
Continual Event Extraction with Semantic Confusion Rectification

Zitao Wang† Xinyi Wang† Wei Hu†, ‡, ∗

† State Key Laboratory for Novel Software Technology, Nanjing University, China
‡ National Institute of Healthcare Data Science, Nanjing University, China
ztwang.nju@gmail.com, xywang.nju@gmail.com, whu@nju.edu.cn

Abstract

We study continual event extraction, which
aims to extract incessantly emerging event in-
formation while avoiding forgetting. We ob-
serve that the semantic confusion on event
types stems from the annotations of the same
text being updated over time. The imbalance
between event types even aggravates this is-
sue. This paper proposes a novel continual
event extraction model with semantic confu-
sion rectification. We mark pseudo labels for
each sentence to alleviate semantic confusion.
We transfer pivotal knowledge between current
and previous models to enhance the understand-
ing of event types. Moreover, we encourage
the model to focus on the semantics of long-
tailed event types by leveraging other associ-
ated types. Experimental results show that our
model outperforms state-of-the-art baselines
and is proficient in imbalanced datasets.

1 Introduction

Event extraction (Grishman, 1997; Ahn, 2006)
aims to detect event types and identify their event
arguments and roles from natural language text.
Given a sentence “The Oklahoma City bombing
conspirator is already serving a life term in federal
prison”, an event extraction model is expected to
identify “bombing” and “serving”, which are the
event triggers of the “Attack” and “Sentence” types,
respectively. Also, the model should identify argu-
ments and roles of corresponding event types such
as “conspirator” and “Oklahoma City” are two ar-
guments involved in “Attack” and as argument roles
of “Attacker” and “Place”, respectively.

Conventional studies (McClosky et al., 2011;
Nguyen et al., 2016; Du and Cardie, 2020; Lin
et al., 2020; Nguyen et al., 2021; Wang et al., 2022)
model event extraction as a task to extract from the
pre-defined event types and argument roles. In prac-
tice, new event types and argument roles emerge

∗ Corresponding author

My uncle died a year before I got married.

Die NA

Previous

“Die” Data

My uncle died a year before I got married.
Marry

New

“Marry” Data NA

Previous

Model

Current

Model

Learn semantics of

“died”:

“died”: NA Die

Semantic

confusion:
“died”: Die ? or NA ?

“Marry”

Emerges

…

“Die”

Emerges

“Attack”

Emerges
…

…

…

Forgetting

(a) Example of semantic confusion when new types emerge.

66.32 63.25 59.62

16.95 20.09 23.41

9.47 8.76 10.3
5.57 5.63 4.99

1.69 2.27 1.68
0

20

40

60

80

100

ACE05-EN+ ERE-EN MAVEN

P
ro

p
o

rt
io

n
 (

%
)

[0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0]

(b) Imbalanced number distribution of event types.

Figure 1: Problems in continual event extraction.

continually. We define a new problem called con-
tinual event extraction for this scenario. Compared
to conventional studies, continual event extraction
expects the model not only to detect new types and
identify corresponding event arguments and roles
but also to remember the learned types and roles.
This scenario belongs to continual learning (Ring,
1994), which learns from data streams with new
emerging data.

To alleviate the so-called catastrophic forgetting
problem (Thrun and Mitchell, 1995; French, 1999),
existing works focus on event detection and apply
knowledge transfer or prompt engineering (Cao
et al., 2020; Yu et al., 2021; Liu et al., 2022). On
one hand, they do not consider the task of argu-
ment extraction, making them incomplete in event
extraction. On the other hand, they ignore that the

semantic understanding by the model deviates from
correct semantics when new types emerge, which
we call semantic confusion.

First, semantic confusion is caused by the an-
notations of previous types and new types do not
generate at the same time. As shown in Figure 1(a),
a sentence may have multi-type annotations. How-
ever, current training data only contains new an-
notations, and the model misunderstands the text
“died” with the previous annotation “Die” as a neg-
ative label “NA”. Similarly, the model that is only
trained on the previous data would identify the
new types as negative labels. Existing works (Cao
et al., 2020; Yu et al., 2021; Liu et al., 2022) sim-
ply transfer all learned knowledge to the current
model, which would disturb new learning. The
second problem is the imbalanced distribution of
event types in natural language text. Figure 1(b)
shows the number distribution of event types in
three widely used event extraction datasets. The
model is confused with the semantics of the long-
tailed event types in two aspects. On one hand,
it suffers from the lack of training on long-tailed
event types due to their few instances. On the other
hand, the semantics of long-tailed types would be
disturbed by popular types during training.

This paper proposes a novel continual event
extraction method to rectify semantic confusion
and address the imbalance issue. Specifically, we
propose a data augmentation strategy that marks
pseudo labels of each sentence to avoid the dis-
turbance of semantic confusion. We apply a piv-
otal knowledge distillation to further encourage the
model to focus on vital knowledge during train-
ing at the feature and prediction levels. Moreover,
we propose prototype knowledge transfer, which
leverages the semantics of other associated types
to enrich the semantics of long-tailed types.

Our main contributions are outlined as follows:

• Unlike existing works, we extend continual
learning to event extraction and propose a new
continual event extraction model.

• We explicitly consider semantic confusion on
event types. We propose data augmentation
with pseudo labels, pivotal knowledge distil-
lation, and prototype knowledge transfer to
rectify semantic confusion.

• We conduct extensive experiments on three
benchmark datasets. The experimental results
demonstrate that our model establishes a new
state-of-the-art baseline with significant im-

provement and obtains better performance on
long-tailed types.

