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ABSTRACT

Time series forecasting has seen considerable improvement during the last years,
with transformer models and large language models driving advancements of the
state of the art. Modern forecasting models are generally opaque and do not
provide explanations for their forecasts, while well-known post-hoc explainabil-
ity methods like LIME are not suitable for the forecasting context. We propose
PAX-TS, a model-agnostic post-hoc algorithm to explain time series forecasting
models and their forecasts. Our method is based on localized input perturba-
tions and results in multi-granular explanations. Further, it is able to character-
ize cross-channel correlations for multivariate time series forecasts. We compare
our algorithm with two other state-of-the-art explanation algorithms and present
the different explanation types of the method. We found that the explanations of
high-performing and low-performing algorithms differ on the same datasets, high-
lighting that the explanations of PAX-TS effectively capture a model’s behavior.
Based on time step correlation matrices resulting from the benchmark, we identify
6 classes of patterns that repeatedly occur across different datasets and algorithms.
We found that the patterns are indicators of performance, with noticeable differ-
ences in forecasting error between the classes. With PAX-TS, time series fore-
casting models’ mechanisms can be illustrated in different levels of detail, and its
explanations can be used to answer practical questions on forecasts.

1 INTRODUCTION

Time series forecasting models have seen a wave of research over the last years, with subsequent
performance improvements, where new generations of models outperform older models. Recently,
this has mainly been driven by transformer architectures (Lim et al., 2021; Liu et al., 2023; Naghashi
et al., 2025) and foundation models (Das et al., 2024), promising high performance across different
forecasting tasks. Forecasting models have also been applied in the industry1, providing business
value for many companies. However, when models are applied to real-time tasks, practitioners
and domain experts commonly face challenges in comprehending how and why a model arrived at
its forecast. To resolve this issue, explainable artificial intelligence (XAI) (Angelov et al., 2021)
is a paradigm that is becoming highly relevant for time series forecasting tasks. However, this
problem still remains underexplored, with existing work falling short of providing appropriate and
meaningful explanations for AI-based forecasts in time series applications.

When working with end-users, common questions on time series forecasts involve specific time
steps or summary statistics, such as: ”Why is the forecast of productivity at 15:00 so low?” or ”How
can we increase the trend of the forecast?”. This is even more complex in multivariate forecasting
scenarios, where questions are typically focused on cross-channel correlation. Existing explainabil-
ity methods are not suitable to answer these types of questions and cannot be used in practice to
explain time series forecasting models to end-users. To address the lack of explainability meth-
ods for forecasting models, new methods must be designed and optimized for the task to produce
suitable explanations.

1https://www.uber.com/blog/forecasting-introduction/
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State-of-the-art time series forecasting models (Lin et al., 2023; Liu et al., 2023; Wang et al., 2024;
Naghashi et al., 2025) are generally opaque, providing no explanations for their forecasts, making
them less intuitive for the end-user. To combat this, existing post-hoc XAI methods like LIME
(Ribeiro et al., 2016), which were developed for classification tasks, have been applied to forecasting
(Schlegel et al., 2021; Zhang et al., 2023). However, explanation methods designed for classification
are generally not suitable for this task because a forecasting model predicts multiple values over
time, in contrast to classification models, which output a single class label for each data point.
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Figure 1: Forecasting with localized perturbations, the basis for PAX-TS. The figure shows a per-
turbation of the global minimum of a sample from CIF and the respective forecasts.

In this work, we propose Perturbation Analysis eXplanations for Time Series forecasting (PAX-TS),
a technique for multi-granular explanations, specific to time series forecasting. PAX-TS uses locally
perturbed inputs to assess how a forecasting model generates its forecasts, giving insights at different
levels of granularity, up to the time-step-level. Fig. 1 shows an example of input perturbations (x′)
of the global minimum of an individual sample (x) and the respective forecasts (ŷ, ŷ′) for each
perturbed input with different scale parameters (+5% and -10%).

Our contributions in this paper are as follows:

1. Method: We introduce PAX-TS, a post-hoc model-agnostic XAI technique designed for
time series forecasting. PAX-TS can be used on both univariate and multivariate time
series, and its explanations can be generated at different granularities, ranging from high-
level cross-channel correlations to low-level time-step-importance explanations.

2. Evaluation: We benchmark 7 forecasting models on 10 datasets and compare PAX-TS to
TS-MULE and ShapTime, then distill six visually distinct temporal-dependency patterns
that align with model performance.

3. Practicality: We analyze runtime, complexity, and fidelity, showing that PAX-TS is suit-
able for real-time use while accurately characterizing the underlying forecasting model.
Code is available at https://anonymous.4open.science/r/pax-ts-6410.

