
Certifiably Robust Reinforcement Learning through
Model-Based Abstract Interpretation
Chenxi Yang

UT Austin
cxyang@cs.utexas.edu

Greg Anderson∗
Reed College

grega@reed.edu

Swarat Chaudhuri
UT Austin

swarat@cs.utexas.edu

Abstract—We present a reinforcement learning (RL) framework
in which the learned policy comes with a machine-checkable
certificate of provable adversarial robustness. Our approach, called
CAROL, learns a model of the environment. In each learning
iteration, it uses the current version of this model and an
external abstract interpreter to construct a differentiable signal
for provable robustness. This signal is used to guide learning,
and the abstract interpretation used to construct it directly leads
to the robustness certificate returned at convergence. We give
a theoretical analysis that bounds the worst-case accumulative
reward of CAROL. We also experimentally evaluate CAROL on
four MuJoCo environments with continuous state and action
spaces. On these tasks, CAROL learns policies that, when
contrasted with policies from two state-of-the-art robust RL
algorithms, exhibit: (i) markedly enhanced certified performance
lower bounds; and (ii) comparable performance under empirical
adversarial attacks.

Index Terms—Certified Learning, Adversarial Robustness, For-
mal Verification, Abstract Interpretation, Reinforcement Learning

I. INTRODUCTION

Reinforcement learning (RL) is an established approach to
control tasks [1], [2], including safety-critical ones [3], [4].
However, state-of-the-art RL methods use neural networks
as policy representations. This makes them vulnerable to
adversarial attacks in which carefully crafted perturbations to a
policy’s inputs cause it to behave incorrectly. These problems
are even more severe in RL than in supervised learning, as the
effects of successive mistakes can cascade over a long time
horizon.

These challenges have motivated research on RL algorithms
that are robust to adversarial perturbations. In general, adversar-
ial learning techniques can be divided into best-effort heuristic
defenses and certified approaches that guarantee provable
robustness. The latter are preferable as heuristic defenses are
often defeated by counterattacks [5]. While many certified
defenses are known for the supervised learning setting [6], [7],
[8], extending these methods to RL has been difficult. The
reason is that RL involves a black-box environment. To ensure
the certified robustness of an RL policy, one needs to reason
about repeated interactions between the policy, the environment,
and the adversary, and there is no general approach to doing
so. Existing approaches to deep certified RL typically sidestep
the challenge through various simplifying assumptions, for

∗ Work completed while at UT Austin.

example, that the perturbations are stochastic rather than
adversarial [9], that the certificate only applies to one-shot
interactions between the policy and the environment [10], [11],
or that the action space is discrete [12].

In this paper, we develop a framework, called CAROL
(CertifiAbly RObust Reinforcement Learning), that fills this
gap in the literature. We reason about adversarial dynamics
over entire episodes by learning a model of the environment
and repeatedly composing it with the policy and the adversary.
To this end, we consider a state-adversarial Markov Decision
Process [11] in which the observed states are adversarially
attacked states of the original environment. This threat model
aligns with many existing efforts on robust RL [10], [11], [13],
[12], [14] and is also important for real-world RL agents under
unpredictable sensor noise. During exploration, our algorithm
learns a model of the environment using an existing model-
based reinforcement learning algorithm [15]. We perform
abstract interpretation [16], [6] over compositions of the
current policy and the learned environment model to estimate
worst-case bounds on the agent’s adversarial reward. The lower
bound on the reward is then used to guide the learning.

A key benefit of our model-based abstract interpretation
approach is that it not only computes bounds on a policy’s
worst-case reward but also offers a proof of this fact if it holds.
A certificate of robustness in our framework consists of such
a proof.

Our results include a theoretical analysis of our learning
algorithm, which shows that our learned certificates give
probabilistically sound lower bounds on the accumulative
reward of any allowed adversary. We also empirically evaluate
CAROL over four high-dimensional MuJoCo environments
(Hopper, Walker2d, Halfcheetah, and Ant). We demonstrate that
CAROL is able to successfully learn certified policies for these
environments and that our strong certification requirements do
not significantly compromise empirical performance.

To summarize, our main contributions are as follows:

• We offer CAROL, the first RL framework to guarantee
episode-level certifiable adversarial robustness for con-
tinuous states and actions. The framework is based on a
new combination of model-based learning and abstract
interpretation that can be of independent interest.

• We give a rigorous theoretical analysis that establishes
the (probabilistic) soundness of CAROL.

• We give experiments on four MuJoCo domains that
establish CAROL as a new state-of-the-art for certifiably
robust RL.

II. BACKGROUND

A. Markov Decision Processes (MDPs)

We start with the standard definition of an Markov Decision
Process (MDP)M = (S,A, r, P,S0). Here, S is a set of states,
and A is a set of actions; for simplicity of presentation, we
assume these sets to be Rk and Rm for suitable dimensionality
k and m. S0 is a distribution of initial states; P (s′ | s, a), for
s, s′ ∈ S and a ∈ A, is a probabilistic transition function;
r(s, a) for s ∈ S, a ∈ A is a real-valued reward function.
Our method assumes an additional property that is commonly
satisfied in practice: that P (s′ | s, a) has the form µP (s, a) +
fP (s

′), where fP (s′) is a distribution independent of (s, a)
and µP is deterministic.

A policy in M is a distribution π(a | s) with s ∈ S
and a ∈ A. A (finite) trajectory τ under π is a sequence
s0, a0, s1, a1, . . . such that s0 ∼ S0, each ai ∼ π(si), and
each si+1 ∼ P (s′ | si, ai). We denote by R(τ) =

∑
i r(si, ai)

the aggregate (undiscounted) reward along a trajectory τ , and
by R(π) the expected reward of trajectories unrolled under π.

B. State-Adversarial MDPs

We model adversarial dynamics using state-adversarial
MDPs [11]. Such a structure is a pair Mν = (M, B), where
M = (S,A, r, P,S0) is an MDP, and B : S → P(S) is a
perturbation map, where P(S) is the power set of S . Intuitively,
B(s) is the set of all states that can result from adversarial
perturbations of s.

Suppose we have a policy π in the underlying MDP M. In
an attack scenario, an adversary ν perturbs the observations
of the agent at a state s. As a result, rather than choosing
an action from π(a | s), the agent now chooses an action
from π(a | ν(s)). However, the environment transition is still
sampled from P (s′ | s, a) and not P (s′ | ν(s), a), as the
ground-truth state does not change under the attack. We denote
by π ◦ ν the state-action mapping that results when π is used
under this attack scenario. In real world, the adversary could
represent the state estimation error and the noise in the state
measurement.

Naturally, if ν can arbitrarily perturb states, then adversarially
robust learning is intractable. Consequently, we constrain
ν using B, requiring ν(s) ∈ B(s) for all s ∈ S. We
denote the set of allowable adversaries in Mν as AB =
{ν : S → S | ∀s ∈ S. ν(s) ∈ B(s)}.

C. Abstract Interpretation

We certify adversarial robustness using abstract interpreta-
tion [16], a classic framework for worst-case safety analysis
of systems. Here, one represents sets of values — e.g.,
system states, actions, and reward values — using symbolic
representations, or abstractions, in a predefined language (the
abstract domain). For example, we can set our abstract states
to be hyperintervals that maintain upper and lower bounds in

each state space dimension. We denote abstract values with the
superscript #. For a set of concrete states, S, α(S) denotes the
minimal-area abstract state which contains S. For an abstract
state s#, β(s#) is the set of concrete states represented by
s#.

The core of abstract interpretation is the propagation of
abstract states s# through a function f(s) that captures single-
step system dynamics. For propagation, we assume that we
have access to a map f#(s#) that “lifts" f to abstract states.
This function must satisfy the property β(f#(s#)) ⊇ {f(s) :
s ∈ β(s#)}. Intuitively, f# overapproximates the behavior of
f : while the abstract state f#(s#) may include some states
that are not actually reachable through the application of f to
states encoded by s#, it will at least include every state that
is reachable this way. For simplicity of notation, we assume
that functions over concrete states are lifted to their abstract
analogs. For example, π(s#) is short-hand for a function
π#(s#) satisfying β(π#(s#)) ⊇ {π(s) : s ∈ β(s#)}) for
every abstract state s#. Similar functions are defined for
abstract reward values, actions, and so on.

By starting with an abstraction s#0 of the initial states and
using abstract interpretation to propagate this abstract state
through the transition function f , we can obtain an abstract state
s#i which includes all states of the system that are reachable
in i steps for increasing i. A sequence of abstract states τ# =
s#0 s

#
1 s

#
2 . . . is called an abstract trace.

D. Abstract States Propagation

Practically, we utilize the box domain [6] for all the abstract
states, s# in our work. For a program with m variables, each
abstract state in the domain is represented by a m-dimensional
box. Each abstract state is a pair s# = (bc, be)#, where bc ∈
Rm is the center of the box and be ∈ Rm≥0 represents the non-
negative deviations. The i-th dimension of the concretization,
β(s#), is given by

[(bc)i − (be)i, (bc)i + (be)i].

Specifically, we showcase how the abstract state is propa-
gated through programs or neural networks as below. Please
refer to Appendix D for more details.

Add. For a concrete function f that replaces the i-th element
in the input vector x ∈ Rm by the sum of the j-th and k-th
element:

f(x) = (x1, . . . , xi−1, xj + xk, xi+1, . . . xm)T .

