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Figure 1: Phone-based fingertip-tracking system and hand representations: (a) a custom mount with two mirrors captures the

hand operating a phone from two different angles, 3D fingertip positions estimated with deep learning are used to control

different hand representations, e.g. (b) an abstract hand with stick-like fingers, (c) 3D hands with markers on fingertips to

facilitate precise touch input such as typing on a phone keyboard.

Abstract

Interacting with the touchscreen of a mobile phone in virtual reality

(VR) is challenging because users cannot see their fingers when

aiming for targets. We propose using two mirrors reflecting the

front camera of the phone and a purpose-built deep neural network

to infer the 3D position of fingertips above the screen. Network

training is self-supervised after only a few hundred initial labelled

images and does not require any external sensor. The inferred fin-

gertip positions can be used to control different hand models and

objects in VR. Controlled experiments evaluate tracking perfor-

mance for single-finger touch input, and compare several 3D hand

representations with a flat 2D overlay used in previous work. The

results confirm the suitability of our fingertip tracker to aid precise

tapping of small targets on the phone screen and provide insights

about the effect of various hand representations on control and

presence. Finally, we provide several application examples showing

how 3D fingertip input can complement and extend phone-based

touch interaction in VR.
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1 Introduction

The widespread availability of mobile phones has sparked interest

in using them as controllers in virtual reality (VR) [7, 11, 23, 30, 46].

A key challenge has been how to track and represent users’ hands

and fingers operating the phone, which is critical for precise touch

input, such as typing and tapping buttons. Some VR devices can

track hands and render them as 3D models, but current commercial

systems cannot robustly determine the pose of a hand holding an

object [19, 37] like a phone
1
. One workaround is to superimpose a

camera feed of the segmented hand (selective passthrough) [5, 34],

but the result is often noisy with visual artefacts that do not blend

well with computer-generated graphics, hands beyond the camera

view cannot be captured and hand geometry cannot be modified.

Another approach exploits specialised capacitive touchscreens that

can track finger hover [26], but phones with such capabilities are

rare and currently not sold as new. Moreover, this style of hover

tracking is imprecise [34] and feedback is limited to a 2D cursor for

a single fingertip.

We propose a technique that uses the front camera of a stan-

dard mobile phone to track thumb and index fingertips above the

touchscreen. Our approach is inspired by MirrorTablet [29] and

Phonetroller [34], both of which use a mirror to capture images of

the hand with the front camera and project them as flat overlays

for 2D visual feedback. We significantly extend this idea by using

1
The accompanying video demonstrates issues when tracking a hand holding a phone.
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two mirrors capturing the hand from distinct perspectives (Figure

1a) and a deep neural network to estimate 3D fingertip positions.

Training data for the network is generated with a differentiable ren-

dering pipeline using only a few labelled images initially to improve

hand segmentation. No external sensor or user instrumentation is

required. With the inferred 3D fingertip position, diverse virtual

hand representations can be created with different levels of realism

and optimisations for precise touch input.

In a controlled experiment, we evaluate tapping and tracing

performance, and compare several 3D hand representations with

Phonetroller’s flat 2D overlay. Our results show that hand models

with enhanced fingertip visualisation, such as stick-like fingers,

virtual hands with fingertip markers and 3D cursors outperform

the 2D overlay for tapping tasks. Finally, we present a few examples

of applications and touch+above screen interactions enabled by our

fingertip tracking technique to inspire deeper investigations of that

design space.

In summary, we make three contributions:

• A deep learning technique consisting of a novel auto-labelling

pipeline for 3D fingertip estimation using mostly self-supervised

finger annotation. Only the front camera and a double-mirror

mount are required to capture RGB images for input. No external

sensor is needed for training or inference and the technique

is highly adaptable with minimal annotation cost, making it

potentially widely accessible.

• Design insights about the effect of various hand representations

on tapping and tracing performance as well as users’ sense of

control and presence for VR scenarios involving precise touch

input with a mobile phone.

• Application examples showing how robust phone-based fingertip

tracking can be used beyond simple visual feedback for standard

touch operations, including head-up interfaces, double raycasting,

and novel touch and above-screen finger interaction for phone-

controlled VR games.

This work is based on our CHI 2023 Late-Breaking Work[35].

2 Related Work

We review existing approaches that focus on around-phone interac-

tion outside of VR, the use of smartphones as VR controllers, hand

tracking with touch and object interaction, and hand representa-

tions in VR environments.

2.1 Around-Device Interaction Outside of VR

Several around-device hand and finger tracking techniques have

been proposed to extend touch interaction with a mobile phone to

mid-air gestures in non-VR contexts. Commonly, finger detection

is performed via a camera, for example with the phone’s built-in

rear camera for back-of-device gesturing [50], a mounted depth

camera [12], a dedicated hand-tracking sensor [41], and capacitive

proximity sensing [14, 21]. Some works use mirrors to extend the

camera’s viewing range. For instance, Back-Mirror enables touch

input on the back of a phone using a small mirror reflecting the rear

camera[57] and Surround-See supports peripheral vision through

an omnidirectional mirror placed on the front camera [59]. Those

systems either require an additional sensor, do not track hands

above the screen, or are designed for coarse gesturing and thus

are not suitable for high-precision 3D tracking of fingertips. Mir-

rorTablet uses a mirror above a tablet to capture the user’s hand

in order to provide visual feedback for remote collaboration [29].

The hand is not tracked and is just shown as a 2D overlay on the

collaborator’s device. HandSee places a prism with a mirror on

its hypotenuse on the front camera to create stereoscopic images

through double reflection for the detection of finger gestures above

the screen [61]. No measured depth errors for fingertip tracking are

reported, but the proximity of the two viewpoints of the two virtual

cameras created by the prism likely makes it difficult to detect small

movements in the depth dimension with high precision. Coverage

is also limited in the upper area of the phone screen near the prism,

especially for cameras with low field of view angles.

Besides techniques using cameras to detect hand gestures around

mobile phones, there have been different approaches using magnets

[38], millimetre-wave radar [31], GSM [65] and acoustic signals

[40, 56, 62]. Those solutions either require extra sensors or are

sensitive to environmental noise.

In summary, none of the above techniques are suitable for the

VR scenario we consider, which requires precise and robust finger

tracking above the phone screen without additional sensors.

2.2 Smartphones as VR Controllers

Smartphones have been considered for use as VR controllers, ini-

tially without visual feedback of the hand in the VR scene. User

interfaces in those cases are designed for “blind” control, e.g. using

large touch areas, swiping and phone tilting [7, 11, 23, 30, 46].

When visual feedback of the hand operating the phone is avail-

able, traditional touch UIs can be used, as users can aim more

precisely. Son et al. [49] and HoVR-Type [26] track thumbs above

the screen to aid typing using respectively a motion capture system

and the hover detection feature of a Samsung Galaxy S4. Those

solutions are not practical for most VR contexts as they rely on

costly or discontinued sensing hardware. Bai et al. [5] and Zhang

et al. [64] develop augmented virtuality systems that capture hands

manipulating a phone with a depth camera mounted on the headset

and render them over a virtual phone in VR, which is aligned with

the real device. The rendering exhibits several artefacts due to the

imperfect colour-based segmentation of the skin, the fingertips

are not tracked and the camera on the headset must directly face

the hands without occlusion to be able to capture them. Because

of those limitations, it is not possible to replace the virtual hands

and phone with completely different representations, nor can vir-

tual hands be seamlessly repositioned or redirected for remapped

interfaces [33].

Phonetroller uses the front camera of the phone to capture im-

ages of hands manipulating the device through the reflection of a

downward-facing mirror mounted above the screen [34]. Only the

portion of the hand that is directly above the screen is shown as a

2D texture overlay in VR, which provides limited visual feedback

with a greatly reduced sense of depth. Furthermore, since fingers

are not tracked, the possibilities for alternative hand and finger

representations are significantly restricted. Our system expands

the idea of using a reflector for hand capturing by adding a second

mirror with a different orientation. This allows us to train a deep
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learning model that can infer the 3D position of the fingertip to con-

trol 3D hand models or other virtual objects, whose appearances

are in harmony with the VR scene. Furthermore, our technique

does not require per-user touch calibration. We use Phonetroller as

one of our evaluation baselines to compare direct 2D visualisation

of the real hand with virtual 3D representations for precise touch

input.

2.3 Hand-Object Pose Estimation

Current VR headsets and hand-tracking sensors can track hands

with relatively high spatial accuracy, but even the best systems

exhibit an average positional error of more than 1cm for fingertip

detection [1, 47], which is twice the width of a key on a typical

phone keyboard [18, 45]. Zhu et al. show that precision can be

increased by dynamically repositioning the hand model upon fin-

ger contact on the phone screen to match the touch point [67],

but those realignments cause the hand to suddenly jump at each

touch, and the technique was only evaluated in a fixed position.

Furthermore, HMD hand trackers are mainly designed for bare

hands and their performance degrades with hands holding objects

[19, 37]. In TabletInVR, which investigates the use of a tablet device

for modelling in VR [51], hands are tracked by a Leap Motion on

the headset and materialised in VR, but the authors note that the

sensor is sensitive to screen reflections and certain hand angles,

which leads them to design their gestures around those constraints.

Furthermore, touch input precision is not evaluated in that work.

Computer vision techniques and datasets have been proposed

to estimate the pose of hands holding and manipulating objects

without markers [8, 20, 28, 52, 53, 58], but they rely on cameras

on the headset or in the environment so tracking performance

may decrease if the hands move to suboptimal viewing angles and

distances. Furthermore, these techniques have not been applied to

the specific scenario of precisely tracking a hand manipulating a

mobile phone.

