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Abstract

Fine-tuning is essential for adapting large lan-
guage models to downstream tasks, but can be
costly for users with limited resources. To address
this, Sparse Fine-tuning (SpFT) and Low-rank
adaptation (LoRA) have been widely adopted for
efficient fine-tuning. In this work, we propose a
new SpFT framework inspired by neural network
pruning: we identify important neurons using
structural pruning and fine-tune only the associ-
ated weights. Experiments on common language
tasks show our method improves SpFT’s mem-
ory efficiency by 20–50% while matching the ac-
curacy of state-of-the-art methods like LoRA’s
variants.

1. Introduction
The paradigm of pre-training followed by fine-tuning has
seen tremendous success in the last few years. Very large
models (often referred to as foundation models) are first
trained, typically using very large amounts of data and
computational resources, using self-supervised learning ap-
proaches (Dosovitskiy, 2020; Achiam et al., 2023; Dubey
et al., 2024; Zhou et al., 2024). When building a model for
a new task (which could be a supervised learning task), the
idea is to start with the foundation model and then tune its
parameters, possibly after adding additional classification
layers, by training using task-specific data. The pre-train
then fine-tune paradigm has been shown to have significant
advantages over training a new model from scratch for the
new task. Often, high accuracy can be obtained using much
smaller datasets for the new task.

Despite the success, fine-tuning a model with billions of pa-
rameters requires access to heavy computational resources,
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even when the task datasets are fairly small. Fortunately,
studies (e.g., (Panigrahi et al., 2023) and references therein)
show that fine-tuning only a small fraction of parameters
can be effective. Parameter-efficient fine-tuning (PEFT)
methods have thus been proposed to carry out this idea and
address the challenge of making fine-tuning more accessi-
ble (Lialin et al., 2023). A leading PEFT approach, Low-
Rank Adaptation (LoRA, Hu et al. 2022), achieves memory
efficiency by simply making low-rank updates to the weight
matrices in the different layers. Another class of PEFT meth-
ods is sparse fine-tuning (SpFT, Sung et al. 2021; Guo et al.
2021; Ansell et al. 2022; Nikdan et al. 2024), which learns
a sparse matrix, typically an unstructured one, for updating
the pre-trained weights. However, SpFT typically incurs
higher memory costs than LoRA during the fine-tuning pro-
cess, because of the unstructured sparsity. Several works
aim to mitigate the memory complexity of SpFT (Mofrad
et al., 2019; Holmes et al., 2021; Nikdan et al., 2023; 2024),
often at the cost of increased running time and more com-
plex implementations of sparse kernels. Besides PEFTs,
techniques like Zeroth-Order optimization (Malladi et al.,
2023; Guo et al., 2024b) and quantization (Gholami et al.,
2022; Dettmers et al., 2022; 2024) can further enhance mem-
ory and training efficiency for fine-tuning, including LoRA
and SpFT.

As LLMs increase in scale, advancing efficient sparse matrix
computation, PEFT, and efficient training remains a crucial
problem. Towards this goal, we study the question: Can
sparse fine-tuning be improved to create a memory- and
parameter-efficient framework, while avoiding additional
implementations of sparse operations and without increas-
ing the training time complexity? We answer this question
in the affirmative, by proposing a new SpFT framework
for fine-tuning LLMs that achieves memory- and parameter-
efficiency while maintaining or even improving performance
on downstream tasks. Our approach utilizes NN pruning
techniques to identify a subset of fine-tuning parameters
and employs a matrix decomposition-based computation
for efficient fine-tuning. This design enables the integra-
tion of ideas from model compression, SpFT, and matrix
decomposition methods.

1.1. Our Contributions

At a high level, our contributions are as follows:
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• We leverage ideas from network pruning to improve
SpFT, achieving significant memory efficiency con-
siderably lower than the popular LoRA. Our method
uses only standard tensor operations, eliminating the
need for custom sparse tensor libraries. Our approach
supports fine-tuning quantized base models to further
reduce the memory footprints.

• We analyze the memory assignment of several PEFT
methods and suggest that computation graphs can af-
fect memory more significantly than the number of
trainable parameters. We validate our methods across
diverse fine-tuning tasks and provide practical guid-
ance on training strategies to maximize efficiency and
accuracy.

The rest of the paper is organized as follows. We describe
our approach in detail in Section 2 and analyze the advantage
of memory footprint in Section 3. Section 4 describes the
settings of our experiments. We then present and discuss
our results in Section 5.

2. Our Method
To address the challenges mentioned in Section 1, we
propose Structured-Pruning-based Sparse Fine-Tuning
(SPruFT), as illustrated in Figure 1. This is a row-based
SpFT approach designed to streamline computation graphs.
This method ensures memory efficiency while maintaining
competitive performance.
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Figure 1. The illustration of SPruFT: we evaluate the importance
score for each neuron to select the fine-tuning indices. Then
we construct the lower-dimensional fine-tuning parameter matrix
∆W.

2.1. Proposed Method

SPruFT leverages structured neural network pruning to se-
lect a subset of parameters for fine-tuning, building upon
the fine-tuning framework of SpFT (Guo et al., 2021; Sung
et al., 2021; Ansell et al., 2022; Nikdan et al., 2024), which
models fine-tuning as learning an additive weight matrix δ:

Ŵ = W + δ, (1)

h = f(Ŵ,x) = f(W + δ,x), (2)

where h ∈ Rdout and x ∈ Rdin represent the output and
input of the hidden layer, respectively.The function f(·)

denotes the layer’s forward pass. W ∈ Rdout×din is the
frozen pre-trained weight matrix, and Ŵ is the effective
weight matrix used at inference. In SpFT, δ is typically un-
structured, which often requires memory-saving techniques
such as sparse formats (e.g., CSC/CSR (Mofrad et al., 2019;
Lu et al., 2024) and semi-structured sparsity (Holmes et al.,
2021)) and efficient computation (e.g., Sparse Matrix Multi-
plication (SpMM) and sparse backpropagation (Zhang et al.,
2020; Gale et al., 2020; Peste et al., 2021; Schwarz et al.,
2021; Hoefler et al., 2021; Jiang et al., 2022; Nikdan et al.,
2023; Xu et al., 2024))1. However, these come with added
complexity in implementation and runtime.