The abstraction function of f is given by:

f#(s#) = (M · bc,M · be)#,

where M ∈ Rm×m can replace the i-th element of x by the
sum of the j-th and k-th element by M · bc.

Matrix Multiplication. For a concrete function f that
multiplies the input x ∈ Rm by a fixed matrix M ∈ Rm′×m:

f(x) =M · x.

The abstraction function of f is given by:

f#(s#) = (M · bc, |M | · be)#,

where |M | is the element-wise absolute value of M . Con-
volutions follow the same approach, as they are also linear
operations.

ReLU. For a concrete element-wise ReLU operation over
x ∈ Rm:

ReLU(x) = (max(x1, 0), . . . ,max(xm, 0))T ,

the abstraction function of ReLU is given by:

ReLU#(s#) =

(
ReLU(bc + be) + ReLU(bc − be)

2
,

ReLU(bc + be)− ReLU(bc − be)
2

)
#

.

where bc + be and bc − be denotes the element-wise sum and
element-wise subtraction between bc and be.

III. PROBLEM FORMULATION

We start by defining robustness. Assume an adversarial MDP
Mν , a policy π, and a threshold ∆ > 0. A robustness property
is a constraint ϕ(π,∆) of the form ∀ν ∈ AB . R(π)−R(π◦ν) <
∆. Intuitively, ϕ states that no allowable adversary can reduce
the expected reward of π by more than ∆.

Our goal in this paper is to learn policies that are provably
robust. Accordingly, we expect our learning algorithm to
produce, in addition to a policy π, a certificate, or proof,
c of robustness. Formally, let Π be the universe of all policies
in a given state-adversarial MDP Mν = (M, B). For a policy
π and a robustness property ϕ, we write π ⊢c ϕ if π provably
satisfies ϕ, and c is a proof of this fact.

The problem of reinforcement learning with robustness
certificates is now defined as:

(π∗, c) = argmax
π∈Π

E
τ∼(M,π)

[R(τ)] , s.t. π∗ ⊢c ϕ. (1)

That is, we want to find a policy that maximizes the standard
expected reward in RL but also ensures that the expected
worst-case adversarial reward is provably above a threshold.
We assume that a policy satisfying the constraint ϕ exists.

Our certificates can be constructed using a variety of
symbolic or statistical techniques. In CAROL, certificates are
constructed using an abstract interpreter. Suppose we have a
policy π and an abstract trace τ# = s#0 s

#
1 . . . s

#
n such that for

all length-n trajectories τ = s0 . . . sn and for all i, si ∈ β(s#i).
The abstract trace allows us to compute a lower bound on
the expected reward for π and also serves as a proof of this
bound. We give an example of such certification in a simple
state-adversarial MDP, assumed to be available in white-box
form, in Table I.

A challenge here is that abstract interpretation requires a
white-box transition function, which is not available in RL. We
overcome this challenge by learning a model of the environment
during exploration. Model learning is a source of error, so
our certificates are probabilistically sound, i.e., they guarantee
robustness with high probability. However, this error only
depends on the underlying model-based RL algorithm and
does not restrict the adversary.

Environment

Model

Policy

Model#

Policy#

Loss

Robustness Property

Learner
Abstract
Interpreter

Certificate

Fig. 1: Schematic of CAROL

IV. LEARNING ALGORITHM

Now we present the CAROL framework. The framework
(Figure 1) has two key components: a model-based learner
and an abstract interpreter. During each training round, the
learner maintains a model of the environment dynamics and
a policy. These are sent to the abstract interpreter, which
calculates a lower bound on the abstract reward. The lower
bound is used to compute a differentiable loss the learner uses
in the next iteration of learning. At convergence, the abstract
trace computed during abstract interpretation is returned as a
certificate of robustness.

A. Abstract Interpretation in CAROL

Now we describe the abstract interpreter in CAROL in more
detail. Recall that our definition of robustness compares the
expected reward of the original policy to the expected reward
of the policy under an adversarial perturbation. As a result,
our verifier is designed to reason about the worst-case reward
under adversarial perturbations, while considering average-case
behavior for stochastic policies and environments. Algorithm 1
finds a lower bound on this worst-case expected reward
using abstract interpretation to overapproximate the adversary’s
possible behaviors along with sampling to approximate the
average-case behavior of the policy and environment. We denote
this lower bound from Algorithm 1 as worst-case accumulative
reward (WCAR), which is also used to measure the certified
performance in our evaluation.

In more detail, Algorithm 1 proceeds by sampling a starting
state s0 ∼ S0. Then in Algorithm 2 for each time step, we
find an overapproximation s#obsi which includes all of the
possible ways the adversary may perturb si. Based on this
approximation, we sample a new approximation from the policy
π. Intuitively, this may be done by using a policy π whose
randomness does not depend on the current state of the system.
More formally, π(a | s) = µπ(s) + fπ(a) where fπ(a) is a
distribution with zero mean which is independent of s. Then
a#i may be computed as µπ(s

#
obsi) +α({e}) where e ∼ fπ(a).

Once the abstract action is computed, we may find the new
(abstract) state and reward using the environment model E.
The model is assumed to satisfy a PAC-style bound, i.e., there
exist δE and εE such that with probability at least 1 − δE ,

s0 = 1.0
ν(s) = ⟨s0 + ϵ0,

s1 + ϵ1⟩ s0 sobs0 a0 s1 sobs1 a1 R(π ◦ ν) Eτ∼π◦ν [R]

No-Adv ϵ0 = ϵ1 = 0.0 1 1 1 2 + e 2 + e 2 + e 6 + 2e 6

Adv-1 ϵ0 = 0.1,
ϵ1 = −0.4

1 1.1 1.1 2.1 + e 1.7 + e 1.7 + e 5.9 + 2e 5.9

Adv-2 ϵ0 = −0.2,
ϵ1 = −0.3

1 0.8 0.8 1.8 + e 1.5 + e 1.5 + e 5.1 + 2e 5.1

Reward Bound (R#)
ϵt ∈ [−0.5, 0.5],
ϵ#t = [−0.5, 0.5]

1 1 + [−0.5, 0.5] [0.5, 1.5] [1.5, 2.5] + e [1, 3] + e
[1 + e,
3 + e]

[4 + 2e,
8 + 2e]

[4, 8]

TABLE I: Example of reward bound calculation. The MDP in this example has initial state set S0 = [1.0, 1.0], white-box
transition function P (s′|s, a) = s+ a+N (0, 1), reward function r(s, a) = s+ a, and adversary ν(s) ∈ [s− 0.5, s+ 0.5]. ϵt
denotes the disturbance added on step t. e represents the stochasticity from the transition, where e ∼ N (0, 1). We aim to
certify over the worst-case accumulative reward of a deterministic policy π defined as π(s) = s. We define the worst-case by
considering all potential adversaries while still considering the expected behavior over the stochastic environment, P . As shown
in the above table, we first demonstrate three traces from fixed adversaries. In the last row, we demonstrate how we consider
all the adversary behaviors through an abstract trace via abstract interpretation with intervals. The worst-case accumulative
reward in this example is 4 as EN [e] = 0. The abstract trace over all the adversaries in the last row is our certificate which
serves as a proof that the policy satisfies our property. We want to ensure that the lower bound of the R# should not be lower
than a threshold. In training, we use the abstract trace to compute a loss to guide the learning process.

∥E(s, a) − P (s, a)∥ ≤ εE . The values of δE and εE can be
measured during model construction.

One way to understand Algorithm 1 is to consider pairs of
abstract and concrete trajectories in which the randomness
is resolved in the same way. Specifically, if π(a | s) =
µπ(s) + fπ(a) and E(s′ | s, a) = µ(s, a) + fE(s

′), the initial
state s0 combined with the sequence of values ei ∼ fπ(a) and
e′i ∼ fE(s

′) for 0 ≤ i ≤ T uniquely determine a trajectory.
For a given set of values, the reward bound inf β(R#

mint)
represents the worst-case reward under any adversary for a
particular resolution of the randomness in the environment and
the policy. The outer loop of Algorithm 1 approximates the
expectation over these different random values by sampling.
Theorem 1 in Section V shows formally that with high
probability, Algorithm 1 gives a lower bound on the true
adversarial reward.

B. Learning in CAROL

Now we discuss how to learn a policy and environment
model that may be proven robust by Algorithm 1. At a high
level, Algorithm 3 works by introducing a symbolic loss term
Lsymbolic
ψ which measures the robustness of the policy. Because

robustness is a constrained optimization problem, we use this
symbolic loss with a Lagrange multiplier in an alternating
gradient descent scheme to find the optimal robust policy.
Formally, for a given environment model E, the inner loop in
Algorithm 3 solves the optimization problem

argmin
ψ

Lnormal(πψ,Dmodel) s.t. Lsymbolic(π,E) ≤ ∆

via the Lagrangian

argmin
ψ

max
λ≥0

Lnormal(πψ,Dmodel)+λ(L
symbolic(π,E)−∆). (2)

We ensure that solving this problem solves the certifiable
robustness problem by enforcing the following conditions: (i)
E accurately models the environment and (ii) Lsymbolic(π,E)

measures the “provable robustness” of π. Condition (i) is
handled by alternating model updates with policy updates,
in the style of Dyna [17], so we will focus on condition (ii).