2.4 Hand Representation in VR

Prior work has investigated the effect of hand representations on

task performance and users’ sense of embodiment. For pick and

place tasks, Argelaguet et al. establish that sense of agency is higher

for more abstract hand representations, but sense of ownership is

stronger for realistic virtual hands [3]. Schwind et al. [48], Jung et

al. [22] and Yoon et al. [60] further confirm the importance of hand

realism to ensure a high level of presence in VR.

Grubert et al. compare different hand representations for typing

on a physical keyboard in VR and find that visualising only the

fingertips or showing a direct video inlay delivered the best perfor-

mance [17]. In a similar study, Knierim et al. do not observe any

significant performance impact of hand appearance, but record the

lowest workloads for realistic hands, especially for inexperienced

typists [27]. Bai et al. compare three different visualisation styles

of hands operating a phone and while no significant performance

difference was found, a fully opaque visualisation of the hands

was deemed more immersive by participants compared to semi-

transparent or white hands [5]. However, these results could be due

to the quality of the rendering, which uses raw point clouds rather

than a clean synthetic mesh of a 3D hand model. Contrary to those

a) b) c)

Figure 2: Preprocessing of the captured frames on the phone.

a) Source image; b) the two regions of interest (ROI) with

the two mirrored views; c) perspective transformation of the

two ROIs into square images (concatenated back in a single

image when streamed from the phone).

findings, Van Veldhuizen and Yang show that semi-transparent

hand models increase performance in tasks requiring high preci-

sion [55].

While those studies provide some valuable insights, none of

them investigated the effect of virtual hand representations with

different shapes on touch precision using a mobile phone. Our work

seeks to at least partially fill that gap.

3 Self-Supervised 3D Fingertip Detection

Our goal is to track fingertips above and on the phone screen in

the local 3D space of the device with high precision using only the

front camera as sensor. With the phone position (tracked by other

means beyond the scope of this work), we can then obtain fingertip

positions in world space to control virtual hand models or other

3D objects.

3.1 Two-Mirror System

For high tracking precision and coverage on all three dimensions

using RGB images as input, multi-view capturing is preferable [10].

A common multi-view approach is to use stereo vision, but systems

with a small distance between the two cameras and similar angles,

such as the prism used in HandSee [61], require perfect calibration

and stereo matching to yield a low depth error. This is difficult to

achieve with self-built low-cost equipment. We therefore consider

a two-view setup with two mirrors mounted on the phone that

reflect the front camera at two different positions and angles: One

near-vertical mirror placed close to the camera, which produces a

rear view, and a second mirror placed parallel to the screen above it,

which produces a top view (Figure 1a). Both mirrors are positioned

so that they each reflect the whole phone screen and the immediate

space above it on half of the vertical pixel space in the captured

frame (Figure 2a). Compared to Phonetroller [34], which uses only

a single top view mirror, essentially we add a rear mirror, which,

while slightly increasing the weight of the mount, provides an

additional view for 3D pose estimation.

3.1.1 Frame Preprocessing In a preprocessing step, the two mirror

views are cropped from the source camera frames according to

manually defined regions of interest (Figure 2b), transformed into

two square images (Figure 2c), which form the input of the deep

learning pipeline responsible for estimating the 3D pose of thumb

and index finger tips.
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Input images (top:
index, bottom: thumb)

c) 3D matching of
phalanx silhouette

b) Fingertip detection 
and mask refinement

a) Distal phalanx
mask extraction

Figure 3: Data creation pipeline consisting of three steps:

From the preprocessed input images, a) extracting mask re-

gions of the fingers’ distal phalanges, b) determining the 2D

fingertip location on the contour of the masks (blue circles)

and refining the masks, c) obtaining the 3D position and ori-

entation of the phalanges via differentiable rendering based

on the masks and the 2D fingertip position.

3.1.2 Camera Calibration We treat each mirror view as a virtual

camera and perform standard calibration procedures using a mini

ChArUco board and ArUco markers displayed on the phone screen

to obtain intrinsic and extrinsic parameters for each virtual camera.

Those parameters allow us to transform pixel coordinates into 3D

points in the phone’s coordinate system, whose origin we set to be

the middle of the top bezel of the device.

3.2 Data Creation

To train a neural network that estimates the 3D position of fin-

gertips based on RGB images, ground truth data with images of

fingers labelled with the corresponding 3D positions of their tips is

required. These labels can be automatically determined using an

external sensor, such as a high-precision depth camera or a motion

capture system. However, such equipment is typically expensive

or cumbersome to set up. We propose a data creation method that

does not rely on any external sensor and only requires training

images obtained from people casually manipulating the phone.

The data creation pipeline consists of three steps (Figure 3): (a)

Segmentation of the distal phalanx in the pair of input images; (b)

detecting the 2D fingertip on the segmentation mask; and (c) using

differentiable rendering to obtain the best-fitting 3D pose based on

the rendered silhouette and the 2D fingertip on the mask.

3.2.1 Distal Phalanx Segmentation There are no public datasets

or models optimised for the segmentation of distal phalanges, so

we adapt the pre-trained salient object detector BASNet [42] with

manually labelled images (i.e. the boundaries of the phalanges are

drawn by a human annotator). This step yields initial segmentation

masks as shown in Figure 3a.

Figure 4: Examples of finger-

tip detection. The tip position

is heuristically approximated

by determining the intersection

point between the phalanx mask

contour and a fitted polynomial

curve on the expected side of the

fingertip (blue circle).

Figure 5: Segmented distal

phalanx with detected tip

(2D) and the correspond-

ing 3D mesh position ob-

tained with differentiable

rendering.

3.2.2 Fingertip Detection and Segmentation Refinement To estimate

the fingertip location along the segmentation contour, we first fit

a polynomial curve to the mask pixels using regression. There

are two possible curves that can fit the pixels. The correct curve is

identified as the one that aligns more closely with the orientation of

the phalanx (determined from the aspect ratio of the bounding box

encapsulating the segmentation contour). The curve intersects at

least two points along the contour, one of which is the approximate

fingertip position. We determine the correct point, based on the

knowledge of which hand is visible. For instance, for the rear view,

if the digit is the left thumb, we pick the leftmost intersection point.

For the top view, we choose the top point (Figure 4).

After identifying the fingertip on the contour, we refine the

phalanx mask by applying a circular filter centred at the fingertip.

The filter’s radius is determined experimentally to exclude pixels

beyond the distal interphalangeal joint, effectively retaining only

pixels belonging to the distal phalanx (Figure 3b).

3.3 3D Pose And Location Estimation

The final step of the data-creation pipeline is the determination

of the 3D pose of the distal phalanx. To achieve that, we use dif-

ferentiable mesh rendering, which is a self-supervised computer

vision technique that can find correspondences between 3D objects

and their appearances in 2D images [24, 25]. In our case, a differ-

entiable renderer optimises the 6-DoF position and orientation of

a 3D phalanx mesh, so that its rendered form best overlaps with

the 2D mask. For the mesh, we use the MANO hand model [44],

from which we extract submeshes of the distal phalanges of the

thumb and the index finger. Using this rigid, non-articulated subset

of the finger mesh allows us to optimise only for 6-DoF position

and orientation rather than for the complex articulated pose of a

full hand. While people’s finger sizes and shape differ, this model

provides a sufficient approximation for our purpose.

For a considered phalanx mesh, rotation and translation matri-

ces that orient and position the mesh are determined through an

optimisation process, which iteratively minimises a loss function

through gradient descent (Figure 3c). At each step, the mesh is

rendered for each virtual camera using Soft-Rasterizer [32] and

the corresponding loss is calculated using three constituent losses:

(1) a Silhouette Loss, which steers the 3D mesh towards the mask
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location; (2) a Distribution Alignment Loss, which attempts to align

the mesh silhouette and mask distributions for faster convergence;

and (3) a Tip Distance Loss, which tries to align the projected 3D

fingertip with the mask’s 2D fingertip.

The Silhouette Loss is defined as the weighted distance between

the projection of MANO’s distal phalanx mesh into 2D space us-

ing Soft-Rasterizer and the refined BASNet mask obtained in the

previous step:

𝐿
silhouette

= ∥w(mproj −mest)∥22 (1)

where mproj is the mesh projection, mest the BASNet mask and w
is a non-linear 2D matrix. Its weight component𝑤 (p) for a pixel
coordinate p is defined as:

𝑤 (p) =
{

𝑒
−𝑑

max 𝑑 if 𝑑 < 𝜃
thres

1 otherwise

(2)

where 𝜃
thres

is the circle radius defined in the previous mask re-

finement step that corresponds to the approximate distal phalanx

length, and 𝑑 = ∥p − t∥2, with t being the estimated coordinates of

the fingertip location.

The Distribution Alignment Loss is defined as the sum of the

two normalised differences of pixel histograms of the rendered

silhouette and the phalanx mask on each axis:

𝐿
dist

=
1

𝑊
| |mx

proj −mx
est | |

2

2
+ 1

𝐻
| |my

proj −my
est | |

2

2
(3)

where𝑊 and 𝐻 are respectively the image width and height, and

mx
and my

are the sums of the mask’s pixels on the 𝑋 and 𝑌 axes

respectively.

The Tip Distance Loss ensures fingertip alignment and is defined

as the distance between the 2D fingertip estimated in the previous

step and the projected 3D fingertip:

𝐿tips = ∥Tipproj − Tipest∥22 (4)

where Tipproj is the projection of the MANO model’s tip vertex on

the rendered silhouette image and Tipest is the tip position on the

mask.