In contrast, SPruFT uses a structured δ, eliminating the need
for sparse computation techniques. Specifically, we select
the top-r most important neurons using an importance score
vector η, where r is determined by the target parameter bud-
get. The selected neuron indices are denoted i1, i2, . . . , ir.
Identifying task-relevant neurons has been widely studied in
the pruning literature (LeCun et al., 1989; Han et al., 2015;
Han, 2017; Hoefler et al., 2021; Liu et al., 2021; Fang et al.,
2023; Ma et al., 2023; Frantar & Alistarh, 2023; Sun et al.,
2024), typically for reducing model size while preserving
accuracy. In this work, we use the ℓ2 norm of each neuron’s
weight vector as the importance score, though we do not
explore other metrics here. Notably, our definition of im-
portance is task-specific for the fine-tuning objective, which
may differ significantly from the original pretraining task.

After determining η, we construct a smaller trainable ma-
trix ∆W ∈ Rr×din corresponding to the selected rows.
Let M ∈ 0, 1dout×r be a binary row selection matrix with
Mijj = 1 for j ∈ [r] and zeros elsewhere. We adopt
LoRA’s computation graph to enable efficient gradient com-
putation2:

f(Ŵ,x) = f(W +M∆W,x)

= f(W,x) + f(M∆W,x), (3)

For comparison, LoRA approximates δ as the product of
two low-rank matrices B ∈ Rdout×r and A ∈ Rr×din :

Ŵ = W +
α

r
BA, (4)

h = f(Ŵ,x) = f(W,x) + f
(α
r
BA,x

)
, (5)

where α is a scaling hyperparameter.

In both SPruFT and LoRA, due to the additive structure
of transformer components (e.g., self-attention and feed

1See also NVIDIA’s memory optimization techniques:
https://pytorch.org/torchtune/stable/
tutorials/memory_optimizations.html

2Directly updating selected rows of W would be more effi-
cient, but learning ∆W separately provides better task modularity.
During inference, ∆W can be merged into W, preserving runtime
efficiency.
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Model, ft setting mem #param BoolQ PIQA SIQA HS WG ARC-c ARC-e OBQA Avg GSM8k

Llama2(7B), pretrained - - 58.00 40.00 29.00 15.40 4.80 14.00 16.20 25.40 25.35 0.00

LoRA, r = 64 23.46GB 159.9M(2.37%) 77.00 76.20 67.80 84.20 62.60 70.00 82.00 74.00 74.23 18.42
VeRA, r = 64 22.97GB 1.374M(0.02%) 47.80 51.80 41.80 37.60 50.40 36.80 43.20 32.80 41.53 0.00
DoRA, r = 64 44.85GB 161.3M(2.39%) 75.20 75.40 64.60 78.60 63.00 65.20 82.20 70.60 71.85 21.46
RoSA, r = 32, d = 1.2% 44.69GB 157.7M(2.34%) 79.80 73.40 70.20 76.00 57.00 68.80 80.80 71.60 72.20 21.99
SPruFT, r = 128 17.62GB 145.8M(2.16%) 80.00 75.20 67.60 85.00 63.40 70.80 82.40 71.80 74.53 22.90

Llama3(8B), pretrained - - 58.80 41.60 38.00 10.20 11.20 55.20 63.00 27.40 38.18 0.00

LoRA, r = 64 30.37GB 167.8M(2.09%) 84.20 77.00 63.20 84.20 67.20 76.40 88.80 71.00 76.50 41.77
VeRA, r = 64 29.49GB 1.391M(0.02%) 61.00 62.40 55.60 41.80 49.60 59.60 77.60 60.00 58.45 0.00
DoRA, r = 64 51.45GB 169.1M(2.11%) 83.20 82.80 69.00 89.40 70.80 77.20 89.00 80.40 80.23 46.02
RoSA, r = 32, d = 1.2% 48.40GB 167.6M(2.09%) 79.00 81.00 69.20 84.80 68.60 79.00 90.40 78.40 78.80 45.72
SPruFT, r = 128 24.49GB 159.4M(1.98%) 87.60 77.40 71.40 85.40 70.20 79.80 90.80 81.80 80.55 46.10

Table 1. Main results of fine-tuning full precision Llama2 and Llama3. “mem” represents the memory cost in training excluding the
model itself, with further details provided in Appendix C.3. #param is the number of trainable parameters. HS, OBQA, and WG represent
HellaSwag, OpenBookQA, and WinoGrande datasets. All reported results for commonsense reasoning tasks are accuracies, while the
results for GSM8k are the exact match score. Bold indicates the best result on the same task.

forwarding network (FFN), see (Vaswani, 2017)), gradients
can be computed efficiently while keeping W frozen.

Due to LoRA’s simplicity and effectiveness, numerous vari-
ants have been proposed to enhance the performance, e.g.,
QLoRA (Dettmers et al., 2022; Guo et al., 2024a; Li et al.,
2024; Dettmers et al., 2024), DoRA (Liu et al., 2024),
RoSA (Nikdan et al., 2024), and VeRA (Kopiczko et al.,
2024). These methods have achieved exceptional perfor-
mance, often comparable to full fine-tuning across a range
of tasks.

2.2. QSPruFT: Extension Approach with Low
Quantization Error

Our approach is model-agnostic, allowing users to integrate
recent advances in PEFT such as QLoRA (Dettmers et al.,
2024), LoftQ (Li et al., 2024), and QPiSSA (Meng et al.,
2024). QLoRA quantizes the base model to Normal Float
4-bit (NF4) and fine-tunes full-precision LoRA matrices
A and B. Based on QLoRA, LoftQ and QPiSSA propose
alternative initialization strategies for A and B to reduce
quantization error. This error is defined as:

Wres = W −WNF4, (6)

and both LoftQ and QPiSSA use singular value decompo-
sition (SVD) to initialize A and B such that BinitAinit ≈
Wres.

In our method, when applied to quantized base models, we
do not require decomposition to approximate Wres. Since
we fine-tune only selected rows, we can directly initialize
∆W using the corresponding rows from Wres, where the
quantization error of the fine-tuning rows is zero. This offers
a potential advantage over QLoRA, QDoRA, LoftQ, and
QPiSSA in terms of accuracy.

3. Advantage of Our Approach in Memory
Footprints

In this section, we want to emphasize that in PEFT research,
reducing the number of trainable parameters is not the most
critical factor for minimizing memory consumption. While
certain PEFT methods explicitly aim to lower the number
of trainable parameters to reduce memory usage, the impact
of this reduction diminishes once the parameter count is
sufficiently small. To investigate this further, we compare
several representative methods of SpFT and low-rank meth-
ods, focusing on their memory footprints during training, as
shown in Figure 2. For precisely, we assume full-precision
training to exclude memory costs introduced by quantiza-
tion or other compression techniques and implementations.
Notably, quantizing the model to 4-bit precision can yield
an additional memory savings of approximately 75%.