The computation of Lsymbolic uses the same underlying
abstract rollouts (Algorithm 2) as the verifier described in
Algorithm 1. Once again, this algorithm estimates the reward
achieved by a policy under worst-case adversarial perturbations
but average-case policy actions and environment transitions.
We then define the robustness loss as the difference between
the nominal loss Ro and the provable lower bound on the
worst-case loss Rmin. Now as long as Lsymbolic < ∆, we
satisfy the definition of robustness given in Section III for
that specific trace. Repeating these gradient updates gives an
approximation of the average-case behavior which is considered
in Algorithm 1.

V. THEORETICAL ANALYSIS

Now we explore some key theoretical properties of CAROL.
Proofs are deferred to Appendix B.

Theorem 1. Assume the environment transition distribution
is P (s′ | s, a) = N (µP (s, a),ΣP) and the environment
model is E(s′ | s, a) = N (µE(s, a),ΣE) with ΣP ,ΣE

diagonal, which is standard under the model-based RL setting
[15]. Further, we assume that the model satisfies a PAC-
style guarantee: for any state s, action a, and ϵ ∈ S,
|(µP (s, a) + Σ

1/2
P ϵ) − (µE(s, a) + Σ

1/2
E ϵ)| ≤ εE with prob-

ability at least 1 − δE . For any policy π, let the result of
Algorithm 1 be R̂# and let the reward of π under the optimal
adversary ν∗ be R. Then for any δ > 0 with probability at
least 1− δ, we have

R ≥R̂# − 1√
δ

√
Var [R#]

N
−
(
1− (1− δE)T

)
C.

where C is a remainder depending on time horizon T (see
Appendix B for details of C).

Algorithm 1 Worst-Case Accumulative Reward (WCAR)

1: Input: policy π, model E
2: Output: Estimated worst case reward of π under any adversary
3: for t from 1 to N do
4: Sample an initial state s0 ∼ S0
5: Get the worst case reward Rmint using Algorithm 2 over horizon T starting from s0
6: end for
7: return 1

N

∑N
t=1Rmint

Algorithm 2 Worst-case rollout under adversarial perturbation

1: Input: Initial state s0, rollout horizon T
2: Output: Worst-case reward of π starting from s0 over one random trajectory
3: Abstract the initial state and reward: soriginal

#
0 ← α({s0}), R#

mint i
← α ({0})

4: for i from 1 to T do
5: Abstract over possible perturbations: s#obsi ← B(s#originali

)

6: Calculate symbolic predicted actions: a#i ← π(s#obsi)
7: Calculate symbolic next-step states and rewards:

s#originali+1
, r#i ← Eθ(s

#
originali

, a#i) + α({x | ∥x∥ ≤ εE})
8: Update the estimated worst-case reward: R#

mint ← R#
mint + r#i

9: end for
10: return inf β(R#

mint)

Algorithm 3 Certifiably Robust Reinforcement Learning

1: Initialize a random policy πψ , random environment model Eθ, and empty model dataset Dmodel.
2: Initialize an environment dataset Denv by unrolling trajectories under a random policy.
3: for N epochs do
4: Train model Eθ on Denv via maximum likelihood
5: Unroll M trajectories in the model under πψ; add to Dmodel
6: Take action in environment according to πψ; add to Denv
7: for G gradient updates do
8: Calculate normal policy loss Lnormal(πψ,Dmodel) as in MBPO [15]
9: Sample ⟨st, at, st+1, rt⟩ uniformly from Dmodel

10: Rollout π starting from st under Eθ for Ttrain steps and compute the total reward Ro

11: Compute the worst-case reward Rmin using Algorithm 2 over horizon Ttrain.
12: Compute the robustness loss Lsymbolic(πψ, Eθ)← Ro −Rmin
13: Update policy parameters: ψ ← ψ − α∇ψ(Lnormal(πψ,Dmodel) + λ(Lsymbolic(πψ, Eθ)−∆))
14: Update Lagrange multiplier: λ← max(0, λ+ α′(Lsymbolic(πψ, Eθ)−∆))
15: end for
16: Unroll n trajectories in the true environment under πψ; add to Denv
17: end for

We divide the proof into two main parts: (1) Algorithm 2
returns the lower bound of the reward. (2) In cases where
Algorithm 2 does not return the lower bound of the reward, we
bound the distribution shifts between the returned lower bound
and the ground truth lower bound. The proof strategy involves
bounding the per-step distribution shifts over the states under
the assumption of the stochaticity limit, PAC-style guarantee
of the learnt environment model, and the Lipschitz continuity
of the environment. Subsequently, we leverage the bounded
shifts over step-wise states to bound the expected reward of
the abstract rollouts in Algorithm 2. Please see Appendix B
for a detailed proof.

Theorem 1 shows that our checker is a valid (probabilistic)
proof strategy for determining if a policy is robust. That is, if
we use Algorithm 1 to measure the reward of a policy under
perturbation, the result is a lower bound of the true worst-case
reward (minus a constant) with high probability, assuming an
accurate environment model. The bound in Theorem 1 gives
some interesting insights. First, the bound grows as δ shrinks,
so we pay the price of a looser bound as we consider higher
confidence levels. Second, the bound depends on the variance
of the abstract reward and the number of samples in an intuitive
way — higher variance makes it harder to measure the true
reward, and more samples make the bound tighter. Third, as

δE increases, the last term of the bound grows, indicating that
a less accurate environment model leads to a looser bound.
Finally, the bound grows with T , indicating that over longer
time horizons, our reward measurement gets less accurate. This
is consistent with the intuition that the environment model may
drift away from the true environment over long rollouts.

Theorem 2. Assume there exists a provably robust policy.
Let πψ be a solution to the optimization problem defined in
Equation 2. Let π be any policy that is provably robust in the
sense that Lsymbolic(π,E) ≤ ∆. Then πψ is provably robust
and has a policy loss that does not exceed that of π (that is,
Lnormal(πψ,Dmodel) ≤ Lnormal(π,Dmodel).

Proof. Note that if πψ is not provably robust then
Lsymbolic(πψ, E) > ∆ by the soundness of abstract in-
terpretation. By assumption there exists some policy π∗

which is provably robust so that Lsymbolic(π∗, E) ≤ ∆. Let
ℓ = Lnormal(π∗, E) be the value of the objective function in
Equation 2 for π∗. Then for any

λ >
ℓ− Lnormal(πψ,Dmodel)

Lsymbolic(πψ, E)−∆

we have

Lnormal(πψ,Dmodel) + λ
(
Lsymbolic(πψ, E)−∆

)
> ℓ

so that in particular πψ would not be an optimum of the
problem defined in Equation 2. Therefore we have that πψ is
provably robust.

Now consider any policy π, which provably satisfies the
robustness property. In this case, the optimal λ for π is 0, so the
objective of the saddle point problem is just Lnormal(π,Dmodel).
By assumption, Lnormal(πψ,Dmodel) ≤ Lnormal(π,Dmodel) be-
cause πψ is a minimizer for Equation 2.

Intuitively, Theorem 2 shows that the saddle point problem
solved by Algorithm 3 also solves the certifiable robustness
problem, i.e., it converges to a policy that passes the check
by Algorithm 1. The primal-dual gradient descent approach
outlined in Algorithm 3 is a standard technique for solving
such saddle point problems [18].

VI. EVALUATION

We study the following research questions for evaluation:
RQ1: Can CAROL learn policies with nontrivial certified reward

bounds? We assess WCAR with the associated environment
model to demonstrate the certified performance.

RQ2: Do the certified bounds for CAROL beat those for other
(non-certified) robust RL methods? By truncating CAROL
and extracting the its training policies, we compare CAROL
against baselines in terms of WCAR.

RQ3: How does the model error, εE , distribute? We incorporate
the model error, εE in Algorithm 2 and assume the PAC-
style guarantee in Section V. To better exhibit the results
from our main algorithms in Section IV, we empirically
measure how the model error distributes.

RQ4: How tight is the certified bound? To gauge the tightness
of our certified bound within limited time horizons, we
compare the certified reward bound with the reward trace
under empirical attacks.

RQ5: What is CAROL’s performance against empirical adver-
sarial inputs? Certified defenses and heuristic defenses
are distinct well-studied categories in adversarial ML. A
good certified performance may sacrifice the empirical
performance (reward under empirical attacks). We evaluate
the reward under empirical attacks on state observations to
ascertain that our certified defenses maintain high reward.

RQ6: How does the estimation of the model error, εE , impact the
certified reward bounds? We present the certified reward
bounds under the assumption of a flawless model, where
εE = 0.0.

RQ7: How does the model-based training strategy of CAROL
influence its performance? We conduct an ablation study of
the core algorithm by separating data sampling for training
loss from the process of environment model learning.

A. Experiments Setup and Training Details

a) Environments and Setup: Our experiments consider
l∞-norms perturbation of the state with radius ϵ: Bp(s, ϵ) :=
{s′|∥s′−s∥ ≤ ϵ}. We implement CAROL on top of the MBPO
[15] model-based RL algorithm using the implementation
from [19]. For training, we use Interval Bound Propagation
(IBP) [20] as a scalable abstract interpretation mechanism
to compute the layer-wise bounds for the neural networks,
where all the abstract states are represented as intervals per
dimension. More details of the abstract transition are omitted
to Appendix D. During the evaluation, we use CROWN [21], a
more computationally expensive but tighter bound propagation
method based on IBP. During training, we use a smoothed
linear ϵ-schedule [20], [11] to slowly increase the ϵt at each
epoch within the perturbation budget until reaching ϵ. Note
that the policies take action stochastically during training, but
we set them to be deterministic during evaluation.

