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Abstract001

Vision-Language Models (VLMs) integrate in-002
formation from multiple modalities and have003
shown remarkable success across various tasks.004
However, deploying large-scale VLMs in005
resource-constrained scenarios is challenging.006
Pruning followed by finetuning offers a po-007
tential solution but remains underexplored for008
VLMs. This study addresses two key ques-009
tions: how to distribute sparsity across differ-010
ent modality-specific models, and how to re-011
store the performance of pruned sparse VLMs.012
Our preliminary studies identified two effec-013
tive pruning settings: applying the same spar-014
sity to both vision and language models, and015
pruning only the language models. While016
LoRA finetuning aims to restore sparse mod-017
els, it faces challenges due to incompatibility018
with sparse models, disrupting the pruned spar-019
sity. To overcome these issues, we propose020
SparseLoRA, which applies sparsity directly021
to LoRA weights. Our experimental results022
demonstrate significant improvements, includ-023
ing an 11.3% boost under 2:4 sparsity and a024
47.6% enhancement under unstructured 70%025
sparsity. Code and scripts will be released upon026
acceptance.027

1 Introduction028

Scaling deep learning models has demonstrated029

promising performance across various tasks in030

both vision and language domains (Brown et al.,031

2020; Jiang et al., 2024; Zhu et al., 2023). Vision-032

Language Models (VLMs) (Radford et al., 2021; Li033

et al., 2022; Liu et al., 2023), which leverage pow-034

erful vision and language models, have recently035

garnered significant attention in research (OpenAI036

et al., 2024; Liu et al., 2024), showcasing their037

cross-modality capabilities. However, the ever-038

increasing size of these models comes with sub-039

stantial computational and memory costs, limiting040

their practical applicability in resource-constrained041

environments. Model pruning followed by fine-042

tuning (Dai et al., 2018; Fang et al., 2023; Tanaka 043

et al., 2020), which reduces model size while pre- 044

serving performance, holds promise for improving 045

the real-world deployment of VLMs. 046

While pruning followed by finetuning has signif- 047

icantly improved the efficiency of vision models 048

(Frankle and Carbin, 2019; Kusupati et al., 2020; 049

Lee et al., 2019) and language models (Chen et al., 050

2020; Sun et al., 2023a; Frantar and Alistarh, 2023), 051

the realm of Vision-Language Models (VLMs) re- 052

mains relatively unexplored in terms of model prun- 053

ing, prompting following questions: how to dis- 054

tribute sparsity ratios between different modality- 055

specific models and how to restore the performance 056

of prune sparse VLMs. 057

For the first question, we conducted empirical 058

studies on pruning modality-specific models, ex- 059

perimenting with various combinations of sparsity 060

ratios. Surprisingly, we found that applying the 061

same sparsity ratios to both vision and language 062

models yields nearly optimal performance. On 063

the other hand, since language models are usu- 064

ally much larger than vision models, pruning only 065

the language models offers a beneficial trade-off 066

between performance and efficiency. However, 067

as sparsity ratios increase, pruning significantly 068

degrades performance, especially with structured 069

sparsity patterns (e.g., N: M sparsity (Zhang et al., 070

2022; andYukun Ma et al., 2021)), underscoring 071

the importance of post-pruning restoration. 072

While parameter-efficient LoRA finetuning has 073

been proposed to repair the performance of sparse 074

models, it faces a significant challenge due to the in- 075

compatibility of dense LoRA modules with sparse 076

models. Merging LoRA modules with sparse mod- 077

els would destroy the sparse pattern, while main- 078

taining LoRA modules would introduce extra la- 079

tency and slow down the inference speed. To ad- 080

dress the incompatibility issue of LoRA, we intro- 081

duce SparseLoRA finetuning, which utilizes binary 082

masks on LoRA weights, allowing seamless inte- 083
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Figure 1: The comparison of pruned VLMs (“Wanda”) and restored VLMs (“w/SparseLoRA”) on multimodal
tasks, taking InnstructBLIP (Dai et al., 2023) as the backbone.