Finally, we combine these three loss functions to form a General
Loss for the rear and top virtual camera views:

𝐿 (R,T) = 𝐿rear
silhouette

+ 𝛼𝐿rear
dist

+ 𝛽𝐿rear
tips

+ 𝐿
top

silhouette
+ 𝛼𝐿

top

dist
+ 𝛽𝐿

top

tips
(5)

where 𝛼 and 𝛽 are hyperparameters, and 𝐿rear and 𝐿top are the

loss functions applied to the images of the virtual rear and top

cameras respectively. 𝐿(R,T) is minimised to obtain the rotation

R and translation T of the phalanx mesh, which best matches the

finger’s appearances in the image pairs. Fig. 5 shows an example

of this optimisation process, which results in the 3D phalanx mesh

aligned with the corresponding phalanx pixels in the input images.

The 3D pose of the phalanx is estimated for each frame sepa-

rately, but we can expect the fingertip positions to remain close in

consecutive frames so we initialise the values of R and T with the

values estimated in the previous frame. This decreases the number

of iterations required to arrive at an optimal solution.

3.4 End-To-End Model

While the data-creation process gives us an estimate of 3D fingertip

positions, it is typically slow and therefore not suitable for real-

time inference required for tracking. We therefore use the phalanx

Stacked
Hourglass
Network

Latent
Features

Residual
Network

Concatenate

MLP

Input Phalanx
mesh

3D 
Phalanx

Encoder

Figure 6: Adaptation of Ge et al.’s hand pose estimation net-

work architecture [16] to handle input from multi-view im-

age pairs. Each view is fed individually to the encoder. The

two output latent feature vectors are concatenated in a single

vector. This vector is, in turn, fed to the MLP branch that pre-

dicts the 3D fingertip pose and finger presence probability.

poses estimated in the data-creation process as training data for

a dedicated end-to-end neural network, which is used for real-

time inference. The goal for such a model is to directly output the

pose estimate of the distal phalanx as well as a probability value

indicating to which finger it belongs, or “no finger” if no interacting

fingers appear in the image (fingers used to hold the phone do not

count as “interacting” fingers).

We use Ge et al.’s graph CNN-based model as our neural network

base [16], which is a popular architecture for 3D hand pose estima-

tion. It expects single-view RGB images as input, so we perform

the forward pass of the pre-trained encoder with the rear and top

images individually and concatenate the latent features obtained as

output. We then feed the concatenated feature maps to the multi-

layer perceptron (MLP) branch of the network to obtain the desired

3D pose and finger visibility probabilities (Figure 6).

We use two loss functions 𝐿
coord

and 𝐿
rend

to train the network.

The model predicts the rotation R̂ and the translation T̂, which
transform the phalanx mesh into a positioned mesh V̂, from which

the fingertip position can be obtained. The 𝐿
coord

loss is the Huber

distance between V̂ and V, where V is the ground truth 3D pose

of the phalanx obtained by applying R and T to the mesh. 𝐿
rend

is

a render-and-compare loss that compares the rendered silhouette

m̂proj with the mask mest in image space (Eq. 6).

𝐿
rend

= ∥m̂proj −mest∥22, (6)

Finally, we apply 𝐿
cls
, a binary cross entropy loss, to determine

which interacting finger is visible in the image (if any). The com-

bined loss function 𝐿verts is defined as follows:

𝐿verts = 𝜆1𝐿coord + 𝜆2𝐿
rear

rend
+ 𝜆3𝐿

top

rend
+ 𝐿

cls
, (7)

where 𝜆1, 𝜆2, and 𝜆3 are hyperparameters. While 𝐿
cls

is always ap-

plied, 𝐿
coord

, 𝐿rear
rend

, and 𝐿
top

rend
are only applied when corresponding

fingers are visible in the input images.

Using 𝐿verts, we fine-tune both the encoder and the MLP compo-

nents of our neural network to create our fingertip-detecting model.

We use standard data augmentation operations such as Gaussian

filters, cutout, random pixel intensity adjustments to increase the

robustness of the model.

3.4.1 Handlingmultiple fingers Although the data-creation pipeline

described above is designed to predict the pose of a single fingertip,

it can be easily extended to handle multiple fingers without manu-

ally collecting additional data using mixup data augmentation [63].

Specifically, a source image is randomly chosen from the dataset,

5
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then a check is performed to determine which finger is shown (if

any), and a complementary finger image is randomly picked (i.e.

an image of a thumb or index finger from the other hand) to create

a pair of images. If no finger is present in the source image, an im-

age that includes any finger is randomly chosen. The two selected

images are blended using the formula

𝐼aug = 𝛾𝐼src + (1 − 𝛾)𝐼tar, (8)

where 𝛾 ∼ 𝑈 (0.3, 0.7). The mask of the combined image, which

is needed for 𝐿
rend

, is determined by performing a Boolean OR

operation on the masks of the two source images. R and T estimates

and finger presence probabilities are extended accordingly to handle

multi-fingers and multi-labels in Eq. (7).

Models trained in such a way can be deployed for two-hand

input, such as two-thumb typing (Figure 1c).

4 VR Client

Transforming the inferred 3D positions of detected fingertips into a

functional VR hand representation has two challenges: 1) To create

full hand representations, the hand joints need to be derived from

only the fingertip positions and pose constraints when using the

phone. 2) To enable precise touch input, touch positions and contact

events need to be determined in a way that is consistent with the

hand representation and tactile feedback when touching the phone

screen.

4.1 Generating Hand Representations

A simple solution for a hand model based on fingertip positions is

a single solid 3D object representing the fingertips, such as a 3D

cursor (Figure 7d). However, deriving the positions of other parts of

the hand to create a full hand representation (e.g. Figure 7a) is more

challenging. We make assumptions about how the physical hand is

positioned relative to the phone depending on which fingertip is

tracked to create full hand models.

To construct a hand pose based on the thumb tip position, we

assume only the thumb moves to operate the phone and the rest of

the hand remains mostly still. This is a simplification because in

reality the user slightly adjusts their grip on the device to reach dif-

ferent areas of the touchscreen, but we hypothesise that attempting

to faithfully reflect complex re-grasping hand motions in VR is less

important than accurately representing the position and motion

of the thumb tip. With the virtual hand having a fixed grip on the

phone, the articulated joints of the thumb can be inferred using

inverse kinematics from the thumb tip. This is similar to how com-

mercial VR systems render hands gripping controllers using a fixed

pose and constrained animations approximating finger motions

when pressing buttons.

To create a hand pose from the index fingertip position, we

assume the rest of the hand is not gripping the phone. Again, we

make a simplification by rendering the hand in a fixed pose with

extended index finger (such as shown in Figure 1b). The entire

virtual hand moves based on the fingertip position and disappears

when the fingertip is not tracked.

4.2 Determining the Touch Point

Due to tracking imperfections, discrepancies between estimated

and real fingertip positions might exist, which can affect touch input

performance, as the virtual finger may appear slightly above or be-

low the virtual phone screen upon physical contact [67]. To reduce

this visual-haptic mismatch, we perform a fine-grained calibration

on a 4×7 grid of reference points, where each point is successively

tapped and the height offset of the estimated fingertip positions at

those locations recorded. The z-value of inferred fingertip positions

can then be adjusted using local bilinear interpolation between the

closest reference points to more closely match virtual collisions

with physical contacts. This calibration is only performed once

after training a new inference model, not for each user.

To determine the touch point on the virtual phone screen, we

orthogonally project the centre of the fingertip volume (which is at

a fixed position from the fingertip point estimated by the tracker)

onto the screen surface, similar to the method used by Zhu et al. in

their dynamic calibration process[67]. We use this projected point

instead of the touch coordinates reported by the phone’s capacitive

sensor to maintain continuous visual consistency of the touch point

based on the virtual hands’ finger positions (which may slightly

differ from real fingers’ positions).

4.3 Enabling System

We create a proof-of-concept implementation of our system using

the following hardware and software components.

Mobile Phone For the phone, we use a Google Pixel 3, which has a

5.5 inch screen and a front camera located on the upper left side. We

create a mount for the two mirrors with an articulated arm made of

acrylic glass attached to a holder clipped to the phone (Figure 1a).

The front-view mirror of size 65×65mm is fixed at a 70
◦
angle just

above the front camera and the top-view mirror of size 65×80mm

is placed 78mm above the screen. To spatially track the phone with

high precision and without attaching a heavy VR tracker to the

device, we use an Optitrack motion capture system that detects

a constellation of small spherical optical markers attached to the

mount. We use this system only to track the position of the phone

(and the headset), not to track the user’s hand. The entire mount

weighs 116g (100g without the markers), which add to the 156g of

the Pixel 3.

We create a custom Android application that crops and trans-

forms the two mirror images as described above (Figure 2), then

compresses them to jpg before streaming the images to the infer-

ence server via WiFi. To achieve high frame rates, we set the phone

to capture at a resolution of 400×640px and send 256×512 images

consisting of the two concatenated mirror views. This allows the

phone to capture and stream at a constant 30 fps. Touch input

events are sent across the same streaming channel.

Neural Network Implementation To gather training data for our

neural network, we ask 11 people in our institution (8 male, 3

female) to hold the phone in each hand successively and move their

thumb and index finger on and over all regions of the screen for a

few minutes, while the phone records images captured by the front

camera. We further collect images where no finger is manipulating

the phone for our "no finger" condition. We feed the gathered
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data to our data creation pipeline, where we manually annotate

350 images for each digit to improve BASNet segmentation. We

fine-tune the BASNet model for each finger, which ensures that

for the segmentation of index fingers, visible thumbs of the hand

holding the phone are not masked instead. We further review the

generated pose labels to eliminate visibly incorrect outputs (∼ 8%

of the dataset, with ∼ 2% resulting from incorrect segmentations).