2 BACKGROUND

Explainability for time series forecasts can be achieved in two ways: Inherently explainable mod-
els are algorithms that are designed to be more comprehensible, providing both the forecast and
additional information, which explains the forecast in different ways. Secondly, post-hoc methods
can be applied based on the trained model and its forecast to explain how the model has generated
the respective forecast. Baur et al. (2024) provide a meta-review on explainability for electric load
forecasting, summarising a range of techniques used in this application area. In this section, we
describe both inherently explainable forecasting algorithms and post-hoc explanation techniques to
give a broad overview of the related work.
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Algorithms providing inherent explanations. N-BEATS (Oreshkin et al., 2019) is a state-of-
the-art univariate time series forecasting algorithm based on multilayer perceptron stacks, which
additionally offers a more interpretable architecture. In this architecture, the provided explanations
are based on trend and seasonality, which sum up to the model’s forecast. This simple yet effec-
tive approach allows the end-user to get a more fine-grained understanding of the model’s forecast
by dividing the forecast into components, which are simpler to comprehend. Lim et al. (2021) in-
troduce temporal fusion transformers, an attention-based forecasting algorithm utilizing past data,
static covariates, and known future inputs to make multivariate forecasts. Their algorithm provides
values of relative importance to each of the input features. This results in an overall comparison,
demonstrating which feature affects the forecast the most. However, this only explains which feature
affects a forecast, whether in a positive or negative way, only in a specific segment, or for certain
peaks. In a similar way, Pantiskas et al. (2020) use the attention mechanism to generate feature
importance scores by time step for their proposed forecasting model. With this method, a specific
output time step can be related to the entire input window, showing the importance of each input
time step for this specific time step. This forecast explanation method is cumbersome, especially
with multivariate data and longer input and output window lengths.

Post-hoc explanation techniques. Zhang et al. (2023) propose ShapTime, a method that adapts
Shapley Values (Shapley et al., 1953) to characterize the importance of segments in the input se-
quence. With this method, the importance of each input segment on the mean of the forecast can
be assessed, effectively describing how much a given segment affects the forecast overall. While
this is useful for some use cases, the granularity of the explanation is too coarse to provide action-
able insights. Troncoso-Garcı́a et al. (2023) propose a method for discovering association rules for
univariate time series forecasting. The resulting association rules link single values in the input
and the output window with intervals of varying size. This type of explanation is problematic, as
many association rules are found, and, in addition to that, their intervals are often large, providing
little practical value for the end-user. TS-MULE (Schlegel et al., 2021) is a post-hoc explanation
technique for the time series forecasting task, utilizing the perturbation-based approach of LIME
(Ribeiro et al., 2016) to make explanations. TS-MULE includes different segmentation techniques
to generate explanations, resulting in feature importance scores for segments of the input window.
This approach faces problems similar to other feature importance-based techniques like SHAP or
attention maps, as the importance of a feature relates to the accuracy of the entire forecast, which is
not sufficient to explain time series forecasting models.

3 THE PAX-TS ALGORITHM

For the multivariate time series forecasting problem, a d-dimensional time series subsequence of
length b, x ∈ Rd×b, is to be forecast for a horizon of length h, resulting in the forecast ŷ ∈ Rd×h,
aiming to approximate the ground truth y ∈ Rd×h. Note that x and y are consecutive, and the
problem is referred to as univariate time series forecasting when d = 1. In the literature, b and
h vary, where common scenarios range from short horizons h ≤ 48 to longer horizons of up to
h = 512. Given an input subsequence x, a trained forecasting model Mθ(·) generates a forecast
ŷ, with more accurate forecasting models yielding a closer approximation to the ground truth y,
resulting in lower forecasting error. Our proposed approach to explaining time series forecasts,
PAX-TS, is perturbation-based and focuses on the relation between input and output subsequences
on an index level based on summary statistics and indices of interest.

3.1 LOCALIZED PERTURBATION BY INDEX

A localized Gaussian-smoothed perturbation is applied to perturb a positive time series subsequence
x of length b at a given time step t, denoted as xt, by a scale parameter α, where α > 0 indicates
a shift in upward direction, and α < 0 indicates a shift in downward direction. We introduce this
smoothing operation to achieve more plausible perturbations compared to point-based perturbations.
Additionally, a width parameter w ∈ N affects the perturbation’s range, and a softness parameter
s ∈ R influences the Gaussian fall-off. To apply the perturbation, we first calculate a positional
weight wp for Gaussian-like smoothing, calculated for each time step i of the subsequence. The
weight is based on the distance between time step i and t, and it is set to 0 for all time steps outside

3
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the fixed window size w:

wp =

exp
[
− s

(
i−t
w

)2]
, |i− t| ≤ w,

0, |i− t| > w,
∀ i ∈ {1, . . . , b}

The amplitude weight is an additional weight in the range [0, 1], which downweights values that
significantly differ from xt. It is defined as follows:

wa =
min(xi, xt)

max(xi, xt) + ϵ
, ∀ i ∈ {1, . . . , b}

By combining the positional smoothing weight, the amplitude weight, and the scale parameter, the
perturbed time series subsequence x′ is obtained as follows:

x′ = {x′
i }bi=1, x′

i = xi + wp wa αxi, ∀i ∈ {1, . . . , b}

This localized perturbation can be applied at any index t ∈ {1, . . . , b}, which also includes descrip-
tive properties of interest like the maximum or minimum of the time series.