We experiment on four MuJoCo environments in OpenAI
Gym [22]. For CAROL, we use the same hyperparameters
for the base RL algorithms as in [19] without further tuning.
Specifically, we do not use an ensemble of dynamics models.
Instead, we use a single dynamic model, which is the case
when the ensemble is of size 1. We use Gaussian distribution
as the independent noise distribution, fπ(a), fE(s′) for both
policy and model in the experiments. Concretely, the output
of our policies are the parameters µπ , Σπ of a Gaussian, with
Σπ being diagonal and independent of input state s. For the
model, the output are the parameters µE , ΣE of a Gaussian,
with ΣE being diagonal and independent of input s, a.

We compare CAROL with the following methods:
• MBPO [15], our base RL algorithm.
• SA-PPO [11], a robust RL algorithm bounding per-step

action distance.
• RADIAL-PPO [10], a robust RL algorithm using lower

bound PPO loss to update the policy. In CAROL, we update
the policy loss Lnormal with the data sampled from the

Fig. 2: Demonstration of the model error distribution. CAROL, MBPO, and Separate represent the distribution from the models
trained with CAROL, models trained with MBPO, and the models trained from datasets from rollout with a set of random
policies, respectively.

rollout between the learned model and the policy. While
in CAROL-SS, the data for Lnormal is sampled from the
rollout between the environment and the policy.

• CAROL-Separate Sampler(CAROL-SS), an ablation of
CAROL.

The ϵtrain is 0.075, 0.05, 0.075, 0.05 for Hopper, Walker2d,
HalfCheetah, and Ant for CAROL, CAROL-SS, SA-PPO, and
RADIAL-PPO in this section for consistency with baselines.

For both the policy networks and the model networks, we
use the same network as in [19]. For both MBPO and CAROL,
we use the optimal hyperparameters in [19]. We set Ttrain = 1
for all the training of CAROL. We mainly set two additional
parameters, regularization parameters and the ϵ-schedule [11],
[10], [20] parameters for CAROL. The additional regularization
parameter λ to start with for regularizing Lsymbolic is chosen in
{0.1, 0.3, 0.5, 0.7, 1.0}. The ϵ-schedule starts as an exponential
growth from ϵ = 10−12 and transitions smoothly into a
linear schedule until reaching ϵtrain. Then the schedule keeps
ϵt = ϵtrain for the rest of iterations. We set the temperature
parameter controlling the exponential growth with 4.0 for all
experiments. We have two other parameters to control the ϵ-
schedule: endStep, and finalStep, where endStep is the step
where ϵt reaches ϵtrain and finalStep is the steps for the total
training. The midStep = 0.25 ∗ endStep is the turning point
from exponential growth to linear growth. Table II shows the
details of each parameter.

b) Evaluation Metrics: We evaluate the performance of
policies with two metrics: (i). WCAR, which was formally
defined in Algorithm 1 for certified performance. (ii). total
reward under MAD attacks [11] for empirical performance.

Environments Methods endStep finalStep

Hopper CAROL 4× 105 5× 105

CAROL-SS 4× 105 5× 105

Ant CAROL 8× 105 9× 105

CAROL-SS 4× 106 5× 106

Walker2d CAROL 7× 105 7.5× 105

CAROL-SS 1.5× 106 2× 106

HalfCheetah CAROL 7.5× 105 8.5× 105

CAROL-SS 7.5× 105 8.5× 105

TABLE II: Parameters for ϵ-schedule.

B. RQ1: Certified Performance with Learned-together Certifi-
cate

Upon completion of training, we obtain a policy, π, and
an associated environment model, E, which is trained in
tandem with the policy. Then, we evaluate the WCAR following
Algorithm 1 with π and E. Note that we set an ϵtest =

1
255 for

the evaluation of provability as certifying over long-horizon
traces of neural network models tightly is a challenging task for
abstract interpreters due to accumulated approximation error.
The proof becomes more challenging as the horizon increases,
primarily arising from the need to account for the potential
adversary’s behavior in the most unfavorable scenarios at each
step, and the step-wise impact from the worst-case adversary
accumulates. We vary the certified horizon under the ϵtest to
exhibit the certified performance.

Figure 3 exhibits the certified performance of CAROL. Both
CAROL and MBPO are evaluated with the model trained
together. We are able to train a policy with better certified

accumulative reward under the worst attacks compared to the
base algorithm, MBPO, which does not use the regularization
Lsymbolic. As the time horizon increases, it becomes harder to
certify the accumulative reward. For example, in Ant and
HalfCheetah, CAROL is not able to give a good certified
performance when the horizon reaches 10 and 20 respectively
because of the accumulative influence from the worst-case
attack and the overapproximation from the abstract interpreter.
We also highlight that Ant is a challenging task for certification
due to the high-dimensional state space.

C. RQ2: Comparison of Certified Performance with Other
Methods

We compare CAROL with two robust RL methods, SA-
PPO [11] and RADIAL-PPO [10], which both bound the
per-step performance of the policy during training. SA-PPO
bounds the per-step action deviation under perturbation, and
RADIAL-PPO bounds the one-step loss under perturbation.
As described in Section VI-D, to have a fair comparison of
the certified performance of policies and alleviate the impact
from model error bias across methods, we separately train
5 additional environment models, {Ei}, with the trajectory
datasets unrolled from 5 additional random policies and the
environment. We truncate CAROL by extracting the policies
from training and certifying them with these separately trained
environment models. This setting is not completely in line with
CAROL’s learned certificate and verification (see Section VI-D)
but is designed for a fair comparison across policies.

As shown in Figure 4, the CAROL’s certified performance
with separately trained models is slightly worse yet comparable
to its performance when using learned-together certificates.
Compared with non-certified RL policies, CAROL consistently
exhibits better certifiable performance. It is worth noting
that CAROL is able to provide worst-case rewards over time
for benchmarks aligning with the reward mechanisms used
in these environments. We show the abstract trace lower
bound (Rmin) sampled from trajectories in Appendix C. These
results demonstrate that CAROL is able to provide reasonable
certified performance, while the other methods, which are
not specifically designed for worst-case accumulative reward
certification, struggle to attain the same goal.

D. RQ3: Model Error in Practice

We incorporate the model error, denoted as εE , in Algo-
rithm 2. Our approach adheres to Assumption 5 detailed in
Appendix B for ε and δE . The ideal scenario involves accurately
quantifying max∀(s,a) ||P (s, a)−E(s, a)||. However, gauging
this error across the entire (s, a) space poses significant chal-
lenges. To mitigate the gap between the theoretical maximum
error and the empirical maximum error, we propose a way to es-
timate the model error using max(s,a=π(s)) ||P (s, a)−E(s, a)||,
where π represents a collection of random policies.

In our practical experiments, we assess the model error
associated with three training methodologies: CAROL, MBPO,
and Separate. Both CAROL and MBPO encapsulate envi-
ronment models that are concurrently trained within their

respective algorithms. In contrast, Separate models are derived
from supervised learning, leveraging a rollout dataset from
the original environment and a suite of random policies.
Specifically, Separate is mainly used in Section VI-C for a fair
comparison between model-based algorithms and model-free
algorithms. All the underlying environment model architectures
remain consistent with those described in [19]. Figure 2
illustrates the model error distribution across methods. In
subsequent sections, Section VI-B and Section VI-C, we
evaluate the certified performance of policies originating from
various algorithms, utilizing the εE with the 1− δE of 0.90.

E. RQ4: Qualitative Evaluation of the Abstract Trace Lower
Bound

We evaluate and demonstrate the lower bound of the abstract
traces over CAROL with examples in Figure 5. Specifically, we
show the reward under one empirical attack (MAD) and our
WCAR (incorporating the model error) over horizons starting
from the same initial state. WCAR being always smaller than
the reward under empirical attack indicates soundness. The
reasonably small gap between the two lines indicates tightness.
One interesting observation is that as the horizon increases,
the gap increases. We give two possible explanations for this:

• The empirical attack is not strong enough to reveal the
agents’ performance under the worst-case attack.

• The overapproximation error and the model error from
CAROL accumulate as the horizon increases.

Nominal Attack (MAD)
Environment Model ϵ = 0 ϵ = ϵtrain

Hopper
(ϵtrain = 0.075)

MBPO 3246.0±76.1 2874.2±203.4
SA-PPO 3423.9±164.2 3213.8±284.8
RADIAL-PPO 3547.0±166.9 3100.3±368.3

CAROL 3290.1±104.9 3201.4±100.5

Ant
(ϵtrain = 0.05)

MBPO 4051.9±526.2 406.2±83.5
SA-PPO 5368.8±96.4 5327.4±112.7
RADIAL-PPO 4694.1±219.5 4478.9±232.8

CAROL 5696.6±277.9 5362.2±242.8

HalfCheetah
(ϵtrain = 0.075)

MBPO 7706.3±710.1 2314.6±566.7
SA-PPO 3193.9±650.7 3231.6±659.9
RADIAL-PPO 3686.5±439.2 3409.6±683.9

CAROL 5821.5±2401.9 3961.6±899.5

Walker2d
(ϵtrain = 0.05)

MBPO 3815.6±211.9 3616.5±228.2
SA-PPO 4271.7±222.2 4444.4±286.0
RADIAL-PPO 2935.1±272.1 3022.6±381.7

CAROL 3784.4±329.1 3774.3±260.3

TABLE III: Average episodic reward ± standard deviation over
100 episodes on three baselines and CAROL. We show natural
rewards (under no attack) and rewards under adversarial attacks.
The best results over all methods are in bold.