After this filtering operation, we obtain ∼ 30, 000 images for the left

hand and ∼ 35, 000 images for the right hand, both with an equal

amount of images for the thumb and index finger, and ∼ 6, 500 “no

finger” images for each hand. Our neural network is implemented

in PyTorch with PyTorch3D [43] used for differentiable rendering.

The models are trained following Eq. (7) for 25 epochs using the

Adam optimiser.

Note that while new data and inference models would have to

be created for other phones with different camera positions and

mirror configurations, segmentation of distal phalanges through

our fine-tuned BASNet model should be sufficiently general that

the model can be reused without labelling new images. We have

verified this with images captured by two other phones, suggesting

our method is entirely self-supervised after this initial step.

Inference Server The inference server that receives the input frames

is a Ubuntu PC with an AMD Ryzen 9 5900X and GeForce RTX

3090 GPU. The server runs a Python program with the tracking

algorithm to infer the 3D position of the fingertip of the considered

hand configuration.We optimise inference speed with the TensorRT

framework and achieve an average inference time of ∼ 5𝑚𝑠 per

frame. We apply temporal filtering on the obtained position vectors

using the 1 euro filter [9] to reduce noise and send the resulting

vector along with touch input information to the VR client.

VR Client For technical reasons, the VR client is deployed on a

separate Windows PC to which a Vive Pro VR system is connected.

The VR applications are developed in Unity and a scene with just

the phone and an animated 3D hand model runs consistently at a

display frame rate above 200fps.

With a high-speed camera, we measure the end-to-end latency

of the entire processing chain, i.e. the time difference between the

physical movement of a real finger and when that movement is

reflected by the virtual hand in the VR environment. We obtain an

average latency of ∼ 125𝑚𝑠 (SD=11.3).

4.4 3D Tracking Precision Evaluation

To assess the tracking precision of our model, we compare the

fingertip positions estimated by our tracker with the 3D positions

of an optical marker affixed to the top of the nail, as captured by the

OptiTrack system. We recruit ten people, who did not contribute

data for training, and ask them to perform tapping motions on the

whole screen successively with their thumb and index finger for

three minutes. After aligning the coordinate systems and event time

sequences of our tracker and those of the Optitrack system, we

compute the root mean squared error (RMSE) for each participant

and each finger and obtain an average RMSE of ∼ 7𝑚𝑚 (SD=1.0) for

the thumb and ∼ 8𝑚𝑚 (SD=1.2) for the index finger. These results

include some edge cases with fingers high above the screen or near

the phone bezel, where visibility is reduced. When only considering

fingers touching the screen or directly hovering up to 2cm above it,

i.e. the main interaction area, the RMSE becomes ∼ 6𝑚𝑚 for both

fingers (SD=0.7 for the index finger and 0.6 for the thumb). These

results are encouraging as our fingertip tracker for hands holding

and interacting with phones demonstrates greater precision than

barehand trackers of commercial HMDs. [1, 47]. Furthermore, since

we use the projection of the inferred fingertip position and not

the capacitive sensor of the phone to determine the touch point,

small deviations between real and virtual positions may not be

perceived by the user and thus may have only a minimal impact on

precision. To confirm this hypothesis and determine the suitability

of our fingertip tracker for precise touch input, a dedicated user

evaluation with a VR task is required.

5 Touch Input Experiment

By tracking fingertips in 3D space, our system is capable of sup-

porting a variety of phone-driven VR scenarios involving touch

and mid-air interaction (see "Applications" further below), but as

a first experimental usability validation, we focus on determining

whether tracking is sufficiently robust to reliably control virtual

hands for precise single-finger touch input, which is a fundamental

requirement for general support of smartphones in VR.

The performance of direct hand interaction in VR not only de-

pends on tracking accuracy, but also on how the hand is represented

[5, 17, 27]. As it is unclear which virtual hand shape and appearance

can best facilitate precise touch input in our particular context, we

seek to compare different styles that may potentially affect touch

performance.

Following those considerations, we conduct a controlled experi-

ment based on simple tapping and tracing tasks using the thumb

and index finger with different virtual hand representations. Based

on obtained results, future investigations can select the most effec-

tive hand appearances and focus on other evaluation criteria, tasks

and applications.

5.1 Hand Representations

As identified in prior work on hand representation for VR preci-

sion tasks [17, 27], there are conflicting design objectives between

realistic hand representations that maximise the user’s sense of

embodiment and presence but can be less precise (because of fat

fingers and occlusions) and more abstract hand appearances de-

signed to improve targeting, but with lower fidelity. We explore

this tension by creating different hand models along that spectrum.

To limit the number of influencing design factors, we only con-

sider geometry as variable and fix other attributes such as texture

and transparency. Specifically, we choose a semi-transparent blue

texture, similar to hand models used in standard VR toolkits and

applications. This ensures that participants do not identify more

or less with an arbitrary skin texture or colour and allows the con-

tent behind the hand to remain visible through semi-transparency,

which can improve accuracy [55].

Figure 7 shows the five VR hand representations that we consider

(four 3D representations + Phonetroller’s 2D camera overlay), to

which we add a no-vr baseline condition, in which the phone

is used normally without VR. Comparisons between VR hands

will determine which representations are more suitable for precise
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(a) normal-shape (b) normal+marker (c) stick-hand (d) 3D-cursor (e) 2D-overlay

Figure 7: VR hand representations compared in the study. a) Hand with normal shape, b)

Hand with normal shape with fingertip marker, c) Abstract hand with stick fingers, d) 3D

cursor, e) 2D overlay [34].

a) b) c)

Figure 8: Types of trials used in the

experiments (current trial in blue,

next trial in gray): a) target acquisi-

tion trial with large target, b) target

acquisition trial with small target,

c) tracing/swiping trial

touch input, while comparisons between the most effective 3D VR

hand with 2D-overlay and no-vr will reveal how well the tracker

performs.

Note that for 2D-overlay, no inference is performed as the cam-

era feed showing the segmented hand is directly displayed on the

virtual phone screen and the touch point of the phone’s capacitive

sensor is used for input. To support this technique, we create a sec-

ond mount with a single 60×85mm mirror placed 78mm above the

phone screen, similar to the system used in Phonetroller [34]. The

mount weighs 89g, which is 27g less than the two-mirror mount.

Since 2D-overlay directly streams the camera feed to the VR client,

the inference server is not used in this case. A further requirement

for this condition is to perform a per-user touch calibration as

the mirrored view has a skewed perspective compared to normal

phone use. We use the procedure described in Phonetroller, i.e. four

crosshairs that have to be tapped successively to create the per-

spective transform which aligns the touch point with the user’s

intended input.

5.2 Protocol

5.2.1 Tasks Our experiment is based on Phonetroller’s controlled

tasks, which consist of simple target acquisition trials. Circle targets

are successively shown in a fixed order starting from the centre

of the screen and moving around its four corners in a clockwise

direction, with a central target tap required between each step.

12 successfully tapped targets are required to complete a round.

As in Phonetroller, we use two target sizes, a small size of 5mm,

corresponding to the width of a key of the default keyboard and

a large size of 10mm, corresponding to typical button sizes like

the app icons on iOS (Figure 8a and b). A round of large targets

is followed by a round of small targets, for a total of 24 targets.

Participants are required to tap inside the circle to validate the trial

and proceed to the next one. If a participant fails to hit a target, they

must repeat the previous trial (t-1), thereby encouraging accuracy

to minimise errors. If the participant misses the t-1 target, however,

the sequence does not backtrack further to trial t-2. Instead, the

participant continues to retry the same t-1 trial until successful.

In addition to those tapping trials, we introduce tracing trials

(which are absent in Phonetroller’s evaluation) that require the

participant to swipe as precisely as possible along vertically and

horizontally centred lines in both directions, i.e. 4 trials (Figure

8c). The tracing error is calculated as the variance of the distances

between the touch points of the swiping gesture and the displayed

line. To prevent participants from being too careful and slow, we

include a time constraint of 2 seconds within which the tracing

trial has to be completed.

A full block of tapping and tracing trials therefore consists of

12 tap targets × 2 tap target sizes + 4 tracing trials = 28 trials. We

include two blocks, i.e. 2 × 28 = 56 trials, preceded by 5 tapping

and 4 tracing warmup trials, which are not logged. For each hand

representation or condition, participants perform these 9 warmup

+ 56 main trials with one digit (thumb or index finger), followed

by the other digit, i.e. (9 + 56) × 2 = 130 trials, of which only 112

are logged. The number of trials increases if participants miss tap

targets or swipe too slowly.

In total, our experiment consists of a minimum of 56 main trials

× 2 digits × 6 conditions = 672 logged trials.

5.2.2 Design Our study follows a within-subjects design, in which

participants perform the tasks with all six hand representations.

The orders of the conditions and the start digit for each condition

are rotated between participants according to a balanced Latin

square to mitigate the influence of learning effects on the results.

Our primary independent variables are representation with

six levels (normal, normal+marker, stick-hand, 3D-Cursor,

2D-overlay and no-vr), and target-size with two levels large

and small for tapping tasks. Our dependent variables consist of

the measured values tap-time and trace-time, denoting the mean

times taken to successfully complete individual tapping and tracing

trials, tap-errors and trace-error as defined above, and partici-

pants’ subjective ratings for their sense of control and presence

in the post-study questionnaire.