3.2 SUMMARY STATISTIC SCALING

In this work, we consider the first and second moments of the time series as relevant summary
statistics for scaling due to their simplicity and practical relevance. The same procedure can be
followed for higher-order moments, however, the equations need to be adapted accordingly. With a
scale parameter α, the first moment of a time series subsequence x can be scaled as follows:

x′ = x+ αµ, µ =
1

b

b∑
i=1

xi

Moreover, the second moment can be scaled as follows:

x′ = (x− µ) ∗
√
α+ 1 + µ, µ =

1

b

b∑
i=1

xi

3.3 TREND-DRIFT ADJUSTMENT

The drift, representing the overall trend of a time series subsequence x, can be adjusted by desea-
sonalizing the sequence, fitting a linear polynomial, and adjusting its slope according to a scale
parameter α. Given a seasonality length k ∈ N, a discrete convolution operation, denoted by ”∗”,
results in a deseasonalized moving average of the time series:

xd =
1

k
1k ∗ x

Using ordinary least squares, a linear polynomial can be fit to the residual xd, resulting in an inter-
cept a and a slope m, representing the trend of the deseasonalized sequence. The adjusted slope can
be obtained as follows, while not adjusting the intercept, which provided the highest performance
during early experiments:

m′ = m+ z, z =

{
αm, m ≥ 0

−αm, m < 0

Finally, the trend-adjusted subsequence x′ is given by:

x′ = {x′
i }bi=1, x′

i = xi − (m−m′)(i− 1), ∀i ∈ {1, . . . , b}.

3.4 STRUCTURED PERTURBATION ANALYSIS WITH PAX-TS

Given a set of scale parameters A, and following the equations of the preceding sections, various
characteristics of a time series subsequence x can be perturbed. In combination with a trained

4
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forecasting model Mθ(·), forecasts ŷ′ can be made for the perturbed input x′. Next, a property
of interest function π(·) is used, which extracts a human-comprehensible property (such as trend,
maximum, or the value at a given index) of a time series. These functions are typically simple,
such as max(ŷ) or retrieving the value ŷt, and we do not describe them in further detail. Given
the distance ∆ between the perturbed input and the original input, the change ratio rπα between a
property of interest of the original prediction ŷ and the perturbed prediction ŷ′ can be calculated.
Using this change ratio, PAX-TS can quantify the effect of applying the perturbation p(·) on the
input with relation to a given property of interest π(·) of the forecast. When averaging over all scale
parameters inA, the mean change ratio r̄π can be calculated, while taking the sign of α into account,
as negative scale parameters produce inverse change ratios. This procedure can be applied both to
an individual forecasting sample and to an entire dataset by substituting x. Applying PAX-TS for
multiple properties of interest on both the input-level and the forecast-level results in a matrix of
change ratios, which can explain the behavior of the forecasting model Mθ(·) in a detailed manner.

3.5 COMPLEXITY ANALYSIS

To calculate change ratios with PAX-TS, |A|+1 inference operations need to be performed, which
is the most computationally complex part of the method. Additional necessary operations are per-
turbation, distance calculation, and property of interest extraction. However, as these operations
all scale with O(b) and are, therefore, less computationally intensive than the inference operations,
they do not contribute to the overall complexity of applying our method. This shows that our method
scales linearly with the number of scale parameters |A|, which can be increased to improve the ro-
bustness of the method. In practice, |A| can be set to a low number, e.g. ≤ 4. As suggested in early
experiments, change ratios tend to be constant for different scale parameters when normalized by
the distance, so that

rπα1
− rπα2

≤ ϵ, ∀(α1, α2) ∈ A,
where sgn(α1) = sgn(α2).

Further, given two inverse scale parameters, α1, and α2, where α1 = −α2, we found that

rπα1
+ rπα2

≤ ϵ.

This finding demonstrates that PAX-TS can be applied to large datasets, as its computational com-
plexity scales linearly with the inference time of the underlying forecasting model, making it suitable
for real-time use.

3.6 MULTIVARIATE CROSS-CHANNEL CORRELATION ANALYSIS

PAX-TS enables the analysis of multivariate time series data to assess how a forecasting model
takes cross-channel correlations into consideration. To do this, each time series channel is locally
perturbed at each input time step. This allows the computation of the change ratio rπctα, with re-
spect to the output time step π, channel c, input time step t, and scale parameter α. When averaging
across all input and output time steps, we can calculate R̄c, which is the average change ratio of one
channel with respect to all other channels of the time series. Finally, when aggregating the results
for all channels, this results in R̄, a d×d matrix of cross-channel correlations. We chose to calculate
cross-channel correlations by perturbing all time steps of the input, so that t ∈ {1, . . . , b}, to more
accurately capture the forecaster’s behavior and account for potential seasonal effects. For datasets
with a large number of channels, the computational complexity of multivariate cross-channel corre-
lation can be reduced by setting the number of scale parameters to a low value (e.g., α = 2), and
timesteps in the input can be changed in a sparsified manner (e.g. t ∈ {1, 3, 5, . . . , n}). However,
in the datasets we analyzed in this paper, a reduction was not necessary, as the algorithm generally
finished in less than 1 minute per dataset.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We test our proposed method with seven forecasting algorithms (see Table 2 in the appendix) on ten
datasets, including both univariate and multivariate datasets (see Table 3 in the appendix), both to
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demonstrate that the method is model-agnostic and to investigate and explain different types of algo-
rithms for different types of forecasting scenarios. We set the forecasting horizon length to h = 20
and input length to b = 20 in order to demonstrate a short-term forecasting scenario, where explain-
ability can be highlighted more easily. However, our approach is applicable irrespective of the fore-
casting scenario and the values of these parameters. We use a temporally ordered, non-overlapping
train-validation-test split of 7-1-2, and scale parameters A = {−0.1,−0.05,−0.01, 0.01, 0.05, 0.1}
to provide more robust results. We set w = 2, s = 1, and configure k according to the dataset. We
consider three error metrics: The Mean Absolute Error (MAE), and the Mean Squared Error (MSE),
which are standard in multivariate forecasting evaluation as well as the Overall Weighted Average
(OWA) (Makridakis et al., 2020), which is commonly employed for short-term forecasting evalu-
ation. All experiments and results are publicly available on our anonymous git repository2, where
we share additional insights on PAX-TS and its explanations. We conducted a benchmark on the
forecasting performance of all models on all datasets, which is presented in Table 5 in the appendix
to facilitate readability. The table additionally shows temporal dependency patterns, which we will
present in Sec. 4.3.