2 Related Work

2.1 Event Extraction

Conventional event extraction models (McClosky
et al., 2011; Li et al., 2013; Nguyen et al., 2016;
Lin et al., 2020; Wang et al., 2021) regard the event
extraction as a multi-class classification task. In
recent years, several new paradigms have been
proposed to model event extraction. The works
(Du and Cardie, 2020; Liu et al., 2020; Li et al.,
2020; Lyu et al., 2021) treat event extraction as a
question-answering task. They take advantage of
the pre-defined question templates and have spe-
cific knowledge transfer abilities on event types.
The work (Wang et al., 2022) refines event extrac-
tion as a query-and-extract process by leveraging
rich semantics of event types and argument roles.
These models cannot apply to continual event ex-
traction as they learn all event types at once.

2.2 Continual Learning

Mainstream continual learning methods can be dis-
tinguished into three families: regularization-based
methods (Li and Hoiem, 2017; Kirkpatrick et al.,
2017), dynamic architecture methods (Aljundi
et al., 2017; Rosenfeld and Tsotsos, 2018; Qin et al.,
2021), and memory-based methods (Lopez-Paz and
Ranzato, 2017; Rebuffi et al., 2017; Castro et al.,
2018; Wu et al., 2019).

For many NLP tasks, the memory-based meth-
ods (Wang et al., 2019; de Masson d’Autume et al.,
2019; Cao et al., 2020) show superior performance
than other methods. Existing works (Cao et al.,
2020; Yu et al., 2021; Liu et al., 2022) make use
of knowledge transfer to alleviate catastrophic for-
getting in event detection. KCN (Cao et al., 2020)
employs memory reply and hierarchical distilla-
tion to preserve old knowledge. KT (Yu et al.,
2021) transfers knowledge between related types
to enhance the learning of old and new event types.
EMP (Liu et al., 2022) leverages soft prompts to
preserve the knowledge learned from each task and
transfer it to new tasks. All the above models are
unable to identify event arguments and roles, so
they are incomplete in continual event extraction.
Furthermore, they ignore semantic confusion on
event types while training. We address these prob-
lems and propose a new model.

Encoder

Melony Marshall was married before she left for Iraq. It's the side that's moving that's going to take the casualties.
gold labelpseudo label gold labelpseudo label

New Task Data Memory Data

Previous Model Current Model

Before training After training

&

Train Init. Model

PKD
Module

PKT
Module

Data Augmentation

Prototype Knowledge TransferPivotal Knowledge Distillation

New Task Data & Memory Data

Classifier

Current Model

Encoder

Classifier

Previous Model

New event types:
Acquit(Long-tailed)
Transport(left, moving)
Previous event types:
Marry(married)
Die(casualties)

𝐟!
"𝐟!#$

" 𝐀%#$
& 𝐀%

&

Attention Feature Distillation

New Task Data & Memory Data

Event Prototype Set 𝑷:
Marry(𝜇' , 𝜎')
Die(𝜇(, 𝜎()
Acquit(𝜇), 𝜎))
Transport(𝜇* , 𝜎*)

𝜎!" =#
#∈%

𝑑!#𝜎#

Acquit InstanceAcquit Instance

𝐟!"~𝑁 0, 𝜎!"
&

Only long-tailed types

𝐥𝐨𝐠𝐢𝐭!#$
" 𝑺!#$

" 𝐥𝐨𝐠𝐢𝐭!
"𝑺!

"

Selective Prediction Distillation

Encoder

𝑑!# = cos 𝜇!, 𝜇#

…

…

Figure 2: Framework of our proposed continued event detection model.

3 Task Definition

Given a sentence, the event extraction task aims to
detect the event types in this sentence (a.k.a. event
detection) and identify the event arguments and
roles (a.k.a. argument extraction).

In a continual event extraction task, there is a
sequence of K tasks {T1, T2, . . . , TK}. Each in-
dividual task Ti is a conventional event extraction
task that contains its own event type set Ei, role
type set Ri, and respective training set Dtrain

i , de-
velopment set Ddev

i , and test set Dtest
i . Ei of each

task Ti is disjoint with other tasks. Dtrain
i contains

instances for Ei and negative instances for “NA”.
Ddev

i and Dtest
i only contain sentences for Ei.

At the i-th stage, the continual event extraction
model is trained on Dtrain

i and evaluated on all seen
test sets D̃test

i =
⋃i

t=1D
test
t to detect all seen event

types Ẽi =
⋃i

t=1Et and identify all event argu-
ments and roles of corresponding event types.

4 Methodology

4.1 Overall Framework

Our framework for continual event extraction con-
sists of two models: event detection model Fi and
argument extraction model Gi. When a new task Ti

comes, we detect the candidate event types for each
sentence by Fi. The framework of our proposed
model Fi is shown in Figure 2. We first augment

current training data with pseudo labels. Then,
we train the current model on augmented data and
memory data with pivotal knowledge distillation.
For long-tailed event types, we enhance their se-
mantics with event prototypes. At last, we pick and
store a few instances for new types and augment
them with pseudo labels for the next task Ti+1. The
parameters are updated during training. After pre-
dicting each candidate event type, we train Gi to
obtain corresponding event arguments and roles.
Similar to event detection, we also pick and store a
few instances. The accuracy of argument extraction
highly depends on correct event types.

4.2 Event Detection
4.2.1 Base Model and Experience Replay
Base model. Following (Cao et al., 2020; Yu
et al., 2021; Liu et al., 2022; Du and Cardie, 2020),
we use the pre-trained language model BERT (De-
vlin et al., 2019) as the encoder to extract the hidden
representation of text.