We refer below tonormal+marker, stick-hand and 3D-Cursor

collectively as “precision representations” as their design is op-

timised for precise touch input, compared to normal and 2D-

overlay which have no such optimisations.

5.2.3 Participants We recruit 18 participants from our institution,

5 female and 13 male with average age 36.7 years (SD=8.5). Four of

those participants contributed data for the training of the neural

network. Regarding VR experience, three people have never used

a VR system before, thirteen experienced VR one to three times,

and two have previously used VR systems on a monthly basis for

games and participation in virtual events.
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5.2.4 Procedure The experiments are performed in a sitting posi-

tion with the apparatus described above. Participants can adjust

the chair and armrests to their preference and are permitted to rest

their elbows on the armrests during the task to reduce fatigue.

Participants start each condition by performing training tasks

with the required digit. For thumb input, the phone is to be held in

the dominant hand and the thumb of the same hand used to perform

the tasks. Participants are given permission to lightly support the

device with their other hand if they wish. For input with the index

finger, the phone should be held in the other hand and the index

finger of the dominant hand used to perform the tasks. When partic-

ipants feel they have sufficiently trained, they proceed to the main

task consisting of the warmup and logged trials. After completing

all trials, they repeat the same procedure with the other digit. This

process is in turn repeated for the remaining five conditions.

For 2D-overlay, the two-mirror mount is replaced with the

single-mirror mount and the calibration procedure described above

is performed before starting the tasks. We allow participants to

recalibrate for the second digit if they feel that the initial calibra-

tion for the first digit does not work. This calibration step is not

performed for the 3D VR hand representations and no-vr.

After completing all six conditions, participants are asked to

answer a questionnaire about their experience. Since the study has

six conditions, we limit our questions on participants’ subjective

impressions to the two general aspects of control and presence.

Specifically, we ask people to rate their sense of control (how well

they perceived to have been in control of the virtual hands) for

each condition and sense of presence (how much they felt present

and embodied in VR through the hands) for each VR condition on

a linear scale from 1 (lowest) to 10 (highest). Next, we ask them

to choose their preferred representation overall for precise touch

tasks. Finally, a free comment section allows participants to provide

feedback on any aspect of the experiment.

Completing the questionnaire concludes the study after roughly

one hour and people are offered a choice of snacks to thank them

for their participation.

5.3 Results

5.3.1 Quantitative Results We first consider the possible influence

of including participants who provided data to train the tracker as

well as learning effects between trial blocks. Respectively indepen-

dent and dependent T-tests on mean times and errors for each trial

type are not significant in both cases (all p values>0.2), suggesting

that neither factor has an influence on the results. We therefore

include all logged data for our analyses, the results of which are

summarised in Figure 9.

To analyse our data, we perform repeated measures ANOVAs,

confirming distribution normality in each case and applying Green-

house-Geisser corrections when the sphericity condition is violated.

We first consider tap trials. We perform two-way ANOVAs for

representation ×target-size on tap-time and tap-errors and

find significant interaction effects in both cases (𝐹 (3.3, 56.5) = 10.8

and 𝐹 (5, 85) = 5.16, both 𝑝 < 0.001), so we analyse the data for each

target size separately. For large targets, we obtain significant effects

for both tap-time (𝐹 (5) = 94.5, 𝑝 < 0.0001) and tap-errors (𝐹 (5) =
4.01, 𝑝 = 0.002) so we conduct post-hoc tests with Holm–Bonferroni

corrections. We find that all VR conditions are significantly slower

and more error-prone than no-VR (all 𝑝 < 0.035). Additionally,

2D-overlay is significantly slower than all other techniques (all

𝑝 < 0.012). Specifically, participants were able to correctly tap large

targets in 501ms on average (SD=89) with no-VR, which is more

than half the average time of 2D-overlay (1029ms, SD=170) and

56 58% of other VR conditions.

For small targets, we obtain again significant effects for both

tap-time (𝐹 (3.2) = 38.5, 𝑝 < 0.0001) and tap-errors (𝐹 (5) =

6, 𝑝 < 0.0001) so we perform pairwise comparisons. These tests

reveal that all VR conditions are significantly slower than no-VR

(all 𝑝 < 0.0001). Furthermore, all precision representations are

significantly faster than 2D-overlay (𝑝 < 0.005) and 3D-Cursor

is significantly faster than normal (𝑝 = 0.023). Concretely, the

slowest technique, 2D-overlay, exhibits a tapping time of 1671ms

(SD=450), which is more than 2.3 times the tapping time of no-VR

(709ms, SD=133) and approximately 1.4 times the tapping times of

the precision representations (1200ms, SD=172 for 3D-Cursor and

1243ms, SD=215 for normal+marker). With regard to errors, only

2D-overlay and normal are significantly more inaccurate than

no-VR (𝑝 < 0.011). The average number of errors for no-VR (10.7,

SD=7.8) is only slightly lower than for precision representations

(14, SD=60.8 for 3D-Cursor and 15.6, SD=9.6 for normal+marker),

with differences not statistically significant.

Altogether, these results show that for tapping tasks, the preci-

sion representations outperform 2D-overlay in terms of speed and

accuracy.

Turning to tracing trials, we perform ANOVAS on trace-time

and trace-errors and obtain significant effects in both cases

(𝐹 (5) = 80.1, 𝑝 < 0.0001 and 𝐹 (5) = 10.33, 𝑝 ≪ 0.0001) so we

perform post hoc tests. For trace-time, we find that no-VR is signif-

icantly faster at 521ms (SD=128) than all VR conditions (𝑝 < 0.0001),

which average 1019-1055ms. no-VR, with a mean trace error of

4178ms (SD=2225), is also significantly more precise than all 3D

VR representations (𝑝 < 0.013), where 3D-Cursor averages at 6281

(SD=1505) and the three other representations exhibiting errors

around 8000. The error difference between no-VR and 2D-overlay

(4908, SD=1850) is not statistically significant (p=1). 2D-overlay,

in turn, exhibits a significantly lower error compared to all 3D VR

conditions (all 𝑝 < 0.022) but not 3D-Cursor (𝑝 = 0.32). All other

differences are not significant. We believe the higher tracing pre-

cision of no-VR and 2D-overlay compared to almost all 3D VR

conditions can be attributed to the fact that the former techniques

use the phone’s touch sensor for the touch point, which seems more

stable. Despite the temporal filtering, it appears the inferred 3D

fingertips still suffer from light noise, whose impact is amplified by

an error calculated on squared distances.

5.3.2 Participant Ratings We examine participants’ ratings of their

sense of control for all conditions and their sense of presence

for the VR representations (Figure 10). An ANOVA for control

shows significant effects (𝐹 (3.03) = 25.91, 𝑝 < 0.001), so we per-

form pairwise comparisons. The tests show that participants felt

significantly more in control with no-VR compared to all VR con-

ditions (all 𝑝 < 0.001). They furthermore rated control significantly

lower for 2D-overlay and normal compared to the precision rep-

resentations (all 𝑝 < 0.044).
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(d) Aggregate trace error

Figure 9: Quantitative results of the experiments. Error bars represent 95% confidence intervals.
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(b) Sense of Presence

Figure 10: Participant ratings of their sense of control for all

conditions and their sense of presence for all VR representa-

tions on a continuous scale from 1=worst to 10=best. Error

bars represent 95% confidence intervals.

For presence, an ANOVA reveals a significant effect (𝐹 (2.85) =
7.18, 𝑝 ≪ 0.001). Post hoc tests show that 3D-Cursor is rated

as having a significantly lower presence than normal and nor-

mal+marker (both 𝑝 < 0.002). Differences in all other comparisons

are not significant.

Overall, 8 participants selected normal+marker as their pre-

ferred hand representation, followed by 3D-Cursor (5 participants),

stick-hand (4 participants) and 2D-overlay (1 participant). These

choices and ratings along with the measured results confirm the

general superiority of the precision representations over the two

other VR conditions, with a slight caveat for tracing stability.

Examining participants’ comments, we find that people who

preferred normal+marker valued the combination of a familiar

hand shape for high presence and a marker on the fingertip for high

precision, essentially a combination of normal and 3D-Cursor.

Participants who preferred 3D-Cursor, however, appreciated its

minimalist appearance, which for them provided more control be-

cause they were not distracted by a virtual hand model, whose pose

did not always match with that of their real hand. For three partici-

pants, these real-virtual mismatches disrupted proprioception for

thumb movements, as the virtual hand and the articulation of its

thumb conveyed a false image of possible movements. Participants

who preferred the stick hand appreciated the simple design to facili-

tate aiming without a marker while maintaining recognisable hand

features. Two participants, however, stated that using that model

felt a bit “strange”. The participant who favoured 2D-overlaymen-

tioned seeing their actual hand on the virtual phone screen as the

reason for their choice. The direct visual feedback of the user’s

actual hand that 2D-overlay provides is also the reason why it

enjoys a relatively high presence rating, despite showing only a

small portion of the hand and lacking depth.

With regard to perception of detection accuracy for the 3D VR

hand representations, three participants noted a degradation of

tracking performance when using their index finger while extend-

ing other fingers, especially when their index finger was bent.While

our training data included images of such cases, it appears our

tracker was still sometimes confused by other visible fingers that

also seemed poised to touch the screen. When we noticed this re-

duction in tracking performance we suggested the participant to

extend only their index finger, which improved detection.