4.2 HIGH GRANULARITY: TIME STEP IMPORTANCE
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Figure 2: Time step importance of MultiPatchFormer on a sample of the CIF dataset with relation
to the maximum of the forecast.

PAX-TS can be applied on a time-step-level at the highest granularity to highlight the importance of
every time step of the input window with relation to a given property of interest of the forecast. For
example, Fig. 2 shows an explanation of MultiPatchFormer’s (see Naghashi et al. (2025)) forecast
on a sample of the CIF dataset. Specifically, PAX-TS calculates the relative importance r̄π of each
input time step for the maximum of the forecast, where π(·) = max. In the shown example, the
first 19 time steps of the input have a positive correlation (r̄π > 0) with the maximum, while the
last time step has a negative correlation (r̄π < 0). With this type of explanation, the end-user can
understand which time steps of the data are important, and how the model’s predicted maximum
changes for different inputs. Setting π(·) = Max is an example - when using PAX-TS in practice,
other properties of interest can be analyzed instead.

4.3 MEDIUM GRANULARITY: TEMPORAL DEPENDENCIES

Temporal dependencies at medium granularity are analyzed by using a set of properties of interest
P = {πi}hi=1, where πi = ŷ′i and applying PAX-TS across all input indices i ∈ {1, . . . , b}, where
p(·) perturbs x at each i. The resulting relative-importance matrix visualizes dependencies be-
tween input and forecast time steps (Fig. 3). On Rain, MultiPatchFormer reaches the best accuracy,
whereas SegRNN (Lin et al. (2023)) performs considerably worse. The heatmaps reflect this: Seg-
RNN relies almost exclusively on the last input step, assigning little weight to earlier steps, while
MultiPatchFormer exhibits clear seasonal diagonals across the matrix. Because Rain is monthly
data, the seasonality is k = 12, shown by strong positive correlations between, for example, in-
put index 16 and forecast index 20. These patterns characterize model behavior, dataset properties,

2https://anonymous.4open.science/r/pax-ts-6410
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(a) SegRNN: Last-time step
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(b) MultiPatchFormer: Diagonals

Figure 3: Time step correlation on the Rain dataset, where MultiPatchFormer achieves high ac-
curacy, while SegRNN performs poorly. The different temporal dependency patterns show that
MultiPatchFormer is able to capture dependencies in the data.

Pattern Properties N Error enorm

Diagonals Clear diagonal pattern across all timesteps of the input. 12 0.4239
Diagonals (End) Clear diagonal pattern, repeating over the last seasonal period. 6 0.4645
Last-Timestep Vertical line on the last timestep, influencing the entire forecast. 24 0.9592

Bipolar Regions Bipolar positive correlation and negative correlation areas. 5 0.2919
Fully Correlated Fully positive or negative pattern across all input and output timesteps. 8 0.9690

Other Other patterns, typically random and noisy. 5 0.7149

Table 1: Overview of temporal dependency patterns and their associated error, averaged for all
algorithms across all datasets. N represents the number of occurrences.

and forecasting quality. Across all benchmarked algorithms and datasets, six temporal-dependency
classes were derived (Table 1), which are shown per-dataset in Table 5. Finally, the average error
across datasets was computed as a normalized mean of MAE and MSE relative to the naı̈ve forecast
as follows:

enorm =
1

2
(
MAEmodel

MAEnaive
+

MSEmodel

MSEnaive
)

Diagonals (1) (see Fig. 3b) show a clear diagonal pattern of input-forecast correlation, typically
indicating seasonal behavior, and they are a sign of high performance. A similar pattern with slightly
lower performance are repeated diagonals in the end (2) of the input window over the last seasonal
period. This pattern shows that the model focuses on the last known period of the data (e.g. last 7
days for daily records), and pays little attention to previous input time steps. In some cases, models
pay particular attention to the last time step (3), ignoring any other time steps of the input, as Seg-
RNN in Fig. 3a. This is generally an indicator of low performance, with enorm = 0.9592, which
is close to the performance of a naı̈ve forecast. Bipolar regions (4) are strong regional correlations
between input and output, where some regions have positive and other regions have negative correla-
tion. This pattern achieves the highest performance overall across our benchmark and is an indicator
of accurate forecasts. In some cases, forecasting models show a fully positive or fully negative
correlation (5), so that the time step correlation matrix is almost entirely positive or negative. This
pattern is a strong indicator of low forecasting performance, with the highest overall error. Lastly,
we categorized some patterns as ‘Other‘ (6), as they were either not fitting any category or a hybrid
between categories, achieving mixed performance. For further details on correlation matrix patterns
and examples with different datasets, we refer the reader to our repository3.

