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Abstract

Denoising diffusion models have driven signif-

icant progress in the field of Bayesian inverse

problems. Recent approaches use pre-trained dif-

fusion models as priors to solve a wide range of

such problems, only leveraging inference-time

compute and thereby eliminating the need to re-

train task-specific models on the same dataset.

To approximate the posterior of a Bayesian in-

verse problem, a diffusion model samples from a

sequence of intermediate posterior distributions,

each with an intractable likelihood function. This

work proposes a novel mixture approximation

of these intermediate distributions. Since direct

gradient-based sampling of these mixtures is in-

feasible due to intractable terms, we propose a

practical method based on Gibbs sampling. We

validate our approach through extensive experi-

ments on image inverse problems, utilizing both

pixel- and latent-space diffusion priors, as well

as on source separation with an audio diffusion

model.

1 Introduction

Inverse problems occur when a signal X of interest must

be inferred from an incomplete and noisy observation Y , a

challenge frequently encountered in diverse fields such as

weather forecasting, image reconstruction (e.g., tomogra-

phy or black-hole imaging), and speech processing. Such

problems are typically ill-posed, making it essential to in-

corporate additional constraints, regularization techniques,

or prior knowledge to arrive at meaningful and realistic

solutions.

The Bayesian framework, in conjunction with generative

modeling, offers a systematic approach to the challenges
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associated with inverse problems. Prior knowledge about

the signal of interest, often represented through samples

from its underlying distribution p0, can be leveraged to train

a generative model pθ0 that acts as a prior. By combining

it with the conditional density g0(y|x) of the observation

given the signal, deduced from the form of the inverse prob-

lem at hand, we can compute the posterior distribution.

Samples drawn from this posterior encapsulate plausible

solutions that harmonize prior knowledge with the observed

data. One straightforward approach to approximate sam-

pling from the posterior distribution involves constructing a

paired dataset of i.i.d. signals and observations, (Xi, Yi)
N
i=1,

where Xi ∼ p0 and Yi ∼ g0(·|Xi), and learning a direct

mapping (Dong et al., 2015) or generative model (Ledig

et al., 2017; Isola et al., 2017). The latter, when queried

with multiple independent noise samples alongside an obser-

vation, generates a diverse set of potential reconstructions.

However, this approach is inherently task-specific, deliv-

ering reliable reconstructions only when the conditional

distribution of the observation remains unchanged at test

time. As a result, it cannot straightforwardly adapt to unseen

tasks with the same prior. Adaptation to a new task can only

be achieved by retraining a new generative model.

An increasingly popular approach consists in learning a

generative model only for the prior p0, and then leveraging

inference-time compute to solve any inverse problem for

which the likelihood function x 7→ g0(y|x) is provided in

a closed form. This strategy eliminates the need for expen-

sive and inefficient task-specific training. Initially explored

with generative models such as variational autoencoders

and generative adversarial networks (Xia et al., 2022), this

framework has recently been extended to denoising diffu-

sion models (DDMs) (Song et al., 2021; Kadkhodaie &

Simoncelli, 2020; Kawar et al., 2021; 2022; Chung et al.,

2023; Song et al., 2023a; Daras et al.), which are the focus

of the present paper.

DDMs (Sohl-Dickstein et al., 2015; Song & Ermon,

2019; Ho et al., 2020) achieve state-of-the-art generative

performance across a wide range of domains. At their

core is a forward noising process that transforms the data

distribution p0 into a Gaussian distribution. A generative

model is then learned by reversing this noising process.

With a specific parameterization of the backward process,
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which converts noise into data samples, training the

generative model reduces to approximating denoisers for

each noise level introduced during the forward process.

Recent methods for training-free posterior sampling aim

to approximate the denoisers for the posterior distribution,

enabling the use of diffusion models for sampling (Ho

et al., 2022; Chung et al., 2023; Song et al., 2023a). A

posterior distribution denoiser can be decomposed into two

terms: the prior denoiser at the same noise level (provided

by a pre-trained diffusion model) and the gradient of the

log-likelihood of the observation conditioned on the current

noisy sample. The latter term, which is intractable, is what

guides the samples during the denoising process towards

the posterior distribution. Various approximations for this

gradient term have been proposed. However, they are often

crude and require significant adjustments and heuristics to

ensure stability and satisfactory performance. When applied

to latent diffusion models, they often demand additional,

model-specific adjustments (Rout et al., 2024).

Our contribution. In this paper, we present a principled

method that circumvents these issues by introducing a new

approximation of the likelihood term, paired with a sam-

pling scheme based on Gibbs sampling (Geman & Geman,

1984). Our key observation is that multiple approximations

can be derived for each likelihood term at a fixed noise level

using a simple identity that it satisfies. However, the scores

of these new likelihood approximations are not available in

closed form, preventing us from deriving a direct posterior

denoiser approximation by combining, through a mixture,

the different likelihood approximations. We overcome this

limitation by constructing a mixture approximation of the

intermediate posterior distributions defined by the diffusion

model for the original posterior. Our algorithm, MIXTURE-

GUIDED DIFFUSION MODEL (MGDM), proceeds by se-

quentially sampling from these mixtures using Gibbs sam-

pling. This is enabled by a carefully designed data augmen-

tation scheme that ensures straightforward Gibbs updates. A

key advantage of our approach is its adaptability to available

computational resources. Specifically, the number of Gibbs

iterations acts as a tunable parameter, allowing substan-

tial improvements with increased inference-time compute.

MGDM demonstrates strong empirical performance across

10 image-restoration tasks involving both pixel-space and

latent-space diffusion models, as well as in musical source

separation, even matching the performance of supervised

methods.

2 Background

2.1 Diffusion models

DDMs define a generative process for a data distribution p0
on R

d by sequentially sampling from a series of progres-

sively less smoothed distributions (pt)
0
t=T , starting from a

highly smoothed prior pT and ending at the data distribution

p0. For all s, t ∈ J0, T K with s < t, define the noising

Markov transition kernels

qt|s(xt|xs) = N(xt; (αt/αs)xs, σ
2
t|sId) , (1)

where (αt)
T
t=0 is monotonically decreasing with α0 = 1,

αT ≈ 0, and σ2
t|s = 1 − (αt/αs)

2. Each smoothed distri-

bution is a noised version of p0 and has density pt(xt) :=
∫

qt|0(xt|x0)p0(x0) dx0. The final distribution pT is close

to N (0d, Id). Moreover, define the backward Markov tran-

sition kernels ps|t(xs|xt) ∝ ps(xs)qt|s(xt|xs) with s < t.
Note that for all ℓ < s, the backward transitions satisfy

pℓ|t(xℓ|xt) =

∫

pℓ|s(xℓ|xs)ps|t(xs|xt) dxs . (2)

Consecutive distributions pt and pt+1 are linked through

the identity pt+1(xt+1) =
∫

qt+1|t(xt+1|xt)pt(xt) dxt.

Hence, given a sample Xt+1 ∼ pt+1, Xt ∼ pt|t+1(·|Xt+1)
is an exact sample from pt. This procedure defines a genera-

tive model, in the sense that the last state X0 of the Markov

chain (Xt)
0
t=T , where the initial state XT is sampled from

pT , is a sample from p0.

However, simulating the backward transitions is impractica-

ble in most applications, so the following Gaussian approxi-

mation is used in practice. First, for s ∈ J1, t− 1K, define

the conditional density of Xs given X0 and Xt:

qs|0,t(xs|x0,xt) (3)

= N(xs; γt|sαs|0x0 + (1− γt|s)α
−1
t|sxt, σ

2
s|0,tId) ,

where γt|s := σ2
t|s/σ

2
t|0 and σ2

s|0,t
:= σ2

t|sσ
2
s|0/σ

2
t|0. Next,

define by Dt+1(xt+1) :=
∫

x0 p0|t+1(x0|xt+1) dx0 the

conditional expectation of X0 given Xt+1 = xt+1 (referred

to as the denoiser). Denote by Dθ
t+1 a parametric approxi-

mation of Dt+1. Following Ho et al. (2020) and given an

approximate sample X̂t+1 from pt+1, sampling from the

bridge kernel qt|0,t+1(·|Dθ
t+1(X̂t+1), X̂t+1), where x0 is re-

placed by the estimate Dθ
t+1(X̂t+1), yields an approximate

sample from pt. The complete sampling process proceeds

as follows: first, X̂T ∼ N (0d, Id); then, recursively, for

every t ≥ 1, X̂t ∼ pθt|t+1(·|X̂t+1), where for all s < t,

pθs|t(xs|xt) := qs|0,t(xs|Dθ
t (xt),xt) . (4)

The final sample is defined as X̂0 := Dθ
1(X̂1) and serves as

an approximate sample from p0. The parametric approxi-

mations of the denoisers are trained by minimizing, with re-

spect to the parameter θ, an L2 denoising loss across all time

steps. Finally, using the Tweedie formula (Robbins, 1956),

we obtain the identity Dt(xt) = α−1
t

(

xt+σ2
t∇ log pt(xt)

)

.

Consequently, the trained denoisers not only serve as gener-

ative models but also provide parametric approximations of

the score functions ∇ log pt(xt).
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2.2 Training-free guidance.

After training a diffusion model for the data distribution

p0, it can be leveraged through guidance to address vari-

ous downstream tasks without the need for additional fine-

tuning. This line of research was pioneered in the seminal

works of Song & Ermon (2019), Kadkhodaie & Simoncelli

(2020), Song et al. (2021), and Kawar et al. (2021), where

the sampling process described in the previous section is

adapted on-the-fly to address Bayesian inverse problems. In

this setting, the user observes a realization y of a random

variable Y ∈ R
dy , assumed to be drawn from the distri-

bution with density pY (y) :=
∫

g0(y|x)p0(x) dx, where

g0(y|x) is a likelihood term that encapsulates the knowledge

of the forward model. A typical example is inverse prob-

lems with Gaussian noise, i.e. g0(y|x) = N(y;A(x),Σy),
where A : Rd → R

dy and Σy is a covariance matrix. The

objective is to recover plausible underlying signals x, for

which prior information is encoded in p0. This recovery is

achieved by sampling from the posterior distribution

πy

0 (x0) ∝ g0(y|x0)p0(x0) .

A common approach to constructing a sampler for this pos-

terior distribution is to adopt the diffusion model framework

by sequentially sampling from the smoothed distributions

πy

T , . . . , π
y

1 , which are defined analogously to those intro-

duced in the previous section:

πy

t (xt) :=

∫

qt|0(xt|x0)π
y

0 (x0) dx0 . (5)

Following the derivations above, sampling these distribu-

tions backwards in time is feasible provided that the condi-

tional denoisers (Dy

t )
T
t=1 are accessible. Each conditional

denoiser is defined by

Dy

t (xt) :=

∫

x0 π
y

0|t(x0|xt) dx0,

where the conditional posterior πy

0|t(x0|xt) is given by

πy

0|t(x0|xt) ∝ πy

0 (x0)qt|0(xt|x0). By analogy with the

smoothed distributions defined for the prior, we obtain that

πy

t (xt) ∝
∫

g0(y|x0)qt|0(xt|x0)p0(x0) dx0

∝ gt(y|xt)pt(xt), (6)

where

gt(y|xt) :=

∫

g0(y|x0)p0|t(x0|xt) dx0, (7)

and we used that p0(x0)qt|0(xt|x0) = p0|t(x0|xt)pt(xt).
Next, using the Tweedie formula, the posterior and prior

denoisers can be related as

Dy

t (xt) = Dt(xt) + α−1
t σ2

t∇ log gt(y|xt) . (8)

This shows that in order to estimate Dy

t we only need to

estimate ∇ log gt(y|·), as we already have access to a pre-

trained parametric approximation of Dt. A widely used ap-

proximation of this likelihood term (Ho et al., 2022; Chung

et al., 2023), which we will also use in the next section, is

ĝθt (y|xt) := g(y|Dθ
t (xt)), (9)

and amounts to approximating the posterior distribution

p0|t(·|xt) with a Dirac mass at Dθ
t (xt), which we express as

p0|t(·|xt) ≈ δDθ
t (xt) with a slight abuse of notation. To im-

prove the quality of the sample, ∇ log ĝθt (y|xt) is rescaled

with a suitable weight (possibly depending on xt); see (Ho

et al., 2022, Equation 8) and (Chung et al., 2023, Algorithm

1). We emphasize that the rescalings generally used are only

heuristic. Compared to previous works, methods that per-

form guidance using the approximation (9) incur additional

computational overhead due to the calculation of a vector-

Jacobian product when evaluating ∇ log ĝθt (y|xt). Never-

theless, subsequent works using this approximation have

shown remarkable improvements in performance across var-

ious applications; see for example (Song et al., 2023a; Rozet

& Louppe, 2023; Yu et al., 2023; Wu et al., 2023; Jiang et al.,

2023; Rozet et al., 2024; Moufad et al., 2024).

3 Guidance with mixtures

We now present our main contribution: a novel density

approximation of the smoothed posteriors πy

t . Since their

scores are intractable, gradient-based samplers cannot be

directly applied. Thus, we develop a Gibbs sampling scheme

targeting a data augmentation of our smoothed posterior

approximation, marking our second key contribution.

In the next two sections we develop an algorithm for the

ideal generative model, i.e., we assume that we have at

hand the true marginals pt and backward transitions ps|t;
then, in Section 3.2, we provide a practical implementation

involving the learned model.

3.1 Guidance approximation

We begin by extending the likelihood approximation in (9)

introduced by Ho et al. (2022); Chung et al. (2023). First,

note that by combining (2) with (7), we find that gt(y|·)
satisfies

gt(y|xt) =

∫

gs(y|xs)ps|t(xs|xt) dxs,

for all t ∈ J1, T K and s ∈ J0, t− 1K. Thus, we obtain t− 1
different approximations of gt(y|·) by simply setting, for

s ∈ J1, t− 1K,

ĝst (y|xt) :=

∫

ĝs(y|xs)ps|t(xs|xt) dxs , t ≥ 2 , (10)
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where ĝs(y|·) denotes the counterpart of (9), with the

learned denoiser Dθ
s replaced by the true denoiser Ds. In

contrast to ĝθt (y|·) in (9), the scores of these approxima-

tions remain intractable even when the approximate model

is used, as they involve an intractable integral. Instead, we

take a different approach and use ĝst (y|·) to define density

approximations

π̂s
t (xt) :=

ĝst (y|xt)pt(xt)
∫

ĝst (y|x′
t)pt(x

′
t) dx

′
t

(11)

of the smoothed posteriors πy

t . Since we have t − 1 such

approximations, we consider a weighted mixture approxi-

mation of πy

t defined, for t ≥ 1, as

π̂y

t (xt) :=

t−1
∑

s=1

ωs
t π̂

s
t (xt) , (12)

where (ωs
t )

t−1
s=1 are time-dependent weights and

∑t−1
s=1 ω

s
t =

1 with ωs
t ≥ 0. Then, to sample approximately from πy

0 we

can use a sequential sampling procedure that runs through

the intermediate distributions π̂y

T , . . . , π̂
y

1 . Similar sequen-

tial sampling procedures from posterior sequences differ-

ent from (πy

t )t have also been utilized in previous works.

For instance, Wu et al. (2023); Rozet & Louppe (2023)

use π̂y

t (xt) ∝ ĝt(y|xt)pt(xt). Our approach differs from

these prior works by employing a mixture-based formula-

tion with non-standard approximations of πy

t . However,

sampling from πy

t () remains a non-trivial challenge. In-

deed, a naive procedure would consist in sampling an index

s ∼ Categorical({ωℓ
t}t−1

ℓ=1) and then use an approximate

sampler only for π̂s
t . However, we must address the in-

tractability of both π̂s
t (·) and its score. In the next section,

we propose a method that fully overcomes these challenges.

The discussion on selecting the weight sequence (ωs
t )

t−1
s=1 is

postponed until after presenting the algorithm, more specifi-

cally at the beginning of Section 5.

3.2 Data augmentation and Gibbs sampling

We first detail how to sample from a single component π̂s
t

of the mixture (12) for given t ∈ J2, T K and s ∈ J1, t− 1K.

Consider first the extended distribution

πy

0,s,t(x0,xs,xt)

∝ p0|s(x0|xs)ĝs(y|xs)ps|t(xs|xt)pt(xt) . (13)

From the definitions in (12) and (10) it follows that π̂s
t is

the xt-marginal of (13), i.e.,

π̂s
t (xt) =

∫

πy

0,s,t(x0,xs,xt) dx0 dxs.

To sample approximately from π̂s
t , we employ a sampler tar-

geting πy

0,s,t and retain only the xt-coordinate of its output.

Specifically, we use a Gibbs sampler (GS) (Geman & Ge-

man, 1984; Casella & George, 1992; Gelfand, 2000), which,

in this context, constructs a Markov chain (X̄r
0 , X̄

r
s , X̄

r
t )r∈N

having πy

0,s,t as its stationary distribution. Denote by πy

s|0,t,

πy

t|0,s, and πy

0|s,t its three full conditionals given by















πy

s|0,t(xs|x0,xt) =
ĝs(y|xs)qs|0,t(xs|x0,xt)∫

ĝs(y|x
′
s)qs|0,t(x

′
s|x0,xt) dx′

s

,

πy

t|0,s(xt|x0,xs) = qt|s(xt|xs),

πy

0|s,t(x0|xs,xt) = p0|s(x0|xs).

The proof of this fact is postponed to Appendix A.2. Then,

one step of the associated (deterministic scan) GS is de-

scribed in Algorithm 1.

Algorithm 1 Gibbs sampler targeting (13)

1: Input: (X̄r
0 , X̄

r
s , X̄

r
t )

2: draw X̄r+1
s ∼ πy

s|0,t(·|X̄r
0 , X̄

r
t )

3: draw X̄r+1
t ∼ qt|s(·|X̄r+1

s ) //noising

4: draw X̄r+1
0 ∼ p0|s(·|X̄r+1

s ) //denoising

Since (13) admits π̂s
t as marginal, the process (X̄r

t )r∈N will,

at stationarity of (X̄r
0 , X̄

r
s , X̄

r
t )r∈N, have π̂y

t as a marginal

distribution. We provide basic background on Gibbs sam-

pling in Appendix A.1 and refer the reader to (Casella &

George, 1992).

It is clear from Algorithm 1 that only the update of X̄r
s

depends on the observation y, while the updates of the

remaining components are sampled via (i) a noising step

involving the forward transition (1), which can be performed

exactly, and (ii) a denoising step involving the prior diffusion

model, which can be approximated using the pre-trained

model.

Finally, to target the mixture (12), we first sample the mix-

ture index s ∼ Categorical
(

{ωℓ
t}t−1

ℓ=1

)

, which determines

the component of the mixture π̂y

t (xt). Next, we apply Al-

gorithm 1 R times to update the remaining coordinates,

treating s as fixed, and output the result X̄R
t . Note that

an alternative to our method would be to consider a Gibbs

sampler for which one of its marginal is directly the mix-

ture (12) incorporating also the mixture index s as a state.

However, this would then require sweeping over all states

(X̄0, . . . , X̄t), rendering it computationally expensive and

impractical. We discuss other possible data augmentations

and their limitations in Appendix A.4.

3.3 Practical implementation

For simplicity, we present the algorithm in the case where

we progressively sample from each π̂y

t for t ∈ J2, T K. In

practice, however, we subsample a small number K of

timesteps (ti)
1
i=K , with t1 > 1 and tK = T , and apply

the algorithm only to (π̂y

ti)
i
i=K .
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Algorithm 2 MIXTURE-GUIDED DIFFUSION MODEL

1: Input: Timesteps (ti)
K
i=1 with t1 > 1 and tK = T ,

Gibbs repetitions R, DDPM steps M , gradient steps G,

probabilities {ωℓ
ti}

2,ti−1

i=K,ℓ=1

2: X̂tK ∼ N (0d, Id)
3: X̂0 ← Dθ

tK (X̂tK ), X̂∗
0 ← X̂0

4: for i = K to 2 do

5: s ∼ Categorical({ωℓ
ti}

ti−1

ℓ=1 )

6: X̂0 ← X̂∗
0

7: X̂ti ∼ qti|0,ti+1
(·|X̂∗

0 , X̂ti+1
)

8: for r = 1 to R do

9: X̂s ← Gauss_VI
(

X̂0, X̂ti , s, G
)

//see A.3

10: X̂0 ← DDPM(X̂s, s,M)
11: X̂ti ∼ qti|s(·|X̂s)
12: end for

13: X̂∗
0 ← X̂0

14: end for

15: Output: X∗
0

M
G
D
M

y t = 800 t = 600 t = 400 t = 200 t = 0

D
A
P
S

Figure 1: Evolution of X̂∗

0 throughout the iterations for MGDM
and DAPS (Zhang et al., 2024).

The denoising step in Algorithm 1 can be approximated

by sampling from the learned diffusion model. To re-

duce runtime, we again subsample a small number of

timesteps {si}Mi=0 ⊂ J0, s − 1K, ensuring that s0 = 0 and

sM = s. We then generate (Xsi)
M
i=0 by sampling iteratively

Xsi ∼ pθsi|si+1
(·|Xsi+1

) and retaining only Xs0 . This oper-

ation is referred to as DDPM(·, s,M) on Line 10 in Algo-

rithm 2. As for the step involving π̂y

s|0,t, we follow Moufad

et al. (2024) and sample approximately by fitting a Gaus-

sian variational approximation. More specifically, given

(x0,xt), we draw from the Gaussian variational approxi-

mation λφ

s|0,t
:= N

(

µs|0,t, diag(eρs|0,t)
)

where the param-

eters φs|0,t := (µs|0,t,ρs|0,t) ∈ R
d × R

d are obtained by

optimizing the right-hand side of

KL(λφ

s|0,t ∥ π
y

s|0,t(·|x0,xt))

≈ −E
[

log ĝθs(y|X̂φ

s )
]

+ KL(λφ

s|0,t ∥ qs|0,t(·|x0,xt)),

where X̂φ

s ∼ λφ

s|0,t. The gradient of this quantity can be

estimated straightforwardly using the reparameterization

trick (Kingma & Welling, 2013). The initial parameters

φs|0,t are set to the mean and covariance of qs|0,t(·|x0,xt)

defined in (3). This step corresponds to the Gauss_VI rou-

tine in Algorithm 2 and is detailed in Appendix A.3. Re-

garding the initialization of the GS for π̂y

t , we use the out-

put of the previous GS targeting π̂y

t+1; see Lines 6 and

7 in Algorithm 2. We maintain a running variable X̂∗
0 ,

which is iteratively updated and serves as the initializa-

tion for the other variables at the beginning of each loop

iteration. It is also the output of the algorithm. Indeed,

note that the last distribution to which we apply the GS is

πy

0,1,2(x0,x1,x2) of which the x0-marginal is proportional

to p0(x0)
∫

ĝ1(y|x1)q1|0(x1|x0) dx1. Since the Gaussian

density q1|0(·|x0) has a very small variance and ĝ1(y|·) ≈
g0(y|·), we may assume that

∫

ĝ1(y|x1) q1|0(x1|x0)dx1 ≈
g0(y|x0) and hence that the posterior πy

0 of interest is ap-

proximately the x0-marginal of the last extended distribu-

tion. As a result, we can take the x0-coordinate of the output

of the last GS, which is X̂0 and hence X̂∗
0 , as an approxi-

mate sample from πy

0 . In the first row of Figure 1 we display

the evolution of X̂∗
0 throughout the iterations with a DDM

pre-trained on the FFHQ dataset. It is seen that the algo-

rithm reaches a plausible reconstruction of y rather fast, at

t = 800 with T = 1000, and then spends the remaining

iterations refining the details. As a comparison, the DAPS

algorithm proposed by Zhang et al. (2024), which displayed

in the second row, also maintains a running variable at time

0 that serves as output to the algorithm.

4 Related works

Alternative likelihood approximations. In addition to

this work, several other papers introduce alternative approxi-

mations of gt(y|·). (Song et al., 2023a) proposes a Gaussian

approximation of p0|t with mean given by the denoiser Dθ
t

and covariance being left as a hyperparameter. For linear in-

verse problems with Gaussian noise, the likelihood g0(y|·)
can be integrated exactly against this Gaussian approxi-

mation, providing an alternative approximation of gt(y|·).
Finzi et al. (2023); Stevens et al. (2023); Boys et al. (2023)

use that the covariance of p0|t(·|xt) is proportional to the

Jacobian of the denoiser (Meng et al., 2021). Computing the

score of the resulting likelihood approximation, for linear

inverse problems, is prohibitively expensive. To mitigate

this, these works and subsequent ones assume that the Jaco-

bian of the denoiser is constant with respect to xt. Despite

this simplification, the score approximation still involves an

expensive matrix inversion. Boys et al. (2023) use diago-

nal approximation of the covariance based on its row sums.

Rozet et al. (2024) use conjugate gradient to perform the

matrix inversion efficiently. For general likelihoods g0(y|·),
Song et al. (2023b) use Gaussian approximations of Song

et al. (2023a) to estimate gt(y|·) using a standard Monte

Carlo approach. For latent diffusion models, Rout et al.