Another limitation participants noticed for tapping trials is the

higher difficulty of hitting targets on the hand side of the phone

with their thumb in VR. Paired T-tests for each representation

comparing the tap errors for left targets and right targets confirm

statistically significant differences for 3D-Cursor (𝑝 < 0.001) and

hand+marker (𝑝 = 0.039), while 2D-overlay is borderline (𝑝 =

0.055). We attribute this lower performance to the reduced visibility

of the hand and flexed thumbs on the phone side, which we also

observed in the 3D tracking precision evaluation.

6 Discussion

Our experiments showed that our VR system cannot yet fully repli-

cate the touch input experience and performance of real-world

phone use. Beside the precision of fingertip estimation, we believe

factors, such as the additional weight of the mount (as mentioned by

some participants) and latency[2, 26, 27, 34], contribute to that di-

minished experience. Furthermore, our trials demanded significant

finger movement and reach for the thumb when tapping from one

corner of the screen to another. We believe speed, tapping accuracy

and tracking stability would be higher if successive targets were

close and located in a central region of the screen, e.g. when typing

on a keyboard.

We did not compare our VR hand models to 3D augmented vir-

tuality methods such as Bai et al [5] as they require a depth camera

on the headset to capture a 3D visualisation of the hand, but we

note that those approaches are unable to match the performance of

real-world precise phone interaction either, due to various technical

limitations. Compared to Phonetroller [34], we showed that using

precision representations for 3D hand models increased tapping

accuracy. Furthermore, unlike Phonetroller, our system does not

require user-specific touch calibration. A possible improvement of
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Phonetroller’s 2D hand shadow would be to also show a marker on

the fingertip (the paper proposed a deep learning technique to esti-

mate those “hover points”, but it was not evaluated) and to assess

how the lack of depth may affect the different performance and

perception metrics. However, if fingertip position estimation is not

sufficiently consistent, using those keypoints to determine touch

points may result in slightly more uneven strokes when dragging

fingers on the screen, as shown by the results of our tracing task.

More aggressive temporal filtering might mitigate that effect, but

possibly at the cost of additional latency.

A few participants commented that not faithfully reproducing

the full hand pose and movement in VR was an issue. Contrary to

simplifying assumptions to render fixed hand poses, our results sug-

gest even slight differences between virtual and real hands can affect

a user’s mental model of achievable finger movements. Especially

for constrained movements of the thumb of the hand holding the

phone, real-virtual pose mismatches at the finger joint level seem to

have a higher impact than freehand movements like touching with

the index finger of the other hand or typing on a physical keyboard.

Those factors need to be taken into account when creating virtual

hand models for single-hand phone interaction in VR.

Regarding the impact of different hand representations compared

to previous work, we only partially confirm Grubert et al’s results

[17], which showed that fingertips and a video inlay reduced errors

when typing on a physical keyboard. In our case, the 2D camera

overlay performed worse for tapping, likely because our targets

are smaller and have no haptic feedback like keys. In terms of

presence, we confirm Knierim et al’s findings that showing only

fingertips decreases the sense of presence [27]. Our results align

with their recommendation to use realistic handmodels tomaximise

performance and presence, echoing other suggestions in the same

direction [22, 48, 60]. However, our results also reveal additional

challenges for precise touch input with a phone.

The above considerations lead us to formulate the following rec-

ommendations for the design of virtual hand representations for pre-

cise touch input on mobile phones in VR: If only the fingertips can

be tracked, we suggest only showing simple cursors or pointers,

which have the highest precision. That comes at the cost of a

slightly lower sense of presence, but it avoids distractions and po-

tential mismatches between real and virtual hand poses and move-

ments. If the full hand pose can be reliably tracked and faithfully

rendered in VR, we recommend showing semi-transparent hands

with small markers on the fingertips, which do not seem to affect

presence or distract people. Adding fingertip markers to hand mod-

els may also be beneficial for precise finger interaction with hands

tracked by HMD sensors. Design decisions may of course vary

based on the considered tasks and application scenarios.

6.1 Limitations

In addition to latency, our system and experimental investigation

have other limitations. First, our tracker currently only detects

thumb and index fingertips.While it theoretically also supports mul-

titouch and two-hand interaction, we have only evaluated single-

finger touch input, and only in a sitting position. We hypothesise

that our findings and recommendations likely also generalise to

phones being used while standing and with two hands/fingers,

however other issues might arise in those contexts that can only

be uncovered through experiments specifically addressing those

scenarios.

Our deep neural network currently requires a server with GPU

to achieve low inference times and we have not tested our method

on fully mobile VR systems. However, considering that standalone

VR headsets such at the Oculus Quest can track hands in real-time

using deep learning [19], we are confident that this is achievable.

Our study also used a motion capture system to track the phone,

which is not practical for most VR application contexts. Phonetroller

attached a conventional VR tracker to the mount, but this adds

significant weight to the phone. Lighter 6 DoF tracking solutions

could rely on visual odometry using the rear camera and inertial

motion sensors, which several mobile AR toolkits support out of

the box, albeit with less precision [4, 15].

7 Applications

In addition to providing feedback for touch input, tracking fin-

gers in 3D space enables a range of above-screen and touch-to-air

techniques, a space explored by prior work in non-VR contexts

[12, 21, 61]. In extended reality, hands can interact with virtual

objects appearing above the device [13, 39, 51, 66]. We present

examples of applications and interactions leveraging our mobile

fingertip tracker that go beyond simply replicating physical phone

manipulations in VR. We leave the deeper investigation and eval-

uation of these techniques and the exploration of the underlying

design space to future work.

7.1 Object Control with Finger-Differentiated

Actions

As shown earlier, the tracked fingertip can control a simple object

such as a 3D cursor for precise touch input. The fingertip can

also be mapped to an object that more closely represents an input

instrument for a particular task, similar to how VR controllers can

transform into different handheld tools in VR applications (e.g. a

pistol or a sword in a game). Task-specific representations and

control mappings can be considered at the finger(tip) level as well

[54]. For instance, in a sketching application, the index fingertip can

control the 3Dmodel of a pen, which virtually inks the screen of the

phone (Figure 11aa). Pen control and actions can be swapped based

on the used finger. For example, when using the thumb instead of

the index finger, the pen flips to its eraser end and dragging the

thumb on the screen erases content (Figure 11ab).

7.2 Interacting with Above-Screen Objects

The ability to precisely track fingertips above the phone screen

enables interaction with small 3D objects in that space. This can

be exploited in game scenarios, for example, to brush away spiders

crawling on the device with the finger (Figure 11b). Touch input

can further be used as a haptic collision event to trigger a different

action, such as crushing a spider with the thumb.

7.3 Use as Head-Up Display

Head-up interfaces, which have a fixed position in the 2D screen

space of the viewport, are often used in XR to show information
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1)

Index
Fingertip Thumb tip

2)

(a) Sketching application with the fingertip repre-

sented as a pen. 1) If the index finger is used, the pen

sketches; 2) If the thumb is used, the pen flips to its

eraser end and content is deleted.

(b) Precise tracking of the

3D thumb tip allows inter-

action with small virtual

objects above the phone

model, such as brushing

a spider away with the

thumb.

1) 2)

(c) Phone UI as head-up display to select texture colours for

objects. 1) The user can hold the phone in a comfortable

position while looking at virtual objects around and above

them without affecting fingertip tracking performance; 2)

Objects are selected with head orientation (using a crosshair

in the middle of the viewport) and texture colours to assign

are chosen by tapping a palette on the phone.

(d) Double raycasting with phone

+ fingertip to create a lens for

map exploration: phone ray sets

the centre of the lens, second

ray originating from the bottom

bezel and passing through the fin-

gertip sets the width and height

of the lens.

1) 2)

Thumb tip

(e) Skateboarding game scenario, where

the thumbtip controls the skater’s leg.

Dragging on the phone screen causes the

skater to push the ground with the foot

to move forward. Acrobatic leg move-

ments, such as lifting the leg above a rail,

can be performed by moving the thumb

above the screen.

1) 2)

Thumb tip

(f) Canoeing game example, where the thumbtip controls the oar

of a character in a canoe. Dragging on the phone screen rows the

canoe. The oar can be lifted to hit overhead targets by raising and

moving the thumb above the phone screen.

Figure 11: Example phone-based VR applications utilising our fingertip tracker

to the user. Head-up displays or HUDs can also support phone-

operated menus. In such a setting, the phone does not need to be

tracked as it is used only for its touch capabilities (with 3D visual

feedback of the hand to enable precise targeting). Since fingers are

tracked inside-out via the phone itself and not by the HMD, the

user is free to look in any direction without impacting fingertip

detection accuracy (Figure 11ca). This also allows the phone to be

held in a comfortable, low-fatigue position, such as resting on the

user’s lap or a table when sitting. This scenario cannot be supported

by existing VR systems with sensors integrated in the HMD, which

cannot track hands that are occluded or out of capturing range. We

present an application of this HUD concept, where head orientation

or gaze is used to point at 3D objects located around the user in

the VR space and the phone is used to choose texture colours for

selected objects from a palette (Figure 11cb).

7.4 Double Raycasting

The tracked phone can be used as a 6-DoF raycasting source in the

virtual 3D space like a standard VR controller [4, 34, 46]. Since the

fingertip is also precisely tracked in the local 3D space of the phone,

it can become an anchor for a second ray to support double ray-

casting with a single hand, similar to barehand pointing techniques

using multiple fingers for remote interaction with large displays

[6, 36]. Our example in VR considers a resizable rectangular lens

or filter to explore maps, such as revealing the satellite image of

a specific portion of the map (Figure 11d). The centre of the lens

is determined by the phone ray, and the width and height by a

second ray emanating from the centre of the bottom bezel of the

phone and passing through the fingertip. If needed, an action (e.g.

a selection confirmation) can be triggered by pressing the physical

phone volume button on the side of the device.