4.4 LOW GRANULARITY: MULTIVARIATE CROSS-CHANNEL CORRELATIONS

At the lowest granularity, PAX-TS, can assess and visualize cross-channel correlations in multivari-
ate time series forecasting scenarios. This can be done by only perturbing a specific channel of the
input and calculating the mean change ratio for all channels of the output separately. Fig. 4 shows
the cross-channel correlations, as observed for iTransformer on the ETTh1 dataset, which consists of

3https://anonymous.4open.science/r/pax-ts-6410
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Figure 4: Cross-channel correlations of iTransformer on the ETTh1 dataset, showing strong relations
from channel 5 to channel 0, and from channel 5 to channel 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time step

840

860

880

900

920

940

960

980

1000

V
al

u
e

Importance Data (x)

(a) ShapTime
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(b) TS-MULE

Figure 5: High-level input importance explanations of state-of-the art XAI methods for forecasting.

seven channels. We selected this example, as ETTh1 is the multivariate dataset with the lowest OWA
error, where all models perform relatively well. In the visualized explanation, stronger correlations
are highlighted with higher line width and more intense color. The model considers two strong
cross-channel correlations: Channel 5 affects both channels 0 and 2. These correlations are even
stronger than the autocorrelation of channels 0 and 2. Further, we found that on the benchmarked
datasets, iTransformer and MultiPatchFormer most frequently utilize cross-channel correlations.

4.5 COMPARISON TO SHAPTIME AND TS-MULE

We compare the explanations generated by PAX-TS with two explainability algorithms for forecast-
ing: TS-MULE (Schlegel et al., 2021) and ShapTime (Zhang et al., 2023). Fig. 5 shows explanations
as generated by the two methods, following the visualization style of the original papers, for the same
sample of the CIF dataset previously shown in Fig. 2, where we highlighted high-granularity time
step importance in relation to the maximum of the forecast. Both ShapTime and TS-MULE are not
able to capture importance for specific properties of interest, such as the maximum of the forecast,
while PAX-TS can derive importance scores for different properties of interest, including extrema,
summary statistics, and values at a given index. Further, TS-MULE’s results are always based on
segment importance, rather than timestep importance, having a lower granularity than PAX-TS. The
granularity of ShapTime can be configured with the number of segments, up to the time step level.
However, as ShapTime evaluates all possible distinct subsets, this results in a time complexity of
O(2b) inference operations, compared to the O(|A|b) inference operations of PAX-TS to gener-
ate importance scores at the time-step-level. Further, given a trained model, both ShapTime and
PAX-TS are deterministic, giving them high stability, while TS-MULE produces random results
with high variance, leading to high instability. Since ShapTime observes changes in the mean of the
forecast, the resulting importance scores are similar to PAX-TS, when setting π(·) = Mean. Both
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ShapTime and TS-MULE are not suitable for application to multivariate data, whereas PAX-TS
can be used to analyze cross-channel correlations, which produces a correlation graph, as shown in
Fig. 4. All explanations produced by PAX-TS are directly based on input-output mappings of the
forecasting algorithm, giving the explanations a high degree of fidelity, which we empirically prove
in the appendix. Both TS-MULE and ShapTime operate on a local scope, giving explanations for
an individual forecasting sample. PAX-TS, on the other hand, can produce both local and global
explanations, increasing its scope of applicability and representativeness.

5 DISCUSSION

PAX-TS can generate explanations for time series forecasting models at different granularities,
which are suitable for different use cases, depending on the aim of the end-user. In Sec. 1, we
introduced typical questions from end-users, which we relate to PAX-TS’ explanations here.

“Why is the forecast of productivity at 15:00 so low?”

Answers to questions about specific timestamps can be supported with time-step-level explanations,
such as the stemplot in Fig. 2 or the time step correlation matrix shown in Fig. 3. With these
explanations, the end-user can clearly pinpoint which time steps of the input are related to the time
step of interest and at which magnitude.

“How can we increase the trend of the forecast?”

Questions regarding properties of interest, including summary statistics, trend, or extrema, can be
addressed in a similar way. Time step importance explanations (Fig. 2) or correlations of different
properties of interest (Fig. 6) can provide the end-user with valuable insights to address this.

“Is there a correlation between productivity and indoor temperature?”

Lastly, PAX-TS can answer questions on cross-channel correlations of multivariate data with a
graph, as shown with the example in Fig. 4. For more specific queries between channels, time-
step-level index correlation can be used to illustrate the relation between the channels on a higher
granularity. To apply PAX-TS, a top-down approach with increasingly higher explanation granular-
ity can be employed: For multivariate data, first, a cross-channel correlation graph can be used to
unveil correlations between different channels of the data. With this information, a heatmap of index
correlations can be visualized to illustrate the correlation between two channels. When the end-user
investigates a specific time step, extremum, or summary statistic, a stemplot can be generated to
assess the time step importance of the specified sample for the given property of interest.

PAX-TS can be applied in a diverse range of application scenarios: In the agriculture domain, it
can be used to explain soil moisture forecasts (Deforce et al., 2024), where farmers are aiming to
optimize their irrigation system. With our method, the system can be tuned to, for example, increase
the minimum moisture level. In the context of a smart building digital twin (Kreuzer et al., 2024), the
method can provide detailed explanations for CO2 concentration forecasts to, for example, a facility
manager, highlighting how different rooms in the building contribute to the overall CO2 levels. The
work on hospital occupancy forecasts by Avinash et al. (2025) could be extended with PAX-TS to
make use of state-of-the-art forecasters while providing post-hoc explanations for managers.