gration with pruned weights.084

Extensive experiments showcase the effective-085

ness of our proposed methods in repairing the per-086

formance of pruned sparse VLMs. For instance, as087

illustrated in Figure 1, SparseLoRA boosts the per-088

formance by 13.1% for InstructBLIP-Vicuana-7B089

with 2:4 sparsity. In summary, our contributions090

are threefold:091

• We empirically study the modality-specific092

sparsity distributions and systematically093

demonstrate how sparsity affects the perfor-094

mance of VLMs.095

• We propose a pipeline involving pruning and096

post-finetuning with SparseLoRA to restore097

pruned models.098

• Extensive experiments validate the effective-099

ness and universality of SparseLoRA across100

various VLMs and tasks.101

2 Related Work102

Vision-Language Models. Vision-language mod-103

els, among the most sophisticated multi-modal ar-104

chitectures, have demonstrated outstanding perfor-105

mance across various cross-modality tasks, includ-106

ing image captions (Sharma et al., 2018), image107

retrieval (Plummer et al., 2015), visual QA (Kim108

et al., 2016), and image/video generation (Zhou109

et al., 2021; Singer et al., 2022). These models110

typically freeze the pretrained vision and language111

components, only fine-tuning a small, learnable in-112

terface (e.g., Qformer in BLIP-2 (Li et al., 2023))113

to facilitate inter-modality interactions (Yin et al.,114

2023; Li et al., 2023), thus avoiding high training115

costs and potential catastrophic forgetting (Good-116

fellow et al., 2014).117

Model Pruning for Large Language Mod- 118

els. While large vision and language models 119

have shown promising advancements, their mas- 120

sive parameter sizes present challenges for practi- 121

cal deployment (Ma et al., 2023; Wang et al., 2020). 122

To mitigate this, model pruning techniques have 123

been introduced to remove redundant weights or 124

structures (Han et al., 2016; Alvarez and Salzmann, 125

2016). The primary aim of model pruning is to 126

minimize the disparity between models before and 127

after pruning (Liu et al., 2021; He and Xiao, 2024; 128

Frantar and Alistarh, 2023). Various metrics, such 129

as magnitude, gradient (Yi-Lin Sung, 2024), and 130

activation (Sun et al., 2023a), have been proposed 131

to identify unimportant weights. However, prun- 132

ing without finetuning often leads to a performance 133

drop. (Zhang et al., 2024) utilize reconstruction 134

errors-based metrics to update the weights. Other 135

than the disparity between sparse models and dense 136

models, our method also considers the task-specific 137

objective of repairing sparse models and knowl- 138

edge distillation from the original full models. 139

3 Preliminary Study 140

Vision-Language Models (VLMs) consist of 141

modality-specific foundation models, namely vi- 142

sual and language models, as well as a cross- 143

modality interface (e.g., QFormer (Li et al., 2023)) 144

that aligns models from different modalities. Fol- 145

lowing (Yi-Lin Sung, 2024), we focus on pruning 146

the vision and language models while keeping the 147

Q-Former intact, as it is sufficiently lightweight. Pa- 148

rameters are not evenly distributed across the differ- 149

ent modality-specific models; for instance, visual 150

models are often considerably smaller than their 151

corresponding language models (Li et al., 2023; 152

Dai et al., 2023; Liu et al., 2023; Yang et al., 2022). 153
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In this case, we pose two questions: (1) how to154

distribute sparsity ratios between modality-specific155

models, and (2) how do different sparsity ratios156

affect the performance of VLMs?157
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Figure 2: Performance of BLIP-2 with different
modality-specific sparsity distribution. We denote the
sparsity ratios for the vision and language modalities as
“sv:sl". We adjust their distribution while constraining
their summation “sv+sl” to be (a) 100% and (b) 120%.