7.5 Touch/Drag Navigation + Mid-Air

Interaction

Scenarios in which the representation of and interaction with the

physical phone are significantly abstracted in the VR world can also

be considered. Expanding on the idea of using both touch and above-

screen input, we propose a novel interaction paradigm for games,

in which the tracked fingertip is mapped to the control point of a

character and dragging on the phone screen moves the character.
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We present two game scenarios in which dragging on a surface is a

strong metaphor for motion control: skateboarding and rowing. In

the first case, the fingertip is mapped to the foot of a skateboarder

(Figure 11e): Dragging on the phone screen pushes off the ground

to move the board forward, with the foot and leg motion of the

skateboarder following the physical movements of the user’s finger

on and above the touchscreen. In the rowing scenario, the fingertip

is mapped to the oar of a character sitting in a canoe (Figure 11f)

and dragging the finger on the screen causes the character to row

the canoe. The dragging length, speed and direction control the

speed and direction of the boat via the virtual rowing actions.

Mid-air interaction can also be an integral part of the game, for

example the skateboarder can perform acrobatic moves with the leg

(Figure 11e2) and the rower can raise the oar to try to hit overhead

targets when passing under them (Figure 11f2). The orientation of

the phone as detected by its internal motion sensors can further

be used to tilt the skateboard/canoe for additional control. Here

again, the phone does not need to be tracked, making these game

scenarios easily deployable on inexpensive mobile 3-DoF VR sys-

tems which do not track any devices or hands. Furthermore, we

speculate that single-finger control of a character with a phone that

can be held in a relaxed pose is likely significantly less fatiguing

than using a standard VR controller, whose movements are mapped

1-to-1 to physical leg and arm motion. Dragging with a finger on

a phone screen to skate or row is an inexpensive and serviceable

approximation of haptic feedback and friction when a real foot

pushes off the ground or an oar pushes water backwards. Future

evaluations are required to confirm those hypotheses as well as

examine potential tradeoffs in terms of sense of embodiment and

control.

8 Conclusion

We proposed a deep learning technique to track the 3D position

of thumb and index fingertips for precise touch input on a mobile

phone in VR using images captured by the front camera reflected

through two mirrors mounted on the device. Our method requires

no external sensor for training or inference and only a few hundred

images need to be initially labelled, with ground truth data then

mainly generated in a self-supervised manner through differen-

tiable rendering. A preliminary evaluation of 3D tracking precision

revealed that our technique achieved a mean precision of 6mm

in the main interaction area directly above the phone screen. We

then used our tracker to control several VR hand models, including

“precision hand representations” with markers on the fingertips

of a normal hand, an abstract model with thin fingers and a 3D

cursor. Our evaluation shows that those precision representations

outperform Phonetroller’s 2D overlay of the mirrored camera feed

for target tapping. Based on those results, we recommended using

either 3D cursors or realistic hands with fingertip markers to help

users aim more accurately. The main experimental evaluation in

this work focused on hand visual feedback for precise touch in-

put, but tracking fingers in 3D enables other types of interaction

like 3D object control and above-screen or mid-air input. We pre-

sented a few examples of such application scenarios and we plan

to investigate that potential more deeply in future work.

References

[1] Diar Abdlkarim, Massimiliano Di Luca, Poppy Aves, Sang-Hoon Yeo, R Chris

Miall, Peter Holland, and Joseph M Galea. 2022. A Methodological Framework

to Assess the Accuracy of Virtual Reality Hand-Tracking Systems: A case study

with the Oculus Quest 2. bioRxiv (2022).

[2] Karan Ahuja, Vivian Shen, Cathy Mengying Fang, Nathan Riopelle, Andy Kong,

and Chris Harrison. 2022. ControllerPose: Inside-Out Body Capture with VR

Controller Cameras. In Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing

Machinery, New York, NY, USA, Article 108, 13 pages. https://doi.org/10.1145/

3491102.3502105

[3] Ferran Argelaguet, Ludovic Hoyet, Michael Trico, and Anatole Lecuyer. 2016.

The role of interaction in virtual embodiment: Effects of the virtual hand repre-

sentation. In 2016 IEEE Virtual Reality (VR). 3–10. https://doi.org/10.1109/VR.

2016.7504682

[4] Teo Babic, Harald Reiterer, and Michael Haller. 2018. Pocket6: A 6DoF Controller

Based On A Simple Smartphone Application. In Proceedings of the Symposium on
Spatial User Interaction (Berlin, Germany) (SUI ’18). Association for Computing

Machinery, New York, NY, USA, 2–10. https://doi.org/10.1145/3267782.3267785

[5] Huidong Bai, Li Zhang, Jing Yang, and Mark Billinghurst. 2021. Bringing full-

featured mobile phone interaction into virtual reality. Computers & Graphics 97
(2021), 42–53. https://doi.org/10.1016/j.cag.2021.04.004

[6] Amartya Banerjee, Jesse Burstyn, Audrey Girouard, and Roel Vertegaal. 2012.

MultiPoint: Comparing Laser and Manual Pointing as Remote Input in Large

Display Interactions. Int. J. Hum.-Comput. Stud. 70, 10 (oct 2012), 690–702.

https://doi.org/10.1016/j.ijhcs.2012.05.009

[7] Sabah Boustila, Thomas Guégan, Kazuki Takashima, and Yoshifumi Kitamura.

2019. Text Typing in VR Using Smartphones Touchscreen and HMD. In 2019
IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, New York,

NY, USA, 860–861. https://doi.org/10.1109/VR.2019.8798238

[8] Samarth Brahmbhatt, Chengcheng Tang, Christopher D Twigg, Charles C Kemp,

and James Hays. 2020. ContactPose: A Dataset of Grasps with Object Contact

and Hand Pose. In Computer Vision – ECCV 2020, Andrea Vedaldi, Horst Bischof,
Thomas Brox, and Jan-Michael Frahm (Eds.). Springer International Publishing,

Cham, 361–378.

[9] Géry Casiez, Nicolas Roussel, and Daniel Vogel. 2012. 1 € Filter: A Simple Speed-

Based Low-Pass Filter for Noisy Input in Interactive Systems. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Austin, Texas, USA)
(CHI ’12). Association for Computing Machinery, New York, NY, USA, 2527–2530.

https://doi.org/10.1145/2207676.2208639

[10] Liangjian Chen, Shih-Yao Lin, Yusheng Xie, Yen-Yu Lin, and Xiaohui Xie. 2021.

MVHM: A Large-Scale Multi-View Hand Mesh Benchmark for Accurate 3D Hand

Pose Estimation. In 2021 IEEE Winter Conference on Applications of Computer
Vision (WACV). 836–845. https://doi.org/10.1109/WACV48630.2021.00088

[11] Sibo Chen, Junce Wang, Santiago Guerra, Neha Mittal, and Soravis Prakkamakul.

2019. Exploring Word-Gesture Text Entry Techniques in Virtual Reality. In

Extended Abstracts of the 2019 CHI Conference on Human Factors in Comput-
ing Systems (Glasgow, Scotland Uk) (CHI EA ’19). Association for Computing

Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/3290607.3312762

[12] Xiang ’Anthony’ Chen, Julia Schwarz, Chris Harrison, Jennifer Mankoff, and

Scott E. Hudson. 2014. Air+touch: Interweaving Touch & in-Air Gestures. In

Proceedings of the 27th Annual ACM Symposium on User Interface Software and
Technology (Honolulu, Hawaii, USA) (UIST ’14). Association for Computing Ma-

chinery, New York, NY, USA, 519–525. https://doi.org/10.1145/2642918.2647392

[13] Bruno R De Araújo, Géry Casiez, Joaquim A Jorge, and Martin Hachet. 2013.

Mockup Builder: 3D modeling on and above the surface. Computers & Graphics
37, 3 (2013), 165–178. https://doi.org/10.1016/j.cag.2012.12.005

[14] Li Du, ChunChen Liu, Adrian Tang, Yan Zhang, Yilei Li, Kye Cheung, and Mau-

Chung FrankChang. 2016. Airtouch: A novel single layer 3D touch sensing system

for human/mobile devices interactions. In 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC). 1–6. https://doi.org/10.1145/2897937.2901902

[15] Wei Fang, Lianyu Zheng, Huanjun Deng, and Hongbo Zhang. 2017. Real-Time

Motion Tracking for Mobile Augmented/Virtual Reality Using Adaptive Visual-

Inertial Fusion. Sensors 17, 5 (2017). https://doi.org/10.3390/s17051037

[16] Liuhao Ge, Zhou Ren, Yuncheng Li, Zehao Xue, Yingying Wang, Jianfei Cai, and

Junsong Yuan. 2019. 3D Hand Shape and Pose Estimation from a Single RGB

Image. In CVPR.
[17] Jens Grubert, Lukas Witzani, Eyal Ofek, Michel Pahud, Matthias Kranz, and

Per Ola Kristensson. 2018. Effects of Hand Representations for Typing in Virtual

Reality. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).
151–158. https://doi.org/10.1109/VR.2018.8446250

[18] Ewa Gustafsson, Pieter Coenen, Amity Campbell, and Leon Straker. 2018. Texting

with touchscreen and keypad phones - A comparison of thumb kinematics, upper

limb muscle activity, exertion, discomfort, and performance. Applied Ergonomics
70 (2018), 232–239. https://doi.org/10.1016/j.apergo.2018.03.003

[19] Shangchen Han, Beibei Liu, Randi Cabezas, Christopher D. Twigg, Peizhao Zhang,

Jeff Petkau, Tsz-Ho Yu, Chun-Jung Tai, Muzaffer Akbay, Zheng Wang, Asaf

13

https://doi.org/10.1145/3491102.3502105
https://doi.org/10.1145/3491102.3502105
https://doi.org/10.1109/VR.2016.7504682
https://doi.org/10.1109/VR.2016.7504682
https://doi.org/10.1145/3267782.3267785
https://doi.org/10.1016/j.cag.2021.04.004
https://doi.org/10.1016/j.ijhcs.2012.05.009
https://doi.org/10.1109/VR.2019.8798238
https://doi.org/10.1145/2207676.2208639
https://doi.org/10.1109/WACV48630.2021.00088
https://doi.org/10.1145/3290607.3312762
https://doi.org/10.1145/2642918.2647392
https://doi.org/10.1016/j.cag.2012.12.005
https://doi.org/10.1145/2897937.2901902
https://doi.org/10.3390/s17051037
https://doi.org/10.1109/VR.2018.8446250
https://doi.org/10.1016/j.apergo.2018.03.003


, , Matulic, Kashima, Beker, Suzuo, Fujiwara and Vogel

Nitzan, Gang Dong, Yuting Ye, Lingling Tao, Chengde Wan, and Robert Wang.