F. RQ5: Comparison of Empirical Performance with Other
Methods

Usually, there is a trade-off between certified robustness
and empirical robustness. One can get good provability but

Fig. 3: Certified performance of policies π with the learned-together model, E. To have a fair comparison across different
horizons, we quantify the certified performance by WCAR/T , where WCAR is formally defined in Algorithm 1 and T is the
rollout horizon in Algorithm 2. Each bar is an average of 25 starting states. We use negative infinity, -inf, to exhibit that (π,E)
is not certifiable by a third-party verifier [21]. A higher value indicates a better certified worst-case performance. The results
are based on εE with a 1− δE of 0.9.

Fig. 4: Certified performance of policies π under a set of separately learned models, {Ei}. Each bar averages the learned
policies on each Ei of 25 starting states. The results are based on εE with a 1− δE of 0.9.

may sacrifice empirical rewards. We show that policy from our
algorithm shows comparable natural rewards (without attack)
and adversarial rewards compared with other methods. In
Table III, we show results on 4 environments and comparison
with MBPO, SA-PPO, and RADIAL-PPO. The policies are the
same ones evaluated for Section VI-D and Section VI-B. For
each environment, we compare the performance under MAD
attacks [11]. CAROL outperforms other methods on Ant and
HalfCheetah under attacks when the base algorithm, MBPO,
is extremely not robust. For Hopper, CAROL has comparable
adversarial rewards with the best methods. CAROL’s reward is
worse on Walker2d though still reasonable.

G. RQ6: Impact of Model Certification

We showcase the certified performance under the assumption
that the εE is zero in Figure 6 and Figure 7. The general trend
of the certified performance does not change much, while the
exact WCAR /T increases. Specifically, Walker2d could give
reasonable certification over longer horizons.

The results exhibit that whether the environment model is
trained accurately enough does not influence the gap between
our certified performance with other methods.

H. RQ7: Impact of Model-Based Training

In this part, we investigate the impact of our design choices
for Lnormal on performance. We compare our framework,
CAROL, with an ablation of it, CAROL-SS, to understand how
rollout with the learned model for Lnormal matters in CAROL.
We present a comparison of performance during training, as
shown in Figure 8. In the implementation, we set a smoother ϵ-
schedule for CAROL-SS by allowing CAROL-SS to take longer
steps from ϵ = 0 to the target ϵ. These results show that CAROL
converges much faster while achieving a comparable or better
final performance due to the benefits of the sample efficiency
of MBRL. Additionally, the consistency between the rollout
datasets for Lnormal and the ones for Lsymbolic also leads to a
better natural reward at convergence in training.

VII. RELATED WORK

A. Adversarial RL

Adversarial attacks on RL systems have been extensively
studied. Specific attacks include adversarial perturbations on
agents’ observations or actions [23], [13], [24], adversarial
disturbance forces to the system [25], and other adversarial
policies in a multiagent setting [26]. Most recently, [27] and

Fig. 5: Examples of robustness certification of CAROL. We
show the reward under one empirical attack (MAD) and WCAR
(incorporating the model error with 1− δE being 0.90) over
horizons starting from the same initial state.

[28] consider an optimal adversary and propose methods to
train agents together with a learned adversary in an online way
to achieve a better adversarial reward.

B. Robust RL and Certifiable Robustness in RL

Multiple robust training methods have been applied to deep
RL. Mankowitz et al. [29] explore a broader adversarial setting
related to model disturbances and model uncertainty. Fischer
et al. [14] leverage additional student networks to help the
robust Q learning, and Everett et al. [30] enhance an agent’s
robustness during testing time by computing the lower bound
of each action’s Q value at each step. Zhang et al. [11] and
Oikarinen et al. [10] leverage a bound propagation technique
in a loss regularizer to encourage the agent to either follow its
original actions or optimize over a loss lower bound. While
these efforts achieve robustness by deterministic certification
techniques for neural networks [20], [31], they mainly focus on
the step-wise certification and are not able to give robustness
certification if the impact from attacks accumulates across
multiple steps. CAROL differs from these papers by offering
certified robustness for the aggregate reward in an episode.
We know of only two recent efforts that study robustness

certification for cumulative rewards. The first, by Wu et al.
[32], gives a framework for certification rather than certified
learning. The second, by Kumar et al. [9], proposes a certified
learning algorithm under the assumption that the adversarial
perturbation is smoothed using random noise. The attack model
here is weaker than the adversarial model assumed by CAROL
and most other work on adversarial learning.

C. Certified RL

Safe control with learned certificates is an active field [33]. A
few efforts in this space have considered controllers discovered
through RL. Many works use a given certificate with strong
control-theoretic priors to constrain the actions of an RL agent
[3], [34], [35] or assume the full knowledge of the environment
to yield the certificate during the training of an agent [36].
Chow et al. [37], [38] attempt to derive certificates from the
structure of the constrained Markov decision process [39]
for the safe control problems. Chang et al. [40] incorporate
Lyapunov methods in deep RL to learn a neural Lyapunov
critic function to improve the stability of an RL agent. We
differ from this work by focusing on adversarial robustness
rather than stability.

VIII. DISCUSSION

We have presented CAROL, the first RL framework with
certifiable episode-level robustness guarantees. Our approach is
based on a new combination of model-based RL and abstract
interpretation. We have given a theoretical analysis to justify
the approach and validated it empirically in four challenging
continuous control tasks.

We present a detailed discussion about the limitations and
future directions of our work below.

a) Precision of Abstract Interpretation: A key challenge
in CAROL is that our abstract interpreter may not be sufficiently
precise, and attempts to increase precision may compromise
scalability. Future research should work to address this issue
with more accurate and scalable verification techniques.

b) Adversarial Setting: We focus on the state-adversarial
setting. There are broader adversarial settings related to model
disturbances and model uncertainty [29]. Exploring the certified
learning over environment dynamics perturbation is of interest.
Specifically, we do not require a predefined model. We learn a
model where the model misspecification amounts to supervised
learning error. Future works would incorporate the potential
disturbance of the environment in training to learn the dynamics
model under CAROL framework.

c) Dimensionality: We focus on control benchmarks in
this work. Related works about certification [32] use higher
dimensional environments (e.g., Atari). However, the methods
in CROP [32] primarily work on discrete state/action space and
assume a deterministic environment. CAROL is more general;
while CROP does post-hoc verification, we focus on certified
learning, where verification is integrated with learning. In
addition, to the best of our knowledge, the environments we
evaluate over have the largest dimensionality in certified RL
papers [41], [40].

Fig. 6: Certified performance of policies π with the learned-together model, E. Each bar is an average of 25 starting states.
The results are based on the assumption of εE being 0.0.

Fig. 7: Certified performance of policies π under a set of separately learned models, {Ei}. Each bar averages the learned
policies on each Ei of 25 starting states. The results are based on the assumption of εE being 0.0.

Fig. 8: Training Curves of CAROL and CAROL-SS. The solid lines in the graph show the average natural rewards of five
training trials, and the shaded areas represent the standard deviation among those trials.

d) Stochasticity: Because abstract interpretation of prob-
abilistic systems is difficult, our approach assumes that the
randomness in the environment transitions is state-independent.
Future work should try to eliminate this assumption through ab-
stract interpreters tailored to probabilistic systems. In addition,
we have challenges handling highly random environments,
which is a fundamental limitation of all certified learning
techniques. We consider the stochasticity in the theoretical
analysis by incorporating the variance of R#in the soundness
bound. When stochasticity is large, the tightness of our bound
may be affected.

e) Complexity: Certified learning is more expensive than
regular learning due to certifiability and soundness guarantee
requirements. In training, the symbolic state is represented by
the center and the width of a box (2x information representation
per state). Propagating over a box needs an additional 2x
computation compared to computation without symbolic states.
Consequently, CAROL is approximately two times slower than
the base RL algorithm per step.

In summary, CAROL ’s performance is limited in the very
large-scale MDPs over long rollout horizons mainly due to
two reasons:

• Efficient abstract interpretation domains (e.g., Inter-

val/Box) can give accumulated over-approximation error.
• Tighter abstract interpretation domains are expensive in

training and may not be differentiable. (e.g. bounded
Zonotopes [42] or Polyhedra [43]).

We believe that future works on tighter, more efficient, and
differentiable abstract interpretation techniques would benefit
CAROL as our framework is not built on top of one particular
abstract interpretation method. Additionally, a broader setting
of adversarial perturbations would be an interesting future
direction to extend our work.

ACKNOWLEDGEMENTS

This work was supported in part by ONR under Award No.
N00014-20-1-2115, and by NSF under grants CCF-1901376
and CCF-2033851.

