — 2n||pl|3 — 2n/dlog(n/5) — 2ney/co) exp (e||9t||q))
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where the second inequality is due to the fact that L(6;) = >__, Ef exp (€[|0:]|4) and Ef =
maxy, B} while the last inequality holds since d > C - max{n||p||3, n?log(n/d)}.

On the other hand, if A; < (2cq + €,/co)/(1/co — €y/Co), wWe have

Apq < Ap-exp (oztE§ (cod + €\/cod) exp (€HHt||q))
- exp <2atL(0t)(co(||u||§ + /dlog(n/é)) + e\/%d))
< A, exp (atL(Ht)(cod + e\/ad)) . exp (th(ot) (co(n pl|2 + /dlog(n/s)) + q/%d))

< Ay -exp <2atn<co (2|3 + 2/dlog(n/d) 4+ d) + 36\/07061))
< (2¢0 +ey/co) /(1o = e/co) - exp(1/8)

<563,
where the first inequality is due to the fact that A, > 0, the third inequality holds by Lemma [5.2]

the fourth inequality is because oy < 1/(coCnd) and d > C - max{n| p||3, n*log(n/d)} and the
last inequality is because ¢ < C’ and C” can be chosen such that C' < 1/(2¢}°) and we have

1/co — €y/co > 1/(2¢o).

This concludes the proof. O

B.4 PROOF OF LEMMA
Proof. Note that

uw'0=p' (Ht + o Z (zi — €0|0:4) exp(—0, zi, + 6H0||1)>
k=1

=170 — e 100, L(8) + Y (1) exp(—0] zi + €[6)]) )
k=1

> 10, — auellully - L) + a0 Y (7 2e) exp(~6] 1+ €]|6]],))
keC

ton Y () exp(~6] i+ cl6]l,)). (B.6)
keN
where the inequality holds in the same way as in (B.2). By Lemma[5.1]((5.3) and (54)), we further

bound (B.6) by

(62
W70 = W0, — asellully - L(O) + 5D [l exp(~6] 2 +e[6]],)

keC
3o
= 228D il exp(—6] zi + €]61,))
keN
«
= 176 — asellpl, - L(8) + SHIMIBL(8) — 20| ul}3 Y exp(—6] 2 +l6]],) ).

keN
(B.7)

Note that we have

> exp(=0/ z +€]|0lly) = > exp(—0; z) - exp(e|6]|4)
keN keN

< es(n+co)n - (max B ) - exp(e]6]],)
< c3(n + c1)L(6y)

< L(et)v

| =
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where the first inequality is due to Lemma and the last inequality is because 7 < 1/C and ¢; can
be chosen arbitrarily small given sufficient large C'. Therefore, can be further written as

« «
WO > 170, — el D6 + S ll3L6) — L6,
2
pos o (14 e||u||q> L6,

(I .
- 4 €l|1lq Z arn m ( . )

where the last equality is due the fact that &y = 0. Now we multiply ||w||2/||@¢+1]|2 on both sides
of (B-8) and take t — co

t

Te 2
iy Wllz2(pe " 6r41) > lim <||H|z el > w2 Z
t=oo |0yl t—oo \ 4 [y P

m=

Since ||w||2 = 1, and by Lemmal[5.2] it is easy to observe that w = lim;_, . 6;/||6;||2, we have

2 ! L(6
H'TW 2 <l’l‘|2 o 6/1,||q> . lim Em:O Qm ( ’rn)
4 t— o0

16111l

eell3 1
Z< 1 €#||q>W~

where the last inequality is due to Lemma[5.3] Note that Lemma/5.2]also suggests that ||6; /||6;]|> —
w||2 < e3logn/logt, we have

0 (7]

T T t t

n W =pu W — + )
( 10¢]l2 16:]l2

0; HTGt
= el HW 1ol * Teul:
< allplzlogn p'o,
logt AP
Therefore,
n'o, cs||pll2 logn pll3 1 c3| |2 log n
o, S r Y ” lﬂgt - ( 4H2 _6“'“) (Voo +evd ” 1<!gt '

C AUXILIARY LEMMAS

Theorem C.1 (Proposition 5.10 inVershynin/ (2010)). Let X5, Xo, ..., X,, be independent centered
sub-Gaussian random variables, and let X' = max; || X;||y,. Then for every a = (a1, ag,...,a,) €
R™ and for every t > 0, we have