2020. MEgATrack: Monochrome Egocentric Articulated Hand-Tracking for

Virtual Reality. ACM Trans. Graph. 39, 4, Article 87 (jul 2020), 13 pages. https:

//doi.org/10.1145/3386569.3392452

[20] Yana Hasson, Gul Varol, Dimitrios Tzionas, Igor Kalevatykh, Michael J. Black,

Ivan Laptev, and Cordelia Schmid. 2019. Learning Joint Reconstruction of Hands

and Manipulated Objects. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

[21] Ken Hinckley, Seongkook Heo, Michel Pahud, Christian Holz, Hrvoje Benko,

Abigail Sellen, Richard Banks, Kenton O’Hara, Gavin Smyth, andWilliam Buxton.

2016. Pre-Touch Sensing for Mobile Interaction. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (San Jose, California, USA)

(CHI ’16). Association for Computing Machinery, New York, NY, USA, 2869–2881.

https://doi.org/10.1145/2858036.2858095

[22] Sungchul Jung, Gerd Bruder, Pamela J. Wisniewski, Christian Sandor, and

Charles E. Hughes. 2018. Over My Hand: Using a Personalized Hand in

VR to Improve Object Size Estimation, Body Ownership, and Presence. In

Proceedings of the Symposium on Spatial User Interaction (Berlin, Germany)

(SUI ’18). Association for Computing Machinery, New York, NY, USA, 60–68.

https://doi.org/10.1145/3267782.3267920

[23] Mohamed Kari and Christian Holz. 2023. HandyCast: Phone-Based Bimanual

Input for Virtual Reality in Mobile and Space-Constrained Settings via Pose-and-

Touch Transfer. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing

Machinery, New York, NY, USA, Article 528, 15 pages. https://doi.org/10.1145/

3544548.3580677

[24] Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka,

Wadim Kehl, and Adrien Gaidon. 2020. Differentiable Rendering: A Survey. CoRR
abs/2006.12057 (2020). arXiv:2006.12057 https://arxiv.org/abs/2006.12057

[25] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3D Mesh

Renderer. In CVPR.
[26] Youngwon R. Kim and Gerard J. Kim. 2017. HoVR-Type: Smartphone as a typing

interface in VR using hovering. In 2017 IEEE International Conference on Consumer
Electronics (ICCE). 200–203. https://doi.org/10.1109/ICCE.2017.7889285

[27] Pascal Knierim, Valentin Schwind, Anna Maria Feit, Florian Nieuwenhuizen,

and Niels Henze. 2018. Physical Keyboards in Virtual Reality: Analysis of Typ-

ing Performance and Effects of Avatar Hands. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (Montreal QC, Canada)

(CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–9.

https://doi.org/10.1145/3173574.3173919

[28] Taein Kwon, Bugra Tekin, Jan Stühmer, Federica Bogo, and Marc Pollefeys. 2021.

H2O: Two Hands Manipulating Objects for First Person Interaction Recognition.

In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
10138–10148.

[29] Khanh-Duy Le, Kening Zhu, and Morten Fjeld. 2017. Mirrortablet: Exploring a

Low-Cost Mobile System for Capturing Unmediated Hand Gestures in Remote

Collaboration. In Proceedings of the 16th International Conference on Mobile and
Ubiquitous Multimedia (Stuttgart, Germany) (MUM ’17). Association for Com-

puting Machinery, New York, NY, USA, 79–89. https://doi.org/10.1145/3152832.

3152838

[30] Hai-Ning Liang, Yuwei Shi, Feiyu Lu, Jizhou Yang, and Konstantinos Papangelis.

2016. VRMController: An Input Device for Navigation Activities in Virtual

Reality Environments. In Proceedings of the 15th ACM SIGGRAPH Conference on
Virtual-Reality Continuum and Its Applications in Industry - Volume 1 (Zhuhai,
China) (VRCAI ’16). Association for Computing Machinery, New York, NY, USA,

455–460. https://doi.org/10.1145/3013971.3014005

[31] Jaime Lien, Nicholas Gillian, M. Emre Karagozler, Patrick Amihood, Carsten

Schwesig, Erik Olson, Hakim Raja, and Ivan Poupyrev. 2016. Soli: Ubiquitous

Gesture Sensing with Millimeter Wave Radar. ACM Trans. Graph. 35, 4, Article
142 (July 2016), 19 pages. https://doi.org/10.1145/2897824.2925953

[32] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. 2019. Soft Rasterizer: A Differ-

entiable Renderer for Image-Based 3D Reasoning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV).

[33] Brandon J. Matthews, Bruce H. Thomas, Stewart Von Itzstein, and Ross T. Smith.

2019. Remapped Physical-Virtual Interfaces with Bimanual Haptic Retargeting.

In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). 19–27.
https://doi.org/10.1109/VR.2019.8797974

[34] Fabrice Matulic, Aditya Ganeshan, Hiroshi Fujiwara, and Daniel Vogel. 2021.

Phonetroller: Visual Representations of Fingers for Precise Touch Input with

Mobile Phones in VR. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing

Machinery, New York, NY, USA, Article 129, 13 pages. https://doi.org/10.1145/

3411764.3445583

[35] Fabrice Matulic, Taiga Kashima, Deniz Beker, Daichi Suzuo, Hiroshi Fujiwara, and

Daniel Vogel. 2023. Above-Screen Fingertip Trackingwith a Phone in Virtual Real-

ity. In Extended Abstracts of the 2023 CHI Conference on Human Factors in Comput-
ing Systems (<conf-loc>, <city>Hamburg</city>, <country>Germany</country>,

</conf-loc>) (CHI EA ’23). Association for Computing Machinery, New York, NY,

USA, Article 18, 7 pages. https://doi.org/10.1145/3544549.3585728

[36] Fabrice Matulic and Daniel Vogel. 2018. Multiray: Multi-Finger Raycasting for

Large Displays. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing

Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3173819

[37] Fabrice Matulic and Daniel Vogel. 2022. Terrain Modelling with a Pen & Touch

Tablet and Mid-Air Gestures in Virtual Reality. In Extended Abstracts of the 2022
CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA)

(CHI EA ’22). Association for Computing Machinery, New York, NY, USA, Article

301, 7 pages. https://doi.org/10.1145/3491101.3519867

[38] Jess McIntosh, Paul Strohmeier, Jarrod Knibbe, Sebastian Boring, and Kasper

Hornbæk. 2019. Magnetips: Combining Fingertip Tracking and Haptic Feed-

back for Around-Device Interaction. In Proceedings of the 2019 CHI Confer-
ence on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI
’19). Association for Computing Machinery, New York, NY, USA, 1–12. https:

//doi.org/10.1145/3290605.3300638

[39] Daniel Mendes, Fernando Fonseca, Bruno Araùjo, Alfredo Ferreira, and Joaquim

Jorge. 2014. Mid-air interactions above stereoscopic interactive tables. In 2014
IEEE Symposium on 3D User Interfaces (3DUI). 3–10. https://doi.org/10.1109/3DUI.
2014.6798833

[40] Rajalakshmi Nandakumar, Vikram Iyer, Desney Tan, and Shyamnath Gollakota.

2016. FingerIO: Using Active Sonar for Fine-Grained Finger Tracking. In Proceed-
ings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose,

California, USA) (CHI ’16). Association for Computing Machinery, New York, NY,

USA, 1515–1525. https://doi.org/10.1145/2858036.2858580

[41] Jing Qian, Jiaju Ma, Xiangyu Li, Benjamin Attal, Haoming Lai, James Tompkin,

John F. Hughes, and Jeff Huang. 2019. Portal-Ble: Intuitive Free-Hand Manip-

ulation in Unbounded Smartphone-Based Augmented Reality. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology
(UIST ’19). Association for Computing Machinery, New York, NY, USA, 133–145.

https://doi.org/10.1145/3332165.3347904

[42] Xuebin Qin, Zichen Zhang, Chenyang Huang, Chao Gao, Masood Dehghan, and

Martin Jagersand. 2019. BASNet: Boundary-Aware Salient Object Detection. In

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[43] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo,

Justin Johnson, and Georgia Gkioxari. 2020. Accelerating 3D Deep Learning with

PyTorch3D. arXiv:2007.08501 (2020).
[44] