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Abstract

In multi-task learning (MTL), gradient balancing
has recently attracted more research interest than
loss balancing since it often leads to better per-
formance. However, loss balancing is much more
efficient than gradient balancing, and thus it is still
worth further exploration in MTL. Note that prior
studies typically ignore that there exist varying
improvable gaps across multiple tasks, where the
improvable gap per task is defined as the distance
between the current training progress and desired
final training progress. Therefore, after loss balanc-
ing, the performance imbalance still arises in many
cases. In this paper, following the loss balancing
framework, we propose two novel improvable gap
balancing (IGB) algorithms for MTL: one takes a
simple heuristic, and the other (for the first time)
deploys deep reinforcement learning for MTL. Par-
ticularly, instead of directly balancing the losses
in MTL, both algorithms choose to dynamically
assign task weights for improvable gap balancing.
Moreover, we combine IGB and gradient balanc-
ing to show the complementarity between the two
types of algorithms. Extensive experiments on two
benchmark datasets demonstrate that our IGB al-
gorithms lead to the best results in MTL via loss
balancing and achieve further improvements when
combined with gradient balancing. Code is avail-
able at https://github.com/YanqiDai/IGB4MTL.

1 INTRODUCTION

Multi-task learning (MTL) is to jointly train a single model
that can perform multiple tasks [Caruana, 1998, Ruder,
2017, Zhang and Yang, 2021, Vandenhende et al., 2021].
Compared with single-task learning (STL), MTL has two
remarkable advantages: 1) the model typically has a smaller

size and higher learning efficiency by sharing parameters
across tasks [Misra et al., 2016, Yang et al., 2020, Vanden-
hende et al., 2021], and 2) the performance on some tasks
can be further improved due to the correlation between
different tasks [Swersky et al., 2013]. Therefore, MTL has
been widely used in real-world application scenarios such as
recommendation systems [Zhao et al., 2019] and automatic
driving [Chowdhuri et al., 2019].

Note that the largest challenge in MTL is the seesaw phe-
nomenon [Tang et al., 2020]: joint training often results in
better performance on some tasks but worse performance
on others. To overcome this challenge, many optimization
methods have been proposed for MTL: one is loss balanc-
ing that directly assigns different weights to the losses of
multiple tasks according to a variety of criteria [Kendall
et al., 2018, Liu et al., 2019, Lin et al., 2022]; the other is
gradient balancing that first calculates the task gradients and
then aggregates them in different ways [Sener and Koltun,
2018, Liu et al., 2021a, Navon et al., 2022]. Since gradient
balancing typically performs better than loss balancing in
MTL, it has attracted more research interest recently. How-
ever, the training cost of gradient balancing algorithms is
significantly higher than that of most loss balancing algo-
rithms, especially when there are significantly more tasks in
MTL [Kurin et al., 2022].

Although most of prior studies focus on improving the per-
formance of MTL by proposing more advancing methods,
we emphasize that improving the learning efficiency is
also of the primary research significance in MTL. There-
fore, loss balancing and gradient balancing are both worth
further study, and the trade-off between efficiency and per-
formance can be taken according to practical requirements.
In this paper, we focus on further improving the performance
of existing loss balancing methods. Specifically, within the
loss balancing framework, we propose two novel improv-
able gap balancing algorithms, where the improvable gap
per task is defined as the distance between the current train-
ing progress and desired final training progress. To define
the improvable gap, we have to first represent the training
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Figure 1: Schematic illustration of the improvable gaps for
three different tasks in MTL. The improvable gap per task is
defined as the distance between the current training progress
and desired final training progress.

progress as the loss decline normalized by the average loss
across the current training time (from the beginning of train-
ing). As shown in Figure 1, the normalized task losses tend
to converge to nonzero values due to the limited training
data and model capacity. Importantly, different tasks in MTL
tend to have different convergence patterns (thus have differ-
ent improvable gaps at the current training time). However,
existing algorithms rarely notice that tasks trained together
usually have different improvable gaps, which results in that
some tasks are fully trained (or even making MTL outper-
form STL on these tasks), while others are still underfitted.
Therefore, our main idea is to dynamically assign task
weights for improvable gap balancing (IGB), instead of
loss balancing that has been widely used in MTL.

We propose the first algorithm IGBv1 to balance improvable
gaps through a simple heuristic by uniformly defining the
ideal loss as 0 for each task. Moreover, loss balancing can be
interpreted as the maximum cumulative loss decline in the
future by assigning weights through sequential decisions,
which is consistent with the application scenario of rein-
forcement learning [Kaelbling et al., 1996]. Therefore, we
propose another algorithm IGBv2 to jointly minimize all im-
provable gaps through deep reinforcement learning (DRL)
[Arulkumaran et al., 2017]. Additionally, we combine IGB
and gradient balancing to show the complementarity be-
tween the two types of algorithms.