7
where C' > 0 is a constant.
Lemma C.2. For any 6 € R?,

< ct?
| >1) <o (= )

i=1

o161l < Va. [|o1814]l, =

Proof. Note that we have
q—1

0" ,
@161l9)i = o[ -sign(6),
q

17



Under review as a conference paper at ICLR 2022

054 — e=o0.01 — £=0.001
£=0.1 - £=0.01
— =02 0.5+ — £=0.02
% 0.4 — - optimal risk 3 — - optimal risk
=4 =4
K] K]
5 0.3
[ [
> >
el kel
< <
0.2
0.1‘ ——-—-—-—-—-'—-—-—'-—-—-'—-—-—
400 600 800 1000

#lterations #lterations

(a) ¢2 perturbation (b) ¢~ perturbation

Figure 2: Risk and adversarial risk of adversarially trained linear classifiers versus the training
iterations ¢ for different perturbation level e. The label noise level is set as 7 = 0.1, the training set
size n = 50, dimension d = 200 and ||p||2 = d°*. The train error reaches 0 for all experiments.

0.6
— £=0.01 —— £=0.001
05 — £=0.1 0.6 —— £=0.01
: — £=02 — £=0.02
3 — - optimal risk $ 051 — - optimal risk
0.4 <
2 204
: 3
@ 0.34 @
2 Z03
< <
0.21 0.2
Ol st e e T — 9 =
0 200 400 600 800 1000 0 200 400 600 800 1000
#lterations #lterations
(a) {2 perturbation (b) ¢o perturbation

Figure 3: Risk and adversarial risk of adversarially trained linear classifiers versus the training
iterations ¢ for different perturbation level €. The label noise level is set as = 0.1, the training set
size n = 50, dimension d = 1000 and |||z = d°-3. The train error reaches 0 for all experiments.

and since for any vector u € R%, |[ul|, > [|ul|oo, [ull2 < Vd|u/|o0, we have

le= D, _ valels! _
Cr [T

)

10161l4]], =

where o denotes element-wise power. This concludes the first part of the lemma. For the second
part, by p-norm definition we have

||0°<q*1>||p 1 d

-1 1/p 1 d 1/q it
Ha”quHp = o)t Jefe (2(93 )p) - G ((293) ) =

i=1 i=1

D ADDITIONAL EXPERIMENTS

In this section, we present the additional experiments covering more settings as well as more com-
plex models such as 2-layer neural network.

D.1 ADVERSARIALLY TRAINED LINEAR CLASSIFIER UNDER VARIOUS SETTINGS

In Figures P2J3J4} we plot the adversarial risk of adversarially trained linear classifiers versus the
training iterations ¢ for different perturbation level e for various combinations of dimension d and
[ 2]l2. Specifically, in Figure [i] we can observe that with moderate perturbations and sufficient
over-parameterization, adversarially trained linear classifiers can achieve near-optimal adversarial
risks.
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Figure 4: Risk and adversarial risk of adversarially trained linear classifiers versus the training
iterations ¢ for different perturbation level €. The label noise level is set as = 0.1, the training set
size n = 50, dimension d = 1000 and || || = d°-*. The train error reaches 0 for all experiments.
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Figure 5: Risk and adversarial risk of adversarially trained 2-layer ReLLU network versus the di-
mension d under different scalings of p. (a)(b) show the results for {5 perturbation with e = 0.1
and (c)(d) show the results for ¢, perturbation with ¢ = 0.01. The training error reaches 0 for all
experiments.

D.2 ADVERSARIALLY TRAINED 2-LAYER NEURAL NETWORKS

We have also conducted extra experiments on 2-layer neural networks with ReLU activation func-
tions (one extra fix-dimension hidden layer). The data generation process are the same as our linear
experiments. Note that in this setting, we no longer have the closed-form solutions to the inner max-
imization problem. Therefore, we following[Madry et al.| (2018)) and use 10-step Projected Gradient
Descent to get the inner maximizer.

As can be seen from Figure [5] the empirical results on 2-layer ReLU network suggest very similar
trends as the linear classifier for both adversarial risks and standard risks. This further backs up our
theoretical conclusions.
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