For the first question, we first try various spar-158

sity ratio combinations between visual models and159

language models. Specifically, we fix the summa-160

tion of sv and sl and then adjust their distributions161

accordingly. We use Wanda (Sun et al., 2023a)162

as the default pruning method because it ensures163

relatively high performance and efficiency. Based164

on Figure 2, we found: (1) VLMs would collapse165

when the language models are under high sparsity166

ratios (i.e., sl > 70%), whereas sparsity imposed167

on visual models has a comparatively lower impact168

on performance; (2) When constrained by the sum-169

mation of sparsity (sv + sl), pruning the modality-170

specific models with equal sparsity ratios leads to171

optimal performance.172
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Figure 3: Performance of BLIP-2 with different
sparse ratios (i.e., unstructured pruning and N:M prun-
ing) for visual question-answering tasks.

For the second question, we initially prune173

VLMs with different unstructured sparsity ratios174

using the following strategies: pruning language175

models and visual models with the same sparsity176

ratios (“V + L”), pruning visual models only (“Vi-177

sion”), and pruning language models only (“Lan-178

guage”). According to Figure 3a, when sparsity179

ratios exceed 50%, all settings experience a signifi-180

cant performance drop, although VLMs pruned by181

a single modality model maintain relatively high 182

performance. 183

Similarly, in Figure 3b when employing struc- 184

tured N:M sparsity (andYukun Ma et al., 2021; 185

Zhang et al., 2022) (i.e., in each contiguous block 186

of M values, N values must be zero), all models 187

encounter significant performance degradation and 188

even collapse (2:4 for pruning both vision mod- 189

els and language models). This situation prompts 190

us to reflect on how to restore the pruning-caused 191

performance degradation for VLMs. 192

4 Methodology 193

In this section, we will develop a pipeline that in- 194

volves pruning and post restoration, with the illus- 195

tration in Figure 4. 196

4.1 Pruning with Few Samples 197

Model pruning identifies less important weights 198

using predefined metrics (Han et al., 2016), typ- 199

ically measuring the reconstruction errors (Sun 200

et al., 2023a; Frantar and Alistarh, 2023; Zhang 201

et al., 2024) between models before and after prun- 202

ing, such as magnitude, gradient, and activation. 203

Calculating gradients or activation requires a small 204

calibration dataset Dp with few samples. With pre- 205

defined metric S and the calibration dataset, the 206

weights of a model is scored as follows: 207

S ← S(W0,Dp), (1) 208

where W0 denote the weights of the model while 209

S represent the importance scores for W0. Given 210

the sparse ratios s, binary masks are utilized to 211

locate the pruned weights and update the weights 212

as follows: 213

M ← (S > τ), W ←W0 ⊙M , (2) 214

where W denotes the pruned weights, while τ rep- 215

resents the threshold (s percentile of S) and all 216

weights with scores lower than s will be removed. 217

While the pruning metrics S aim to minimize 218

reconstruction errors (Sun et al., 2023a; Zhang 219

et al., 2024) or maintain performance (Yi-Lin Sung, 220

2024), model pruning often results in a significant 221

performance drop and therefore needs to be recov- 222

ered. 223

4.2 Sparse LoRA finetuning 224

VLMs, which incorporate both vision models and 225

language models, are often too large to be fine- 226

tuned through full-model fine-tuning techniques (Li 227
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Figure 4: Visualization of the pipeline of VLM Pruning and SparseLoRA finetuning, which first prunes the
vision model and language model based on a given pruning metric, then restores the pruned via SparseLoRA
finetuning.