REFERENCES

[1] A. S. Polydoros and L. Nalpantidis, “Survey of model-based reinforce-
ment learning: Applications on robotics,” Journal of Intelligent & Robotic
Systems, vol. 86, no. 2, pp. 153–173, 2017.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” nature, vol.
518, no. 7540, pp. 529–533, 2015.

[3] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, 2019, pp. 3387–3395.

[4] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement
learning framework for autonomous driving,” Electronic Imaging, vol.
2017, no. 19, pp. 70–76, 2017.

[5] A. Russo and A. Proutiere, “Optimal attacks on reinforcement learning
policies,” arXiv preprint arXiv:1907.13548, 2019.

[6] M. Mirman, T. Gehr, and M. Vechev, “Differentiable abstract interpreta-
tion for provably robust neural networks,” in International Conference
on Machine Learning. PMLR, 2018, pp. 3578–3586.

[7] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness
via randomized smoothing,” in International Conference on Machine
Learning. PMLR, 2019, pp. 1310–1320.

[8] E. Wong and Z. Kolter, “Provable defenses against adversarial examples
via the convex outer adversarial polytope,” in International Conference
on Machine Learning. PMLR, 2018, pp. 5286–5295.

[9] A. Kumar, A. Levine, and S. Feizi, “Policy smoothing for provably
robust reinforcement learning,” in International Conference on Learning
Representations, 2021.

[10] T. Oikarinen, W. Zhang, A. Megretski, L. Daniel, and T.-W. Weng,
“Robust deep reinforcement learning through adversarial loss,” Advances
in Neural Information Processing Systems, vol. 34, pp. 26 156–26 167,
2021.

[11] H. Zhang, H. Chen, C. Xiao, B. Li, M. Liu, D. Boning, and C.-J. Hsieh,
“Robust deep reinforcement learning against adversarial perturbations on
state observations,” Advances in Neural Information Processing Systems,
vol. 33, pp. 21 024–21 037, 2020.

[12] B. Lütjens, M. Everett, and J. P. How, “Certified adversarial robustness
for deep reinforcement learning,” in Conference on Robot Learning.
PMLR, 2020, pp. 1328–1337.

[13] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and M. Sun,
“Tactics of adversarial attack on deep reinforcement learning agents,”
arXiv preprint arXiv:1703.06748, 2017.

[14] M. Fischer, M. Mirman, S. Stalder, and M. Vechev, “Online ro-
bustness training for deep reinforcement learning,” arXiv preprint
arXiv:1911.00887, 2019.

[15] M. Janner, J. Fu, M. Zhang, and S. Levine, “When to trust your model:
Model-based policy optimization,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[16] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. Los
Angeles, California: ACM Press, New York, NY, 1977, pp. 238–252.

[17] R. S. Sutton, “Integrated architecture for learning, planning, and reacting
based on approximating dynamic programming,” in Proceedings of
the Seventh International Conference (1990) on Machine Learning.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990,
p. 216–224.

[18] Y. Nandwani, A. Pathak, Mausam, and P. Singla, “A primal
dual formulation for deep learning with constraints,” in
Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/paper/2019/file/
cf708fc1decf0337aded484f8f4519ae-Paper.pdf

[19] L. Pineda, B. Amos, A. Zhang, N. O. Lambert, and R. Calandra,
“Mbrl-lib: A modular library for model-based reinforcement learning,”
Arxiv, 2021. [Online]. Available: https://arxiv.org/abs/2104.10159

[20] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato,
R. Arandjelovic, T. Mann, and P. Kohli, “On the effectiveness of interval
bound propagation for training verifiably robust models,” arXiv preprint
arXiv:1810.12715, 2018.

[21] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient
neural network robustness certification with general activation functions,”
Advances in neural information processing systems, vol. 31, 2018.

[22] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[23] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adversar-
ial attacks on neural network policies,” arXiv preprint arXiv:1702.02284,
2017.

[24] T.-W. Weng, K. D. Dvijotham, J. Uesato, K. Xiao, S. Gowal, R. Stanforth,
and P. Kohli, “Toward evaluating robustness of deep reinforcement
learning with continuous control,” in International Conference on
Learning Representations, 2019.

[25] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adver-
sarial reinforcement learning,” in International Conference on Machine
Learning. PMLR, 2017, pp. 2817–2826.

[26] A. Gleave, M. Dennis, C. Wild, N. Kant, S. Levine, and S. Russell,
“Adversarial policies: Attacking deep reinforcement learning,” arXiv
preprint arXiv:1905.10615, 2019.

[27] H. Zhang, H. Chen, D. Boning, and C.-J. Hsieh, “Robust reinforcement
learning on state observations with learned optimal adversary,” arXiv
preprint arXiv:2101.08452, 2021.

[28] Y. Sun, R. Zheng, Y. Liang, and F. Huang, “Who is the strongest enemy?
towards optimal and efficient evasion attacks in deep rl,” arXiv preprint
arXiv:2106.05087, 2021.

[29] D. J. Mankowitz, N. Levine, R. Jeong, Y. Shi, J. Kay, A. Abdolmaleki,
J. T. Springenberg, T. Mann, T. Hester, and M. Riedmiller, “Robust rein-
forcement learning for continuous control with model misspecification,”
arXiv preprint arXiv:1906.07516, 2019.

[30] M. Everett, B. Lütjens, and J. P. How, “Certifiable robustness to
adversarial state uncertainty in deep reinforcement learning,” IEEE
Transactions on Neural Networks and Learning Systems, 2021.

[31] K. Xu, Z. Shi, H. Zhang, M. Huang, K. Chang, B. Kailkhura, X. Lin,
and C. Hsieh, “Automatic perturbation analysis on general computational
graphs,” Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States), Tech. Rep., 2020.

[32] F. Wu, L. Li, Z. Huang, Y. Vorobeychik, D. Zhao, and B. Li, “Crop:
Certifying robust policies for reinforcement learning through functional
smoothing,” in International Conference on Learning Representations,
2021.

[33] C. Dawson, S. Gao, and C. Fan, “Safe control with learned certificates:
A survey of neural lyapunov, barrier, and contraction methods,” arXiv
preprint arXiv:2202.11762, 2022.

[34] X. Li and C. Belta, “Temporal logic guided safe reinforcement learning
using control barrier functions,” arXiv preprint arXiv:1903.09885, 2019.

[35] R. Cheng, A. Verma, G. Orosz, S. Chaudhuri, Y. Yue, and J. Burdick,
“Control regularization for reduced variance reinforcement learning,” in
International Conference on Machine Learning. PMLR, 2019, pp.
1141–1150.

https://proceedings.neurips.cc/paper/2019/file/cf708fc1decf0337aded484f8f4519ae-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/cf708fc1decf0337aded484f8f4519ae-Paper.pdf
https://arxiv.org/abs/2104.10159

[36] C. Yang and S. Chaudhuri, “Safe neurosymbolic learning with differ-
entiable symbolic execution,” in International Conference on Learning
Representations, 2021.

[37] Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and
M. Ghavamzadeh, “Lyapunov-based safe policy optimization for
continuous control,” arXiv preprint arXiv:1901.10031, 2019.

[38] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, “A
lyapunov-based approach to safe reinforcement learning,” Advances in
neural information processing systems, vol. 31, 2018.

[39] E. Altman, Constrained Markov decision processes: stochastic modeling.
Routledge, 1999.

[40] Y.-C. Chang and S. Gao, “Stabilizing neural control using self-learned
almost lyapunov critics,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 1803–1809.

[41] C. Dawson, Z. Qin, S. Gao, and C. Fan, “Safe nonlinear control
using robust neural lyapunov-barrier functions,” in Conference on Robot
Learning. PMLR, 2022, pp. 1724–1735.

[42] J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz,
“Constrained zonotopes: A new tool for set-based estimation and fault
detection,” Automatica, vol. 69, pp. 126–136, 2016.

[43] G. Singh, M. Püschel, and M. Vechev, “Fast polyhedra abstract domain,”
in Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, 2017, pp. 46–59.

APPENDIX

A. Symbols

We give a summary of the symbols used in this paper below.

Definition Symbol/Notation

Policy πψ, π
Model of the environment Eθ, E

Environment transition P
Parameters (mean, covariance) for Gaussian distribution for environment, model, and policy µP ,ΣP , µE ,ΣE , µπ,Σπ

Distribution representing noise for environment, model, and policy fP , fE , fπ
Adversary ν

Regular policy loss Lnormal

Robustness loss Lsymbolic

Lipschitz constants for the environment model and policy mean LE , Lπ
Model error εE

PAC bound probability δE

Abstract lifts ·#
Abstraction α

Concretization β

Horizon for training and testing T , Ttrain, Ttest
Disturbance for training and testing ϵ, ϵtrain, ϵtest

B. Proofs

In this section, we present proofs of the theorems from Section V.

Assumption 3. The horizon of the MDP is bounded by T .

Assumption 4. The environment transition distribution has the form P (s′ | s, a) = N (µP (s, a) ,ΣP) with ΣP diagonal and
the environment model E has the form E (s′ | s, a) = N (µE(s, a),ΣE) with ΣE diagonal.

Assumption 5. There exist values εE and δE such that for all si, ai from step i and for any fixed e with probability at least
1 − δE , max0≤i≤T

∥∥∥(µP (si, ai) +Σ
1/2
P e

)
−
(
µE (si, ai) +Σ

1/2
E e

)∥∥∥ ≤ εE . Further, there exists some dE such that for all

s, a,
∥∥∥(µP (s, a) +Σ

1/2
P e

)
−
(
µE (s, a) +Σ

1/2
E e

)∥∥∥ ≤ dE .

Assumption 6. The environment model mean function µE (s, a) is LE-Lipschitz continuous, the immediate reward function
r (s, a) is Lr-Lipschitz continuous, and the policy mean µπ (s) is Lπ-Lipschitz continuous.

Assumption 7. For all s ∈ S, we have s ∈ B (s). That is, the adversary may choose not to perturb any state.

Theorem 1. For any policy π, let the result of Algorithm 1 be R̂#, let ν∗ be the optimal adversary (i.e., for all ν ∈ AB ,
R (π ◦ ν∗) ≤ R (π ◦ ν)), and let the reward of π ◦ ν∗ be R. Then for any δ > 0 with probability at least 1− δ, we have

R ≥ R̂# (τ)− 1√
δ

√
Var [R#]

N
−
(
1− (1− δE)T

)
Lr(1 + Lπ)dE

(LELπ)
T
+ (1− LELπ)T − 1

(1− LELπ)2
.

Proof. Recall that the environment transition P and policy π are assumed to be separable, i.e., P (s′ | s, a) = µP (s, a)+fP (s′)
and π (a | s) = µπ (s) + fπ (a) with µP and µπ deterministic. As a result, a trajectory under policy π ◦ ν∗ may be written
τ = s0, a0, s1, a1, . . . , sn, an where s0 ∼ S0, each ai = µπ (ν

∗ (si))+ e
π
i for eπi ∼ fπ (a), and each si = µP (si−1, ai−1)+ e

P
i

for ePi ∼ fP (s′). By Assumption 4, we know that ePi ∼ N (0,ΣP) so that ePi = Σ
1/2
P ei where ei ∼ N (0, I). In particular,

because each trajectory τ is uniquely determined by s0, {eπi }ni=0, {ei}ni=1, we can write the reward of π ◦ ν∗ as

R (π ◦ ν∗) = E
s0∼S0,{eπi ∼fπ(a)}ni=0

,{ei∼N (0,I)}n
i=1

R (τ)

Because this expectation ranges over the values of s0, {eπi }
n
i=0 , {ei}

n
i=1, we will proceed by considering pairs of abstract and

concrete trajectories unrolled with the same starting state and noise terms.
To do this, we analyze Algorithm 2 for some fixed s0, {eπi }

n
i=0 , {ei}

n
i=1. Let eEi = Σ

1/2
E ei. That is, given the same underlying

sample from N (0, I), ePi is the noise in the true environment while eEi is the noise in the modeled environment. We show by
induction that for all i, si ∈ β

(
s#originali

)
with probability at least (1− δE)i. Note that, because abstract interpretation is sound,

s0 ∈ β
(
s#original0

)
. Additionally, for all i if si ∈ β

(
s#originali

)
then ν∗ (si) ∈ β

(
s#obsi

)
. Moreover, since eπi is fixed, we have

π
(
s#obsi

)
= µπ

(
s#obsi

)
+ eπi

so that π (ν∗ (s)) ∈ β
(
a#i

)
. Similarly, because eEi is fixed, let ∆E = α ({x | ∥x∥ ≤ εE}) and we have

E
(
s#originali

, a#i

)
+∆E = µE

(
s#originali

, a#i

)
+ eEi +∆E .

By the induction hypothesis, we know that si−1 ∈ β
(
s#originali−1

)
with probability at least (1− δE)i−1 and therefore ai−1 ∈

β
(
a#i−1

)
. By Assumption 5, we have that

∥∥(µP (s, a) + ePi
)
−
(
µE (s, a) + eEi

)∥∥ < εE with probability at least 1 − δE .

In particular,
(
µP (s, a) + εPi

)
−
(
µE (s, a) + εEi

)
∈ ∆E , so that µP (s, a) + ePi ∈ β

(
E
(
s#originali

, a#i

)
+∆E

)
. Then with

probability at least 1− δE , if si−1 ∈ β
(
s#originali−1

)
then si ∈ β

(
s#originali

)
. As a result, si ∈ β

(
s#originali

)
with probability at

least (1− δE)i. In particular, by Assumption 3, n ≤ T so that for a fixed τ defined by s0, {eπi }
n
i=0 , {ei}

n
i=1, we have that

with probability at least (1− δE)T , Algorithm 2 returns a lower bound on R (τ).
Now we consider the case where Algorithm 2 does not return a lower bound of R (τ). In this case, we show (again by

induction) that for all 0 ≤ i ≤ T , there exists a point s′i ∈ β
(
s#originali

)
such that

∥si − s′i∥ ≤
i−1∑
j=0

(LELπ)
j
dE = dE

(
1− (LELπ)

i−1

1− LELπ

)

(when
∑−1
j=0 (LELπ)

j
dE is taken to be zero). First, note that s0 ∈ β

(
s#original0

)
, so the base case is trivially true. Now by

the induction hypothesis we have that there exists some s′i−1 ∈ β
(
s#originali−1

)
with

∥∥si−1 − s′i−1

∥∥ ≤ ∑i−2
j=0 (LELπ)

j
dE .

Notice that by Assumption 7, we also have s′i−1 ∈ β
(
s#obsi−1

)
. Now because abstract interpretation is sound, we have

that µπ
(
s′i−1

)
+ eπi−1 ∈ β

(
a#i−1

)
and by Assumption 6, ∥µπ (si−1) − µπ

(
s′i−1

)
∥ ≤ Lπ

∑i−2
j=0 (LELπ)

j
dE . Similarly, we

have µE
(
s′i−1, µπ

(
s′i−1

)
+ eπi−1

)
+ eEi ∈ β

(
s#originali

)
, and

∥∥µE (si−1, µπ (si−1) + eπi−1

)
− µE

(
s′i−1, µπ

(
s′i−1

)
+ eπi−1

)∥∥ ≤
LELπ

∑i−2
j=0 (LELπ)

j
dE . Let ŝi = µE

(
si−1, µπ (si−1) + επi−1

)
+ εEi . Then by Assumption 5, we have ∥ŝi − si∥ ≤

dE , so that in particular
∥∥si − µE (s′i−1, µπ

(
s′i−1

)
+ eπi−1

)
+ εEi

∥∥ ≤ dE + LELπ
∑i−2
j=0 (LELπ)

j
dE . Letting s′i =

µE
(
s′i−1, µπ

(
s′i−1

)
+ eπi−1

)
+ εPi , we have the desired result.

We use this result to bound the difference in reward between the abstract and concrete rollouts when Algorithm 2 does
not return a lower bound. For each i, because s′i ∈ β

(
s#originali

)
and µπ (s

′
i) + eπi ∈ a

#
i , we define r′i = r (s′i, µπ (s

′
i) + eπi)

and we know that r′ ∈ r#i . Because ∥si − s′i∥ ≤ dE

(
1−(LELπ)

i−1

1−LELπ

)
we have ∥ai − a′i∥ ≤ LπdE

(
1−(LELπ)

i−1

1−LELπ

)
and

|r (si, ai)− r′i| ≤ Lr(1 + Lπ)dE

(
1−(LELπ)

i−1

1−LELπ

)
. In particular, let R′ =

∑
i r

′
i and then

|R (τ)−R′| ≤
T∑
i=1

Lr(1 + Lπ)dE

(
1− (LELπ)

i−1

1− LELπ

)

= Lr(1 + Lπ)dE
(LELπ)

T
+ (1− LELπ)T − 1

(1− LELπ)2
.

We now combine these two cases to bound the expected difference between the reward returned by Algorithm 2, denoted
R# (τ), and the reward of τ . Let D = R# (τ) − R (τ) be a random variable representing this difference. Then with
probability at least (1− δE)T , D ≤ 0 and in all other cases (i.e., with probability no greater than 1 − (1− δE)T), D ≤
LR(1 + Lπ)dE

(LELπ)
T+(1−LELπ)T−1

(1−LELπ)
2 . In particular then,

E [D] ≤
(
1− (1− δE)T

)
Lr(1 + Lπ)dE

(LELπ)
T
+ (1− LELπ)T − 1

(1− LELπ)2
.

By definition E
[
R# (τ)

]
= E [R (τ)] + E [D]. Therefore, we have

E [R (τ)] = E
[
R# (τ)

]
− E [D] ≥ E

[
R# (τ)

]
−
(
1− (1− δE)T

)
Lr(1 + Lπ)dE

(LELπ)
T
+ (1− LELπ)T − 1

(1− LELπ)2
.

(3)

Algorithm 3 approximates E
[
R# (τ)

]
by sampling N values. Let R̂# (τ) be the measured mean and recall E

[
R̂# (τ)

]
=

E
[
R# (τ)

]
and Var

[
R̂# (τ)

]
= Var

[
R# (τ)

]
/N . Then by Chebyshev’s inequality we have the for all k > 0,

Pr

[∣∣∣R̂# (τ)− E
[
R# (τ)

]∣∣∣ ≥ k√Var
[
R̂# (τ)

]]
≤ 1/k2. Then in particular, with probability at least 1− 1/k2,

R̂# (τ)− k
√

Var [R# (τ)]

N
≤ R# (τ) .