(2024) apply the approximation in (9) together with a regu-

larization term that penalizes latent variables deviating from
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Figure 2: MGDM sample images for various tasks on ImageNet (left) and FFHQ (right) datasets.

fixed points of the decoder-encoder composition. Moufad

et al. (2024) propose a general method for both vanilla and

latent space diffusion models. At step t of the diffusion

process they first sample, at an intermediate timestep s < t,
a state conditionally on y with the approximation (9), be-

fore returning back to the timestep t. In Appendix A.5 we

explain in more details how the present work differs from

this method.

Asymptotically exact methods. Trippe et al. (2023); Wu

et al. (2023); Cardoso et al. (2024); Dou & Song (2024);

Corenflos et al. (2024); Li et al. (2024) use the sequential

Monte Carlo (SMC) framework to construct an empirical

approximation of the posterior distribution represented by

N samples. The samples undergo transitions guided by

user-defined updates, are reweighted using an appropriate

importance weight, and are subsequently resampled to fo-

cus computational effort on the most promising candidates.

The performance of these methods improves by scaling

the number of samples N , which impacts both the mem-

ory requirement and compute time. As evidenced by the

experiments in the next section, our method improves by

increasing the number of Gibbs steps, which impacts only

the runtime.

Gibbs sampling approaches. The recent works (Wu et al.,

2024; Xu & Chi, 2024) on PNP-DM also propose a Gibbs

sampling-inspired algorithm. They consider (within the

variance exploding framework) the distribution sequence

(π̃y

t )
T
t=0, where each distribution π̃y

t (xt) ∝ g0(y|xt)pt(xt)
is the xt-marginal of the extended distribution

π̃y

0,t(x0,xt) ∝ g0(y|xt)p0(x0)qt|0(xt|x0) .

As its full conditionals are π̃y

0|t(x0|xt) = p0|t(x0|xt) and

π̃y

t|0(xt|x0) ∝ g0(y|xt)qt|0(xt|x0), the GS targeting this

joint distribution also proceeds with a prior denoising step.

On the other hand, sampling from π̃y

t|0(·|x0) can be per-

formed exactly when g0(y|·) is the likelihood of a linear

inverse problem with Gaussian noise, since qt|0(·|x0) is a

Gaussian distribution. For more general problems, this step

can be implemented using MCMC methods; see e.g. (Xu &

Chi, 2024, Algorithms 3 & 4). Compared to our algorithm,

PNP-DM has a lower memory footprint because it does not

require a vector-Jacobian product as it uses the likelihood

g0(y|·) instead of ĝt(y|·). However, as we show in the next

section, this comes at the cost of performance, especially

when using latent diffusion models. The REPAINT algo-

rithm (Lugmayr et al., 2022), which applies to noiseless

linear inverse problems, uses noising and denoising steps

repeatedly and can also be viewed as a variant of a spe-

cific Gibbs sampler. Finally, the recently proposed DAPS

(Zhang et al., 2024) can also be related to a Gibbs sampler

targeting a specific sequence of distributions. Further details

and comparisons to MGDM are provided in Appendix A.5.

5 Experiments

We evaluate MGDM on image inverse problems using both

pixel-space and latent-space diffusion, as well as on musical

source separation tasks. For the pixel-space diffusion and

the audio diffusion model, we compare MGDM against

seven competitors: DPS (Chung et al., 2023), PGDM

(Song et al., 2023a), DDNM (Wang et al., 2023), DIFFPIR

(Zhu et al., 2023), REDDIFF (Mardani et al., 2024), DAPS

(Zhang et al., 2024), and PNP-DM (Wu et al., 2024). In the

latent space setting, we benchmark against four competitors:

PSLD (Rout et al., 2024), RESAMPLE (Song et al., 2024),

DAPS (Zhang et al., 2024), and PNP-DM (Wu et al., 2024).

In Appendixes B.2-B.4, we provide a complete formal de-

scription of the parameters of our algorithm as well as the

implementation details of each competitor and its hyperpa-

rameters. We emphasize that we have tuned the parameters

6
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Table 1: Mean LPIPS for linear/nonlinear imaging tasks on the FFHQ and ImageNet datasets with σy = 0.05. Lower metrics are better.

FFHQ ImageNet

Task MGDM DPS PGDM DDNM DIFFPIR REDDIFF DAPS PNP-DM MGDM DPS PGDM DDNM DIFFPIR REDDIFF DAPS PNP-DM

SR (×4) 0.09 0.09 0.30 0.15 0.10 0.39 0.16 0.10 0.26 0.25 0.56 0.34 0.31 0.57 0.37 0.66

SR (×16) 0.24 0.23 0.42 0.33 0.23 0.55 0.40 0.29 0.55 0.44 0.62 0.71 0.50 0.85 0.75 1.03

Box inpainting 0.10 0.17 0.17 0.12 0.14 0.19 0.13 0.18 0.23 0.35 0.29 0.28 0.30 0.36 0.30 0.42

Half mask 0.20 0.24 0.24 0.23 0.25 0.28 0.23 0.32 0.31 0.40 0.34 0.38 0.40 0.46 0.40 0.54

Gaussian Deblur 0.12 0.17 0.87 0.20 0.12 0.24 0.24 0.14 0.30 0.37 1.00 0.45 0.30 0.53 0.59 0.76

Motion Deblur 0.09 0.17 − − − 0.22 0.19 0.21 0.22 0.40 − − − 0.39 0.42 0.52

JPEG (QF = 2) 0.14 0.34 1.12 − − 0.32 0.22 0.29 0.38 0.60 1.32 − − 0.49 0.45 0.56

Phase retrieval 0.11 0.40 − − − 0.26 0.14 0.34 0.55 0.62 − − − 0.61 0.50 0.66

Nonlinear deblur 0.27 0.51 − − − 0.68 0.28 0.31 0.41 0.82 − − − 0.66 0.41 0.49

HDR 0.12 0.40 − − − 0.20 0.10 0.19 0.21 0.84 − − − 0.19 0.14 0.31

of our algorithm per dataset and not per task.

Index sampling and Gibbs steps. During the first 75% of

the diffusion process, at timestep ti, we sample the index

s from Uniform[τ, ti−1] with τ = 10 to mitigate instabili-

ties. In the final 25% of the steps we set s = ti−1 as this

yields slightly improved results. On the image inverse prob-

lems we use 100 diffusion steps with R = 1 Gibbs step.

On the source separation task we use 20 diffusion steps

with R = 6 Gibbs steps. The choice of weight sequence

{ωℓ
t}2,t−1

t=T,ℓ=1 plays an important role for the algorithm’s per-

formance. Intuitively, it holds that that ĝst (y|·) ≈ gt(y|·)
when s ≈ 0, suggesting that for all t ∈ J2, T K, the weights

should be set to 0 beyond a certain threshold to ensure that

s is sampled near 0. We found, however, that this strategy

does not yield good performance for our algorithm. Instead,

sampling the index uniformly leads to a faster mixing. On

high-dimensional image datasets, we observe that when s is

consistently sampled near 0 at all iterations, the algorithm

struggles to overcome the errors that accumulate at initial-

ization, leading to suboptimal reconstructions. We provide

both quantitative and qualitative evidence in Appendix B.1.

Images. We evaluate our method on a diverse set of six

linear inverse problems and four nonlinear inverse problems

with three different image priors with 256× 256 resolution:

the pixel-space FFHQ model of Choi et al. (2021), the latent-

space FFHQ of Rombach et al. (2022), and the ImageNet

model of Dhariwal & Nichol (2021). We use the noise level

σy = 0.05 for all tasks. The linear problems include image

inpainting with two masking configurations: a 150 × 150
central box mask and a half-mask covering the right side of

the image; Super Resolution (SR) tasks with upscaling fac-

tors of ×4 and ×16; Gaussian and motion deblurring, both

using a kernel size of 61× 61 following the experimental

setup described by Chung et al. (2023, Section 4). For the

nonlinear setting, we consider JPEG dequantization with a

quality factor of 2%, implemented using the differentiable

operator proposed by Shin & Song (2017); phase retrieval

with an oversampling factor of ×2; non-uniform deblur-

ring using the operator introduced by Tran et al. (2021);

High Dynamic Range (HDR) reconstruction following the

setup detailed in Mardani et al. (2024, Section 5.2). The

evaluation is done on a subset of 300 validation images per

dataset. For FFHQ, we use the first 300 images, while for

ImageNet, we randomly sample 300 images to avoid class

bias. We report the LPIPS metric (Zhang et al., 2018) in Ta-

bles 1 and 2 and defer the complete tables with FID, PSNR

and SSIM along side 95% confidence interval to Table 6,

Table 7, and Table 8. For the phase retrieval task specifically,

we draw 4 samples for each algorithm and keep only the best

scoring one in terms of LPIPS. A similar strategy is used

in (Chung et al., 2023; Zhang et al., 2024; Wu et al., 2024).

Across table rows, we highlight the best value in tx , the 2nd

best in tx and 3rd best in tx . We provide a large gallery of

exemplar reconstructions in Appendix B.9. Aside, we also

extend our evaluation to higher-noise setup and Poisson-

noise likelihood in Appendix B.8 and Appendix B.9.

Results. Our method with a single Gibbs step consistently

achieves competitive performance, ranking first on most

tasks and standing out as the only approach to maintain ro-

bust performance across all tasks. On latent FFHQ, we out-

perform RESAMPLE and PSLD, both of which are specif-

ically designed for latent problems, while our method is

applied seamlessly off-the-shelf without any adaptation to

latent diffusion. Qualitative comparisons in Figure 2 and in

Appendix B.9 reveal that our method provides diverse, visu-

ally coherent and sharp reconstructions. In contrast, DAPS,

DDNM and DIFFPIR, despite scoring higher in PSNR and

SSIM on some tasks, provide less coherent reconstructions;

see Appendix B.6 for a discussion and examples. Finally, a

key strength of our algorithm is its ability to improve perfor-

mance by increasing the number R of Gibbs steps. This is

demonstrated for the most challenging task, phase retrieval,

in Figure 3. In this experiment, we compute the LPIPS using

a single sample per image (instead of four) and achieve a

threefold reduction in average LPIPS simply by increasing

the compute time in the right direction. Indeed, increasing

the number of gradient steps brings only marginal gains

in this case whereas increasing the number of Gibbs steps

leads to significant performance gains.

Source separation. We now consider a linear inverse prob-

lem with an audio diffusion prior that generates four de-

pendent instrument soundtracks: bass, drums, guitar, and

7
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Table 2: Mean LPIPS for linear/nonlinear imaging tasks on FFHQ
dataset with LDM prior and σy = 0.05. Lower metrics are better.

Task MGDM RESAMPLE PSLD DAPS PNP-DM

SR (×4) 0.14 0.22 0.21 0.28 0.40

SR (×16) 0.30 0.38 0.36 0.52 0.71

Box inpainting 0.18 0.22 0.27 0.37 0.31

Half mask 0.26 0.30 0.32 0.49 0.44

Gaussian Deblur 0.18 0.16 0.59 0.32 0.32

Motion Deblur 0.22 0.20 0.70 0.36 0.36

JPEG (QF = 2) 0.23 0.26 − 0.32 0.36

Phase retrieval 0.29 0.39 − 0.25 0.50

Nonlinear deblur 0.29 0.33 − 0.37 0.37

High dynamic range 0.16 0.12 − 0.24 0.24

R = 1 R = 2 R = 4 R = 6 R = 1, G≫ 1

Bass 15.46 18.07 18.53 18.49 19.89

Drums 16.28 17.93 18.19 18.07 18.95

Guitar 12.58 14.73 16.26 16.68 16.07

Piano 11.82 14.34 15.38 16.17 16.50

All 14.03 16.27 17.09 17.35 17.85

1 2 4 6

# Gibbs steps R

0.1

0.2

0.3

L
P
IP

S

R = 1, G � 1

Figure 3: Performance of MGDM as a function of the number
of Gibbs steps R. The setup R = 1, G ≫ 1 represents MGDM
with R = 1 and a number of gradient steps resulting in a runtime
equivalent to using R = 6. Left: Mean SI-SDRI for multisource–
audio separation task on slakh2100 test dataset. Right: Mean
LPIPS for the phase retrieval task on FFHQ.

piano. The task involves separating the individual sources

from a mixture y of these four instruments; i.e. denoting

by d′ the dimension of one instrument soundtrack, the lin-

ear operator is A : x ∈ R
4×d′ 7→ ∑4

i=1 xi ∈ R
d′

. We

assume no noise in the measurement and use the audio

diffusion model of Mariani et al. (2023). The evaluation

is conducted on the publicly available slakh2100 test

dataset (Manilow et al., 2019) with the scale-invariant SDR

improvement (SI-SDRI) metric (Roux et al., 2019). The

SI-SDRI metric measures the improvement between the

original audio source xi and the generated source x̂i, rela-

tive to the mixture baseline y, i.e. it computes the difference

SI-SDR(xi, x̂i)− SI-SDR(xi,y) where

SI-SDR(xi, x̂i) = 10 log10
∥αxi∥2 + ϵ

∥αxi − x̂i∥2 + ϵ
,

where α =
x
⊤
i x̂i+ϵ

∥xi∥2+ϵ , and ϵ = 10−8. Following Mariani et al.

(2023, Section 5.2), tracks from the test dataset are evaluated

using a sliding window approach with 4-second chunks and

a 2-second overlap. We report the SI-SDRI metric in Table

3. For this task we compare against three other competing

algorithms. First, the best version of the MSDM algorithm

in (Mariani et al., 2023) which uses the same pre-trained

model and is directly comparable to our method. Then, the

ISDM algorithm from the same paper and which relies on

separate pre-trained models for each instrument, as well as

the Demucs model (Défossez et al., 2019), trained with su-

pervision to specifically solve source separation, augmented

with 512 Gibbs sampling steps (Manilow et al., 2022) and

Table 3: Mean SI-SDRI on slakh2100 test dataset. The last row
displays the mean over the four stems. Higher metrics are better.

Stems MGDM DPS PGDM DDNM MSDM ISDM DEMUCS512

Bass 18.49 16.50 16.41 14.94 17.12 19.36 17.16

Drums 18.07 18.29 18.14 19.05 18.68 20.90 19.61

Guitar 16.68 9.90 12.84 14.38 15.38 14.70 17.82

Piano 16.17 10.41 12.31 11.46 14.73 14.13 16.32

All 17.35 13.77 14.92 14.96 16.48 17.27 17.73

is, to the best of our knowledge, considered to be state-of-

the-art. We refer to it as DEMUCS512. Finally, since the

inverse problem is noiseless, we smooth it by using the

likelihood g0(y|x) = N(y;A(x), σ2
y
Idy

) with σy = 10−4.

This smoothing is applied consistently across all competitors

except the best-performing versions of MSDM and ISDM,

which are tailored for noiseless problems, and DEMUCS512.

The results are reported in Table 3. Due to space constraints,

we only show the best performing competitors and defer the

complete table to Appendix B.6.

Results. We outperform, on average, the other training-free

competitors that use the same pre-trained model by a sub-

stantial margin. In particular, we outperform the MSDM

algorithm of Mariani et al. (2023) as well as ISDM which

uses a different model. With R = 6 Gibbs steps MGDM

falls short of matching the performance DEMUCS512. We

found instead that setting R = 1 and using a number of

gradient steps ensuring equivalent runtime, as we did for the

phase retrieval example, allows to achieve superior perfor-

mance; see Figure 3. It is also seen that the average SI-SDRI

increases monotonically with the number of Gibbs steps.

6 Conclusion

We have developed a novel posterior sampling scheme for

denoising diffusion priors. The proposed algorithm pro-

ceeds by sequentially sampling, using a Gibbs sampler,

from a sequence of mixture approximations of the smoothed

posteriors. Our experiments show that MGDM not only

matches but often surpasses state-of-the-art performance

and reconstruction quality across various tasks. Further-

more, we have demonstrated that the Gibbs sampling per-

spective allows favorable performance improvement with

inference-time compute scaling.

This work has certain limitations that open avenues for fur-

ther exploration. While we outperform the state-of-the-art

on most tasks and remains competitive overall on latent

diffusion, we still fall short of what we achieve with pixel-

space diffusion. We believe that bridging this gap requires

a more careful selection of the weight sequence. More

broadly, an observation-driven approach to sampling the

index could further enhance MGDM. A second limitation

is that our methodology does not extend to ODE-based sam-

plers or DDIM, and adapting related ideas to these methods
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is an interesting research direction. Finally, like all existing

methods relying on (9), our approach incurs a higher mem-

ory cost compared to unconditional diffusion. It remains an

open question whether the vector-Jacobian product can be

eliminated without compromising performance.
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A Methodology details

A.1 Primer on Gibbs sampling

In this section we lay out the basic properties of Gibbs sampling. We use measure-theoretic notation for conciseness.

Let µ0,1(d(x0,x1)) be a probability measure on R
d × R

d. We denote by µ0|1(dx0|x1) and µ1|0(dx1|x0) the associated

full conditionals and we write µ0, µ1 for its marginals. Define the transition kernels

P0(d(x
′
0,x

′
1)|x0,x1) := µ0|1(dx

′
0|x1)δx1

(dx′
1),

P1(d(x
′
0,x

′
1)|x0,x1) := µ1|0(dx

′
1|x0)δx0

(dx′
0).

Each transition kernel updates only one coordinate at a time. A full update of the coordinates is obtained by composition of

the kernels, i.e.

P0P1(d(x
′
0,x

′
1)|x0,x1) :=

∫

P1(d(x
′
0,x

′
1)|x̃0, x̃1)P0(d(x̃0, x̃1)|x0,x1) .

Each transition admits the joint distribution µ0,1 as stationary distribution, meaning that µ0,1(d(x0,x1)) =
∫

P0(d(x0,x1)|x′
0,x

′
1)µ0,1(d(x

′
0,x

′
1)). Indeed, this is seen by noting that

P0(d(x0,x1)|x′
0,x

′
1)µ0,1(d(x

′
0,x

′
1)) = µ0|1(dx0|x′

1)δx′
1
(dx1)µ0,1(d(x

′
0,x

′
1))

= µ0|1(dx0|x′
1)δx′

1
(dx1)µ0|1(dx

′
0|x′

1)µ1(dx
′
1)

= µ0|1(dx0|x1)µ1(dx1)µ0|1(dx
′
0|x′

1)δx1
(dx′

1),

and then integrating both sides w.r.t. (x′
0,x

′
1). It then follows immediately that also P0P1 admits µ0,1 as stationary

distribution. Letting
(

(Xk
0 , X

k
1 )
)

k∈N
be a Markov chain with transition kernel P0P1, the law of (Xk

0 , X
k
1 ) converges to µ0,1

as k →∞ under mild conditions; see (Roberts & Smith, 1994).

A.2 Full Gibbs conditionals

In the main paper we consider the following data augmentation of the mixture π̂y

t (12)

πy

0,s,t(x0,xs,xt) = p0|s(x0|xs)
ĝs(y|xs)ps|t(xs|xt)pt(xt)

∫

ĝs(y|x′
s)ps|t(x

′
s|x′

t)pt(x
′
t) dx

′
s,t

. (14)

From this definition it is straightforward to see that πy

0|s,t(x0|xs,xt) = p0|s(x0|xs). In order to compute the full conditional

πy

s|0,t(xs|x0,xt) we use the identity

p0|s(x0|xs)ps|t(xs|xt)pt(xt) = p0(x0)qs|0(xs|x0)qt|s(xt|xs), (15)

from which it follows that

πy

s|0,t(xs|x0,xt) =
p0|s(x0|xs)ĝs(y|xs)ps|t(xs|xt)

∫

p0|s(x0|x′
s)ĝs(y|x′

s)ps|t(x
′
s|xt) dx′

s

=
qs|0(xs|x0)ĝs(y|xs)qt|s(xt|xs)

∫

qs|0(x′
s|x0)ĝs(y|x′

s)qt|s(xt|x′
s) dx

′
s

=
qs|0(xs|x0)ĝs(y|xs)qt|s(xt|xs)

/

qt|0(xt|x0)
∫

qs|0(x′
s|x0)ĝs(y|x′

s)qt|s(xt|x′
s)
/

qt|0(xt|x0) dx′
s

.

Then, by noting that the bridge transition (3) satisfies qs|0,t(xs|x0,xt) = qs|0(xs|x0)qt|s(xt|xs)/qt|0(xt|x0), we find that

πy

s|0,t(xs|x0,xt) =
ĝs(y|xs)qs|0,t(xs|x0,xt)

∫

ĝs(y|x′
s)qs|0,t(x

′
s|x0,xt) dx′

s

Finally, for the third conditional, using again the identity (15), we find that

πy

t|0,s(xt|x0,xs) =
p0|s(x0|xs)ĝs(y|xs)ps|t(xs|xt)pt(xt)

∫

p0|s(x0|xs)ĝs(y|xs)ps|t(xs|x′
t)pt(x

′
t) dx

′
t

= qt|s(xt|xs) .
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A.3 Variational approximation

In this section we describe the variational approach of Moufad et al. (2024), which we use to fit a Gaussian variational

approximation to πy

s|0,t(·|x0,xt) for fixed (x0,xt). Similarly to the main paper we consider the variational approximation

λφ

s|0,t
:= N

(

µs|0,t, diag(eρs|0,t)
)

, (16)

and let φs|0,t := (µs|0,t,ρs|0,t) ∈ R
d × R

d denote the variational parameters. The reverse KL divergence writes, following

definition (3),

KL(λφ

s|0,t ∥ π
y

s|0,t(·|x0,xt))

=

∫

log
λφ

s|0,t(xs)

ĝs(y|xs)qs|0,t(xs|x0,xt)
λφ

s|0,t(xs) dxs +C

= Eλφ

s|0,t

[

− log ĝs(y|X̂φ

s ) +
∥X̂φ

s −
(

γt|sαs|0x0 + (1− γt|s)α
−1
t|sxt

)

∥2

2σ2
s|0,t

]

− 1

2
ρ
T
s|0,t1d +C′. (17)

Using the reparameterization trick (Kingma & Welling, 2013) and plugging-in the neural network approximation ĝθs(y|·) of

ĝs(y|·), we obtain the gradient estimator

∇φLs
t (φ;x0,xt, Z) := −∇φ log ĝθs(y|µs|0,t + diag(eρs|0,t)1/2Z)

+∇φ

[∥µs|0,t + diag(eρs|0,t)1/2Z −
(

γt|sαs|0x0 + (1− γt|s)α
−1
t|sxt

)

∥2

2σ2
s|0,t

− 1

2
ρ
T
s|0,t1d

]

,

where Z ∼ N (0d, Id). We initialize the variational parameters with the mean and covariance of the bridge kernel (3), i.e., at

initialization, µ0
s|0,t

:= γt|sαs|0x0 + (1 − γt|s)α
−1
t|sxt and ρ

0
s|0,t = log σ2

s|0,tId. The Gauss_VI routine is summarized in

Algorithm 3.

Algorithm 3 Gauss_VI routine

1: Input: vectors (x0,xt), timesteps (s, t), gradient steps G
2: µ← γt|sαs|0x0 + (1− γt|s)α

−1
t|sxt

3: ρ← log σ2
s|0,t

4: for g = 1 to G do

5: Z ∼ N (0d, Id)
6: (µ,ρ)← OptimizerStep(∇φLs

t (·,x0,xt, Z))
7: end for

8: Z ∼ N (0d, Id)
9: Output: µ+ diag(eρ/2)Z

Remark A.1. While the expectation of the squared norm in (17) can be computed exactly, we found that, in practice, doing

so degraded the algorithm’s performance, producing blurrier images compared to simply using a Monte Carlo estimator for

the full expectation.

Remark A.2. The fact that the density of our target distribution can be computed approximately by plugging the denoiser

approximation allows us to add a Metropolis–Hastings (MH) correction with approximate acceptance ratio. Indeed, once we

fit the Gaussian approximation, we can improve the accuracy of our sampler by simulating a Markov chain (X̂k
s )k where,

given X̂k
s ,

X̂k+1
s ∼Ms(dxs|X̂k

s ) :=

∫

λφ

s|0,t(z)

[

rs(X̂
k
s , z)δz(dxs) + (1− rs(X̂

k
s , z))δX̂k

s
(dxs)

]

dz ,

with

rs(xs,x
∗
s) = min

(

1,
ĝs(y|x∗

s)qs|0,t(x
∗
s|x0,xt)λ

φ

s|0,t(xs)

ĝs(y|xs)qs|0,t(xs|x0,xt)λ
φ

s|0,t(x
∗
s)

)

.
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A.4 Alternative data augmentation and sequence

Data augmentation. Our algorithm is based on one data-augmentation approach, but alternative augmentations could also

be considered. Let s ∈ J1, t− 1K. Then the most obvious and natural data augmentation involves simply marginalizing out

the x0 variable in (14), yielding

πy

s,t(xs,xt) ∝ ĝs(y|xs)ps|t(xs|xt)pt(xt) .

Its full conditionals are πy

s|t(xs|xt) ∝ ĝs(y|xs)ps|t(xs|xt) and πy

t|s(xt|xs) = qt|s(xt|xs). The first conditional is

intractable for sampling, and we could approximate it with a Gaussian variational distribution, similar to our ap-

proach for πy

s|0,t(·|x0,xt). Indeed, this is possible since ∇xs
log πy

s|t(xs|xt) = ∇xs
log ĝs(y|xs) + ∇xs

log ps(xs) +

∇xs
log qt|s(xt|xs), which can then be approximated using the parametric approximations ∇ log ĝθs(y|xs) and

∇ log ps(xs) ≈ (−xs + αsD
θ
s(xs))/(1− α2

s).

The first drawback of this approach is that, in practice, it tends to degrade reconstruction quality—e.g., introducing

blurriness—as t tends to 0, due to the poor approximation of the score near the data distribution. Additionally, beyond the

loss of quality, we observe that it produces more incoherent reconstructions with noticeable artifacts. We hypothesize that

this issue arises because the distribution we aim to approximately sample involves the prior transition ps|t, which can be

highly multi-modal when s≪ t. This multi-modality may make the posterior πy

s|t(·|xt) more challenging to approximately

sample from. On the other hand, when further conditioning on x0, the sampling problem becomes more well-behaved, as we

then target the posterior of a Gaussian distribution. Finally, while the score of πy

s|t(xs|xt) can be easily approximated, its

density cannot, preventing the use of a Metropolis–Hastings correction, unless we use the independent proposal ps|t(·|xt).
However, this approach is suboptimal, as it does not incorporate any information from the observation. This is not the case

of the data-augmentation approach we use in MGDM as we highlight in Remark A.2.

Alternative sequence. An alternative to the mixture of posterior approximations (12), on which MGDM is based, is the

posterior formed as a mixture of likelihoods:

π̂y

t (xt) =

∑t−1
s=1 ω

s
t ĝ

s
t (y|xt)pt(xt)

∫
∑t−1

s=1 ω
s
t ĝ

s
t (y|x′

t)pt(x
′
t) dx

′
t

,

being the xt-marginal of the extended distribution

πy

0,\,t(s,x0, z,xt) ∝ ωs
t p0|s(x0|z)ĝs(y|z)ps|t(z|xt)pt(xt) . (18)

Now, let (s, X̄0, Z̄, X̄t) ∼ πy

0,\,t; then, conditionally on s, the distribution of (X̄0, Z̄, X̄t) is πy

0,s,t, whereas

s|X̄0, Z̄, X̄t ∼ Categorical





{

ωℓ
t ĝℓ(y|Z̄)qℓ|0,t(Z̄|X̄0, X̄t)

∑t−1
k=1 ω

k
t ĝk(y|Z̄)qk|0,t(Z̄|X̄0, X̄t)

}t−1

ℓ=1



 .

A Gibbs sampler targeting (18) is described in Algorithm 4. It allows updating the index s in an observation-driven fashion,

but is unfortunately computationally expensive as we need to evaluate the denoiser at Z̄ in parallel for t− 1 timesteps. A

cheaper alternative could be to block the variables (s, Z̄) and use an independent MH step to target their joint conditional

distribution. Denoting by λ the joint proposal distribution on J1, t − 1K × R
d used in this independent MH step, the

probability of accepting a candidate (s∗, z∗) is

rt
(

(s, z), (s∗, z∗)
)

= min

(

1,
ωs∗

t ĝs∗(y|z∗)qs∗|0,t(z∗|x0,xt)λ(s, z)

ωs
t ĝs(y|z)qs|0,t(z|x0,xt)λ(s∗, z∗)

)

.

Remark A.3. Note that we could have used a similar data augmentation (18) for the mixture used in MGDM. This would

yield the full conditional

s|X̄0, Z̄, X̄t ∼ Categorical





{

ωℓ
tπ

y

ℓ|0,t(Z̄|X̄0, X̄t)
∑t−1

k=1 ω
k
t π

y

ℓ|0,t(Z̄|X̄0, X̄t)

}t−1

k=1



 ,

which is, however, intractable due to the normalizing constant involved in each πy

ℓ|0,t.
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Algorithm 4 Gibbs sampler targeting (13)

1: Input: (sr, X̄r
0 , Z̄

r, X̄r
t )

2: draw sr+1 ∼ Categorical

(

{

ωℓ
t ĝℓ(y|Z̄

r)qℓ|0,t(Z̄
r|X̄r

0 ,X̄
r
t )∑t−1

k=1
ωk

t ĝk(y|Z̄
r)qk|0,t(Z̄r|X̄r

0
,X̄r

t )

}t−1

k=1

)

3: draw Z̄r+1 ∼ πy

sr+1|0,t(·|X̄r
0 , X̄

r
t )

4: draw X̄r+1
t ∼ qt|sr+1(·|Z̄r+1)

5: draw X̄r+1
0 ∼ p0|sr+1(·|Z̄r+1)

A.5 Related algorithms

Comparison with Zhang et al. (2024) In this section we clarify the difference between MGDM and the DAPS algorithm

(Zhang et al., 2024), which shares some similarities with our approach. The sampling procedure in DAPS relies on

sequential approximate sampling from the joint distribution

π̃y

0:T (x0:T ) := πy

T (xT )

T−1
∏

t=0

π̃t|t+1(xt|xt+1),

where

π̃y

t|t+1(xt|xt+1) :=

∫

qt|0(xt|x0)π
y

0|t+1(x0|xt+1) dx0 (19)

and πy

0|t+1(x0|xt+1) = πy

0 (x0)qt+1|0(xt+1|x0)
/

πy

t+1(xt+1). From this definition it follows that

πy

t (xt) =

∫

π̃y

t|t+1(xt|xt+1)π
y

t+1(xt+1) dxt+1 ,

and hence that the marginals of the joint distribution π̃y

0:T are (πy

t )
T
t=0. The canonical backward transition πy

t|t+1(xt|xt+1) ∝
πy

t (xt)qt+1|t(xt+1|xt) has the alternative form

πy

t|t+1(xt|xt+1) =

∫

qt|0,t+1(xt|x0,xt+1)π
y

0|t+1(x0|xt+1) dx0 ,

which differs from (19) in the use of the bridge transition qt|0,t+1 instead of the forward transition qt|0.

In order to sample from π̃t|t+1(·|xt+1), one needs to first sample X0 ∼ πy

0|t+1(·|xt+1) and then Xt ∼ qt|0(·|X0). DAPS

performs the former step using Langevin dynamics on an approximation of πy

0|t+1(·|xt+1). More specifically, the authors

use the approximation

πy

0|t+1(x0|xt+1) ≈
g0(y|x0)N(x0;Dt+1(xt+1), r

2
t+1Id)

∫

g0(y|x′
0)N(x′

0;Dt+1(xt+1), r2t+1Id) dx
′
0

,

where r2t+1 is a hyperparameter. This approximation follows by noting that πy

0|t+1(x0|xt+1) ∝ g0(y|x0)p0|t+1(x0|xt+1)

and using the Gaussian approximation of p0|t+1(·|xt+1) proposed by Song et al. (2023a). The Langevin step is initialized

with a sample obtained by discretizing the probability flow ODE (Song et al., 2021) between t+ 1 and 0.

Both MGDM and DAPS perform full noising and denoising steps and operate in a similar manner in this respect (with the

distinction that we use DDPM instead of the probability flow ODE). The first fundamental difference is that we sample,

conditionally on y and at a random timestep s, by drawing from πy

s|0,t(·|x0,xt) ∝ ĝs(y|xs)qs|0,t(xs|x0,xt). Unlike

DAPS, our method does not rely on a density approximation prior to applying an approximate sampler. The second main

difference is the fact that within each denoising step, we can increase the number of Gibbs iterations to improve the overall

performance, as demonstrated in Figure 3. This is on top of the number of gradient steps that we use to fit the variational

approximation and which enhance the performance when we increase them.

On the other hand, DAPS does not require the computation of vector-Jacobian products of the denoiser and is thus more

efficient in terms of memory. However it requires many calls to the likelihood function, which can substantially increase the

runtime if it is expensive to evaluate. For example, with a latent diffusion model, the runtime of DAPS is at least three times

larger than that of MGDM, RESAMPLE, and PSLD.
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Comparison with Moufad et al. (2024) The more recent MGPS algorithm of Moufad et al. (2024) is also related to

MGDM. Similarly to DAPS (Zhang et al., 2024), their methodology relies on sampling approximately from the posterior

transition πy

t|t+1(·|xt+1) at each step of the backward denoising process. It builds on the following decomposition, which

holds for all s ∈ J0, t− 1K:

πy

t|t+1(xt|xt+1) =

∫

qt|s,t+1(xt|xs,xt+1)π
y

s|t+1(xs|xt+1) dxs .

One step of MGPS proceeds by first sampling from an approximation of the posterior transition πy

s|t+1(·|xt+1) and then

sampling from the bridge transition to return back to time t. The approximation of the posterior transition used in the MGPS

is

πy

s|t+1(xs|xt+1) ≈
ĝθs(y|xs)p

θ
s|t+1(xs|xt+1)

∫

ĝs(y|x′
s)p

θ
s|t+1(x

′
s|xt+1) dx′

s

. (20)

Here one can then choose s to be sufficiently small to enhance the likelihood approximation, while still having an accurate

Gaussian approximation of the transition ps|t+1(·|xt+1). The authors demonstrate, using a solvable toy example, that this

trade-off indeed exists; see (Moufad et al., 2024, Example 3.2). The approximate sampling step is then performed by fitting

a Gaussian variational approximation to the approximation on the r.h.s. of (20), similarly to what we do in Algorithm 2.

Both MGDM and MGPS leverage the same idea of using, at step time t, likelihood approximations at earlier steps s < t.
While in MGPS the time s is set deterministically as a function of t, we sample it randomly. However, the main difference

lies in the step where we sample conditionally on the observation y. Once the index s is sampled we proceed with R rounds

of reverse KL minimization w.r.t. to a different target distribution. Indeed, following Algorithm 2, in the first round we

seek to fit a distribution with density proportional to xs 7→ ĝθs(y|xs)qs|0,t(xs|X̂∗
0 , X̂t), where X̂∗

0 is an output from the

previous step of the algorithm. At step r, we fit xs 7→ ĝθs(y|xs)qs|0,t(xs|X̂r−1
0 , X̂r−1

t ), where X̂r−1
0 is sampled using a

few DDPM steps starting from X̂r−1
s at time s and X̂r−1

t ∼ qt|s(·|X̂r−1
s ). On the other hand, MGPS fits in a single round

the distribution with density proportional to xs 7→ ĝθs(y|xs)qs|0,t+1(xs|Dθ
t+1(X̂t+1), X̂t+1), where X̂t+1 is the output of

the previous step. Finally, the authors report that the performance of MGPS improves when the number of gradient steps is

increased. In our case, we have two axes, Gibbs iterations R and gradient steps, that allow us to improve the performance

when more compute is available.

B Experiments details

B.1 Choice of weight sequence

In all our experiments we draw the index s, at time ti, from UniformJτ, ti−1K with τ = 10. The main motivation behind

setting τ = 10 and not τ = 1, which is more natural, is that we have found that otherwise it may lead to instabilities. This

arises typically when an index s is sampled very close to 0 when t ≈ T . To avoid such behavior we use a smaller learning

rate in Algorithm 3 for the first few iterations and set τ > 1. For the last 25% diffusion steps we set s deterministically to

ti−1 as we have found that this slightly improves the reconstructions quality. We also ramp up the number of gradient steps

as this significantly sharpens the details in the images.

While it is more intuitive to sample s close to 0 as it provides the best approximation error for the likelihood, we have found

that this can significantly slow the mixing of the Gibbs sampler in very large dimensions and provides rather poor results

when used with a small number of Gibbs steps. Practically speaking, significant artifacts arise during the initial iterations of

the algorithm due to the optimization procedure, and they tend to persist in subsequent iterations when s is sampled close to

0. To see why this is the case consider the following empirical discussion on a simplified scenario. We write x = [x̄,x]
where x̄ ∈ R

dy and x ∈ R
d−dy . We assume that g0(y|x) = N(y; x̄, σ2

y
Idy

), i.e., we observe only the first dy coordinates

of the hidden state. Since s is sampled near 0 we may assume that ĝs(y|·) = g0(y|·). Then, sampling Z ∼ πy

s|0,t(·|x0,xt)
is equivalent to sampling

Z̄ ∼ N
(

σ2
s|0,t

σ2
y
+ σ2

s|0,t

y +
σ2
y

σ2
y
+ σ2

s|0,t

[

γt|sαs|0x̄0 + (1− γt|s)α
−1
t|s x̄t

]

,
σ2
y
σ2
s|0,t

σ2
y
+ σ2

s|0,t

Idy

)

,

Z ∼ N (γt|sαs|0x0 + (1− γt|s)α
−1
t|sxt, σ

2
s|0,tId−dy

) ,
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Table 4: LPIPS on the FFHQ dataset for the two time-sampling distributions given in (21) and (22). We use R = 4 Gibbs

steps for the phase retrieval task.

Distribution Phase retrieval (R = 4) JPEG2 Gaussian deblurring Motion deblurring

µ∗
t 0.10 0.14 0.12 0.09

µ0
t 0.53 0.19 0.16 0.19

Figure 4: Evolution of the running state X̂∗
0 in Algorithm 2 for the two time-sampling distributions given in (21) and (22).

setting Z = [Z̄, Z] and then concatenating both vectors. It is thus seen that the observed part of the state is updated with the

observation whereas the bottom part is simply drawn from the prior. Moreover, if σ2
s|0,t ≈ 0 then γt|sαs|0 ≈ 1 and Z is

almost the same as x0. In Algorithm 2, once we have sampled X̂s ∼ πy

s|0,t(·|X̂0, X̂t), we first denoise it to obtain the new

X̂0 and then noise it to obtain the new X̂t. As s is sampled near 0, the denoising step will merely modify X̂s whereas the

noising step will add significant noise to X̂s and may help with removing the artifacts. This noised sampled has however

only a small impact on the next samples X̂0, X̂s since (1− γt|s)α
−1
t|s ≈ 0. In short, the first dy coordinates of the running

state X̂∗
0 will be quickly replaced by the observation whereas the last d− dy coordinates will be stuck at their initialization

and will evolve only by a small amount throughout the iterations of the algorithm. We illustrate this situation on a concrete

example in Figure 4 where we consider a half mask inpainting task. The first and second rows show the evolution of the

running state X̂∗
0 with the time-sampling distributions

µ∗
i =

{

UniformJτ, ti−1K if i > ⌊K/4⌋
ti−1 else

, (21)

µ0
i = UniformJ1, ⌊ti/5⌋K , (22)

i.e., the time-sampling distribution we use in all our experiments, where K is the number of diffusion steps, and the one that

we use to sample only close to 0, respectively. In Table 4 we compute the LPIPS for both distributions on a subset of the

tasks we consider in the main paper. It is clear that µ∗
i outperforms µ0

i , even when we increase the number of Gibbs steps

(see phase retrieval task).

B.2 Hyperparameters setup of MGDM

The details about the hyperparameters of MGDM are reported in Table 5. We adjust the optimization of the Gaussian

Variational approximation in Algorithm 3 during the first and last diffusion steps. We ramp up the number of gradient

steps during the final diffusion steps. This allows us to substantially improve the fine grained details of the reconstructions.

Similarly, we reduce the learning rate in the early step to alleviate potential instabilities.

B.3 Audio source separation

In our experiment, the diffusion model employed provided by (Mariani et al., 2023) is trained on the slakh2100 training

dataset1, using only the four abundant instruments (bass, drums, guitar and piano) downsampled to 22 kHz. The denoiser

network is based on a non-latent, time-domain unconditional variant of (Schneider et al., 2023).

Its architecture follows a U-Net design, comprising an encoder, bottleneck, and decoder. The encoder consists of six layers

1http://www.slakh.com/
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Table 5: The hyperparameters used in MGDM for the considered datasets. The index i of the timesteps {ti}0i=K is taken in

reverse order. The symbol # stands for “number of”.

# Gibbs repetitions R # Diffusion steps K # Denoising steps M Time-sampling distribution Learning rate η # Gradient steps G

FFHQ R = 1 K = 100 M = 20 µ∗
i as in (21) η =

{

0.01 if i ≥ ⌊3K/4⌋
0.03 otherwise

G =

{

20 if i ≤ ⌊K/4⌋
5 otherwise

FFHQ LDM R = 1 K = 100 M = 20 µ∗
i as in (21) η =

{

0.01 if i ≥ ⌊3K/4⌋
0.03 otherwise

G =











20 if i ≤ ⌊K/4⌋
20 if i mod 10 = 0

3 otherwise

ImageNet R = 1 K = 100 M = 20 µ∗
i as in (21) η =

{

0.01 if i ≥ ⌊3K/4⌋
0.03 otherwise

G =

{

20 if i ≤ ⌊K/4⌋
5 otherwise

Audio-source separation R = 6 K = 20 M = 15 µ∗
i as in (21) η = 0.005 G =

{

20 if i ≤ ⌊K/4⌋
3 otherwise

Audio-source separation

(Best result in Table 3)
R = 1 K = 20 M = 15 µ∗

i as in (21) η = 0.005 G = 90

with channel numbers [256, 512, 1024, 1024, 1024, 1024], where each layer includes two convolutional ResNet blocks, and

multihead attention is applied in the last three layers. The decoder mirrors the encoder structure in reverse. The bottleneck

contains a ResNet block, followed by a self-attention mechanism, and then another ResNet block. Training is performed on

the four stacked instruments using the publicly available trainer from repository2.

B.4 Implementation of the competitors

In this section, we provide implementation details of the competitors. We adopt the hyperparameters recommended by the

authors tune them on each dataset if they are not provided. We emphasize that we use the total number of diffusion steps

available (1000 steps) for DPS, PGDM, DDNM, DIFFPIR, and PSLD. For the other algorithms, we tuned the compute time

by increasing Langevin/denoising/optimization steps until performance plateaued. The complete set of hyperparameters and

their values for both image experiments and audio-sound separation can be found in the supplementary material under the

folders configs/experiments/sampler and configs/exp_sound/sampler.

DPS. We implemented Chung et al. (2023, Algorithm 1) and selected the hyperparameters of each considered task based

on Chung et al. (2023, App. D). We tuned the algorithm for the other tasks, namely, we use γ = 0.2 for JPEG 2%, γ = 0.07
for High Dynamic Range tasks, and γ = 1 for audio-source separation.

DiffPIR. We implemented Zhu et al. (2023, Algorithm 1) to make it compatible with our existing code base. We adopt

the hyperparameters recommended in the official, released version3. We followed the guidelines in (Zhu et al., 2023, Eqn.

(13)) to extend the algorithm to nonlinear problems. However, we noticed that the algorithm diverges in these cases and we

could not follow up as the paper and the released code lack examples of nonlinear problems. Zhu et al. (2023) provides an

FFT-based solution for the motion blur tasks which is only valid in the case of circular convolution. Hence, and since we

adapted the experimental setup of Chung et al. (2023), we do not run the algorithm on motion blur task as it uses convolution

with reflect padding. For audio-source separation, we found that λ = µ = 1 works best.

DDNM. We adapted the implementation provided in the released code4. Namely, the authors provide classes, in the

module functions/svd_operators.py that implement the logic of the algorithm on each degradation operator

separately. The adaptation includes factorizing these classes to a single class to support all SVD linear degradation operators.

On the other hand, we notice DDNM is unstable for operators whose SVD decomposition is prone to numerical errors, such

as Gaussian Blur with wide convolution kernel. This results from the algorithm using the pseudo-inverse of the operator.

RedDiff. We used the implementation of REDDIFF available in the released code5. For linear problems, we use the

pseudo-inverse of the observation as an initialization of the variational optimization problem. On nonlinear problems, for

which the pseudo-inverse of the observation is not available, we initialized the optimization with a sample from the standard

Gaussian distribution.

2https://github.com/archinetai/audio-diffusion-pytorch-trainer
3https://github.com/yuanzhi-zhu/DiffPIR
4https://github.com/wyhuai/DDNM
5https://github.com/NVlabs/RED-diff
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Figure 5: Effect of individually increasing each parameter on the performance of our algorithm for the phase retrieval task.

In each case, we vary one parameter while keeping the others fixed to the values specified in the original manuscript.

PGDM. We opted for the implementation available in the REDDIFFś repository as some the authors are co-authors of

PGDMas well. Notably, the implementation introduces a subtle deviation from Song et al. (2023a, Algorithm 1): in the

algorithm’s final step, the guidance term g is scaled by αt (
√
αt in their notation) whereas the implementation scales it by

αt−1αt. This adjustment improves the algorithm for most tasks except for JPEG dequantization. We found that the original

scaling by αt is better in this case.

PSLD. We implemented the PSLD algorithm provided in Rout et al. (2024, Algorithm 2) and referred to the publicly

available implementation6 to set the hyperparameters of the algorithm for the different tasks.

ReSample. We modified the original code7 provided by the authors to make its hyperparameters directly adjustable,

namely, the tolerance ε and the maximum number of iterations N for solving the optimization problems related to hard data

consistency, and the scaling factor for the variance of the stochastic resampling distribution γ. We found the algorithm to be

sensitive to ε and that setting it to the noise level of the inverse problem yields the best reconstructions across tasks and

noise levels. On the other hand, we noticed that γ has less impact on the quality of the reconstructions. Finally, we set a

threshold N = 200 on the maximum number of gradient iterations to make the algorithm less computationally intensive.

DAPS. We have the official codebase 8. We referred to Zhang et al. (2024, Table. 7) to set the hyperparameters. For

audio-source separation, we set σmax and σmin to match those of the sound model and adapted the Langevin stepsize lr

and the standard deviation tau to the audio-separation task.

PNP-DM. We adapted the implementation provided in the released code9. Specifically, we exposed the coupling parameter

ρ including its initial value, minimum value, and decay rate, as well as the number of Langevin steps and its step size. The

hyperparameters were set based on Wu et al. (2024, Table 3 and Table 4). For inpainting tasks, while it is theoretically

possible to perform the likelihood steps using Gaussian conjugacy (Wu et al., 2024, Sec. 3.1), we found that using Langevin

produced better results in practice. For example, the reconstructions in the left figure of Figure 8 are obtained by sampling

exactly from the posterior whereas on the r.h.s. we use Langevin dynamics. Although the audio separation task is linear and

hence the likelihood steps can be implemented exactly, we encountered similar challenges as in inpainting and therefore we

used Langevin here as well.

B.5 Experiments reproducibility

Our code will be made available upon acceptange of the paper. In the anonymous codebase provided as companion of

the paper we use
√
αt instead of αt to match the conventions of existing codebases. All experiments were conducted

on Nvidia Tesla V100 SXM2 GPUs. For the image experiments, we used 300 images from the validation sets of FFHQ

and ImageNet 256× 256 that we numbered from 0 to 299. The image number was used to seed the randomness of the

experiments on that image. For the audio source separation experiments, the slakh2100 test dataset has tracks named

following the pattern Track0XXXX, where X represents a digit in 0− 9. The number XXXX was used as the seed for the

6https://github.com/LituRout/PSLD
7https://github.com/soominkwon/resample
8https://github.com/zhangbingliang2019/DAPS
9https://github.com/zihuiwu/PnP-DM-public/
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experiments conducted on each track.

B.6 Extended results

We present the complete results with FID, LPIPS, PSNR, and SSIM metrics for the image inverse problems experiment

in: Table 6 for FFHQ pixel-space, Table 7 for ImageNet, and in Table 8 for FFHQ LDM. In Figure 5 we provided an

extension of the ablation in Figure 3. Similarly, the complete results for the audio source separation experiments that include

all competitors are provided in Table 9.

From Table 6 and Table 7, one can note that DDNM, DIFFPIR and DAPS score better in PSNR and SSIM compared to

MGDM but score lower in LPIPS. For most of the tasks we considered, one does not expect to recover an image very

close to the reference and thus, metrics that perform pixel-wise comparisons are less relevant and favor images that are

overly smooth. We provide evidence for this in the gallery of images below where we compare qualitatively the outputs

of our algorithm with those of the competitors. It can be seen that our method provides reconstructions with fine-grained

details that are more coherent with the reference image. Note for example that DDNM, DIFFPIR and DAPS outperform

MGDM in terms of PSNR and SSIM on the half mask task on ImageNet while failing to reconstruct the missing r.h.s. of

the images.
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Table 6: FID and mean LPIPS/PSNR/SSIM metrics along side 95%-confidence interval on FFHQ 256× 256 dataset with σy = 0.05.

Task MGDM DPS PGDM DDNM DIFFPIR REDDIFF DAPS PNP-DM

LPIPS ↓
SR (×4) 0.09 ±0.00 0.09 ±0.00 0.30 ±0.01 0.15 ±0.00 0.10 ±0.00 0.39 ±0.01 0.16 ±0.01 0.10 ±0.00

SR (×16) 0.24 ±0.01 0.23 ±0.01 0.42 ±0.01 0.33 ±0.01 0.23 ±0.01 0.55 ±0.01 0.40 ±0.01 0.27 ±0.01

Box inpainting 0.10 ±0.00 0.17 ±0.01 0.17 ±0.00 0.12 ±0.00 0.14 ±0.00 0.19 ±0.01 0.13 ±0.00 0.18 ±0.01

Half mask 0.20 ±0.01 0.23 ±0.01 0.24 ±0.01 0.23 ±0.01 0.25 ±0.01 0.28 ±0.01 0.23 ±0.01 0.32 ±0.01

Gaussian Deblur 0.12 ±0.00 0.17 ±0.01 0.87 ±0.02 0.20 ±0.01 0.12 ±0.00 0.24 ±0.01 0.24 ±0.01 0.14 ±0.01

Motion Deblur 0.09 ±0.00 0.17 ±0.01 − − − 0.22 ±0.01 0.19 ±0.01 0.21 ±0.01

JPEG (QF = 2) 0.14 ±0.01 0.34 ±0.03 1.12 ±0.01 − − 0.32 ±0.01 0.22 ±0.01 0.29 ±0.01

Phase retrieval 0.11 ±0.02 0.40 ±0.02 − − − 0.26 ±0.02 0.14 ±0.01 0.34 ±0.02

Nonlinear deblur 0.27 ±0.01 0.51 ±0.04 − − − 0.68 ±0.02 0.28 ±0.01 0.31 ±0.01

High dynamic range 0.12 ±0.01 0.40 ±0.06 − − − 0.20 ±0.03 0.10 ±0.01 0.19 ±0.01

FID ↓
SR (×4) 52.28 55.02 95.22 69.75 54.26 115.01 65.68 55.32

SR (×16) 62.12 61.24 161.64 104.10 58.12 141.76 117.83 63.49

Box inpainting 52.08 89.13 60.99 64.06 68.34 64.24 60.29 75.67

Half mask 58.97 79.31 61.48 64.96 71.86 63.92 63.88 84.16

Gaussian Deblur 55.37 60.55 295.19 73.92 54.29 71.82 76.98 56.69

Motion Deblur 52.65 61.80 − − − 102.88 70.76 86.58

JPEG (QF = 2) 56.40 107.54 305.00 − − 132.81 79.09 108.89

Phase retrieval 83.58 146.79 − − − 123.91 58.53 172.20

Nonlinear deblur 87.89 198.33 − − − 113.38 92.12 91.30

High dynamic range 54.56 165.70 − − − 75.63 56.19 77.29

PSNR ↑
SR (×4) 27.66 ±0.22 28.05 ±0.24 24.57 ±0.14 29.45 ±0.23 27.72 ±0.22 26.75 ±0.13 28.44 ±0.21 27.44 ±0.20

SR (×16) 21.01 ±0.20 20.71 ±0.21 18.51 ±0.14 22.32 ±0.21 20.96 ±0.20 21.46 ±0.17 19.75 ±0.17 20.88 ±0.19

Box inpainting 22.38 ±0.27 18.81 ±0.28 21.05 ±0.25 22.34 ±0.31 22.39 ±0.32 21.46 ±0.28 22.06 ±0.30 20.42 ±0.28

Half mask 15.39 ±0.27 15.03 ±0.27 15.29 ±0.28 16.38 ±0.35 16.04 ±0.36 15.68 ±0.34 16.25 ±0.30 14.35 ±0.30

Gaussian Deblur 25.64 ±0.24 24.03 ±0.22 13.34 ±0.10 26.62 ±0.23 25.78 ±0.23 26.68 ±0.22 26.12 ±0.23 25.89 ±0.21

Motion Deblur 27.82 ±0.20 24.12 ±0.21 − − − 27.48 ±0.13 27.07 ±0.21 24.91 ±0.24

JPEG (QF = 2) 25.57 ±0.19 19.56 ±0.60 12.57 ±0.10 − − 24.53 ±0.13 25.72 ±0.18 22.42 ±0.18

Phase retrieval 27.55 ±0.65 16.56 ±0.63 − − − 24.58 ±0.67 27.84 ±0.46 21.63 ±0.70

Nonlinear deblur 23.55 ±0.27 16.08 ±0.87 − − − 21.94 ±0.25 24.56 ±0.36 24.08 ±0.32

High dynamic range 24.79 ±0.42 18.71 ±0.32 − − − 21.69 ±0.20 26.60 ±0.38 21.59 ±0.22

SSIM ↑
SR (×4) 0.80 ±0.01 0.81 ±0.01 0.56 ±0.00 0.85 ±0.00 0.78 ±0.01 0.68 ±0.00 0.81 ±0.00 0.77 ±0.01

SR (×16) 0.61 ±0.01 0.58 ±0.01 0.42 ±0.01 0.67 ±0.01 0.59 ±0.01 0.60 ±0.01 0.58 ±0.01 0.57 ±0.01

Box inpainting 0.80 ±0.00 0.77 ±0.00 0.70 ±0.00 0.83 ±0.00 0.82 ±0.00 0.70 ±0.00 0.80 ±0.00 0.75 ±0.00

Half mask 0.67 ±0.01 0.67 ±0.01 0.59 ±0.01 0.74 ±0.01 0.72 ±0.01 0.63 ±0.01 0.71 ±0.01 0.65 ±0.01

Gaussian Deblur 0.73 ±0.01 0.68 ±0.01 0.14 ±0.01 0.77 ±0.01 0.72 ±0.01 0.76 ±0.01 0.75 ±0.01 0.72 ±0.01

Motion Deblur 0.80 ±0.01 0.70 ±0.01 − − − 0.71 ±0.01 0.78 ±0.01 0.75 ±0.01

JPEG (QF = 2) 0.74 ±0.01 0.56 ±0.03 0.10 ±0.01 − − 0.71 ±0.01 0.76 ±0.01 0.70 ±0.01

Phase retrieval 0.78 ±0.02 0.49 ±0.02 − − − 0.61 ±0.02 0.81 ±0.01 0.57 ±0.02

Nonlinear deblur 0.67 ±0.01 0.44 ±0.03 − − − 0.42 ±0.01 0.71 ±0.01 0.70 ±0.01

High dynamic range 0.76 ±0.02 0.55 ±0.06 − − − 0.72 ±0.04 0.85 ±0.01 0.69 ±0.01
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Table 7: FID and mean LPIPS/PSNR/SSIM metrics along side 95%-confidence interval on ImageNet 256×256 dataset with σy = 0.05.

Task MGDM DPS PGDM DDNM DIFFPIR REDDIFF DAPS PNP-DM

LPIPS ↓
SR (×4) 0.26 ±0.01 0.25 ±0.01 0.56 ±0.02 0.34 ±0.02 0.31 ±0.01 0.57 ±0.02 0.37 ±0.02 0.66 ±0.02

SR (×16) 0.55 ±0.02 0.44 ±0.01 0.62 ±0.01 0.71 ±0.02 0.50 ±0.02 0.85 ±0.02 0.75 ±0.02 1.03 ±0.02

Box inpainting 0.23 ±0.01 0.35 ±0.01 0.29 ±0.01 0.28 ±0.01 0.30 ±0.01 0.36 ±0.01 0.30 ±0.01 0.42 ±0.01

Half mask 0.31 ±0.01 0.40 ±0.03 0.34 ±0.03 0.38 ±0.03 0.40 ±0.03 0.46 ±0.03 0.40 ±0.01 0.54 ±0.01

Gaussian Deblur 0.30 ±0.01 0.37 ±0.02 1.00 ±0.01 0.45 ±0.02 0.30 ±0.01 0.53 ±0.02 0.59 ±0.02 0.76 ±0.02

Motion Deblur 0.22 ±0.01 0.40 ±0.04 − − − 0.39 ±0.04 0.42 ±0.02 0.52 ±0.02

JPEG (QF = 2) 0.38 ±0.02 0.60 ±0.06 1.32 ±0.01 − − 0.49 ±0.04 0.45 ±0.02 0.56 ±0.02

Phase retrieval 0.55 ±0.02 0.62 ±0.02 − − − 0.61 ±0.02 0.50 ±0.02 0.66 ±0.01

Nonlinear deblur 0.41 ±0.01 0.82 ±0.05 − − − 0.66 ±0.05 0.41 ±0.02 0.49 ±0.02

High dynamic range 0.21 ±0.02 0.84 ±0.05 − − − 0.19 ±0.04 0.14 ±0.01 0.31 ±0.02

FID ↓
SR (×4) 97.07 94.77 131.97 109.83 104.44 139.67 113.54 160.78

SR (×16) 142.09 124.72 181.29 223.92 135.37 228.78 224.69 269.45

Box inpainting 113.49 173.77 123.99 133.41 145.42 157.76 138.02 178.59

Half mask 106.39 144.08 112.73 111.63 118.21 133.44 114.60 147.14

Gaussian Deblur 105.92 110.73 287.63 140.06 106.64 148.75 158.50 198.25

Motion Deblur 94.74 114.03 − − − 144.47 133.07 166.30

JPEG (QF = 2) 117.15 186.13 340.95 − − 151.58 145.65 178.50

Phase retrieval 170.71 148.61 − − − 215.18 148.06 201.66

Nonlinear deblur 175.50 298.36 − − − 171.00 175.44 172.58

High dynamic range 104.01 353.01 − − − 99.81 94.38 126.53

PSNR ↑
SR (×4) 23.88 ±0.44 24.37 ±0.49 18.45 ±0.26 24.99 ±0.50 23.43 ±0.42 23.33 ±0.35 24.38 ±0.46 16.40 ±0.24

SR (×16) 18.12 ±0.31 17.66 ±0.39 15.27 ±0.23 19.93 ±0.40 18.40 ±0.37 19.06 ±0.33 18.18 ±0.32 14.00 ±0.17

Box inpainting 16.82 ±0.33 13.92 ±0.30 16.73 ±0.31 19.18 ±0.44 19.05 ±0.47 18.21 ±0.40 19.11 ±0.40 18.03 ±0.36

Half mask 13.77 ±0.29 12.15 ±0.19 14.05 ±0.19 15.97 ±0.21 15.64 ±0.22 14.84 ±0.20 16.00 ±0.37 14.88 ±0.26

Gaussian Deblur 21.57 ±0.43 20.65 ±0.43 9.92 ±0.08 22.89 ±0.47 21.80 ±0.44 22.72 ±0.45 22.41 ±0.45 15.85 ±0.22

Motion Deblur 24.46 ±0.42 21.38 ±0.21 − − − 24.06 ±0.19 23.64 ±0.44 22.47 ±0.40

JPEG (QF = 2) 21.42 ±0.32 16.33 ±0.27 5.27 ±0.04 − − 22.07 ±0.18 22.68 ±0.36 20.74 ±0.30

Phase retrieval 16.01 ±0.71 14.12 ±0.49 − − − 15.41 ±0.59 18.44 ±0.72 15.02 ±0.50

Nonlinear deblur 21.96 ±0.39 10.13 ±0.28 − − − 20.57 ±0.18 22.68 ±0.44 22.20 ±0.43

High dynamic range 22.90 ±0.57 9.56 ±0.26 − − − 22.12 ±0.23 24.69 ±0.49 22.23 ±0.46

SSIM ↑
SR (×4) 0.65 ±0.02 0.68 ±0.02 0.30 ±0.01 0.71 ±0.02 0.60 ±0.01 0.57 ±0.01 0.66 ±0.02 0.25 ±0.01

SR (×16) 0.31 ±0.01 0.39 ±0.02 0.21 ±0.01 0.49 ±0.02 0.41 ±0.02 0.44 ±0.02 0.44 ±0.02 0.10 ±0.00

Box inpainting 0.71 ±0.01 0.70 ±0.01 0.62 ±0.00 0.77 ±0.01 0.76 ±0.01 0.67 ±0.00 0.74 ±0.01 0.64 ±0.01

Half mask 0.59 ±0.01 0.58 ±0.03 0.52 ±0.02 0.68 ±0.03 0.67 ±0.03 0.59 ±0.03 0.66 ±0.01 0.57 ±0.01

Gaussian Deblur 0.50 ±0.02 0.50 ±0.02 0.08 ±0.00 0.59 ±0.02 0.51 ±0.02 0.57 ±0.02 0.56 ±0.02 0.20 ±0.01

Motion Deblur 0.67 ±0.01 0.55 ±0.05 − − − 0.61 ±0.03 0.63 ±0.02 0.57 ±0.02

JPEG (QF = 2) 0.51 ±0.01 0.40 ±0.06 0.02 ±0.00 − − 0.59 ±0.04 0.62 ±0.02 0.57 ±0.02

Phase retrieval 0.31 ±0.03 0.27 ±0.02 − − − 0.25 ±0.02 0.46 ±0.03 0.23 ±0.01

Nonlinear deblur 0.58 ±0.01 0.25 ±0.06 − − − 0.41 ±0.04 0.61 ±0.02 0.58 ±0.02

High dynamic range 0.72 ±0.02 0.23 ±0.06 − − − 0.72 ±0.04 0.82 ±0.01 0.66 ±0.02
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Table 8: FID and mean LPIPS/PSNR/SSIM metrics along side 95%-confidence interval on FFHQ dataset with LDM prior with σy = 0.05.

Task MGDM RESAMPLE PSLD DAPS PNP-DM

LPIPS ↓
SR (×4) 0.14 ±0.01 0.22 ±0.01 0.21 ±0.01 0.28 ±0.01 0.40 ±0.01

SR (×16) 0.30 ±0.01 0.38 ±0.01 0.36 ±0.01 0.52 ±0.01 0.71 ±0.01

Box inpainting 0.18 ±0.01 0.22 ±0.00 0.27 ±0.01 0.37 ±0.01 0.31 ±0.01

Half mask 0.26 ±0.01 0.30 ±0.03 0.32 ±0.03 0.49 ±0.01 0.44 ±0.01

Gaussian Deblur 0.18 ±0.01 0.16 ±0.01 0.59 ±0.01 0.32 ±0.01 0.32 ±0.01

Motion Deblur 0.22 ±0.01 0.20 ±0.03 0.70 ±0.03 0.36 ±0.01 0.36 ±0.01

JPEG (QF = 2) 0.23 ±0.01 0.26 ±0.03 − 0.32 ±0.01 0.36 ±0.01

Phase retrieval 0.29 ±0.02 0.39 ±0.02 − 0.25 ±0.01 0.50 ±0.02

Nonlinear deblur 0.29 ±0.01 0.33 ±0.04 − 0.37 ±0.01 0.37 ±0.01

High dynamic range 0.16 ±0.01 0.12 ±0.03 − 0.24 ±0.01 0.24 ±0.01

FID ↓
SR (×4) 63.91 78.74 78.85 110.21 131.06

SR (×16) 69.26 100.44 92.16 176.67 281.53

Box inpainting 76.22 126.49 83.53 162.11 129.27

Half mask 78.32 91.76 80.00 131.68 116.16

Gaussian Deblur 69.44 69.77 150.43 101.88 103.16

Motion Deblur 74.43 77.97 158.40 120.74 122.12

JPEG (QF = 2) 72.78 90.39 − 123.93 131.08

Phase retrieval 128.57 230.42 − 105.64 169.94

Nonlinear deblur 100.73 99.37 − 150.54 135.81

High dynamic range 75.74 65.79 − 102.54 89.32

PSNR ↑
SR (×4) 27.39 ±0.21 25.85 ±0.25 25.80 ±0.33 27.45 ±0.20 23.81 ±0.21

SR (×16) 20.60 ±0.18 20.97 ±0.18 21.42 ±0.19 19.91 ±0.16 17.07 ±0.14

Box inpainting 21.81 ±0.28 18.56 ±0.21 20.01 ±0.28 11.77 ±0.26 19.57 ±0.31

Half mask 15.71 ±0.30 14.89 ±0.17 14.62 ±0.19 9.13 ±0.25 14.15 ±0.28

Gaussian Deblur 26.79 ±0.22 27.28 ±0.22 17.99 ±0.13 26.86 ±0.26 26.11 ±0.19

Motion Deblur 25.27 ±0.20 26.73 ±0.15 17.71 ±0.12 25.37 ±0.21 24.65 ±0.18

JPEG (QF = 2) 24.27 ±0.18 24.77 ±0.15 − 25.22 ±0.18 23.86 ±0.17

Phase retrieval 22.54 ±0.66 20.18 ±0.61 − 27.05 ±0.35 20.03 ±0.61

Nonlinear deblur 23.71 ±0.27 24.10 ±0.19 − 22.03 ±0.23 23.28 ±0.26

High dynamic range 25.59 ±0.32 25.91 ±0.21 − 20.95 ±0.38 20.21 ±0.23

SSIM ↑
SR (×4) 0.79 ±0.01 0.68 ±0.01 0.71 ±0.01 0.79 ±0.01 0.70 ±0.01

SR (×16) 0.58 ±0.01 0.56 ±0.01 0.63 ±0.01 0.59 ±0.01 0.52 ±0.01

Box inpainting 0.78 ±0.00 0.75 ±0.00 0.66 ±0.01 0.70 ±0.01 0.73 ±0.01

Half mask 0.69 ±0.01 0.67 ±0.02 0.60 ±0.03 0.55 ±0.01 0.65 ±0.01

Gaussian Deblur 0.77 ±0.01 0.75 ±0.01 0.27 ±0.01 0.78 ±0.01 0.77 ±0.01

Motion Deblur 0.73 ±0.01 0.72 ±0.03 0.24 ±0.02 0.74 ±0.01 0.72 ±0.01

JPEG (QF = 2) 0.71 ±0.01 0.66 ±0.03 − 0.75 ±0.01 0.72 ±0.01

Phase retrieval 0.62 ±0.02 0.49 ±0.02 − 0.79 ±0.01 0.60 ±0.02

Nonlinear deblur 0.69 ±0.01 0.67 ±0.03 − 0.68 ±0.01 0.70 ±0.01

High dynamic range 0.80 ±0.01 0.83 ±0.03 − 0.74 ±0.02 0.73 ±0.01

Table 9: Mean SI-SDRI along side 95% confidence interval on slakh2100 test dataset. The last row “All” displays the mean over the
four stems. Higher metrics are better.

Stems MGDM DPS PGDM DDNM DIFFPIR REDDIFF DAPS PNP-DM MSDM ISDM DEMUCS512

Bass 18.49 ±0.92 16.50 ±0.98 16.41 ±1.10 14.94 ±1.57 -2.34 ±0.67 -0.40 ±0.49 11.76 ±1.61 2.90 ±0.79 17.12 19.36 17.16

Drums 18.07 ±0.48 18.29 ±0.62 18.14 ±0.76 19.05 ±0.51 9.47 ±0.60 -0.98 ±0.54 15.62 ±0.42 7.89 ±0.65 18.68 20.90 19.61

Guitar 16.68 ±1.41 9.90 ±1.39 12.84 ±1.99 14.38 ±1.57 -1.01 ±0.53 5.68 ±0.88 11.75 ±1.55 4.51 ±1.19 15.38 14.70 17.82

Piano 16.17 ±1.22 10.41 ±1.14 12.31 ±1.49 11.46 ±1.59 0.97 ±0.95 5.04 ±0.46 9.52 ±1.34 4.09 ±0.64 14.73 14.13 16.32

All 17.35 ±1.01 13.77 ±1.03 14.92 ±1.33 14.96 ±1.31 1.77 ±0.69 2.33 ±0.59 12.16 ±1.23 4.85 ±0.82 16.48 17.27 17.73

23



A Mixture-Based Framework for Guiding Diffusion Models

B.7 Runtime and memory requirement comparison

We evaluate the runtime and GPU memory consumption for image experiments on the three considered diffusion model

priors. Since not all algorithms support every task, we restrict the evaluation to commune tasks. Figure 6 presents the

average runtime and GPU memory requirement over both samples and tasks.

MGDM has memory requirements similar to DPSand PGDMin pixel space and aligns closely with other methods in

latent space. Importantly, in latent diffusion which is a highly relevant scenario given the prevalence of latent-space

models, MGDM is notably faster than all competitors while consistently achieving strong performance across benchmarks.

Conversely, when operating directly in pixel space, it exhibits relatively slower runtimes compared to some alternatives.

However, this increase in computational overhead is consistently balanced by improved and stable reconstruction quality

across all considered tasks as evidenced by the gallery of examples in Appendix B.9. Thus, we position our method as

offering a beneficial trade-off, especially in scenarios where quality and consistency of results are paramount.

On the otherhand, we highlight several important points regarding the competitors’ runtime: 1) for latent diffusion, DAPS

and PNP-DM perform a significant amount of Langevin steps using the gradient of the likelihood. Since the latter involves

a vector jacobian product of the decoder, the runtime increases significantly. More generally, when the likelihood function is

expensive to evaluate, DAPS and PNP-DM are expected to be much slower than DPS, PGDMand MGDM. For PNP-DM

on FFHQ we have implemented the likelihood step exactly on the linear tasks. On ImageNet however, using Langevin

steps provided better results and this explains the significant increase in runtime.
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Figure 6: Comparison of the runtime (red bars – left axis) and memory requirement (blue bars – right axis) between the

considered algorithms on FFHQ latent space (1st row), FFHQ pixel space (2nd row), and ImageNet (3rd row).

B.8 Experiments with high noise setup

To ensure the performance of the MGDM extend to higher noise setups, we evaluat it on both Half-mask (linear task)

and JPEG QF=2% (nonlinear task) while increasing the noise level to σy = 0.3, increased of 0.05. The experiments were
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conducted on the FFHQ dataset in pixel-space, with MGDM being compared against DPS and DAPS. As evidenced by

Table 10, MGDM consistently outperforms the other algorithms, namely in terms of LPIPS.

Table 10: FID and mean LPIPS/PSNR/SSIM metrics along side 95%-confidence interval on FFHQ 256× 256 dataset with σy = 0.3.

MGDM DPS DAPS MGDM DPS DAPS MGDM DPS DAPS MGDM DPS DAPS

Task LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑
Half mask 0.23 ±0.01 0.29 ±0.01 0.67 ±0.01 56.77 79.83 136.26 15.59 ±0.28 14.86 ±0.27 15.08 ±0.23 0.64 ±0.01 0.58 ±0.01 0.36 ±0.01

JPEG (QF = 2) 0.21 ±0.01 0.37 ±0.03 0.24 ±0.01 59.78 110.60 65.11 22.70 ±0.16 18.69 ±0.54 23.62 ±0.15 0.67 ±0.01 0.54 ±0.02 0.69 ±0.01

B.9 Experiments with Poisson-noise likelihood

Pervious experiments were performed with Gaussian-noise likelihood, g0(y|x) = N(y;A(x), σ2
y
I). Here, we extend our

evaluation to a Poisson-noise likelihood

g0(y|x) = exp
(

− λA(x)
) (−λA(x))y

y!
,

where λ > 0 is the Poisson rate. We compare MGDM against DPS on several tasks: denoising, super-resolution (×4),

Gaussian deblurring, and motion deblurring. These experiments were conducted on the FFHQ dataset in pixel space with a

Poisson rate of λ = 0.05. Notably, while DPS relies on a Gaussian approximation (Chung et al., 2023, Eqn. (19)) due to

the inherent challenges of Poisson likelihoods, we directly implement the Poisson likelihood without approximation. As

detailed in Table 11, MGDM consistently outperforms DPS across all evaluated metrics.

Table 11: FID and mean LPIPS/PSNR/SSIM metrics along side 95%-confidence interval on FFHQ 256× 256 dataset with Poisson noise
with Poisson rate λ = 0.05.

MGDM DPS MGDM DPS MGDM DPS MGDM DPS

Task LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑
Denoising 0.08 ±0.00 0.15 ±0.01 54.73 60.48 28.81 ±0.17 18.96 ±0.16 0.83 ±0.00 0.68 ±0.01

SR (×4) 0.25 ±0.01 0.25 ±0.01 74.75 69.49 21.65 ±0.21 17.62 ±0.12 0.65 ±0.01 0.56 ±0.01

Gaussian Deblur 0.20 ±0.01 0.30 ±0.01 64.83 100.63 23.09 ±0.22 16.49 ±0.16 0.66 ±0.01 0.49 ±0.01

Motion Deblur 0.21 ±0.01 0.27 ±0.01 60.53 69.73 22.52 ±0.20 16.91 ±0.15 0.66 ±0.01 0.52 ±0.01
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Figure 7: Reconstructions for half mask inpainting on FFHQ dataset.
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Figure 8: Reconstructions for box inpainting on FFHQ dataset.
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Figure 9: Reconstructions for JPEG dequantization QF=2% on FFHQ dataset.
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Figure 10: Reconstructions Half mask inpainting on ImageNet dataset.
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Figure 11: Reconstructions for Gaussian deblurring on ImageNet dataset.

30



A Mixture-Based Framework for Guiding Diffusion Models

Figure 12: Reconstructions for motion deblurring on FFHQ dataset.
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Figure 13: Reconstructions for half mask inpainting on FFHQ dataset with LDM prior.
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Figure 14: Reconstructions for SR ×16 on FFHQ dataset with LDM prior.
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Figure 15: Half mask inpainting on FFHQ dataset.
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Figure 16: Half mask inpainting on ImageNet dataset.
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Figure 17: Box inpainting on FFHQ dataset.
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Figure 18: Box inpainting on ImageNet dataset.
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Figure 19: JPEG dequantization with QF = 2 on FFHQ dataset.

38



A Mixture-Based Framework for Guiding Diffusion Models

Figure 20: JPEG dequantization with QF = 2 on ImageNet dataset.
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Figure 21: Motion deblurring on FFHQ dataset.
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Figure 22: Motion deblurring on ImageNet dataset.
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Figure 23: SR(16×) on FFHQ dataset.
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Figure 24: SR(16×) on ImageNet dataset.
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Figure 25: High dynamic range on ImageNet dataset.
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Figure 26: SR(4×) on FFHQ dataset with latent diffusion.
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Figure 27: SR(16×) on FFHQ dataset with latent diffusion.
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Figure 28: Half mask on FFHQ dataset with latent diffusion.
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