et al., 2023; Dai et al., 2023). Instead, parameter-228

efficient fine-tuning techniques (Houlsby et al.,229

2019; Mangrulkar et al., 2022; Hu et al., 2022)230

are employed to reduce the number of trainable231

parameters while maintaining comparable perfor-232

mance. Among these techniques, LoRA (Hu et al.,233

2022) stands out as one of the most widely used234

approaches. since it not only efficiently utilizes235

parameters but also allows for seamless integration236

with the original weights, thus avoiding potential237

latency during inference (Dery et al., 2024; Rücklé238

et al., 2021).239

Traditional LoRA fine-tuning involves freezing240

the parameters of the pretrained model and inject-241

ing trainable rank decomposition matrices into each242

layer that requires fine-tuning. LoRA modules in-243

volves two small low-rank trainable weights A and244

B, which can be merged with W after finetuning:245

W ←W +∆W , where ∆W = BA. (3)246

However, as shown in Figure 5, the sparse pattern247

of pruned models would collapse after merging248

(Dery et al., 2024; He et al., 2023). Given that ∆W249

are dense weights and W are sparse weights, the250

element-wise operation would destroy the sparse251

patterns. Additionally, without merging, the in-252

jected LoRA modules would increase latency and253

slow down inference speed (Mundra et al., 2023;254

Rücklé et al., 2021; Dery et al., 2024). Inspired by255

(He et al., 2022), we propose employing masks on256

W to preserve the sparse pattern:257

Ŵ = W +∆W ⊙M . (4)258

In such a case, ∆W corresponding to pruned 259

positions are masked and cannot be updated via 260

gradient-backpropagation. Consequently, during 261

backpropagation, during backpropagation, A and 262

B can be optimized as follows: 263

B ← B + η · ( ∂L
∂Ŵ

⊙M)AT ,

A← A+ η ·BT (
∂L
∂Ŵ

⊙M),

(5) 264

where L denotes the loss and η denotes the learning 265

rate. After fine-tuning, SparseLoRA first prunes 266

∆W with binary masks and then incorporate it 267

with the pruned weights W : W ← Ŵ = W + 268

BA ⊙M . The adaptation of SparseLoRA fine- 269

tuning ensures the sparsity of incremental weights, 270

thus preserving the sparse pattern after merging. 271

Other than the vision model and language model, 272

VLMs also involve small learnable interfaces (e.g., 273

QFormer (Li et al., 2023; Dai et al., 2023)) that 274

align vision models and language models. Because 275

of this, we also insert LoRA into the QFormer, 276

which enhances cross-modality adaptation with 277

minimal additional computational overhead. 278

4.3 Finetuning Objectives 279

To recover the performance of pruned VLMs, we 280

introduce two finetuning objectives. Firstly, ac- 281

knowledging the performance gap, we continue to 282

finetune VLMs on the pretraining tasks by minimiz- 283

ing loss Ltask to restore task-specific performance. 284

On the other hand, we propose distilling knowl- 285

edge (Hinton et al., 2015; Gou et al., 2021; Stanton 286
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Figure 5: Schematic comparison of (a) LoRA and (b) SparseLoRA. With masking, SparseLoRA preserves the
sparse patterns, while LoRA destroys them after merging.

et al., 2021) from the original models to the pruned287

models by constraining the KL divergence between288

their outputs. The distillation loss Ldistill is formu-289

lated as follows:290

Ldistill = DKL

(
logits

(
Ŵ

)
∥ logits (W0)

)
,

(6)291

where DKL represents the KL-divergence distance292

and logits(W0) denotes the output logits of the293

model with weights W0. Based on the original294

model with weights W0, both logits
(
Ŵ

)
and295

logits (W0) can be obtained by forwarding with296

W0 and (W0 +BA)⊙M separately. This avoids297

hosting additional weights during training. The298

overall optimization objective of SparseLoRA is:299

L = λLtask + (1− λ)Ldistill, (7)300

where λ is a scalar weight. The procedure of VLM301

pruning and SparseLoRA is shown in Figure 4.302

5 Experimental Setup303

Architectures. We use multiple multi-modal ar-304

chitectures for experiments including BLIP-2 (Li305

et al., 2023) and InstructBLIP (Dai et al., 2023),306

which composes of pretrained EVA-ViT (ViT-g/14307

from EVA-CLIP) (Sun et al., 2023b) and pretrained308

large language models (i.e., FlanT5 (Chung et al.,309

2022) and Vicuna (Chiang et al., 2023)).310

Evaluation Datasets and Metrics. We evaluate311

the zero-shot ability of BLIP-2 and InstructBLIP312

on various datasets after pruning. We use VQAv2313

(Goyal et al., 2016), OK-VQA (Marino et al.,314

2019), and GQA (Hudson and Manning, 2019) for315

visual question answering, NoCaps (Agrawal et al.,316

2019) for image captioning, and Flickr30k (Plum-317

mer et al., 2015) for image-text retrieval. We use318

CIDEr and SPICE to evaluate image captioning319

tasks and use TR@1 (top-1 text recall) and IR@1320

(top-1 image recall) for image retrieval tasks.321

Calibration and Training Datasets. Following 322

(Yi-Lin Sung, 2024; Liu et al., 2023), our approach 323

leverages a small subset of CC3M (Sharma et al., 324

2018) for calibration and training data. The number 325

of training samples ranges from 1k to 10k, while 326

the number of calibration samples is 128, which 327

has been shown to be sufficient for pruning (Sun 328

et al., 2023a; Frantar and Alistarh, 2023; Zhang 329

et al., 2024; Yi-Lin Sung, 2024). 330

Finetuning Details We use Adam (Kingma and 331

Ba, 2015) as the optimizer with β1, β2 = 0.9, 0.999. 332

For regularization, we set the λ as 0.1 and grid- 333

search the learning rate from {1e-5, 2e-5, 5e-5, 334

1e-4, 2e-4}, where we warm up the learning rate 335

in the first 10% steps (of the total training steps). 336

For different model scales, we select a batch size 337

from {16, 32, 64}, and finetune 1 epoch, which is 338

enough for convergence. We perform a grid search 339

for the rank of SparseLoRA, considering values 340

from {4, 8, 16, 32}. By trial and error, we found 341

that a rank of 4 suffices for the QFormer and the 342

vision model, while a rank of 8 optimally suits the 343

language model. 344

Baselines. We consider several pruning 345

techniques, including Global Magnitude Pruning, 346

Gradient-based Pruning, SparseGPT (Frantar and 347

Alistarh, 2023), and Wanda (Sun et al., 2023a). 348

Global Magnitude Pruning prunes are based on 349

weight magnitude, while Gradient-based Pruning 350

prunes use the product of first-order gradient and 351

weight magnitude (Yi-Lin Sung, 2024). SparseGPT 352

is a layer-wise Hessian-based method, and Wanda 353

utilizes weight magnitude and input activation 354

norm for layer-wise pruning. Additionally, we com- 355

pare against ECoFLaP (Yi-Lin Sung, 2024), which 356

adopts a zero-order gradient-based layer-wise spar- 357

sity for vision-language models. We also compare 358

SparseLoRA against DS○T (Zhang et al., 2024) 359

that updates the masks after pruning. 360
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Table 1: Comparison of Full Model, pruned models, and retrained pruned models on the zero-shot perfor-
mance with BLIP-2 (Li et al., 2023) at 50% sparsity. Metrics include accuracy for visual question answering,
CIDEr and SPICE for image captioning, and TR@1 (text recall) and IR@1 (image recall) for image retrieval.
Results are averaged over 5 runs, with the best-performing results marked in bold (Full Model not included).

Method Sparsity Param.
Visual Question Answering Image Captioning Image retrieval

Macro
Avg.VQAv2 OK-VQA GQA NoCaps Flickr30k

Accuracy CIDEr SPICE TR@1 IR@1

Full Model 0% 3.9B 63.1 41.1 44.1 105.4 13.8 96.1 87.5 64.4

Magnitude

50% 2.1B

0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0
Gradient 55.1 35.7 39.8 92.3 11.6 91.4 81.6 58.2
SparseGPT 56.1 35.5 40.6 98.7 13.3 95.8 86.2 60.9
Wanda 57.7 35.4 41.9 100.1 13.4 95.2 84.5 61.2
ECoFLaP 57.5 36.2 42.1 99.0 12.5 95.7 85.8 61.3

Wanda + DS○T 57.3 35.5 42.5 100.9 13.3 95.3 85.4 61.5
Wanda + SparseLoRA

50% 2.1B 61.2 39.5 43.5 106.6 14.1 96.0 87.2 64.0

Table 2: Performance comparison of pruning single
modality on InstructBLIP-Vicuna-7B.

Method Param.
VQA NoCaps

VQAv2 GQA CIDEr SPICE

Full Model 7.9B 76.7 49.1 123.9 15.9

2:4 Sparsity
Wanda

4.7B
60.5 41.2 110.2 15.4

w/DS○T 64.9 43.5 107.2 14.8
w/SparseLoRA 68.3 45.4 119.3 15.5

4:8 Sparsity
Wanda

4.7B
63.9 43.1 116.0 15.4

w/DS○T 68.3 44.8 115.2 15.1
w/SparseLoRA 71.4 46.5 121.6 15.6

6 Results361

6.1 Main Experimental Results362

Unstructured Sparsity. In Table 1, We com-363

pare the zero-shot performance on various datasets364

using BLIP-2 pruned by different pruning tech-365

niques at unstructured 50% sparsity ratios. Among366

all pruning methods, while Wanda and ECoFLaP367

achieve the best performance, Wanda does not re-368

quire multiple forward passes and is much more369

time-efficient. On the other hand, considering,370

EcoFLaP does not apply for N:M sparsity, we use371

Wanda as the default pruning method.372

Compared to DS○T that focuses on recon-373

struction errors, SparseLoRA also considers task-374

specific performance and knowledge distillation375

from original full models, consistently outperform-376

ing the baselines on all tasks. Notably, the average377

performance of SparseLoRA is comparable to that378

of the full model.379

N:M Sparsity. In addition to unstructured spar-380

sity, we also conduct experiments on N: M sparsity381

(andYukun Ma et al., 2021; Zhang et al., 2022),382

which can be applied to specific GPU cores and has 383

more practical applications (Mishra et al., 2021). 384

Compared to unstructured pruning, structured prun- 385

ing causes a more significant performance drop and 386

requires more extensive restores. Under more struc- 387

tured patterns, SparseLoRA recovers more perfor- 388

mance, achieving a 10.5% improvement for 2:4 389

sparsity compared to 3.4% for unstructured spar- 390

sity. After restoring, all structured pruned models 391

maintain over 90% of the performance of the orig- 392

inal models, demonstrating the universality and 393

effectiveness of SparseLoRA. 394

Single Model Pruning. Language models typi- 395

cally have much larger parameter sizes compared 396

to the vision models in vision-language models, 397

(Li et al., 2023; Dai et al., 2023) (e.g., 7B for Vi- 398

cuna (Chiang et al., 2023) vs. 1.3B for EVA-ViT 399

in parameters (Sun et al., 2023b)). As a result, 400

the efficiency bottleneck primarily stems from the 401

language model component. This prompted us to 402

investigate the impact of solely pruning language 403

models in VLMs, with experimental results pre- 404

sented in Table 2. With additional parameters in 405

the vision model component, SparseLoRA restores 406

InstructBLIP with significant improvement (e.g., 407

from 69.0 to 71.6 on VQAv2), achieving perfor- 408

mance comparable to the Full Model. Therefore, 409

pruning language models only is an effective way 410

to maintain performance and efficiency. 411

6.2 Detailed Analysis 412

To evaluate cross-modality adaptation, we integrate 413

SparseLoRA into various models. Specifically, we 414

denote the QFormer, vision model, and language 415

model as "Q", "V ", and "L" respectively. Differ- 416

ent configurations are represented using combina- 417
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Table 3: Performance comparison at different sparse patterns (i.e., unstructured 50%, 2:4 and 4:8). using
InstructBLIP (Dai et al., 2023) as the backbone. The shown results are the averaged score for 5 runs and the absolute
performance gain is denoted as ⇑ (·).

Method Sparsity
Visual Question Answering Image Captioning

Macro
Avg.VQAv2 OK-VQA GQA NoCaps

Accuracy CIDEr SPICE

Full Model 0% 73.5 52.6 48.4 121.4 15.6 62.3

Wanda
50%

69.1 45.4 45.7 108.7 14.2 56.6
w/DS○T 68.6 45.5 45.6 107.0 14.2 56.2

InstructBLIP
FlanT5XL

w/SparseLoRA 71.0⇑+1.9 48.4⇑+3.0 46.7⇑+1.0 118.4⇑+9.7 15.4⇑+1.2 60.0⇑+3.4

Wanda
2:4

61.2 33.9 42.1 82.5 11.9 46.3
w/DS○T 63.5 35.8 42.8 96.1 13.0 50.2
w/SparseLoRA 67.4⇑+6.2 43.1⇑+9.2 43.8⇑+1.7 114.7⇑+32.2 14.9⇑+3.0 56.8⇑+10.5