Combining this with Equation 3 above and letting k = 1/
√
δ, we have with probability at least 1− δ,

E [R (τ)] ≥ R̂# (τ)− 1√
δ

√
Var [R# (τ)]

N

−
(
1− (1− δE)T

)
Lr(1 + Lπ)dE

(LELπ)
T
+ (1− LELπ)T − 1

(1− LELπ)2
.

While this paper focuses on continuous state and action spaces, we can extend our main theoretical result to discrete state
and action spaces if the environment is deterministic. For this analysis, we maintain Assumptions 3 and 7, but we add a few
new assumptions for the discrete setting.

Assumption 8. The environment model E is deterministic and E(s, a) = P (s, a) with probability at least 1− δE .

Assumption 9. The single-step reward for any state s and action a is bounded by rmin ≤ r(s, a) ≤ rmax.

Theorem 10. For a deterministic policy π, let the result of Algorithm 1 be R̂#, let ν∗ be the optimal adversary, and let the
reward of π ◦ ν∗ be R. Then for any δ, with probability at least 1− δ,

R ≥ R̂# − 1√
δ

√
Var[R#]

N
−
(
1− (1− δE)T

)
T (rmax − rmin).

Proof. Consider a trajectory τ = s0, a0, s1, a1, . . . , sn, an where s0 ∼ S0, each ai = π(si), and each si+1 = P (si, ai). Note
that because the dynamics of the environment and the policy are deterministic, the only randomness in the trajectory comes
from sampling the initial state. Then R(π ◦ ν∗) = Es0∼S0

R(τ). Similar to the proof of Theorem 1, we proceed by considering
pairs of abstract and concrete trajectories unrolled from the same starting state.

We show by induction that for all i, si ∈ β
(
s#originali

)
with probability at least (1− δE)i. For the base case, note that because

abstract interpretation is sound, s0 ∈ β
(
s#original0

)
. Additionally, for all i, if si ∈ β

(
s#originali

)
then ν∗(si) ∈ β

(
s#obsi

)
and

π(ν∗(si)) ∈ β
(
a#i

)
. From the induction hypothesis, we have si−1 ∈ β

(
s#originali−1

)
with probability at least (1− δE)i−1. By

Assumption 8, we have si+1 = E(si, ai) with probability at least 1− δE . Thus if si−1 ∈ β
(
s#originali−1

)
then with probability

at least 1− δE we know si ∈ β
(
s#originali

)
. Combined with the induction hypothesis, this implies that si ∈ β

(
s#originali

)
with

probability at least (1− δE)i. Now by Assumption 3, n ≤ T so that for a fixed τ from a starting state s0, we have that with
probability at least (1− δE)T , Algorithm 1 returns a lower bound on R(τ).

As in the proof of Theorem 1, we now turn to the case where Algorithm 1 does not return a lower bound of R(τ). In this
case, let ri be the true adversarial reward at time step i. Then by Assumption 9, we have ri ≥ rmin, and inf β

(
r#i

)
≤ rmax.

Thus in particular, letting R#(τ) represent the bound returned by Algorithm 1, we have R#(τ)−R(τ) ≤ T (rmax − rmin).
Now letting D = R#(τ) − R(τ), we have that with probability at least (1− δE)T , D ≤ 0 and in all other cases

D ≤ T (rmax − rmin). In particular,
E[D] ≤

(
1− (1− δE)T

)
T (rmax − rmin) .

By definition, E[R#(τ)] = E[R(τ)] + E[D] so that

E[R(τ)] = E[R#(τ)]−
(
1− (1− δE)T

)
T (rmax − rmin).

Following the same sampling argument we make in the proof of Theorem 1, we have that for any δ, with probability at least
1− δ,

E[R(τ)] ≥ R̂#(τ)− 1√
δ

√
Var[R#(τ)]

N
−
(
1− (1− δE)T

)
T (rmax − rmin).

Fig. 9: Physical Meaning Demonstration. Example of the bound of the state and the observation of the state. We select the
second dimension of the Hopper states, representing the angle of the top of the Hopper agent. We extract the lower bound and
upper bound of the state value and the observed state value during the reasoning of WCAR of Hopper. For one time step, i, the
orange area represents the interval bound of si and the blue area represents sobsi . The red trajectory shows one example of the
state after the MAD attack. The green trajectory exhibits the observed state trajectory. Our certificate aims to bound the state
trajectories from all attacks within our allowed adversary set.

C. Physical Meaning of the Attack and Certification bound

We demonstrate the physical meaning of the attack and certification bound in Figure 9.

D. Abstract Bound Propagation

Now, we give an explanation of how interval bound propagation (IBP) works. CROWN [21] optimizes over IBP for tighter
bound (specifically for Relu and sigmoid, etc.). IBP considers the box domain in the implementation. For a program with m
variables, each component in the domain represents a m-dimensional box. Each component of the domain is a pair s# = ⟨bc, be⟩,
where bc ∈ Rm is the center of the box and be ∈ Rm≥0 represents the non-negative deviations. The interval concretization of the
i-th dimension variable of s# is given by

[(bc)i − (be)i, (bc)i + (be)i].

Now we give the abstract update for the box domain following [6].
a) Add.: For a concrete function f that replaces the i-th element in the input vector x ∈ Rm by the sum of the j-th and

k-th element:

f(x) = (x1, . . . , xi−1, xj + xk, xi+1, . . . xm)T .

The abstraction function of f is given by:

f#(s#) = ⟨M · bc,M · be⟩,

where M ∈ Rm×m can replace the i-th element of x by the sum of the j-th and k-th element by M · bc.
b) Multiplication.: For a concrete function f that multiplies the i-th element in the input vector x ∈ Rm by a constant w:

f(x) = (x1, . . . , xi−1, w · xi, xi+1, . . . , xm)T .

The abstraction function of f is given by:

f#(s#) = ⟨Mw · bc,M|w| · be⟩,

where Mw · bc multiplies the i-th element of bc by w and M|w| · be multiplies the i-th element of be with |w|.

c) Matrix Multiplication.: For a concrete function f that multiplies the input x ∈ Rm by a fixed matrix M ∈ Rm′×m:

f(x) =M · x.

The abstraction function of f is given by:
f#(s#) = ⟨M · bc, |M | · be⟩,

where M is an element-wise absolute value operation. Convolutions follow the same approach, as they are also linear operations.
d) ReLU.: For a concrete element-wise ReLU operation over x ∈ Rm:

ReLU(x) = (max(x1, 0), . . . ,max(xm, 0))T ,

the abstraction function of ReLU is given by:

ReLU#(s#) = ⟨ReLU(bc + be) + ReLU(bc − be)
2

,
ReLU(bc + be)− ReLU(bc − be)

2
⟩.

where bc + be and bc − be denotes the element-wise sum and element-wise subtraction between bc and be.
e) Sigmoid.: As Sigmoid and ReLU are both monotonic functions, the abstraction functions follow the same approach.

For a concrete element-wise Sigmoid operation over x ∈ Rm:

Sigmoid(x) = (
1

1 + exp(−x1)
, . . . ,

1

1 + exp(−xm)
)T ,

the abstraction function of Sigmoid is given by:

Sigmoid#(s#) = ⟨Sigmoid(bc + be) + Sigmoid(bc − be)
2

,
Sigmoid(bc + be)− Sigmoid(bc − be)

2
⟩.

where bc+ be and bc− be denotes the element-wise sum and element-wise subtraction between bc and be. All the above abstract
updates can be easily differentiable and parallelized on the GPU.

E. Certified Performance When Evaluating against Various Perturbation Range

We show the provability results with ϵtest being 0.075 in Figure 10 and Figure 11.

Fig. 10: Certified performance of policies π with the learned-together model, E. The results are based on εE with a 1− δE of
0.9.

Fig. 11: Certified performance of policies π under a set of separately learned models, {Ei}. The results are based on εE with a
1− δE of 0.9.

We show the provability results with ϵtest being 0.001 in Figure 12.

Fig. 12: Certified performance of policies π under a set of separately learned models, {Ei}. The results are based on εE with a
1− δE of 0.9.

	Introduction
	Background
	Markov Decision Processes (MDPs)
	State-Adversarial MDPs
	Abstract Interpretation
	Abstract States Propagation

	Problem Formulation
	Learning Algorithm
	Abstract Interpretation in Carol
	Learning in Carol

	Theoretical Analysis
	Evaluation
	Experiments Setup and Training Details
	RQ1: Certified Performance with Learned-together Certificate
	RQ2: Comparison of Certified Performance with Other Methods
	RQ3: Model Error in Practice
	RQ4: Qualitative Evaluation of the Abstract Trace Lower Bound
	RQ5: Comparison of Empirical Performance with Other Methods
	RQ6: Impact of Model Certification
	RQ7: Impact of Model-Based Training

	Related Work
	Adversarial RL
	Robust RL and Certifiable Robustness in RL
	Certified RL

	Discussion
	References
	Appendix
	Symbols
	Proofs
	Physical Meaning of the Attack and Certification bound
	Abstract Bound Propagation
	Certified Performance When Evaluating against Various Perturbation Range