In summary, our main contributions are three-fold:
(1) We propose two novel loss balancing algorithms to dy-
namically balancing the improvable gaps in MTL. To our
best knowledge, we are the first to apply DRL to MTL.
(2) Extensive experiments on two benchmark datasets
demonstrate that our IGB algorithms perform the best in
loss balancing and yield further improvements when com-
bined with gradient balancing.
(3) We rethink the significance of loss balancing in terms
of learning efficiency as well as its complementarity with
gradient balancing.

2 RELATED WORK

Multi-Task Learning. Multi-task learning (MTL) research
is broadly divided into two categories: one is to learn the
correlation between tasks through model structures [Misra
et al., 2016, Ma et al., 2018, Liu et al., 2019], and the other
is to balance the joint training process of all tasks through
optimization algorithms [Kendall et al., 2018, Lin et al.,
2022, Sener and Koltun, 2018, Liu et al., 2021b, Navon et al.,
2022]. Our research is primarily concerned with the latter,
which can be categorized into two types: loss balancing and
gradient balancing.

Loss balancing directly updates the model by adding up or
averaging the weighted losses after assigning task weights
according to a variety of criteria. The training time of most
loss balancing algorithms is nearly the same as that of STL,
since the input data, such as losses of the current batch, is
low-dimensional. The most common method for loss balanc-
ing is Equal Weighting (EW), which directly minimizes the
sum of task losses. Besides, various criteria are considered
in prior studies. For example, Kendall et al. [2018] measured
task uncertainty through learnable parameters; Guo et al.
[2018] estimated task difficulty based on key performance;
Liu et al. [2019] considered change rate of loss; Lin et al.
[2022] randomly assigned task weights; Ye et al. [2021]
focused on metamodel validation performance.

Gradient balancing, on the other hand, first calculates task
gradients separately and then updates the model by aggre-
gating task gradients in different ways. The performance
of gradient balancing is typically better than that of loss
balancing, since it can deal with gradient conflicts [Yu et al.,
2020] directly at the gradient level. For example, Chen et al.
[2018] normalized task gradients to learn each task at a
similar rate; Sener and Koltun [2018] regarded gradient ag-
gregation as a multi-objective optimization problem; Liu
et al. [2021a] added the condition of minimum average loss
to Sener and Koltun [2018]; Yu et al. [2020] projected task
gradients onto the normal planes of conflicting gradients;
Chen et al. [2020] randomly dropped some task gradients;
Liu et al. [2021b] aimed to make the aggregate gradient con-
tribute equally to each task; Navon et al. [2022] considered
gradient aggregation as a Nash bargaining game. However,
due to multiple backpropagations and high-dimensional gra-
dient aggregation, gradient balancing often requires greater
training time than STL, which severely limits its learning ef-
ficiency in practice. Additionally, some works also explored
the combination of loss balancing and gradient balancing,
using loss balancing to update the task-specific parameters
and combining loss balancing with gradient balancing to
update the task-shared parameters [Liu et al., 2021b, Lin
et al., 2022, Liu et al., 2022].

Reinforcement Learning. Reinforcement learning (RL)
is an interactive machine learning decision-making method
for streaming data to maximize the expected return [Kael-



bling et al., 1996]. It is commonly modeled using a Markov
decision process, which assumes that the future state is in-
dependent of the past state given the present state [Watkins,
1989]. In other words, let si be the state at time i, the state
st is Markovian if and only if

Pr(st+1|st) = Pr(st+1|s1, s2, · · · , st). (1)

Soft Actor-Critic (SAC) [Haarnoja et al., 2018] is an off-
policy actor-critic algorithm based on the maximum entropy
RL framework, which is chosen as the loss weighting com-
ponent in our IGBv2 algorithm. The Actor-Critic algorithm
[Peters and Schaal, 2008] combines policy-based RL with
value-based RL. The actor generates actions and interacts
with the environment, while the critic evaluates the perfor-
mance of the actor and directs the actions in the subsequent
stage. This algorithm is more efficient than policy gradient
methods because it can be updated at each step. The replay
buffer [Mnih et al., 2013] in SAC is a classic off-policy
mechanism where the agent learned and the agent interact-
ing with the environment is different. It stores historical data
for training, which is composed of four elements: the state
st, the action at, the reward rt and the next state st+1. The
off-policy mechanism is beneficial to improve sample effi-
ciency and reduce training instability caused by time series
data. The maximum entropy reinforcement learning [Ziebart
et al., 2008] changes the optimization objective to maximize
both the expected return and the expected entropy of the
policy. It increases the randomness of the policy, indicating
that the probability distribution of the action is much wider.
Note that more randomness is proved beneficial to improve
performance in MTL [Lin et al., 2022, Chen et al., 2020].

In the context of RL, MTL can facilitate the transfer of
knowledge between tasks, which has been shown to im-
prove the performance of RL agents in various domains.
For example, Chen et al. [2021] trained a MTL agent for
autonomic optical networks, effectively expediting the train-
ing processes and improving the overall service throughput.
Our work differs from this approach in that we, for the first
time, apply reinforcement learning to solve general MTL
optimization problems.