During neural network training, backpropagation requires
caching a large number of intermediate activations to com-
pute gradients efficiently. The memory cost of these in-
termediate values is largely influenced by the structure of
the computation graph. When the number of trainable pa-
rameters is small, the memory consumed by intermediate
activations (see green bars in Figure 2) often dominates
memory usage apart from the model weights.

Among the LoRA-based methods, VeRA attempts to reduce
memory by sharing a pair of low-rank matrices across lay-
ers, thereby reducing the number of trainable parameters.
However, as shown in Figure 2, this results in only marginal
memory savings—around 0.5GB to 2GB depending on the
maximum token length, which is almost negligible. In con-
trast, DoRA and RoSA incur significantly higher memory
usage due to their more complex computation graphs and re-
liance on unstructured sparse matrices. For instance, DoRA
decomposes LoRA’s matrices into separate magnitude and
direction components (see Figure 4 in Appendix C.4), which
substantially increases memory requirements for activation
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Model, ft setting BoolQ PIQA SIQA HS WG ARC-c ARC-e OBQA Avg GSM8k

Llama2(7B), pretrained 58.00 40.00 29.00 15.40 4.80 14.00 16.20 25.40 25.35 0.00

QLoRA, r = 64 75.20 74.80 66.80 73.80 63.60 63.40 77.60 65.40 70.08 18.88
QDoRA, r = 64 77.40 72.00 68.40 81.60 63.20 64.60 80.20 70.60 72.25 25.63
LoftQ, r = 64 73.80 73.20 72.60 81.60 64.20 67.60 82.00 71.60 73.33 20.55
QPiSSA, r = 64 79.40 72.40 68.60 77.40 65.00 67.40 78.60 69.80 72.33 21.08
QSPruFT∗ , r = 128 78.00 72.60 69.00 79.40 63.20 67.20 79.60 74.80 72.98 20.32
QSPruFT† , r = 128 82.00 71.80 69.20 83.20 65.40 67.20 79.20 72.40 73.80 22.14

Llama3(8B), pretrained 58.80 41.60 38.00 10.20 11.20 55.20 63.00 27.40 38.18 0.00

QLoRA, r = 64 77.40 81.60 72.80 87.60 69.60 75.80 90.20 78.60 79.20 41.17
QDoRA, r = 64 79.00 79.20 68.20 82.20 66.40 75.80 87.40 77.20 76.93 46.17
LoftQ, r = 64 87.00 82.80 69.40 90.20 62.40 74.80 91.00 79.60 79.65 44.96
QPiSSA, r = 64 87.60 82.00 71.00 82.60 71.80 77.20 89.60 77.20 79.88 45.87
QSPruFT∗ , r = 128 89.80 79.40 65.40 89.80 68.40 76.20 91.80 78.00 79.85 47.76
QSPruFT† , r = 128 90.40 82.40 68.60 89.40 69.20 76.80 90.80 76.40 80.50 49.13

Table 2. Main results of fine-tuning NF4-quantized LLaMA-2 and LLaMA-3. QSPruFT∗ denotes our approach with ∆W initialized
randomly, while QSPruFT† uses ∆W initialized with the corresponding rows from the quantization residual Wres.

caching. While DoRA’s trainable parameter cost is similar
to that of LoRA, its overall memory consumption is consid-
erably higher. RoSA also consumes much more memory
than LoRA despite incorporating efficiency-oriented design
choices. These findings suggest that a simple computation
graph can be a far more significant contributor to memory
usage than reducing trainable parameters.
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Figure 2. Memory footprints of fine-tuning full precision Llama2
using LoRA (Hu et al., 2022), RoSA (Nikdan et al., 2024),
DoRA (Liu et al., 2024), VeRA (Kopiczko et al., 2024), and ours.
We set r = 32, d = 1.2% for RoSA, r = 128 for ours, and r = 64
for the others. Note that RoSA has its own official implementa-
tion, which may influence memory consumption, whereas LoRA,
DoRA, and VeRA are integrated into the PEFT library provided
by Hugging Face. More details please see Appendix C.3.

4. Experimental Setup
We fine-tune Llama-2-7B and Llama-3-8B in full-precision
(float32) and NF4 (Dettmers et al., 2024) on the training
split of 8 commensense reasoning tasks and evaluate the
result on the test splits. Then we fine-tune the LLMs on the
training split of GSM8k (Cobbe et al., 2021) and evaluate
the performance on the test split via EleutherAI LM Harness
tasks (Gao et al., 2021). See Appendix D for details.

We fine-tune the models using our SPruFT, QSPruFT,
LoRA (Hu et al., 2022), QLoRA (Dettmers et al., 2024),
VeRA (Kopiczko et al., 2024), DoRA (Liu et al., 2024),
QDoRA, RoSA (Nikdan et al., 2024), LoftQ (Li et al., 2024),
and QPiSSA (Meng et al., 2024). RoSA is chosen as the
representative SpFT method and is the only SpFT due to
the high memory demands of other SpFT approaches, while
full fine-tuning is excluded for the same reason. We freeze
Llama’s classification layers and fine-tune only the linear
layers in attention and FFN blocks.

We use a learning rate of 2 · 10−5 with linear decay (rate
0.01) for our method, and 10−4 for other PEFT methods,
with α = 16 and dropout rate 0.1. All methods apply linear
decay after a 3% warmup. For commonsense reasoning,
we train on 2048 samples (256 per dataset) and evaluate on
500 test examples per dataset. For GSM8K, we fine-tune on
2048 random training samples and evaluate on the full test
set. Instruction-style prompts are used for commonsense
datasets,3 while GSM8K uses question-answering prompts.
We fine-tune all models for 3 epochs.

Our framework is built on torch-pruning (Fang et al., 2023),
PyTorch (Paszke et al., 2019), and HuggingFace Transform-
ers (Wolf et al., 2020). Most experiments are conducted
on a single A100-80GB GPU, except DoRA and RoSA (at
2048 max tokens) which run on an H100-96GB. We use
the Adam optimizer (Kingma & Ba, 2015) and train with a
fixed epoch budget without early stopping.

5. Results and Discussion
5.1. Main Results

We now present the results of fine-tuning LLaMA mod-
els using our SPruFT framework and LoRA’s variants. As

3LLaMA-3 performs well with question-answering prompts,
and fine-tuning yields limited gains, suggesting possible pre-
training on these datasets with question-answering prompts.

4



An Efficient Row-Based Sparse Fine-Tuning with Low Quantization Error

shown in Table 1, our method achieves superior memory
efficiency while maintaining strong accuracy. Notably, al-
though VeRA uses significantly fewer trainable parameters,
it suffers from a marked drop in accuracy. In addition, Ta-
ble 2 demonstrates that our method remains effective when
fine-tuning NF4-quantized base models. Additionally, the
results show that leveraging initialization strategies to re-
duce quantization error can further enhance the performance
of our approach.

5.2. Conclusions and Future Work

We propose a parameter-efficient fine-tuning (PEFT) frame-
work that integrates various techniques and importance met-
rics from model compression research to enhance sparse
fine-tuning (SpFT). Using our method, we can fine-tune
LLMs using significantly less computation resources than
the popular LoRA (Low-Rank Adaptation) technique, while
achieving similar accuracy. There are several future direc-
tions: (1) For importance metrics, we may wish to explore
better metrics for LLMs. (2) Our results show that fine-
tuning a small number of neurons can significantly improve
model performance on downstream tasks. This observation
naturally raises the question: do the selected neurons play a
distinctive role in specific tasks? This question is related to
the explainability of neural networks, which is an extensive
area of research. It will be interesting to understand if (and
how) individual neurons chosen for fine-tuning contribute
to the new task.
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A. Importance Metrics
Taylor importance is the Taylor expansion of the difference between the loss of the model with and without the target
neuron:

ηi = L(D, F́ci)− L(D, F )

≈ −w⊤∇wL(D, F ) +
1

2
w⊤∇2

wL(D, F )w +O(∇3
wL(D, F ))

(∗)
≈ 1

2
w⊤∇2

wL(D, F )w +O(∇3
wL(D, F ))

(∗∗)
≈ 1

2
(Gw)⊤(Gw) +O(∇3

wL(D, F )),

where G = ∇wL(D, F ). (**) is from the result of Fisher information (Rissanen, 1996):

∇2
wL(D, F ) ≈ ∇wL(D, F )⊤∇wL(D, F ).

Note that (*) is from ∇wL(D, F ) ≈ 0, as removing one channel/neuron from a large neural network typically results in
only a negligible reduction in loss. To efficiently compute ηi, the equation can be further derived as:

ηi ≈ (Gw)⊤(Gw) =
∑
j

(
1

|D|
∑
x∈D

∂L(x, F )

∂wj
wj)

2 ≈
∑
j

| 1

|D|
∑
x∈D

∂L(x, F )

∂wj
wj |,

where w = (w1, . . . , wj , . . .).

Magnitude importance is the ℓ2-norm of the neuron vector computed as
√∑

j w
2
j .

B. Parameter Dependency
Dependencies of parameters between neurons or channels across different layers exist in NNs. These include basic layer
connections, residual connections, tensor concatenations, summations, and more, as shown in Figure 3. The black neurons
connected by real lines represent the dependent parameters that are in the same group. Pruning any black neurons results
in removing the parameters connected by the real lines. (Liu et al., 2021) introduced a group pruning method for CNN
models that treats residual connections as grouped dependencies, evaluating and pruning related channels within the same
group simultaneously. Similarly, (Fang et al., 2023) proposed a novel group pruning technique named Torch-Pruning, which
considers various types of dependencies and achieves state-of-the-art results. (Ma et al., 2023) further applied this procedure
to pruning LLMs. Torch-Pruning can be applied to prune a wide range of neural networks, including image transformers,
LLMs, CNNs, and more, making it a popular toolkit for neural network pruning.

(a) Basic connection (b) Residual connection (c) Concatenation

෍

(d) Summation

concat

Figure 3. Common dependencies of parameters in neural networks.

In this study, we also evaluate the influences of incorporating parameter dependency in our approach. We put the experimental
results of whether incorporating parameter dependency in Appendix C.2. In the experiments, parameter dependency becomes
the following process for our approach: first, searching for dependencies by tracing the computation graph of gradient;
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next, evaluating the importance of parameter groups; and finally, fine-tuning the parameters within those important groups
collectively. For instance, if Wa

·j and Wb
i· are dependent, where Wa

·j is the j-th column in parameter matrix (or the j-th
input channels/features) of layer a and Wb

i· is the i-th row in parameter matrix (or the i-th output channels/features) of
layer b, then Wa

·j and Wb
i· will be fine-tuned simultaneously while the corresponding Ma

dep for Wa
·j becomes column

selection matrix and Wa
s becomes Wa

f,depM
a
dep. Consequently, fine-tuning 2.5% output channels for layer b will result in

fine-tuning additional 2.5% input channels in each dependent layer. Therefore, for the 5% of desired fine-tuning ratio, the
fine-tuning ratio with considering dependencies is set to 2.5%4 for the approach that includes dependencies.

The forward function of layer a for column selection mentioned above can be written as the following equation:

f(Ŵa,x) = f(Wa,x) + f(MaWa
f ,x) + f(Wa

f,depM
a
dep,x).

Note that in this example, as the dependency is connection between the output feature/channel of b and the input fea-
ture/channel of a, the dimension dain is equal to dbout where Wa ∈ Rda

out×da
in ,Wb ∈ Rdb

out×db
in .

C. Ablation Studies and Related Analysis
In this section, we first discuss the hyperparameter settings. While we do not include DeBERTaV3 (He et al., 2023),
DeiT (Touvron et al., 2021), ViT (Dosovitskiy, 2020), ResNet101 (He et al., 2016), and ResNeXt101 (Xie et al., 2017)
in the main context, we fine-tune DeBERTaV3-base (He et al., 2023) on GLUE and fine-tune DeiT, ViT, ResNet101, and
ResNeXt101 on Tiny-ImageNet (Tavanaei, 2020), CIFAR100 (Krizhevsky et al., 2009), and Caltech101 (Li et al., 2022).
For these tasks, we set the fine-tuning ratio at 5%, meaning the trainable parameters are a total of 5% of the backbone plus
classification layers. Following this, we discuss the computational resource requirements for fine-tuning. Figure 5 and
Figure 4 illustrate the computation and cache requirements during backpropagation for our method, LoRA, and DoRA.

For DeBERTaV3, the learning rate is set to 2 · 10−5 with linear decay, where the decay rate is 0.01. The model is fine-tuned
on the full training split of 8 tasks from the GLUE benchmark. The maximum sequence length is fixed to 256 with longer
sequences truncated and shorter sequences padded.

For image models, the learning rate is set to 10−4 with cosine annealing decay (Loshchilov & Hutter, 2017), where the
minimum learning rate is 10−9. All image models used in this study have been pre-trained on ImageNet. Note that
memory efficiency is not emphasized for small-scale models, as dataset-related memory—particularly with large batch
sizes—dominates consumption in these cases. The main advantage of our method in these cases is the reduced FLOPs due
to fewer trainable parameters.

C.1. Hyperparameter Settings

We report the results of three approaches over several epochs as table 3 and table 4. Overall, full fine-tuning over higher
epochs is more prone to overfitting, while head fine-tuning shows the exact opposite trend. Except for the results on
caltech1015, the loss patterns across all models consistently reflect this trend, and most accuracy results further support
this conclusion. However, our approach demonstrates a crucial advantage by effectively balancing the tradeoff between
performance and computational resources.

Table 3 clearly shows that both our approach and full fine-tuning achieve optimal results within a few epochs, while head
fine-tuning requires more training. Notably, all models have been pre-trained on ImageNet-1k, which may explain the strong
performance observed with head fine-tuning on Tiny-ImageNet. However, even with this advantage, full fine-tuning still
outperforms head fine-tuning, and our approach surpasses both. In just 5 epochs, our approach achieves results comparable
to full fine-tuning on all datasets with significantly lower trainable parameters.

In contrast to Table 3, the results in Table 4 show more variation. Although the validation loss follows a similar trend, we
report only the evaluation metrics due to the different patterns observed in these metrics. One potential reason for this
variation is the varying amounts of training data across the GLUE tasks. As shown in the table, tasks with fewer samples
often require more epochs to achieve better performance for both full fine-tuning and our approach. Conversely, for tasks
with large amounts of training data such as ‘MNLI’, ‘QNLI’, ‘QQP’, and ‘SST-2’, the results show tiny improvement from

4In some complex models, considering dependencies results in slightly more than twice the number of trainable parameters. However,
in most cases, the factor is 2.

5The inconsistent trend observed in Caltech101 results is likely due to its significantly smaller sample size.
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CIFAR100 Tiny-ImageNet Caltech101

Full Head SPruFT Full Head SPruFT Full Head SPruFT

#ep loss, acc loss, acc loss, acc loss, acc loss, acc loss, acc loss, acc loss, acc loss, acc

DeiT DeiT DeiT

#param: 86.0M 0.2M 4.6M 86.1M 0.3M 4.8M 86.0M 0.2M 4.6M

5 0.36, 90.18 0.76, 80.25 0.37, 88.70 0.54, 87.55 0.60, 85.09 0.40, 89.69 0.11, 97.33 1.09, 89.02 0.30, 95.41
10 0.44, 90.04 0.64, 81.83 0.42, 88.62 0.69, 86.32 0.54, 85.72 0.49, 88.96 0.11, 97.55 0.53, 93.22 0.17, 96.28
30 0.62, 89.03 0.55, 83.42 0.64, 88.61 0.94, 84.27 0.52, 86.06 0.72, 88.67 0.11, 97.11 0.22, 95.06 0.12, 96.50

ViT ViT ViT

#param: 85.9M 0.1M 4.5M 86.0M 0.2M 4.6M 85.9M 0.1M 45.2M

5 0.38, 90.13 1.01, 74.78 0.40, 88.13 0.51, 88.45 0.65, 84.10 0.36, 90.87 0.12, 97.16 1.60, 85.70 0.43, 93.96
10 0.45, 89.85 0.85, 77.05 0.45, 87.55 0.66, 86.78 0.58, 84.95 0.44, 90.48 0.11, 97.20 0.85, 89.98 0.23, 95.54
30 0.62, 88.78 0.71, 79.51 0.69, 87.83 0.96, 84.20 0.55, 85.49 0.61, 90.56 0.12, 97.24 0.33, 92.65 0.16, 96.02

ResNet101 ResNet101 ResNet101

#param: 42.7M 0.2M 2.2M 42.9M 0.4M 2.4M 42.7M 0.2M 2.2M

5 0.50, 86.21 1.62, 60.78 0.59, 82.36 0.92, 77.78 1.64, 62.06 0.76, 79.66 0.14, 96.50 1.25, 82.33 0.48, 92.56
10 0.58, 86.41 1.39, 63.06 0.60, 82.33 1.10, 76.81 1.50, 63.19 0.79, 79.54 0.14, 96.54 0.69, 90.24 0.23, 95.58
30 0.80, 84.72 1.21, 65.63 0.80, 82.49 1.54, 74.09 1.43, 64.47 1.08, 78.58 0.18, 95.80 0.31, 93.00 0.16, 95.89

ResNeXt101 ResNeXt101 ResNeXt101

#param: 87.0M 0.2M 4.9M 87.2M 0.4M 5.1M 87.0M 0.2M 4.9M

5 0.47, 87.30 1.42, 65.07 0.47, 85.94 0.86, 79.51 1.46, 65.59 0.61, 83.88 0.12, 97.07 1.25, 83.16 0.28, 95.84
10 0.56, 87.17 1.23, 67.55 0.53, 86.04 1.01, 79.27 1.35, 66.73 0.69, 83.47 0.13, 96.89 0.68, 90.94 0.18, 96.28
30 0.71, 86.59 1.08, 69.45 0.69, 86.33 1.41, 76.55 1.29, 67.93 0.90, 82.83 0.16, 96.63 0.31, 92.87 0.14, 96.76

Table 3. Fine-tuning on CIFAR100 and Tiny-ImageNet. #ep and #param represent the number of epochs and the number of trainable
parameters, where SPruFT is our method with Taylor importance. Full and Head indicate full fine-tuning and head-finetuning, which only
fine-tunes the classification layer. All reported losses and accuracies are based on validation results. Bold denotes the best results of each
fine-tuning approach (in the same column) on the same model and dataset.

task CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

#train 8.5k 393k 3.7k 108k 364k 2.5k 67k 7k

method #param epochs mcc acc acc acc acc acc acc corr

Full 184.42M 3 69.96 89.42 89.71 93.57 92.08 80.14 95.53 90.44
Full 5 69.48 89.29 87.74 93.36 92.08 83.39 94.72 90.14
Full 10 68.98 88.55 90.20 93.15 91.97 80.51 93.81 90.71

Head 592.13K 3 24.04 62.64 68.38 70.73 80.18 52.71 65.48 5.66
Head 5 45.39 61.75 68.38 72.32 80.59 47.29 78.44 26.88
Head 10 47.32 63.98 68.38 71.99 80.96 47.29 74.66 49.59

SPruFT 103.57M 3 64.08 89.58 81.62 93.10 90.70 70.40 95.18 86.58
SPruFT 5 65.40 90.21 86.03 93.17 90.93 74.37 95.30 87.36
SPruFT 10 65.56 89.55 87.50 93.15 91.57 80.14 95.41 89.14

Table 4. Fine-tuning DeBERTaV3 on GLUE. ‘mcc’, ‘acc’, and ‘corr’ represent ‘Matthews correlation’, ‘accuracy’, and ‘Pearson
correlation’, respectively. #param is the number of trainable parameters. SPruFT is our method with Taylor importance, while Full
and Head indicate full fine-tuning and head-finetuning, which only fine-tunes the classification layer. All reported metrics are based on
validation results, and are percentages. Bold denotes the best results of each fine-tuning approach on the same task.
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3 to 10 epochs. Nevertheless, the results still demonstrate that our approach significantly balances the tradeoff between
performance and computational resources. Our method achieves near full fine-tuning performance with remarkably less
trainable parameters.

We refer from Table 4 for epochs choosing of fine-tuning Llama2 and Llama3. Table 4 shows that 5 or 10 epochs are
reasonable for most tasks using our approach. Given that the maximum sequence lengths of Llama are longer than
DeBERTaV3, we have opted for only 5 epochs in the main experiments to balance computational resources and performance.

C.2. Considering Dependency

We evaluate our approach with and without considering parameter dependency, as shown in Table 5 and Table 6.

data CIFAR100 Tiny-ImageNet Caltech101

model dep ℓ2 Taylor ℓ2 Taylor ℓ2 Taylor

DeiT % 88.05 88.70 89.31 89.69 95.01 95.41
! 86.43 87.33 85.56 85.92 65.35 78.04

ViT % 87.13 88.06 90.78 90.87 92.69 93.96
! 85.24 86.83 88.83 88.95 56.30 77.82

RN % 82.25 82.36 79.83 79.66 93.13 92.56
! 78.63 78.62 69.87 69.24 54.68 52.71

RNX % 86.12 85.94 83.88 83.88 95.71 95.84
! 84.71 85.01 79.39 78.95 92.13 91.82

Table 5. Fine-tuning image models by our SPruFT for 5 epochs. “dep” refers to whether parameter dependencies are involved or not. ℓ2

and Taylor represent the magnitude and Taylor importance. All reported results are validation accuracies. Bold indicates the superior
results achieved through dependency searching compared to not searching. Underline highlights the best fine-tuning results.

We utilize various importance metrics to fine-tune both models using our approach, with and without incorporating parameter
dependencies, and report the results to compare their performances. Searching for dependencies in structured pruning is
natural, as dependent parameters are pruned together. However, important neurons in a given layer do not always have
dependent neurons that are also important in their respective layers. As demonstrated in Table 5, fine-tuning without
considering parameter dependencies outperforms fine-tuning incorporating dependencies in all cases. For importance
metrics, although the differences between them are not substantial, all results consistently conclude that the Quantile-
Mean Taylor importance demonstrates a slight improvement over the standard Taylor importance. Furthermore, both the
Quantile-Mean Taylor and standard Taylor metrics outperform the magnitude importance.

task CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

imp dep mcc acc acc acc acc acc acc corr

Taylor % 65.56 89.55 87.50 93.15 91.57 80.14 95.41 89.14
! 67.49 89.85 87.25 93.30 91.63 79.42 95.07 89.98

ℓ2 % 65.40 89.77 83.33 92.64 91.34 74.73 94.04 88.69
! 66.80 90.22 84.07 93.94 91.57 79.06 95.07 87.39

Table 6. Fine-tuning DeBERTaV3 on GLUE by our SPruFT for 10 epochs. “dep” refers to whether parameter dependencies are involved
or not. Taylor and ℓ2 indicate the magnitude and Taylor importance. The importance score is Taylor. We do not apply QMTaylor since the
number of labels is tiny. ‘mcc’, ‘acc’, and ‘corr’ represent ‘Matthews correlation’, ‘accuracy’, and ‘Pearson correlation’, respectively. All
reported metrics are based on validation results. Bold indicates the best results of whether considering dependencies.

Table 6 suggests a slightly different conclusion: the impact of parameter dependencies on performance is minor, nearly
negligible6. However, searching for dependencies involves additional implementations and computational overhead.
Combining the results of image models, the conclusion is not searching for the parameter dependencies. For importance
metrics, this experiment shows that magnitude and Taylor importance perform similarly.

6The results of using magnitude importance on the RTE task show significant variation, but this is likely due to the small sample size
and the hardness of the task, which result in the unstable performances observed in our experiments. Aside from RTE, the results on other
tasks are not significantly different.
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C.3. Memory Measurement

In this study, we detail the memory measurement methodology employed. The total memory requirements can be categorized
into three main components:

memTTL = memM + memFT + memAux,

where:

1. memTTL is the total memory consumed during training.

2. memM represents the memory consumed by the base model itself.

3. memFT corresponds to the memory required for the fine-tuning parameters and their gradients.

4. memAux accounts for any additional memory usage, including optimizer states, caching, and other intermediate
computations.

We yield memM by measuring the memory usage during inference on the training data using the pre-trained model. The
combined memory usage of memFT and memAux is calculated as the difference between memTTL and memModel. For
simplicity, we consistently report memFT + memAux as “mem” in this study.

Llama2(7B) Llama3(8B)

FT setting #param memTTL memM mem #param memTTL memM mem

LoRA, r = 64 159.9M(2.37%) 53.33GB 29.87GB 23.46GB 167.8M(2.09%) 64.23GB 33.86GB 30.37GB
RoSA, r = 32, d = 1.2% 157.7M(2.34%) 74.56GB 29.87GB 44.69GB 167.6M(2.09%) 82.26GB 33.86GB 48.40GB
DoRA, r = 64 161.3M(2.39%) 74.72GB 29.87GB 44.85GB 169.1M(2.11%) 85.31GB 33.86GB 51.45GB
VeRA, r = 64 1.4M(0.02%) 52.84GB 29.87GB 22.97GB 1.4M(0.02%) 63.35GB 33.86GB 29.49GB
SPruFT, r = 128 145.8M(2.16%) 47.49GB 29.87GB 17.62GB 159.4M(1.98%) 58.35GB 33.86GB 24.49GB

Table 7. The requirements of computation resources for fine-tuning. ‘mem’ traces memTTL −memM. All fine-tuning parameters are stored
in full precision and the max token is 2048. We also examined the training time and observed that DoRA requires 50% to 100% more
time than other methods, while LoRA, RoSA, and our approach need similar training time (differing only by a few seconds). However,
due to the influence of various factors on training time and the difficulty of ensuring a fair comparison, we chose not to include these
results in our report.

In Figure 2, we yield the memory cost of ‘dropout’ by tracing the memory usage of fine-tuning Llama2 using these PEFT
methods with and without dropout. Additionally, we examined memory usage under varying r and d to obtain the maximum
potential memory savings from reducing the number of trainable parameters in each method. For instance, in the case of
LoRA, fine-tuning the model with r = 64 and r = 32 shows a memory saving of approximately 1.25GB when reducing r
from 64 to 32. This implies that the memory consumed by trainable parameters in LoRA with r = 64 is approximately
1.25 × 2 = 2.51GB. Table 8 shows the exact values of Figure 2 for max token= 2048. Notably, we also use RoSA to
demonstrate that quantizing trainable parameters (Gholami et al., 2022; Dettmers et al., 2022; 2024) with mixed-precision
training (Micikevicius et al., 2018) saves significantly more memory than simply reducing trainable parameters, as shown by
the memory difference between RoSA and RoSA-bf16 in Figure 2 (see also related works on quantization (Dettmers et al.,
2022; Guo et al., 2024a; Li et al., 2024; Dettmers et al., 2024)).

C.4. Resource Requirements

Table 7 and Table 8 presents the resource requirements of various PEFT methods. We compare our approach with LoRA and
several of its variants that maintain or surpass LoRA’s performance. As shown, our method is the most resource-efficient
among these approaches. The subsequent ablation study further demonstrates that our approach achieves performance
comparable to LoRA. We exclude comparisons with VeRA (Kopiczko et al., 2024), which proposes sharing a single pair of
random low-rank matrices across all layers to save memory footprint. While VeRA achieves some memory savings, its
performance often deteriorates.

We note that while our approach offers significant memory efficiency, this benefit is less pronounced in small-scale models,
where the primary memory consumption arises from the dataset—especially with large batch sizes. The main advantage of
our method in these cases is the reduced FLOPs due to fewer trainable parameters. Therefore, we do not highlight memory
efficiency in small-scale model scenarios.
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Llama2(7B)

PEFT #param mem dropout param other

LoRA 159.9M(2.37%) 23.46GB 6.18GB 2.51GB 14.77GB
RoSA 157.7M(2.34%) 44.69GB 6.22GB 1.72GB 36.75GB
RoSA-bf16 157.7M(2.34%) 39.55GB 6.22GB 0.92GB 32.41GB
DoRA 161.3M(2.39%) 44.85GB 6.29GB 2.49GB 36.07GB
VeRA 1.37M(0.02%) 22.97GB 2.15GB 0.11GB 20.71GB

Table 8. The requirements of computation resources for fine-tuning full precision Llama2 using LoRA (Hu et al., 2022), RoSA (Nikdan
et al., 2024), DoRA (Liu et al., 2024), and VeRA (Kopiczko et al., 2024). In this analysis, we set r = 64 for LoRA, DoRA, and VeRA and
set r = 32, d = 1.2% for RoSA. The fine-tuning parameters of RoSA-bf16 are in bfloat16 under mixed-precision training (Micikevicius
et al., 2018), while all others are in full precision. Note that RoSA has its own official implementation, whereas LoRA, DoRA, and VeRA
are integrated into the PEFT library provided by Hugging Face. This may influence the memory used by each method. ‘mem’ traces
the peak memory usage during training, excluding the memory consumed by the model itself, while ‘dropout’ accounts for the memory
consumption associated with LoRA’s dropout layer. ‘param’ represents the maximum memory savings from reducing the number of
trainable parameters. This is quantified by varying r and d for each method and calculating the memory difference attributed to trainable
parameters. ‘other’ indicates the memory usage from any other intermediate values in backpropagation and optimizer states.
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Figure 4. The illustration of DoRA’s computation graph. Black operations occur during the forward pass, while orange operations take
place during the backward pass.
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In Section 3, we explain that the memory usage of DoRA is significantly higher than that of LoRA due to its complex
computation. We demonstrate the computation graph of DoRA here, as shown in Figure 4. DoRA decomposes W
into magnitude m and direction V and computes the final parameters matrix by W′ = m V+∆V

||V+∆V||c . This complicated
computation significantly increases memory usage because it requires caching a lot of intermediate values for computing
gradients of B, A, and m. As illustrated in Figure 4, each node passed by backpropagation stores some intermediate values
for efficient gradient computing.
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Figure 5. The illustration of backpropagation highlights the operations involved. Black operations occur during the forward pass, while
orange operations take place during the backward pass. Blue operations highlight the benefits of our approach. Notably, since M is
non-trainable, caching ∆Wx during the forward pass is unnecessary, leading to significant memory savings. Additionally, in practice,
PyTorch caches ∂L

∂hright
to efficiently compute ∂L

∂B
, although this caching is not strictly required for backpropagation.

C.5. Cache Benefit

In the main context, we have already shown the memory cost of dropout layers in LoRA, in this section, we will discuss some
other benefits of our approach. Figure 5 illustrates the computation and cache requirements in backpropagation (Rumelhart
et al., 1986). For simplicity, we replace the notation f(·, ·) with different h. With the same number of trainable parameters,
our approach eliminates the need to cache h = ∆Wx shown in the figure. While this benefit is negligible under lower rank
settings (r) or when the number of fine-tuning layers is small, it becomes significant as the model size and rank settings
increase. Although the caching requirement for h can be addressed by recomputing h = Ax during backpropagation, this
would result in increased time complexity during training.

D. Details of Datasets
D.1. Vision Benchmarks

CIFAR100: CIFAR100 (Krizhevsky et al., 2009) has 100 classes with 600 images of size 32x32 per class, while the CIFAR10
has 10 classes with 6000 images per class. In this study, we use the CIFAR100 downloaded from huggingface (https:
//huggingface.co/datasets/uoft-cs/cifar100) with 500 training images and 100 validation images per
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class. In our experiments, we resize the images to 256x256, crop the center to 224x224, and normalize them using the
CIFAR mean (0.507, 0.487, 0.441) and standard deviation (0.267, 0.256, 0.276) for the three channels.

Tiny-ImageNet: Tiny-ImageNet (Tavanaei, 2020) has 200 classes with images of size 64x64, while the full ImageNet-
1k (Deng et al., 2009) has all 1000 classes where each image is the standard size 224x224. In this study, we use the Tiny-
ImageNet downloaded from huggingface (https://huggingface.co/datasets/zh-plus/tiny-imagenet)
with 500 training images and 50 validation images per class. In our experiments, we resize the images to 256x256, crop the
center to 224x224, and normalize them using the mean (0.485, 0.456, 0.406) and standard deviation (0.229, 0.224, 0.225)
for the three channels.

caltech101: Caltech101 (Li et al., 2022) consists of 101 classes, with images of varying sizes typically having edge lengths
between 200 and 300 pixels. Each class contains approximately 40 to 800 images, resulting in a total of around 9,000
images. In this study, we use the Caltech101 dataset provided by PyTorch (https://pytorch.org/vision/main/
generated/torchvision.datasets.Caltech101.html), allocating 75% of the images for training and the
remaining 25% for validation. In our experiments, we preprocess the images by resizing them to 256×256, cropping the
center to 224×224, and normalizing them using the mean (0.485, 0.456, 0.406) and standard deviation (0.229, 0.224, 0.225)
for the three channels.

D.2. General Language Understanding Evaluation Benchmark (GLUE)

CoLA: The Corpus of Linguistic Acceptability (CoLA) is a dataset for assessing linguistic acceptability (Warstadt et al.,
2018). This task is a binary classification for predicting whether a sentence is grammatically acceptable. The dataset is
primarily from books and journal articles on linguistic theory.

MNLI: The Multi-Genre Natural Language Inference (MultiNLI) is a dataset designed to evaluate a model’s ability to
perform natural language inference (NLI). The task is to predict whether the premise entails the hypothesis, contradicts the
hypothesis, or neither. The data set contains 433k sentence pairs annotated with textual entailment information (Williams
et al., 2018).

MRPC: The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) is a dataset designed for evaluating paraphrase
detection systems. It consists of sentence pairs, with binary labels of whether the two sentences in the pair are equivalent.
The data are automatically extracted from online news and labeled by humans.

QNLI: The Stanford Question Answering Dataset (SQuAD) is a dataset designed for machine comprehension of text (Ra-
jpurkar et al., 2016). The dataset consists of question-paragraph pairs, where one of the sentences in the paragraph contains
the answer to the corresponding question. The paragraphs are from Wikipedia and the questions are written by human
annotators.

QQP: The Quora Question Pairs (QQP) dataset is a dataset of question pairs (https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs). The task is to determine whether two questions are se-
mantically equivalent.

RTE: The Recognizing Textual Entailment (RTE) datasets are a series of challenges that evaluate models’ ability to
determine whether a premise can entail a given hypothesis (Dagan et al., 2006; Bar-Haim et al., 2006; Giampiccolo et al.,
2007; Bentivogli et al., 2009). The data are constructed based on the texts from Wikipedia and news. The datasets have been
used to evaluate the performance of both traditional language models and the state-of-the-art LLMs.

SST-2: The Stanford Sentiment Treebank is a dataset of sentences extracted from movie reviews (Socher et al., 2013). Each
sentence is labeled as either positive or negative. The task is to predict whether the sentence is positive or negative.

STS-B: The Semantic Textual Similarity Benchmark (STSB) is a dataset with sentence pairs collected from news headlines,
video and image captions, and natural language inference data (Cer et al., 2017). The task is to predict the semantic similarity
between pairs of sentences. Each pair of sentences is annotated with a similarity score ranging from 0 to 5, where 0 indicates
no semantic similarity and 5 indicates semantically equivalent.

D.3. Text-Generation Datasets

GSM8k: GSM8K (Grade School Math 8K) is a dataset of 8792 high-quality grade school math problems, including
problems in diverse languages. These problems take between 2 and 8 steps of elementary calculations using basic arithmetic
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operations (+−×÷) to solve. The dataset was created to support the task of question answering on basic mathematical
problems to evaluate the model’s ability of basic arithmetic reasoning.

ARC: The AI2 Reasoning Challenge (ARC) dataset consists of grade-school level, multiple-choice science questions (Clark
et al., 2018). ARC dataset includes a Challenge Set and an Easy Set. The easy set contains questions that can be answered
with straightforward reasoning, while the challenge set requires deeper understanding and more reasoning skills. The
ARC-Easy includes 2251 training samples, 570 validation samples, and 2376 test samples and the ARC-Challenge includes
1119 training samples, 299 validation samples, and 1172 test samples.

BoolQ: Boolean Questions (BoolQ) is a dataset of yes/no question answering (Clark et al., 2019) and includes 9427 training
samples and 3270 validation samples. The dataset is designed to assess models’ comprehension and reasoning abilities.
Each example contains question, passage, answer, and title.

HellaSwag: HellaSwag is a dataset designed to evaluate the models’ abilities in generating reasonable contexts (Zellers
et al., 2019). It consists of prompts with a short context followed by multiple possible continuations. The goal is to find the
correct or most plausible option. The training set, validation set, and test set have 39905 samples, 10042 samples, 10003
samples, respectively.

OpenBookQA: OpenBookQA is a question-answering dataset (Mihaylov et al., 2018) comprising 4957 training samples, 500
validation samples, and 500 test samples. It requires reasoning ability and a deeper understanding of common knowledge to
answer questions. Each data contains a short passage with multiple possible answers. The dataset emphasizes the integration
of world knowledge and reasoning skills, making it a challenging benchmark for natural language processing models. It
tests models’ abilities to understand and apply factual information effectively to solve problems.

WinoGrande: WinoGrande is a dataset of 44k problems for choosing the right option for a given sentence (Sakaguchi et al.,
2021). It includes 40938 samples in the training set, 1,267 in the validation set, and 1,267 in the test set. The dataset is
designed to assess models’ commonsense reasoning abilities. The examples contain sentences with fill-in-blanks that require
the model to select the most appropriate option to complete the sentence.

SocialIQA: The SocialIQA dataset is a benchmark designed to evaluate a model’s ability to reason about social interactions,
including understanding social dynamics, intentions, and the effects of human actions (Sap et al., 2019). SocialIQA includes
33410 samples in the training set and 1954 in the validation set.

PIQA: The PIQA (Physical Interaction Question Answering) dataset is a benchmark designed to evaluate a model’s ability
to understand and reason about everyday physical interactions and affordances (Bisk et al., 2020). Here are some key details
about PIQA: (Sakaguchi et al., 2021). PIQA contains 16113 samples in the training set and 1838 in the validation set.
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