6 CONCLUSION

The explanations provided by PAX-TS are both faithful to the forecasting model’s outputs and
suitable to address practical questions on time series forecasts from end-users. In comparison with
ShapTime and TS-MULE, two state-of-the-art XAI methods, PAX-TS provides both higher and
lower granularity explanations. Further, the method is applicable to multivariate data, where it can
highlight cross-channel correlations as well as temporal dependency patterns. In our experiments,
we classified the identified temporal dependency patterns into six distinct classes. Across all datasets
and algorithms, we found that diagonal and bipolar regional dependency patterns tend to perform
best. We believe that future work can apply PAX-TS to provide explainability on other datasets and
algorithms, which will contribute to our understanding of temporal dependency patterns.
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A EXPERIMENTAL DETAILS

All experiments in the paper were conducted on a single Nvidia A100 GPU, and results were aver-
aged over three random states. All inputs are scaled to have zero mean and unit variance. Table 2
shows an overview of the forecasting algorithms used in this study, which were used as a basis for
PAX-TS as a post-hoc explainability technique.

Table 3 lists the time series datasets used for the experiments in Sec. 4 as well as their domain,
frequency, and the number of variates. In total, 4 multivariate and 6 univariate datasets are used in
the experiments.

B LOCAL SENSITIVITY ANALYSIS AND FIDELITY

We evaluate the local sensitivity of PAX-TS on the CIF dataset with DLinear as the underlying
forecasting method by comparing the algorithm’s averaged change ratios, r̄π , to the model’s own
differential behavior. Concretely, we compute Spearman’s ρ, cosine similarity, and Kendall’s τ
between r̄π and the output Jacobian of DLinear for each horizon timestep of the forecast:
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Dataset Ref. Domain Frequency Variates

M4 Hourly Makridakis et al. (2020) Mixed Hourly 1
Weather (a) Weather Daily 1

Transactions Cook et al. (2021) Sales Daily 1
CIF Štěpnička & Burda (2015) Finance Monthly 1
Rain (b) Weather Monthly 1

M4 Yearly Makridakis et al. (2020) Mixed Yearly 1
Covid (c) Healthcare Weekly 6
ETTh1 Zhou et al. (2021) Electricity Hourly 7

Exchange Rate Lai et al. (2018) Finance Daily 7
Illness (d) Healthcare Weekly 7

Table 3: Datasets used in this study.
(a) https://www.bgc-jena.mpg.de/wetter/,

(b) https://www.kaggle.com/datasets/macaronimutton/mumbai-rainfall-data,
(c) https://www.kaggle.com/datasets/mexwell/sars-cov-2-germany,

(d) https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

Setup Spearman ρ Cosine similarity Kendall τ

Random -4.19e-4 -8.90e-4 -3.23e-4
PAX-TS 0.778 0.872 0.575

PAX-TS w/o 0.986 0.993 0.926Gaussian smoothing

Table 4: Local sensitivity of PAX-TS, compared to random results. We measure Spearman’s rank
correlation, cosine similarity, and Kendall’s tau between the change ratios produced by PAX-TS
and the Jacobian of the output of DLinear on the CIF dataset, averaged across all samples.

Let a forecasting model be Mθ : Rb → Rh, mapping an input window x ∈ Rb to an h-step
prediction ŷ = Mθ(x) ∈ Rh. PAX-TS returns a timestep-horizon importance matrix R̄ ∈ Rb×h

with entries r̄π representing averaged change ratios, as described in Sec. 3. We quantify the model’s
own differential dependence via the (per-sample) Jacobian

J [i, j] =
∂ŷj
∂xi

for i = 1, . . . , b, j = 1, . . . , h,

computed by automatic differentiation. For each horizon j, define rj =
(
r̄π[1, j], . . . , r̄π[b, j]

)⊤
and

jj =
(
J [1, j], . . . , J [b, j]

)⊤
. Based on this, we report rank- and angle-based agreement between rj

and jj :

Spearman’s ρj = ρ
(
rank(rj), rank(jj)

)
,

Cosinej =
r⊤j jj

∥rj∥2 ∥jj∥2
,

Kendall’s τj = τ
(
rj , jj

)
.

We aggregate across horizons and across a dataset {x(n)}Nn=1 by simple averaging:

ρ =
1

Nh

N∑
n=1

h∑
j=1

ρ
(n)
j , Cos =

1

Nh

N∑
n=1

h∑
j=1

Cosine(n)j , τ =
1

Nh

N∑
n=1

h∑
j=1

τ
(n)
j .

The resulting coefficients compare PAX-TS’ perturbation-based importance r̄π directly to the
model’s local derivatives with respect to each input timestep. High ρ, cosine, and τ indicate that
the timesteps our method marks as influential are exactly those to which the model is most sensitive.
This is the appropriate notion of fidelity here, since PAX-TS explains how the model behaves, not
which timesteps are optimal for forecast accuracy (as in LIME/SHAP). When p(x, α, ϕ) spreads the
perturbation to neighboring timesteps via Gaussian smoothing, r̄π incorporates additional context
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Algorithm 1 Perturbation analysis of a forecasting sample.

1: Input: input subsequence x, perturbation function p(·), scale parameters A, perturbation pa-
rameters ϕ, trained forecaster Mθ(·), property of interest functions P .

2: ŷ←Mθ(x)
3: for all α ∈ A do
4: x′ ← p(x, α, ϕ)
5: ∆← dist(x,x′)
6: ŷ′ ←Mθ(x

′)

7: rπα ← π(ŷ′)−π(ŷ)
∆ , ∀π(·) ∈ P

8: end for
9: r̄π ← 1

|A|
∑

α∈A sgn(α) rπα
10: return r̄π

Algorithm 2 Cross-channel correlation analysis.

1: Input: input subsequence x (d > 1), scale parameters A, perturbation parameters per channel
and time step ϕc,t, forecasting model Mθ(·).

2: P ← {πn : ŷ′ 7→ ŷ′n | n = 1, . . . , h}
3: ŷ←Mθ(x)
4: for c = 1 to d do
5: for t = 1 to b do
6: for all α ∈ A do
7: x′ ← p(x, α, ϕc,t)
8: ∆← dist(x,x′)
9: ŷ′ ←Mθ(x

′)

10: rπctα ←
π(ŷ′)− π(ŷ)

∆
, ∀π ∈ P

11: end for
12: end for
13: R̄cα ←

1

b

∑b
t=1

( 1

h

∑
π∈P |rπctα|

)
, ∀α ∈ A

14: R̄c ← 1
|A|

∑
α∈A R̄cα

15: end for
16: return R̄ = {R̄c}.

noise. Due to this, rank agreement with the sharp, per-timestep Jacobian may drop slightly. Without
smoothing, the perturbation is more localized, yielding the near-perfect alignment reported in Table
4. With smoothing (the default in Algorithm 1), correlations remain very high but are modestly
affected.

C APPLYING PAX-TS

Algorithm 1 shows a step-by-step guide for applying PAX-TS to a forecasting sample, resulting
in the change ratios used as explanations. The procedure is the same as described in Sec. 3.4. In
this section, we additionally highlight that PAX-TS is deterministic, based on the steps in algorithm
1. Given a deterministic forecasting model such as a trained deep learning model which does not
introduce any inherent randomness, making a forecast with Mθ(·) is assumed to be deterministic.
Further, all permutation methods p(·) introduced in Sec. 3 are inherently deterministic, as seen from
the provided equations. This leads to deterministic change ratios rπα and mean change ratios r̄π ,
making the outputs of our algorithm deterministic. This is a property that elevates the stability of
our method, in comparison to other non-deterministic methods like TS-MULE.

Algorithm 2 details the multivariate cross-channel correlation analysis in a stepwise algorithmic
procedure, supporting the reproducibility of this work. With this approach, both multivariate cross-
channel correlation heatmaps (as seen in Fig. 7) and cross-channel correlation graphs can be pro-
duced (see Fig. 4).
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Figure 6: iTransformer on transactions showing the relations between minimum, maximum, mean,
variance, and trend of the input subsequence and the forecast.
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(a) Channel 1 → Channel 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Input channel 5 time step index (p(·))

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Fo
re

ca
st

 c
ha

nn
el

 0
 ti

m
e 

st
ep

 in
de

x 
(π

(·)
)

-1 (Negative
 correlation)

-0.5

0 (No
 correlation)

0.5

1 (Positive
 correlation)

R
el

at
iv

e 
Im

po
rta

nc
e 
r̄ π

(b) Channel 5 → Channel 0

Figure 7: Time step correlation matrix of iTransformer on the ETTh1 dataset. Fig. 7a shows the
weak relation from channel 1 to channel 0. Fig. 7b shows the much stronger relation from channel
5 to channel 0.

Fig. 6 shows an example of a correlation matrix between different summary statistics of the transac-
tions dataset using iTransformer, as generated by PAX-TS. With this type of explanation, PAX-TS
can answer end-user questions on summary statistics, extrema, and trend of the input and forecast.
For example, the figure shows a negative correlation between the input minimum and the output’s
maximum, mean, and variance. If a user aims to increase the forecast maximum, adjusting the
input’s mean, variance, and trend appears to be more effective than increasing its maximum value.

D MULTIVARIATE CROSS-CHANNEL CORRELATIONS

With PAX-TS, the effect of individual pairs of channels can be investigated, and Fig. 7 presents a
more fine-grained view of the cross-channel correlations, showing the effect of channels 5 and 1 on
channel 0. As already shown in the graph in Fig. 4, channel 5 has a strong effect on channel 0, with
both strong negative and strong positive correlations of different time steps. The heatmap visualizes
this relation in more detail, highlighting, for example, the importance of the last time step on the
entire output window. Channel 1, on the other hand, has a less significant effect on channel 0, with
relative importance scores closer to 0 compared to channel 5.

Fig. 8 visualizes an input sample (x) as well as a perturbed sample (x′) of channel 5 of the ETTh1
dataset. The second row shows the corresponding forecasts of MultiPatchFormer for both samples
(ŷ,ŷ′) in channel 0. This demonstrates an example where the model does not consider one channel
to make a prediction for another one.
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ŷ′ (Channel 0)

Figure 8: Original and perturbed sample from channel 5 of ETTh1 (first row), and forecast of channel
0 for both samples (second row), as produced by MultiPatchFormer.
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Figure 9: Time step correlation matrix, as produced by PAX-TS, for long-term forecasting, with
b = 96, and h = 256. iTransformer is used as the forecasting model on the dataset M4 Hourly.

E PAX-TS FOR LONG-TERM FORECASTING

We investigated PAX-TS’ capability for explaining forecasting models on long-term forecasts,
which is a common evaluation approach in the literature (see e.g. Zhou et al. (2021); Liu et al.
(2023); Wang et al. (2024)). Fig. 9 demonstrates an example of a time step correlation matrix for
iTransformer on the M4 Hourly dataset, produced by PAX-TS. The matrix shows the bipolar regions
pattern, across a long-term horizon, reflected by the positive and negative change ratios with clear
structure. This illustrates the applicability of our method to time series forecasting setups of any
combination of input window length b and forecasting horizon h. This further demonstrates that all
methods and visualizations presented in this paper are applicable to both short-term and long-term
forecasting setups.

F FORECASTING ERROR AND TEMPORAL DEPENDENCY PATTERNS

Table 5 gives a detailed overview of all evaluated forecasting models’ performance on each dataset.
The table further highlights which temporal dependency pattern each model showed when analyz-
ing a time step correlation matrix, such as the ones shown in Fig. 3. The last row of Table 5 shows
the mean rank of each model across all datasets as well as the p-value, showing whether the per-
formance is significantly different from the naı̈ve forecasting model based on the Bonferroni-Dunn
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test. Notably, TimeMixer, MultiPatchFormer, and iTransformer perform best, with a significant
Bonferroni-Dunn test (Dunn, 1961) compared to the Naı̈ve model. On the multivariate datasets
Covid, Exchange Rate, and Illness, none of the benchmarked models achieves considerably bet-
ter performance than the naı̈ve forecaster, highlighting the difficulty of the multivariate forecasting
problem. We additionally measured the total inference time across all datasets (Algorithm 1 line
(2) + line (6)), where the LLM TimesFM incurred a significantly higher time (1390s) compared to
TimeMixer (20.57s), MultiPatchFormer (8.89s), and iTransformer (1.08s).
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Models Naı̈ve DLinear MultiPatchFormer SegRNN TimeMixer iTransformer TimesFM

M
4(

H
) MAE 0.037 0.007 0.0078 0.012 0.0071 0.0079 0.0084

MSE 0.066 0.0022 0.0018 0.0067 0.002 0.0019 0.0044
OWA 1 0.31 2.6 1.4 0.57 3.6 0.51

Pattern - (D) (D) (F) (D) (D) (A)

W
ea

th
. MAE 0.39 0.36 0.37 0.36 0.36 0.37 0.39

MSE 0.25 0.21 0.22 0.22 0.22 0.22 0.25
OWA 1 0.94 0.95 0.95 0.95 0.95 0.99

Pattern - (C) (C) (C) (C) (C) (E)

Tr
an

s. MAE 0.3 0.17 0.17 0.18 0.16 0.16 0.17
MSE 0.24 0.096 0.084 0.093 0.08 0.078 0.11
OWA 1 0.62 0.63 0.68 0.61 0.6 0.63

Pattern - (B) (B) (B) (B) (B) (B)

C
IF

MAE 0.02 0.029 0.022 0.022 0.023 0.021 0.023
MSE 0.043 0.088 0.043 0.047 0.051 0.039 0.047
OWA 1 57 36 18 4.2 39 15

Pattern - (E) (C) (C) (F) (E) (E)

R
ai

n

MAE 1.1 0.41 0.37 0.8 0.42 0.37 0.64
MSE 2.7 0.45 0.39 1.2 0.44 0.39 1.3
OWA 1 0.45 0.39 1 0.46 0.4 0.64

Pattern - (A) (A) (C) (A) (A) (A)

M
4(

Y
) MAE 0.21 0.24 0.2 0.21 0.2 0.2 0.2

MSE 0.34 0.35 0.33 0.34 0.32 0.33 0.33
OWA 1 1.7 0.97 1.2 0.96 0.96 0.97

Pattern - (C) (C) (C) (C) (C) (C)

C
ov

id

MAE 0.5 0.5 0.46 0.55 0.46 0.49 0.39
MSE 0.81 0.52 0.55 0.79 0.52 0.59 0.59
OWA 1 1.2 0.98 1.2 0.99 1 0.86

Pattern - (E) (F) (C) (E) (E) (A)

E
T

T
h1

MAE 0.84 0.41 0.41 0.54 0.41 0.43 0.51
MSE 1.6 0.38 0.38 0.62 0.39 0.41 0.65
OWA 1 0.66 0.66 0.8 0.67 0.69 0.74

Pattern - (A) (A) (F) (A) (A) (E)

E
xc

h.

MAE 0.075 0.078 0.076 0.077 0.076 0.077 0.083
MSE 0.013 0.013 0.013 0.013 0.013 0.013 0.015
OWA 1 1 1 1 1 1 1.1

Pattern - (C) (C) (C) (C) (C) (A)

Il
ln

es
s MAE 1.4 1.5 1.3 1.4 1.4 1.3 1.6

MSE 5 4.6 3.8 4.5 4.1 3.6 6.5
OWA 1 1.3 1.1 1 1.1 1 1.1

Pattern - (D) (C) (C) (F) (C) (C)

Rank 5.17±2.32 4.27±2.22 2.93±1.29 4.87±1.45 2.87±1.20 3.03±1.80 4.87±1.71
p-Value - 0.640 0.000 1.000 0.000 0.001 1.000

Table 5: Errors of the evaluated algorithms on each dataset and corresponding temporal dependency
pattern. (A) Diagonals, (B) - Diagonals (End), (C) - Last-Timestep, (D) - Bipolar Regions, (E)
- Fully correlated, (F) - Other. The best-performing algorithm for each metric is highlighted in
bold. p-Values are calculated using the Bonferroni-Dunn test compared to the Naı̈ve model, with
significance (p < 0.05) highlighted in bold.
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