Given a sentence w, we first use the BERT en-
coder to get the hidden representation hxj for each
token xj in w. Then, we obtain the feature repre-
sentation fxj of xj by

fxj = LayerNorm
(
WDropout(hxj) + b

)
, (1)

where W ∈ Rh×d and b ∈ Rh are trainable pa-
rameters. h, d are the dimensions of feature repre-

sentations and hidden layers in BERT, respectively.
LayerNorm(·) is the normalization operation.

We use a linear softmax classifier to get xj’s
output probability distribution on the basis of fxj .
The cross-entropy classification loss of the current
dataset is defined as follows:

Lcla = − 1

|N |
∑
x∈N

∑
e∈E

yx,e logP (e |x;Fi), (2)

where N is the token set from the current training
data. E is the seen event types set Ẽi and “NA”.
yx,e indicates whether the reference type of x is e.
P (e |x;Fi) is the probability of x classified as e
by the event detection model Fi.

Experience replay. Inspired by the previous
works on continual learning (Wang et al., 2019;
de Masson d’Autume et al., 2019; Yu et al., 2021;
Liu et al., 2022), we pick and store a small number
m of instances for each event type. At the i-th stage,
the memory space to store the current training data
is denoted by δi, so the accumulated memory space
is δ̃i =

⋃i
t=1 δt. Note that we do not store nega-

tive instances in δ̃i, owing to the fact that negative
instances are prevalent at each stage. At the i-th
stage, we train the model with current training data
Dtrain

i and memory space δ̃i−1. We leverage the
k-means algorithm to cluster the feature represen-
tations of each event type’s instances, where the
number of clusters equals the memory size m. We
select the instances closest to the centroid of each
cluster and store them.

4.2.2 Data Augmentation
In the event detection task, a sentence may have
several annotations of event types. For example, in
the sentence “Melony Marshall was married before
she left for Iraq”, “married” and “left” indicate the
event types “Marry” and “Transport”, respectively.
Let us assume that “Marry” is the previously seen
type and “Transport” is the newly emerging type.
If the current memory space does not include this
sentence, the annotation corresponding to “mar-
ried” would be “NA”. Thus, the model would treat
the text “married” as a negative label “NA” at the
current stage. However, “married” has been consid-
ered as the event trigger of “Marry” at the previous
stage. It is noticeable that the semantics of “mar-
ried” are confused at these two different stages.
Previous works (Cao et al., 2020; Yu et al., 2021;
Liu et al., 2022) simply ignore this problem and
suffer from semantic confusion.

To address this issue, we propose a data aug-
mentation strategy with pseudo labels to excavate
potential semantics and rectify semantic confusion.
Before training the current model, we first augment
the training data with the previous model. For each
instance in the training set Dtrain

i , it is just annotated
by the new event types Ei. We regard this sentence
as a test instance and leverage the previous model
to predict the event types for each token. Once the
prediction confidence exceeds a threshold τ , we
mark this token as the predicted type, serving as
a pseudo label. Then, the augmented data can be
used to train the current model. After training, we
also leverage the trained model to obtain pseudo
labels for the memory data. Note that we just use
augmented task data and memory data for training,
rather than for prototype generation in prototype
knowledge transfer, since the pseudo labels are not
completely reliable.

4.2.3 Pivotal Knowledge Distillation
Knowledge distillation (Hinton et al., 2015) aims to
remind the current model about learned knowledge
by leveraging the knowledge from the previous
model. It is important to leverage precise learned
knowledge, otherwise, it would lead to semantic
confusion like in previous works (Cao et al., 2020;
Yu et al., 2021; Liu et al., 2022). In this paper,
we propose pivotal knowledge distillation, which
enables the model to focus on critical knowledge
and transfers precise knowledge between the previ-
ous model and the current model at the feature and
prediction levels.

Attention feature distillation. At the feature
level, we expect the features extracted by the cur-
rent model similar to those by the previous model.
Unlike existing works (Lin et al., 2020; Cao et al.,
2020; Liu et al., 2022), we consider that each to-
ken in a sentence should not have an equal fea-
ture weight toward an event trigger. The tokens
associated closely with the event trigger are more
important than others. To capture such context in-
formation, we propose attention feature distillation.
We first apply in-context attention to obtain atten-
tive feature Axj for each token xj in a sentence:

Axj =
1

|W|
∑
x∈W

ϕ(fxj , fx)fx, (3)

where W denotes all tokens in this sentence. ϕ(·)
is an attention function, which is calculated as the
average of the self-attention weights from the last

L layers of BERT, where L is a hyperparameter. fx
is the feature representation of x.

After capturing attentive feature Axj , we pre-
serve previous features through an attention feature
distillation loss:

Lafd = − 1

|N |
∑
x∈N

1− cos(Ai
x,A

i−1
x), (4)

where cos(·) is the cosine similarity between two
features. Ai

x and Ai−1
x are two attentive features

computed by Fi and Fi−1, respectively.
During feature distillation, the current model

would pay more attention to the associated tokens
and obtain the critical and precise knowledge of
these tokens from the previous model to remember
the seen event types. Moreover, with the lower
attention to irrelevant tokens, the current model
avoids being confused by irrelevant semantics.

Selective prediction distillation. At the predic-
tion level, we enforce that the probability distribu-
tion predicted by the current model Fi does not
deviate from that of the previous model Fi−1. The
previous methods (Yu et al., 2021; Song et al., 2021;
Liu et al., 2022) transfer the probability distribution
of each token in a sentence. However, we argue that
this brings semantic confusion from the previous
model. The tokens of emerging event types should
not be transferred. The previous model Fi−1 gives
an inaccurate probability distribution of these to-
kens due to that it has not been trained on emerging
event types. Therefore, if we transfer the current
model Fi with a wrong probability distribution, it
would be confused with the semantics of new event
types. To overcome this problem, we directly lever-
age the tokens of the previously seen types and the
“NA” type to transfer knowledge. Furthermore, we
do not transfer the probability distribution of “NA”
owing to the availability of negative training data
on every task.

Based on the above observation, we propose a
selective prediction distillation to avoid semantic
confusion in knowledge distillation:

Lspd = − 1
|Ñ |

∑
x∈Ñ

∑
e∈Ẽ

P (e |x;Fi−1) logP (e, |x;Fi),

(5)

where Ñ is the token set excluding the tokens of
new types. Ẽ is the previously seen type set.

Inspired by (Yu et al., 2021), we optimize the
classification loss and distillation loss with multi-

task learning. The final loss is

L =
(
1− |Ẽi−1|

|Ẽi|

)
Lcls +

|Ẽi−1|
|Ẽi|

(α · Lafd + β · Lspd),

(6)

where α and β are hyperparameters.

4.2.4 Prototype Knowledge Transfer
The distribution of event types is naturally imbal-
anced in the real world, where the majority of in-
stances belong to a few types. Due to the lack of
instances, the semantics of long-tailed event types
are difficult to capture by the model. Moreover,
if a long-tailed event type is analogous to a popu-
lar event type with many instances, its semantics
are likely to be biased toward that of the popular
one. Consequently, the model obtains confused
semantics on long-tailed event types.

To address this issue, we propose a prototype
knowledge transfer method to enhance the seman-
tics of long-tailed types with associated event pro-
totypes. In our viewpoint, the prototypes imply the
semantics of their event types. To get the exact
prototypes of emerging event types, we first train
the base model with the current training data Dtrain

i .
For each event type e in the seen event types Ẽi,
we calculate the average µe and the standard devia-
tion σe of feature representations of corresponding
tokens in the current training data Dtrain

i or memory
space δ̃i−1. If the event type is newly emerging, we
calculate its prototype by

µe =
1

|Ne|
∑
x∈Ne

fx, (7)

σe =

√
1

|Ne|
∑
x∈Ne

(fx − µe)2, (8)

where Ne is the tokens of event type e in Dtrain
i .

For the previous event types, we compute their
prototype by tokens in memory space as above.

For each token x of long-tailed type e, we clarify
its semantics through the associated event proto-
types. We first measure the similarity of e and
another event type e′ in the seen event types Ẽi

by the cosine distance. Then, we calculate the as-
sociated standard deviation with associated event
prototypes by

σ̃e =
∑
e′∈P

d′eσ
′, d′e = cos (µe, µ

′), (9)

where P is the prototypes of all seen event types.

We assume that the hidden representations of
event types follow the Gaussian distribution and
generate the intensive vector f̃e by

f̃e ∼ G(0, σ̃2
e). (10)

We add the intensive vector f̃e with the feature
vector fx as the final representation f∗x of this long-
tailed token by f∗x = f̃e + fx. We leverage the final
representation for further learning like the feature
representation of popular types. Note that we do
not apply the average to generate the intensive vec-
tor. We think that the use of average would align
the semantics of long-tailed event types and their
associated event types, causing semantic confusion
to a certain extent. In this paper, we categorize
the last 80% of types in terms of the number of
instances as long-tail types.

4.3 Argument Extraction

After obtaining the event types of sentences, we
further identify their arguments and roles based
on the pre-defined argument roles of each event
type. The arguments are usually identified from
the entities in the sentence. Here, we first recog-
nize the entities in each sentence with the BERT-
BiLSTM-CRF model, which is optimized on the
same current training data. We treat these entities
as candidate arguments. Then, we leverage another
BERT encoder to encode each candidate argument
and concatenate its starting and ending token rep-
resentations as the final feature vector. Finally, for
each candidate event type, we classify each entity
into argument roles by a linear softmax classifier.
The training objective is to minimize the following
cross-entropy loss function:

Lae = − 1

|Q|
∑
e∈Q

∑
r∈R

ye,r logP (r | e), (11)

where Q is the set of candidate entities. R is the
pre-defined argument roles of the corresponding
event type. ye,r denotes whether the reference role
of e is r. P (r | e) denotes the probability of e clas-
sified as r.

For argument extraction, we also apply another
memory space to store a few instances to alleviate
catastrophic forgetting. We pick and store instances
in the same way as described in Section 4.2.1.

5 Experiments and Results

In this section, we evaluate our model and report
the results. The source code is accessible online.1

5.1 Experiment Setup

Datasets. We carry out our experiments on 3
widely-used benchmark datasets. (1) ACE05-EN+
(Doddington et al., 2004) is a classic event extrac-
tion dataset containing 33 event types and 22 ar-
gument roles. We follow (Lin et al., 2020) to pre-
process the dataset. Since several event types are
missing in the development and test sets, we re-
split the dataset for a better distribution of the event
types. (2) ERE-EN (Song et al., 2015) is another
popular event extraction dataset, which contains 38
event types and 21 argument roles. We pre-process
and re-split the data like ACE05-EN+. (3) MAVEN
(Wang et al., 2020) is a large-scale dataset with
168 event types. Due to the lack of argument an-
notations, we can only evaluate the event detection
task. Since its original dataset does not provide the
annotations of the test set, we re-split the dataset as
well. More details about the dataset statistics and
splits can be seen in Appendix A.

Implementation. As defined in Section 3, we
conduct a sequence of event extraction tasks. Fol-
lowing (Yu et al., 2021; Liu et al., 2022), we par-
tition each dataset into 5 subsets to simulate 5 dis-
joint tasks, denoted by {T1, . . . , T5}. As the ma-
jority of event types have more than 10 training
instances, we set the memory size to 10 for all
competing models. To reduce randomness, we run
every experiment 6 times with different subset per-
mutations. See Appendix B for hyperparameters.

Competing models. We compare our model with
7 competitors. Fine-tuning simply trains on the
current training set without any memory. It for-
gets the previously learned knowledge seriously.
Joint-training stores all previous training data as
memory and trains the model on all training data
for each new task. It simulates the behavior of re-
training. It is viewed as an upper bound in continual
event extraction. To reduce catastrophic forgetting,
KCN (Cao et al., 2020) combines experience reply
with hierarchical knowledge distillation. KT (Yu
et al., 2021) transfers knowledge between learned
event types and new event types. EMP (Liu et al.,
2022) uses prompting methods to instruct model

1https://github.com/nju-websoft/SCR

https://github.com/nju-websoft/SCR

Models

Datasets ACE05-EN+ ERE-EN MAVEN

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

E
ve

nt
de

te
ct

io
n

Fine-tuning 84.35 54.37 36.82 31.15 24.75 80.73 48.60 36.08 27.28 24.98 78.88 47.47 35.16 28.79 22.67
Joint-training 84.35 81.24 80.02 77.03 75.51 80.73 73.61 69.75 65.78 63.66 78.88 71.78 68.52 67.74 65.88
KCN 82.15 72.69 65.38 60.17 55.68 77.38 63.37 53.05 50.09 45.47 75.32 49.85 43.49 40.61 37.98
KT 82.15 73.02 66.36 61.56 57.23 77.38 65.89 60.06 56.68 53.40 75.32 56.95 51.68 47.59 44.08
EMP 82.52 71.85 65.48 60.95 58.19 79.66 63.78 53.79 51.02 50.17 77.96 55.86 49.41 47.19 44.98
BERT_QA_Arg 85.00 54.65 39.26 31.73 27.95 78.63 48.14 36.72 28.14 23.81 77.36 47.17 34.79 28.16 21.98
ChatGPT 16.43 16.03 15.43 17.41 17.11 11.52 10.79 7.81 10.69 9.97 10.36 7.99 7.49 7.72 7.54
Our model 84.35 80.75 76.39 76.10 73.08 80.73 68.69 63.82 59.96 58.18 78.88 68.03 61.74 57.31 55.87

A
rg

.e
xt

ra
ct

. Fine-tuning 48.45 35.00 23.29 18.42 17.51 50.39 30.57 22.16 17.46 14.27
Joint-training 48.45 51.73 48.85 48.84 47.89 50.39 45.54 43.34 41.49 40.11
BERT_QA_Arg 50.63 35.63 25.81 20.31 19.13 48.41 29.34 22.12 17.59 13.91
ChatGPT 4.59 2.53 5.61 5.43 5.59 3.36 4.59 3.71 3.19 3.84
Our model 48.45 47.24 42.30 40.36 37.90 50.39 39.49 35.94 34.19 31.25

Table 1: F1 scores of event detection and argument extraction on the ACE05-EN+, ERE-EN, and MAVEN datasets.
The best and second-best scores except for joint-training are marked in bold and with underline, respectively.

prediction. KCN, KT, and EMP are only feasi-
ble for event detection so we cannot apply them
to argument extraction. BERT_QA_Arg (Du and
Cardie, 2020) casts event extraction as a question-
answering task. It is capable of transferring specific
knowledge based on its question templates. Be-
sides, we consider ChatGPT2 as a zero-shot event
extraction model. Following (Li et al., 2023), we
use the same prompt in the experiments.

Evaluation metrics. We assess the performance
of models with F1 scores and report the average F1
scores over all permutations for each model. For
event detection, we follow (Cao et al., 2020; Yu
et al., 2021; Liu et al., 2022) to calculate F1 scores.
For argument extraction, an argument is correctly
classified if its event type, offsets, and role label all
match the ground truth.

5.2 Results and Analyses

5.2.1 Main Results
Table 1 shows the main results of event detection
and argument extraction. Note that the results on
T1 are based on each model’s own baseline.

For continual event detection, our model outper-
forms all competitors on three datasets by a large
margin. After training on all tasks, compared with
the state-of-the-art models KT and EMP, our model
gains 14.89%, 4.78%, and 10.89% improvement of
F1 scores on ACE05-EN+, ERE-EN, and MAVEN,
respectively. The significant gap demonstrates that
semantic confusion on event types is the key to
continual event extraction. We can also conclude
that our confusion rectification is effectively adapt-
able to different datasets. Furthermore, the results

2https://chat.openai.com/

of our model are even close to joint-training, espe-
cially on ACE-05EN+. Differently, our model is
cost-effective to handle newly emerging event types
without retraining the model on all seen types.

For continual argument extraction, our model
also achieves superior performance. This indicates
that based on accurately detected event types, our
model can extract corresponding arguments well
with a few memorized instances. Thus, the perfor-
mance of continual event extraction highly relies
on the effectiveness of continual event detection.

Regarding BERT_QA_Arg, it performs poorly
under our setting. This shows that conventional
event extraction models may not handle continual
event extraction well, although it has transferability
on event types. The results of ChatGPT indicate
that large language models, which can be viewed as
zero-shot event extraction methods, also struggle
with continual event extraction.

5.2.2 Ablation Study

To validate the effectiveness of each module in our
model, we conduct an ablation study on continual
event detection, and the results are listed in Table 2.
Specifically, for “w/o DA”, we use the original
dataset rather than the augmented data with pseudo
labels; for “w/o AFD”, we disable the attention
feature distillation module; for “w/o SPD”, we dis-
able the selective prediction distillation module;
for “w/o PKD”, we remove the pivotal knowledge
distillation module; for “w/o PKT”, we directly
train the model without transferring the knowledge
of event prototypes to long-tailed event types. We
observe that all modules are effective.

Event detection T1 T2 T3 T4 T5
A

C
E

20
5-

E
N

+ Intact model 84.35 80.75 76.39 76.10 73.08
w/o DA 84.35 77.58 75.18 68.98 67.19
w/o AFD 84.35 78.83 76.22 74.46 71.89
w/o SPD 84.35 78.09 73.28 68.82 65.85
w/o PKD 84.35 79.16 71.01 65.70 65.06
w/o PKT 84.35 79.12 74.87 74.89 71.25

E
R

E
-E

N

Intact model 80.73 68.69 63.82 59.96 58.18
w/o DA 80.73 63.28 58.10 57.54 54.12
w/o AFD 80.73 68.30 63.61 59.69 57.69
w/o SPD 80.73 67.71 61.34 56.69 55.05
w/o PKD 80.73 66.83 62.04 58.50 53.83
w/o PKT 80.73 68.55 63.09 59.74 57.72

M
AV

E
N

Intact model 78.88 68.03 61.74 57.31 55.87
w/o DA 78.88 64.70 53.80 52.08 48.09
w/o AFD 78.88 67.29 60.78 56.77 54.96
w/o SPD 78.88 66.71 60.45 55.42 52.57
w/o PKD 78.88 65.69 59.92 54.57 51.86
w/o PKT 78.88 67.76 60.68 56.74 55.20

Table 2: F1 scores of ablation study on event detection.
All models have the same results on T1 since continual
learning has not been executed.

Event detection T1 T2 T3 T4 T5

A
C

E
20

5-
E

N
+

Fine-tuning 80.09 42.65 34.28 31.97 20.76
Joint-training 80.09 77.87 75.13 72.47 71.89
KCN 73.37 70.11 63.59 55.39 52.23
KT 73.37 71.71 64.94 58.66 54.26
EMP 78.35 70.57 64.58 59.50 54.72
BERT_QA_Arg 81.39 54.58 41.88 32.10 24.06
Our model 80.09 75.36 74.20 72.24 70.45

E
R

E
-E

N

Fine-tuning 76.45 47.64 36.40 24.00 22.79
Joint-training 76.45 70.27 65.37 64.72 61.12
KCN 69.34 58.27 51.87 47.02 41.73
KT 69.34 61.57 58.88 54.16 51.54
EMP 76.43 60.22 57.51 52.62 49.20
BERT_QA_Arg 76.21 47.68 35.87 24.98 22.76
Our model 76.45 67.42 62.49 61.27 59.14

M
AV

E
N

Fine-tuning 75.89 47.30 33.10 24.93 22.44
Joint-training 75.89 67.97 64.45 63.04 62.56
KCN 62.61 48.09 43.46 37.41 35.06
KT 62.61 54.71 49.55 45.63 42.21
EMP 74.40 53.13 48.44 45.72 42,64
BERT_QA_Arg 74.23 46.21 33.72 25.58 24.27
Our model 75.89 64.73 59.28 56.84 56.52

Table 3: F1 scores of event detection on long-tailed
event types. All models are trained with all event types
but only evaluated on long-tailed event types.

5.2.3 Analysis of Long-Tailed Event Types
We analyze the performance of long-tailed event
types in continual event detection and Table 3
presents the results. Note that we do not involve
ChatGPT in this setting since we regard it as a
zero-shot model that does not suffer from imbal-
anced data. From the results, our model achieves

ACE05-EN+ ERE-EN MAVEN

KCN -28.02 -36.75 -33.43
KT -29.49 -29.49 -27.71
EMP -22.80 -29.76 -28.76
Our model -18.41 -22.64 -21.83

Table 4: BWT scores of event detection on ACE05-EN+,
ERE-EN dataset, and MAVEN.

the best performance on all datasets. Compared
with the competing models, our model obtains the
lowest performance decline on ACE05-EN+ and
even gains improvement on ERE-EN and MAVEN.
Thus, our model is effective in saving long-tailed
event types from semantic confusion and classify-
ing them correctly.

5.2.4 Analysis of Knowledge Transfer Ability
We use a widely-used metric backward transfer
(BWT) (Lopez-Paz and Ranzato, 2017) to measure
the knowledge transfer ability and how well the
model alleviates catastrophic forgetting. The BWT
score is defined as follows:

BWT =
1

K − 1

K−1∑
i=1

(
F1K,i − F1i,i

)
, (12)

where K is the number of tasks. F1i,j is the F1
score on the test set of task Tj after training the
model on task Ti. Note that BWT scores are nega-
tive due to catastrophic forgetting. A higher score
indicates a better performance.

Table 4 shows the results. Our model performs
best, indicating its superiority in alleviating catas-
trophic forgetting. Benefiting from semantic confu-
sion rectification, our model has better transferabil-
ity than the competing models.

5.2.5 Analysis of Memory Size Influence
The performance of memory-based models is
highly related to memory size. We conduct an ex-
periment with different memory sizes. Table 5 lists
the results on ACE05-EN+, ERE-EN, and MAVEN.
It is observed that our model maintains state-of-
the-art performance with different memory sizes.
Compared to other models, the performance gap of
our model between memory sizes 5 and 20 is the
smallest, which demonstrates the robustness of our
model to the change of memory size.

6 Conclusion

In this paper, we observe the continual learning
of event types suffering from semantic confusion

ACE
Memory size 5 Memory size 20

T2 T3 T4 T5 T2 T3 T4 T5

KCN 71.29 63.14 58.57 52.71 72.36 65.92 63.57 59.08
KT 72.35 64.74 59.75 55.31 74.75 68.76 64.93 60.74
EMP 72.02 64.29 59.57 54.83 74.09 68.49 64.26 60.14
Ours 80.15 73.41 71.55 70.29 81.72 78.15 76.66 73.38

ERE
Memory size 5 Memory size 20

T2 T3 T4 T5 T2 T3 T4 T5

KCN 56.60 49.70 43.11 36.64 64.65 55.10 52.32 47.14
KT 63.68 58.48 53.62 47.54 66.63 60.73 58.84 55.23
EMP 62.20 54.02 50.05 46.41 66.21 56.08 55.62 53.90
Ours 69.31 61.74 58.71 54.63 68.80 64.49 62.58 59.96

MAVEN
Memory size 5 Memory size 20

T2 T3 T4 T5 T2 T3 T4 T5

KCN 41.51 35.97 32.01 28.36 53.18 46.10 43.84 40.93
KT 50.84 45.29 40.87 37.91 59.47 53.66 49.54 47.19
EMP 49.35 43.52 40.17 39.07 59.67 52.33 50.12 48.20
Ours 68.00 60.80 56.11 54.44 68.71 62.06 59.26 57.49

Table 5: F1 scores of event detection w.r.t. memory size
on ACE05-EN+, ERE-EN, and MAVEN.

and propose a novel continual event extraction
model. Specifically, we mark pseudo labels in
training data for previously seen types. For newly
emerging types, we select accurate knowledge to
transfer. For long-tailed types, we enhance their
semantic representations by the semantics of associ-
ated event types. Experiments on three benchmark
datasets show that our model achieves superior per-
formance, especially on long-tailed types. Also,
the results verify the effectiveness of our model in
alleviating catastrophic forgetting and rectifying
semantic confusion. In future work, we plan to
study continual few-shot event extraction or other
classification-based continual learning tasks.

Limitations

Our model may have two limitations: (1) It re-
quires an additional memory space to store a few
instances, which is sensitive to storage capacity. (2)
It relies on the selection of instances in memory
space. The prototype knowledge transfer may suf-
fer from the low quality of selected instances in
memory space, causing a performance decline.

Acknowledgments

This work was supported by the National Natu-
ral Science Foundation of China (No. 62272219)
and the Collaborative Innovation Center of Novel
Software Technology & Industrialization.

References
David Ahn. 2006. The stages of event extraction. In

Proceedings of the Workshop on Annotating and Rea-
soning about Time and Events, pages 1–8.

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuyte-
laars. 2017. Expert gate: Lifelong learning with a
network of experts. In CVPR, pages 3366–3375.

Pengfei Cao, Yubo Chen, Jun Zhao, and Taifeng Wang.
2020. Incremental event detection via knowledge
consolidation networks. In EMNLP, pages 707–717.

Francisco M Castro, Manuel J Marín-Jiménez, Nicolás
Guil, Cordelia Schmid, and Karteek Alahari. 2018.
End-to-end incremental learning. In ECCV, pages
233–248.

Cyprien de Masson d’Autume, Sebastian Ruder, Ling-
peng Kong, and Dani Yogatama. 2019. Episodic
memory in lifelong language learning. arXiv preprint
arXiv:1906.01076.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL, pages 4171–4186.

George Doddington, Alexis Mitchell, Mark Przybocki,
Lance Ramshaw, Stephanie Strassel, and Ralph
Weischedel. 2004. The automatic content extrac-
tion (ACE) program – tasks, data, and evaluation. In
LREC.

Xinya Du and Claire Cardie. 2020. Event extraction
by answering (almost) natural questions. In EMNLP,
pages 671–683.

Robert M. French. 1999. Catastrophic forgetting in con-
nectionist networks. Trends in Cognitive Sciences,
3:128–135.

Ralph Grishman. 1997. Information extraction: Tech-
niques and challenges. In SCIE, pages 10–27.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the National Academy of Sciences,
114:3521–3526.

Bo Li, Gexiang Fang, Yang Yang, Quansen Wang, Wei
Ye, Wen Zhao, and Shikun Zhang. 2023. Eval-
uating ChatGPT’s information extraction capabili-
ties: An assessment of performance, explainabil-
ity, calibration, and faithfulness. arXiv preprint
arXiv:2304.11633.

Fayuan Li, Weihua Peng, Yuguang Chen, Quan Wang,
Lu Pan, Yajuan Lyu, and Yong Zhu. 2020. Event
extraction as multi-turn question answering. In Find-
ings of EMNLP, pages 829–838.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event ex-
traction via structured prediction with global features.
In ACL, pages 73–82.

Zhizhong Li and Derek Hoiem. 2017. Learning without
forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40:2935–2947.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In ACL, pages 7999–8009.

Jian Liu, Yubo Chen, Kang Liu, Wei Bi, and Xiaojiang
Liu. 2020. Event extraction as machine reading com-
prehension. In EMNLP, pages 1641–1651.

Minqian Liu, Shiyu Chang, and Lifu Huang. 2022. In-
cremental prompting: Episodic memory prompt for
lifelong event detection. In COLING, pages 2157–
2165.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning.
NeurIPS, 30.

Qing Lyu, Hongming Zhang, Elior Sulem, and Dan
Roth. 2021. Zero-shot event extraction via transfer
learning: Challenges and insights. In ACL-IJCNLP,
pages 322–332.

David McClosky, Mihai Surdeanu, and Christopher
Manning. 2011. Event extraction as dependency pars-
ing. In ACL, pages 1626–1635.

Minh Van Nguyen, Viet Dac Lai, and Thien Huu
Nguyen. 2021. Cross-task instance representation
interactions and label dependencies for joint infor-
mation extraction with graph convolutional networks.
In NAACL, pages 27–38.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016. Joint event extraction via recurrent
neural networks. In NAACL, pages 300–309.

Qi Qin, Wenpeng Hu, Han Peng, Dongyan Zhao, and
Bing Liu. 2021. Bns: Building network structures dy-
namically for continual learning. NeurIPS, 34:20608–
20620.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. 2017. iCaRL: In-
cremental classifier and representation learning. In
CVPR, pages 2001–2010.

Mark Bishop Ring. 1994. Continual learning in rein-
forcement environments. Ph.D. thesis, University of
Texas at Austin.

Amir Rosenfeld and John K Tsotsos. 2018. Incremental
learning through deep adaptation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
42:651–663.

Dandan Song, Jing Xu, Jinhui Pang, and Heyan Huang.
2021. Classifier-adaptation knowledge distillation
framework for relation extraction and event detec-
tion with imbalanced data. Information Sciences,
573:222–238.

Zhiyi Song, Ann Bies, Stephanie Strassel, Tom Riese,
Justin Mott, Joe Ellis, Jonathan Wright, Seth Kulick,
Neville Ryant, and Xiaoyi Ma. 2015. From light
to rich ERE: Annotation of entities, relations, and
events. In Proceedings of the 3rd Workshop on
EVENTS: Definition, Detection, Coreference, and
Representation, pages 89–98.

Sebastian Thrun and Tom M. Mitchell. 1995. Lifelong
robot learning. Robotics and Autonomous Systems,
15:25–46.

Hong Wang, Wenhan Xiong, Mo Yu, Xiaoxiao Guo,
Shiyu Chang, and William Yang Wang. 2019. Sen-
tence embedding alignment for lifelong relation ex-
traction. In NAACL, pages 796–806.

Sijia Wang, Mo Yu, Shiyu Chang, Lichao Sun, and Lifu
Huang. 2022. Query and extract: Refining event
extraction as type-oriented binary decoding. In Find-
ings of ACL, pages 169–182.

Xiaozhi Wang, Ziqi Wang, Xu Han, Wangyi Jiang, Rong
Han, Zhiyuan Liu, Juanzi Li, Peng Li, Yankai Lin,
and Jie Zhou. 2020. MAVEN: A massive general
domain event detection dataset. In EMNLP, pages
1652–1671.

Ziqi Wang, Xiaozhi Wang, Xu Han, Yankai Lin, Lei
Hou, Zhiyuan Liu, Peng Li, Juanzi Li, and Jie Zhou.
2021. CLEVE: Contrastive pre-training for event
extraction. In ACL-IJCNLP, pages 6283–6297.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. 2019. Large
scale incremental learning. In CVPR, pages 374–382.

Pengfei Yu, Heng Ji, and Prem Natarajan. 2021. Life-
long event detection with knowledge transfer. In
EMNLP, pages 5278–5290.

A Dataset Statistics and Splits

In this section, we introduce how we split the
datasets. For ACE05-EN+ (Doddington et al.,
2004), we first follow (Lin et al., 2020) to pre-
process the dataset. The original development set
and test set miss several event types and the num-
ber of instances in the test set is much smaller than
that in the development set. So we re-split the
training set for the development set and the test
set following (Yu et al., 2021). We combine the
original development set and test set as a new test
set. Then, we randomly sample 10% of instances
from the training set as a new development set.
For the new test set, if the number of instances for
a type is less than 10% of the total instances for
this type, we randomly sample instances from the
training set and remove them from the training set
to make up for the difference. We do not include
“Justice:Pardon” in both the development set and
the test set, as it only has 2 instances in the entire
dataset. For ERE-EN (Song et al., 2015), we fol-
low the above method to split the dataset as well.
For MAVEN (Wang et al., 2020), we take the origi-
nal development set as the test set and re-split the
training set by the above method.

We show the statistics of the new splits in Table 6.
Following conventional event extraction (Du and
Cardie, 2020; Lin et al., 2020; Wang et al., 2022),
we use all unlabeled tokens as negative tokens for
the three datasets.

Datasets Splits # Events # Arguments

ACE05-E+
Training 3,908 5,624
Development 457 659
Test 946 1,466

ERE-EN
Training 5,546 7,505
Development 639 895
Test 1,095 1,501

MAVEN
Training 70,112 -
Development 7,881 -
Test 18,904 -

Table 6: Statistics of the re-split ACE05-EN+, ERE-EN,
and MAVEN datasets.

B Environment and Hyperparameters

We run all the experiments on an X86 server with
two Intel Xeon Gold 6326 CPUs, 512 GB memory,
four NVIDIA RTX A6000 GPU cards, and Ubuntu
20.04 LTs. We use a grid search to choose the
hyperparameter values. The search space of key
hyperparameters is as follows: (1) The search range
for the dropout ratio is [0.1, 0.6] with a step size of
0.1. (2) The search range for α, β is [0.1, 2.0] with
a step size of 0.1. (3) The search range for the L is
[1, 12] with a step size of 1. (4) The search range
for all learning rates is [1× 10−5, 1× 10−4] with a
step size of 1× 10−5. (5) The search range for the
threshold τ is [0.65, 0.95] with a step size of 0.05.
The selected values are listed in Table 7.

Hyperparameters Values

Batch size 8
Dropout ratio 0.2
α, β, L 1, 1, 3
Gradient accumulation steps 1
Learning rate for event detection encoder 5× 10−5

Learning rate for event detection classifier 5× 10−5

Learning rate for argument extractor 5× 10−5

Learning rate for entity extractor 3× 10−5

Dimension of hidden representations 768
Dimension of feature representations 512
Threshold τ for pseudo-labeling 0.8

Table 7: Hyperparameter setting in our model.