3 METHODOLOGY

In this section, we first provide a scale-invariant loss bal-
ancing paradigm. Based on this paradigm, we then describe
our IGB algorithms. Finally, we give the fusion paradigm to
combine loss balancing and gradient balancing.

3.1 SCALE-INVARIANT LOSS BALANCING

The objective of existing loss balancing algorithms is to
minimize the weighted sum or average of task losses [Lin
et al., 2021]. However, if task losses are on different scales,
the model update is probably dominated by a specific task.

Algorithm 1 Training iteration of IGBv1

Input: task number n, current batch losses L, current
epoch ce, current batch cb, batch number of one epoch
bn, learning rate η, task-shared parameters θ, task-
specific parameters {ψi}ni=1

Output: updated task-shared parameters θ′, updated task-
specific parameters {ψ′

i}
n
i=1

1: if ce = 2 and cb = bn then
2: Assign Lbase to the average losses across every

batch in the current epoch of all tasks;
3: end if
4: if ce ≤ 2 then
5: λv1 = 1 ∈ Rn;
6: else
7: λv1 = n× softmax(L/Lbase);
8: end if
9: θ′ = θ − η∇θ

∑n
i=1 λv1,i log(Li);

10: for i = 1 to n do
11: ψ′

i = ψi − η∇ψiλv1,i log(Li);
12: end for

To solve the scale difference problem of task losses,
Navon et al. [2022] introduces a scale-invariant objective∑n
i=1 log(Li), where n is the number of tasks and Li is the

ith task loss. Inspired by this, we propose a scale-invariant
loss balancing paradigm referred to as SI. The total loss of
SI is defined as:

Ltotal =

n∑
i=1

λl,i log(Li), (2)

where λl,i is the ith task weight assigned by a specific loss
balancing algorithm. In this paper, both of our IGB algo-
rithms are designed based on the SI paradigm.

3.2 IMPROVABLE GAP BALANCING

We propose two loss balancing algorithms: IGBv1 directly
balances improvable gaps across tasks estimated by a simple
heuristic, while IGBv2 jointly minimizes all improvable
gaps through a DRL model.

3.2.1 IGBv1

In the ideal situation, the MTL model can completely fit
each training data, which satisfies Li = 0,∀i. Therefore, we
assume that the desired final training losses of all tasks are
0, so that the improvable gaps can be directly represented
by the normalized losses of the current batch, where the
normalization is to deal with different task loss scales.

To normalize the training losses, we calculate the average
losses across every batch in the second epoch of all tasks as
Lbase = [Lbase,1, Lbase,2, . . . , Lbase,n], since the losses of
the first epoch may be too large to accurately represent the
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Figure 2: The architecture overview of our proposed IGBv2 algorithm by applying DRL to MTL.

loss scales if the MTL model is randomly initialized. In the
first two epochs of training, the task weights are assigned to
constant 1. Then in the subsequent training process, the task
weights are calculated as:

λv1 = n× softmax

(
L

Lbase

)
, (3)

where L = [L1, · · · , Ln] is the current batch losses of all
tasks, and L/Lbase denotes the element-wise division of
the two vectors. By this way, we dynamically assign more
weights to tasks which have more improvable gaps. The
training process of IGBv1 is summarized in Algorithm 1,
where we initially set both the current epoch cp and the
current batch cb to 1.

3.2.2 IGBv2

In practice, it is difficult for the MTL model to satisfy
Li = 0,∀i at the end of training. The reason is that existing
deep learning methods cannot fully fit the training data distri-
bution, and the minimal loss on the training data usually indi-
cates overfitting. Therefore the estimation of the improvable
gap in IGBv1 is inaccurate, and we present IGBv2 which
can adaptively balance improvable gaps through DRL.

Note that assigning task weights for loss balancing can
be interpreted as sequential decisions for maximizing the
cumulative loss declines of tasks in the future, while the loss
declines can be regarded as the feedback reward for task
weights, which is consistent with the application scenario of
RL. Inspired by this, we propose deploying a DRL model
to assign task weights, with the loss declines of the MTL
model as the reward for DRL.

We choose Soft Actor-Critic (SAC) [Haarnoja et al., 2018]
as the DRL model to guide the training of the MTL model,

which is an off-policy actor-critic algorithm based on the
maximum entropy RL framework. As interpreted in Fig-
ure 2, the task weights are assigned by the SAC model with
the losses of the MTL model as input, and the MTL model
and the SAC model are alternately trained. The reasons for
choosing SAC are as follows: 1) The actor-critic structure
[Peters and Schaal, 2008] allows the SAC model to be up-
dated at each step, enabling IGBv2 to assign the current
optimal weights in time; 2) The replay buffer [Mnih et al.,
2013] in SAC is a commonly used off-policy mechanism,
which can improve sample efficiency by training the SAC
model on random historical data. Because the MTL model
can only be trained once, the training data available for our
SAC model is much less than that for typical DRL applica-
tions, making sample efficiency crucial; 3) The maximum
entropy mechanism [Ziebart et al., 2008] can increase the
randomness of the action, thereby increasing the likelihood
of discovering the global optimum of the MTL model.