Wanda
4:8

66.0 39.8 45.1 97.1 13.1 52.2
w/DS○T 67.3 41.4 46.3 105.7 13.9 54.9
w/SparseLoRA 69.4⇑+3.4 45.0⇑+5.2 46.9⇑+1.8 116.1⇑+19.0 15.1⇑+2.0 58.5⇑+6.2

Full Model 0% 76.7 58.8 49.1 123.9 15.9 64.9

Wanda
50%

67.7 47.8 44.9 109.7 14.6 56.9
w/DS○T 67.5 47.6 44.8 109.3 14.6 56.8

InstructBLIP
Vicuna-7B

w/SparseLoRA 72.2⇑+4.5 52.0⇑+4.2 48.3⇑+3.4 118.2⇑+8.5 15.1⇑+0.5 61.2⇑+4.3

Wanda
2:4

58.7 32.1 39.0 68.8 12.9 42.3
w/DS○T 60.2 32.3 41.4 66.9 12.6 42.7
w/SparseLoRA 66.2⇑+7.5 43.6⇑+11.5 44.5⇑+5.5 112.2⇑+43.4 14.6⇑+1.7 56.2⇑+13.9

Wanda
4:8

61.4 39.5 42.4 95.5 13.6 50.5
w/DS○T 63.3 39.6 44.6 101.1 13.9 52.5
w/SparseLoRA 69.5⇑+8.1 47.4⇑+7.9 45.8⇑+3.4 115.1⇑+19.6 14.9⇑+1.3 58.5⇑+8.0

Table 4: Comparison between LoRA and SparseLoRA.

Method Sparsity VQAv2 OK-VQA GQA

Full Model 0% 76.7 58.8 49.1
LoRA 74.1 52.9 48.2
SparseLoRA

50%
74.0 53.3 48.6

LoRA 67.8 43.7 44.9
SparseLoRA

2:4 68.3 44.6 45.4
LoRA 70.2 48.3 45.9
SparseLoRA

4:8 71.4 49.2 46.5

tions of these notations (e.g., "QLV " and "LV ").418

As shown in Table 6, for cross-modality pruning419

(i.e., Vision + Language), finetuning within a sin-420

gle model contributes to performance restoration,421

while finetuning models across two modalities fur-422

ther enhances performance. In cases of single423

modality pruning, finetuning the pruned model424

alone is sufficient for restoration. Notably, joint425

finetuning with the QFormer does not yield perfor-426

mance gains beyond finetuning the pruned models.427

SparseLoRA Finetuning Achieves Compara-428

ble Performance with LoRA. LoRA weights can-429

not be merged with pruned weights, as this would430

disrupt the sparse pattern. Consequently, the pres-431

ence of remaining LoRA modules leads to latency432

and slows down inference significantly (Dery et al.,433

2024; Rücklé et al., 2021). To address this issue,434

Table 5: Ablation studies on different finetuning objec-
tives.

Method
Flickr30k NoCaps

TR@1 IR@1 CIDEr SPICE

Full Model 96.1 87.5 105.4 13.8
Ltask 95.3 86.2 106.1 14.0
Ldistill 95.4 86.6 102.2 13.4
Ltask&Ldistill 96.0 87.2 106.6 14.1

SparseLoRA aims to resolve the unmerged weights 435

of LoRA and eliminate the latency caused by LoRA 436

modules. Table 4 compares the performance of 437

LoRA with SparseLoRA for VLMs with sparse 438

language models. Remarkably, SparseLoRA fine- 439

tuning achieves improved performance with fewer 440

trainable parameters, consistent with findings from 441

(He et al., 2022). 442

The Effectiveness of Finetuning Objectives. 443

We further investigate the impact of the proposed 444

finetuning objectives on BLIP-2-FlanT5XL. In Ta- 445

ble 5, we consider three finetuning objectives: Ltask, 446

Ldistill, and Ltask&Ldistill. Ltask guides the task- 447

specific performance while Ldistill guides knowl- 448

edge transferring from the original full model 449

to the pruned dense model. either minimizing 450

Ltask or Ldistill improves the performance. In addi- 451
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Table 6: Performance of SparseLoRA applied on pruning scenarios, where “Vision + Language” denotes pruning
both vision models and language models, and “Language” denotes pruning language models only. V , L, Q represent
the models for SparseLoRA.

Method Modality
Vision + Language Language

VQAv2 OK-VQA GQA Avg. VQAv2 OK-VQA GQA Avg.

Wanda – 61.4 39.5 42.4 47.8 63.9 44.5 43.1 50.5

w/SparseLoRA

V 64.3 42.6 45.8 51.0 66.0 44.7 43.3 51.3
L 66.4 46.7 44.3 52.5 70.8 46.5 49.5 55.6
Q 62.5 40.2 43.3 48.7 64.3 44.5 44.1 51.0

V + L 69.5 47.4 45.8 54.2 70.6 46.3 49.3 55.4
V + L+Q 69.0 46.9 45.4 53.8 70.2 45.9 48.1 54.7

Figure 6: Ablation study on sparsity ratios.
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Wanda
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tion, jointly minimizing Ldistill and Ltask helps the452

pruned models further recover performance.453

Ablation Study on Sparsity. To assess the effec-454

tiveness of SparseLoRA across a broader range of455

sparsity ratios, we experimented on InstructBLIP-456

Vicuna-7B with unstructured sparsity ratios rang-457

ing from 40% to 80%. As the sparse ratio s ex-458

ceeded 50%, the performance of pruned models459

began to deteriorate, eventually collapsing when460

s ≥ 70%, highlighting the necessity of restoring.461

In such scenarios, SparseLoRA significantly im-462

proved performance, particularly for higher spar-463

sity ratios, achieving a recovery of 47.6% of scores464

at s = 70% and 32.7% at s = 80%.465

Ablation Study on Calibration Datasets.466

SparseLoRA utilizes calibration datasets for re-467

training. We conducted experiments to explore the468

impact of the number of training samples. Specifi-469

cally, we randomly sampled k (k = 0, 100, 1k, 10k,470

100k) training data points from CC3M (Sharma471

et al., 2018) to finetune InstructBLIP-FlanT5XL472

with 50% sparsity and report the average perfor-473

mance of visual question answering and image cap-474

tion. As shown in Figure 7, we found that finetun-475

ing pruned VLMs with few-shot samples (i.e., 100)476

can improve performance by a substantial margin.477

Figure 7: Impact of finetuning samples.
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Further finetuning with 10k training data points 478

resulted in a significant boost in cross-modality 479

ability. This suggests that a small amount of data is 480

sufficient to restoration the pruned vision-language 481

models, leveraging the knowledge and capabili- 482

ties acquired during pretraining (Zhou et al., 2023). 483

When k ≥ 10k, the model’s capability continues 484

to improve with more training data and gradually 485

becomes saturated. 486

7 Conclusion 487

In this paper, motivated by the challenges associ- 488

ated with deploying VLMs in real-world applica- 489

tions, we investigate the potential of pruning VLMs. 490

Specifically, recognizing that VLMs encompass 491

models from different modalities, we conduct em- 492

pirical studies to explore the distribution of spar- 493

sity ratios across these models and how sparsity 494

impacts performance, thereby highlighting the ne- 495

cessity of restoring pruned VLMs. Subsequently, 496

we introduce MAF, which addresses this challenge 497

by restoring pruned VLMs through cross-modality 498

adaptation and SparseLoRA finetuning. Exten- 499

sive experiments validate the effectiveness of MAF, 500

providing valuable insights for future research on 501

VLM sparsity. 502
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8 Limitations503

Despite our progress, limitations remain in our504

work. Although our proposed methods are univer-505

sal for all VLM models, we have primarily focused506

on BLIP family models and selected tasks . We507

believe our methods can be easily extended to a508

broader range of models and tasks. On the other509

hand, given there may be potentially high-quality510

dataset for restoring pruned models, we believe511

the incorporation of such datasets would further512

promotes our proposed methods513
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