Unlike deploying DRL to play games [Mnih et al., 2013]
which requires millions of episodes, only one complete
training is allowed to obtain the optimal model in MTL.
Therefore, in this work, many details are redesigned to ac-
commodate the differences between these two different do-
mains. First, we consider the fundamental elements of DRL
including environment, state, action, and reward:

• Environment: We regard the entire MTL model and
the training data for MTL as the environment.

• State: The state is required to properly describe the
current environment and not be too high-dimensional
for learning efficiency. Therefore we choose the losses
of the current batch as the state st, which is determined
by both the current parameter situation of the MTL
model and the input training data of the current batch.



Algorithm 2 Training iteration of IGBv2

Input: task number n, current batch losses L, current
epoch ce, current batch cb, batch number of one epoch
bn, SAC model sac, replay buffer buffer, start epoch
to update the SAC model update_e, start epoch to use
the SAC model use_e, learning rate η, task-shared pa-
rameters θ, task-specific parameters {ψi}ni=1

Output: updated task-shared parameters θ′, updated task-
specific parameters {ψ′

i}
n
i=1

1: if ce = 2 and cb = bn then
2: Assign Lbase to the average losses across every

batch in the current epoch of all tasks;
3: end if
4: if ce > 2 then
5: Add (st−1, at−1, rt−1, st) into buffer;
6: end if
7: if ce ≥ update_e then
8: Train the SAC model sac.train(buffer);
9: end if

10: if ce < use_e then
11: λv2 = n× softmax(random_normal(n));
12: else
13: λv2 = sac.select_action(L);
14: end if
15: θ′ = θ − η∇θ

∑n
i=1 λv2,i log(Li);

16: for i = 1 to n do
17: ψ′

i = ψi − η∇ψi
λv2,i log(Li);

18: end for

In this way, the past training process of the MTL model
can be fully represented by the current state, which can
be formulated as a standard Markov decision process.

• Action: We regard the task weights of the current batch
as the action at, and limit it to positive numbers that
sum to n for a fair comparison with other algorithms.

• Reward: Inspired by maximizing the minimum im-
provement of all tasks in Sener and Koltun [2018] and
Liu et al. [2021a], we regard the minimum loss decline
of all tasks in the current batch as the reward, where the
losses are also normalized by the average losses of the
second epoch Lbase. Additionally, since reducing the
losses of the MTL model is more challenging when the
learning rate is lower than it was at the start of training,
we add a multiplier factor α to the reward, which is
calculated as the ratio of the initial learning rate to the
current learning rate. Finally, the reward is defined as:

rt = α×min

(
Lt −Lt+1

Lbase

)
, (4)

where Lt is the vector of the current batch losses and
Lt+1 is that of the next batch losses.

The SAC model adaptively assigns task weights to maximize
the cumulative reward, so that the cumulative loss decline

Algorithm 3 Training iteration of combining loss balancing
and gradient balancing

Input: loss balancing algorithm LB, gradient balancing
algorithm GB, task number n, current batch losses L,
learning rate η, task-shared parameters θ, task-specific
parameters {ψi}ni=1

Output: updated task-shared parameters θ′, updated task-
specific parameters {ψ′

i}
n
i=1

1: Compute the task weights assigned by loss balancing
λl = LB(L);

2: for i = 1 to n do
3: gi = ∇θλl,i log(Li);
4: end for
5: θ′ = θ − ηGB(g1, · · · , gn);
6: for i = 1 to n do
7: ψ′

i = ψi − η∇ψiλl,i log(Li);
8: end for

of each task can be maximized to the improvable gap. In
other words, IGBv2 jointly minimizes the improvable gaps
of all tasks by gradually minimizing the training losses to
the desired final training losses.

Furthermore, we present the training process of IGBv2 in
Algorithm 2, where we initially set both the current epoch
cp and the current batch cb to 1. At the beginning of training,
since the SAC model is not sufficiently trained to be used,
RLW [Lin et al., 2022] is deployed to randomly assign task
weights for MTL, which is also beneficial for the training of
the SAC model through random exploration. After obtaining
Lbase, we can get the state st, the action at, and the reward
rt−1 in each training batch of the MTL model. These data
are continually added into the replay buffer for training the
SAC model. Once the SAC model is trained well enough, it
is deployed to assign task weights instead of RLW.

Additionally, we carefully redesign the replay buffer size,
which is significantly smaller than typical SAC applications.
When the buffer size is too large, since the performance
of the MTL model is gradually improved and the training
losses are reduced gradually, training the SAC model with
too earlier historical data is not beneficial to the current
training of the MTL model. Conversely, when the buffer
size is too small, the training instability caused by time
series data and low sample efficiency may make the training
of the SAC model unsatisfactory, thereby also leading to
poor performance of the MTL model.

3.3 COMBINATION OF LOSS BALANCING AND
GRADIENT BALANCING

Our IGB algorithms dynamically provide varying impor-
tance for each task to balance the improvable gaps, while
gradient balancing algorithms deal more directly with gra-
dient conflicts at the gradient level. These two types of al-



gorithms are complementary and can be combined together
for further improvements.

We first assign task weights with the loss balancing algo-
rithm and then input the weighted losses to the gradient
balancing algorithm to obtain the final update gradient. In
this way, the performance can be further improved while
keeping the training time almost the same as that of gradi-
ent balancing alone, since most loss balancing algorithms
hardly add extra training time.

Typically, updating the model with existing gradient balanc-
ing algorithms can be divided into two ways: one assigns
weights to gradients of both task-shared and task-specific
parameters, while the other only aggregates gradients of
task-shared parameters. As illustrated in Algorithm 3, when
combining loss balancing and gradient balancing in the lat-
ter case, which is more common, task-shared parameters
are updated by both loss balancing and gradient balancing,
while task-specific parameters are updated independently
by loss balancing.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We train and evaluate our model on the NYUv2
dataset [Silberman et al., 2012] for multi-task scene un-
derstanding and on the QM9 dataset [Ramakrishnan et al.,
2014] for multi-task regression prediction.

NYUv2 is an indoor scene image dataset with dense pixel-
level 13-class labeling. It comprises 795 training samples
and 654 test samples. Prior studies [Liu et al., 2021a, Navon
et al., 2022] typically regard the average performance of
the last 10 epochs on the test set as the final result, which
is unreasonable in machine learning research. Therefore,
we randomly divide the 654 original test samples into 197
validation samples (the validation set) and 457 test samples
(the test set).

QM9 is a chemical molecule dataset widely used for graph
neural networks (GNNs) [Wu et al., 2020], with approxi-
mately 130K molecular samples (which are represented as
graphs annotated with node and edge features). Following
Navon et al. [2022], we use this dataset for regression pre-
diction on 11 properties of chemical molecules, and we use
110K samples for training, 10K samples for validation, and
10K samples for testing.

Compared Methods. We compare our methods with the
following classic algorithms that have been described in
Section 2: (1) Equal Weighting (EW) which minimizes∑n
i=1 Li; (2) Random Loss Weighting (RLW) [Lin et al.,

2022]; (3) Dynamic Weight Average (DWA) [Liu et al.,
2019]; (4) Uncertainty Weighting (UW) [Kendall et al.,
2018]; (5) Multiple Gradient Descent Algorithm (MGDA)

[Sener and Koltun, 2018]; (6) Projecting Conflicting Gra-
dient (PCGrad) [Yu et al., 2020]; (7) Conflict-Averse Gra-
dient (CAGrad) [Liu et al., 2021a]; (8) Impartial Multi-
Task Learning (IMTL-G) [Liu et al., 2021b]; (9) Nash-MTL
(Nash) [Navon et al., 2022].

Evaluation Metrics. In the experiments, we first report the
common evaluation metrics for each task over each dataset.
Moreover, since the significance of MTL optimization is to
improve both model performance and learning efficiency,
we report two overall metrics to comprehensively evaluate
MTL optimization methods:

(1) ∆m: the average per-task performance drop compared
with STL, which is defined as:

∆m =
1

K

K∑
k=1

(−1)δk
Mm,k −Mb,k

Mb,k
, (5)

where K is the total number of common evaluation metrics
over all tasks, Mm,k is the value on the k-th metric of the
evaluated method and Mb,k is that of the STL baseline,
δk = 1 if a higher value is better for the k-th metric and 0
otherwise [Liu et al., 2021a, Navon et al., 2022].

(2) T : the relative training time compared with EW, which
is calculated as the ratio of the training time of the evaluated
method to that of the EW baseline.

Implementation Details. In the experiments on the
NYUv2 dataset, we train a SegNet model from Badri-
narayanan et al. [2017] for 500 epochs with the Adam op-
timizer [Kingma and Ba, 2014], while the learning rate is
initially set to 1e-4 and decays by half for every 100 epochs.
Then we test the model which has the best validation metric
∆m to obtain the final algorithm performance.

In the experiments on the QM9 dataset, following Navon
et al. [2022], we normalize each task target to have zero
mean and unit standard deviation, and use the code im-
plemented by Fey and Lenssen [2019], which contains a
popular GNN from Gilmer et al. [2017] and a pooling oper-
ator from Vinyals et al. [2015]. We train the model for 300
epochs with the Adam optimizer [Kingma and Ba, 2014],
while the learning rate is searched in {1e-3, 5e-4, 1e-4} and
decreased by the ReduceOnPlateau scheduler according to
the validation metric ∆m.

For the IGBv2 algorithm, the SAC model is updated once
every 50 batches during the MTL model training, where the
learning rate of the SAC model is adjusted according to the
situation: 1e-4 when combining IGBv2 with MGDA [Sener
and Koltun, 2018], PCGrad [Yu et al., 2020] or Nash [Navon
et al., 2022], and 3e-4 when combining IGBv2 with other
gradient balancing algorithms or using IGBv2 alone. The
replay buffer size is set to 1e4. The discount factor γ is set
to 0.99. The start epoch to update the SAC model update_e
is set to 4, and the start epoch to use the SAC model use_e
is set to 6.



Table 1: Comparative results on the NYUv2 dataset for multi-task scene understanding. ↑ (↓) indicates that the higher
(lower) the result, the better the performance. + represents the combination of loss balancing and gradient balancing. In
each group, the best results are bolded and the second-best results are underlined.

Methods
Segmentation Depth Surface Normal

∆m ↓ T ↓mIoU↑ Pix Acc↑ Abs Err↓ Rel Err↓ Angle Distance↓ Within t◦↑
Mean Median 11.25 22.5 30

STL 41.16 65.70 0.6074 0.2400 24.49 18.24 31.92 59.16 70.56

EW 40.12 66.16 0.5189 0.2039 28.30 23.58 23.07 48.35 61.39 8.45 1.00
RLW [Lin et al., 2022] 39.72 65.40 0.5252 0.2092 28.85 24.38 21.59 46.74 59.98 10.82 1.00
DWA [Liu et al., 2019] 41.60 66.52 0.5041 0.2000 28.11 23.32 23.32 48.71 61.83 7.08 1.00
UW [Kendall et al., 2018] 40.29 64.60 0.5081 0.2058 26.69 21.47 26.18 52.43 65.21 4.09 1.00
IGBv1 (ours) 39.91 66.03 0.4961 0.2009 26.08 20.69 27.52 54.11 66.57 1.76 1.00
IGBv2 (ours) 41.66 66.98 0.5392 0.2090 25.47 19.88 28.79 55.86 68.14 0.50 1.09

MGDA [Sener and Koltun, 2018] 30.55 60.20 0.5728 0.2179 24.16 18.12 32.34 59.51 71.04 1.63 2.88
PCGrad [Yu et al., 2020] 42.08 67.18 0.5098 0.1994 27.48 22.46 24.79 50.46 63.42 5.01 2.52
CAGrad [Liu et al., 2021a] 41.43 67.35 0.5042 0.1976 25.25 19.58 29.31 56.43 68.58 -1.31 2.85
IMTL-G [Liu et al., 2021b] 41.67 67.18 0.5019 0.1977 25.03 19.47 29.61 56.70 68.95 -1.76 2.85
Nash [Navon et al., 2022] 42.96 68.30 0.4966 0.1986 24.79 18.97 30.50 57.74 69.67 -3.39 3.16
IGBv1 + MGDA 40.93 66.66 0.5238 0.2049 24.38 18.44 31.52 58.97 70.66 -3.03 2.90
IGBv2 + MGDA 40.91 67.01 0.5359 0.2060 25.11 19.41 29.65 56.77 68.89 -0.54 2.96
IGBv1 + PCGrad 40.57 66.98 0.4989 0.1990 25.76 20.33 28.12 54.80 67.30 0.56 2.52
IGBv2 + PCGrad 36.00 63.04 0.5286 0.2079 26.00 20.41 28.11 54.65 66.96 3.66 2.60
IGBv1 + CAGrad 40.98 66.84 0.5050 0.1995 25.15 19.49 29.54 56.57 68.74 -1.23 2.86
IGBv2 + CAGrad 40.12 66.23 0.5190 0.2004 24.69 18.77 30.72 58.19 70.00 -2.16 2.93
IGBv1 + IMTL-G 42.01 67.69 0.5009 0.1995 24.97 19.21 30.01 57.20 69.28 -2.35 2.85
IGBv2 + IMTL-G 41.25 66.43 0.5134 0.2011 25.18 19.58 29.17 56.53 68.77 -0.81 2.94
IGBv1 + Nash 42.83 67.99 0.4892 0.1958 24.70 18.92 30.64 57.79 69.78 -3.71 3.17
IGBv2 + Nash 43.97 68.53 0.4928 0.1967 24.71 18.83 30.83 57.90 69.86 -4.15 3.23

4.2 RESULTS OF MULTI-TASK SCENE
UNDERSTANDING ON NYUV2

Scene understanding on the NYUv2 dataset is the most
common evaluation scenario in the MTL research, which
contains three tasks: semantic segmentation, depth estima-
tion, and surface normal prediction.

The comparative results are shown in Table 1. To verify the
complementarity between IGB and gradient balancing, we
combine our IGB algorithms with all compared gradient
balancing algorithms. We categorize all methods into two
groups according to efficiency and compare the performance
in each group: one is the loss balancing algorithms; the other
is the gradient balancing algorithms and also the combined
algorithms by IGB and gradient balancing.

First, we focus on the overall performance and learning effi-
ciency of MTL. In terms of overall performance (∆m):
Our IGB algorithms are the best in loss balancing and
also competitive with some gradient balancing algorithms.
Combining IGB and gradient balancing is better than us-
ing gradient balancing alone. In particular, IGBv1 + Nash
and IGBv2 + Nash achieve better performance than Nash
[Navon et al., 2022], yielding the SOTA performance of all
algorithms. In terms of learning efficiency (T ): The train-
ing time of gradient balancing is about three times that of

loss balancing. Either used alone or combined with gradient
balancing, IGBv1 hardly leads to extra training time, and
IGBv2 slightly leads to extra training time but can achieve
better performance than IGBv1 in most situations.

Notably, with our IGB algorithms, users now have more
freedom to take the trade-off between efficiency and per-
formance in real-world MTL applications: our IGB algo-
rithms could be chosen if efficiency is more important, and
IGB + gradient balancing algorithms could be chosen if
performance is more important. Specifically, IGBv1 is more
efficient and simpler to implement, while IGBv2 achieves
better performance in most situations.

Next, we analyze the superiority of our IGB algorithms
through the specific task performance. Compared with STL,
the performance of most existing algorithms is close to or
even better on semantic segmentation and depth estimation,
but significantly worse on surface normal prediction. To
some extent, it means that in the NYUv2 MTL scenario,
semantic segmentation and depth estimation are simpler,
while surface normal prediction is more difficult. Such per-
formance imbalance is undesirable in most MTL scenarios.
As expected, our IGB algorithms can effectively alleviate
this imbalance problem. That is, compared with other loss
balancing algorithms, the performance of our IGBv1 and
IGBv2 is competitive on semantic segmentation and depth



Figure 3: Comparison of loss decline curves for individual tasks of MGDA and IGBv1 + MGDA.

estimation, and significantly better on surface normal pre-
diction, which is close to that of STL.

Moreover, the performance of MGDA [Sener and Koltun,
2018] is the best on surface normal prediction among all
algorithms, but significantly worse than other algorithms
on semantic segmentation and depth estimation, leading to
its poor overall performance. By combining MGDA and
our IGB algorithms, we significantly alleviate the perfor-
mance imbalance problem and greatly improve its overall
performance. As shown in Figure 3, when using IGBv1,
the training losses of semantic segmentation and depth es-
timation decrease faster and are significantly lower. Mean-
while, for surface normal prediction, the training loss of
IGBv1 + MGDA is comparable to that of MGDA during
the training process. The main reason is that our improvable
gap balancing algorithms can automatically focus on tasks
that have not been properly trained.

4.3 RESULTS OF MULTI-TASK REGRESSION
PREDICTION ON QM9

Predicting 11 properties of chemical molecules on the QM9
dataset is a more challenging MTL problem because of the
larger task number, lower task relevance, and more varied
task difficulty. Prior studies have found that the performance
of STL on 11 property prediction is significantly better than
that of MTL [Maron et al., 2019, Gasteiger et al., 2020], but
driven by the need for higher learning efficiency and smaller
model size, MTL methods are still worth studying.

The comparative results on the QM9 dataset are shown in Ta-
ble 2. We can see that our IGB algorithms beat all compared
algorithms except Nash [Navon et al., 2022] in performance,
and perform much better than all gradient balancing algo-
rithms in learning efficiency. For example, the training time
of Nash is about seven times that of our IGB algorithms
with close performance, and the training time of MGDA
[Sener and Koltun, 2018] is twenty-two times that of our

IGB algorithms due to aggregating the high-dimensional
gradients by multi-objective optimization. As the number of
tasks increases, the learning efficiency gap between loss bal-
ancing and gradient balancing becomes larger and larger. In
a scenario like QM9, loss balancing (especially IGB) is thus
more valuable. Unfortunately, the weighting or aggregat-
ing decisions made by existing loss balancing and gradient
balancing algorithms are both unsatisfactory on this prob-
lem (much worse than STL). Combining loss balancing and
gradient balancing is equivalent to combining the decisions
made by the two types of algorithms, which has not yielded
better performance.

4.4 ABLATION STUDY

As shown in Table 3, we analyze the contributions of im-
provable gap balancing in our algorithms and the effects
of different settings in the IGBv2 algorithm on the NYUv2
dataset. The compared methods include: (1) EW which
minimizes

∑n
i=1 Li; (2) SI which minimizes

∑n
i=1 log(Li)

[Navon et al., 2022]; (3) IGBv1 (full); (4) IGBv2 (reward
/ min, buffer 1e4) where the reward is calculated by the
average loss decline instead of the minimum; (5) IGBv2
(reward / α, buffer 1e4) where the reward is calculated with-
out the multiplier factor α; (6) IGBv2 (full reward, buffer
5e3/1e4/5e4/1e6) where the replay buffer size is set to
5e3, 1e4, 5e4, or 1e6, and IGBv2 (full reward, buffer 1e4)
is our full IGBv2.

We can observe from Table 3 that: (1) SI brings significant
performance improvement compared with EW, indicating
that the scale-invariant loss balancing paradigm is supe-
rior to the traditional loss balancing paradigm. (2) Our full
IGBv1 and IGBv2 further improve the performance com-
pared with SI, which clearly validates the effectiveness of
improvable gap balancing. (3) IGBv2 (reward / min, buffer
1e4), IGBv2 (reward / α, buffer 1e4), and IGBv2 (full re-
ward, buffer 5e3/5e4/1e6) all produce performance degra-



Table 2: Comparative results on the QM9 dataset for multi-task regression prediction. ↑ (↓) indicates that the higher (lower)
the result, the better the performance. In each group, the best results are bolded and the second-best results are underlined.

Methods µ α ϵHOMO ϵLUMO

〈
R2

〉
ZPVE U0 U H G cv ∆m ↓ T ↓MAE↓

STL 0.067 0.181 60.57 53.91 0.502 4.53 58.8 64.2 63.8 66.2 0.072

EW 0.106 0.325 73.57 89.67 5.19 14.06 143.4 144.2 144.6 140.3 0.128 177.6 1.00
RLW [Lin et al., 2022] 0.113 0.340 76.95 92.76 5.86 15.46 156.3 157.1 157.6 153.0 0.137 203.8 1.00
DWA [Liu et al., 2019] 0.107 0.325 74.06 90.61 5.09 13.99 142.3 143.0 143.4 139.3 0.125 175.3 1.00
UW [Kendall et al., 2018] 0.386 0.425 166.2 155.8 1.06 4.99 66.40 66.78 66.80 66.24 0.122 108.0 1.02
IGBv1 (ours) 0.271 0.351 143.1 132.4 1.07 4.53 56.74 57.13 57.16 56.73 0.115 73.9 1.01
IGBv2 (ours) 0.251 0.333 149.1 130.2 0.956 4.39 56.75 57.19 57.25 56.73 0.110 67.7 1.16
MGDA [Sener and Koltun, 2018] 0.217 0.368 126.8 104.6 3.22 5.69 88.37 89.40 89.32 88.01 0.120 120.5 22.90
PCGrad [Yu et al., 2020] 0.106 0.293 75.85 88.33 3.94 9.15 116.4 116.8 117.2 114.5 0.110 125.7 5.85
CAGrad [Liu et al., 2021a] 0.118 0.321 83.51 94.81 3.21 6.93 114.0 114.3 114.5 112.3 0.116 112.8 4.97
IMTL-G [Liu et al., 2021b] 0.136 0.287 98.31 93.96 1.75 5.69 101.4 102.4 102.0 100.1 0.096 77.2 4.96
Nash [Navon et al., 2022] 0.102 0.248 82.95 81.89 2.42 5.38 74.5 75.02 75.10 74.16 0.093 62.0 7.20

Table 3: Results of ablation study on the NYUv2 dataset.
‘reward / min’ (or ‘reward / α’) denotes that min (or α) is
removed from the definition of the full reward.

Methods ∆m ↓ T ↓
EW 8.45 1.00
SI [Navon et al., 2022] 2.36 1.00
IGBv1 (full) 1.76 1.00
IGBv2 (reward / min, buffer 1e4) 5.97 1.09
IGBv2 (reward / α, buffer 1e4) 0.91 1.09
IGBv2 (full reward, buffer 5e3) 4.78 1.09
IGBv2 (full reward, buffer 1e4) 0.50 1.09
IGBv2 (full reward, buffer 5e4) 2.72 1.09
IGBv2 (full reward, buffer 1e6) 3.48 1.06

dation compared with the full IGBv2, indicating that our
redesign of the reward and the replay buffer size is necessary
when deploying DRL for MTL optimization.

Moreover, as shown in Table 4, we combine existing loss
balancing methods with the SI paradigm (UW + SI method
does not work since UW may not be compatible with SI),
and their performance on NYUv2 is much lower than that
of our IGB methods. It provides further evidence of the
effectiveness of our IGB methods, i.e., the task weighting
of IGB and the SI paradigm are complementary (combining
them leads to better performance).

5 CONCLUSION

In this paper, we propose two novel loss balancing algo-
rithms, IGBv1 and IGBv2. We dynamically assign task
weights to balance the improvable gaps: IGBv1 takes a sim-
ple heuristic, and IGBv2 (for the first time) applies DRL to
MTL. We analyze the complementarity between IGB and
gradient balancing. Extensive experiments show that our

Table 4: Results of loss balancing using the SI paradigm on
the NYUv2 dataset. + represents the combination of a loss
balancing method and the SI paradigm.

Methods ∆m ↓ T ↓
SI [Navon et al., 2022] 2.36 1.00
RLW [Lin et al., 2022] 10.82 1.00
RLW + SI 6.24 1.00
DWA [Liu et al., 2019] 7.08 1.00
DWA + SI 3.25 1.00
UW [Kendall et al., 2018] 4.09 1.00
UW + SI - -
IGBv1 1.76 1.00
IGBv2 0.50 1.09

IGB algorithms outperform all existing loss balancing algo-
rithms and bring further performance improvements when
combined with gradient balancing. More importantly, we
reemphasize the significance of loss balancing in MTL in
terms of learning efficiency and give users more freedom
to take the trade-off between efficiency and performance in
real-world applications.
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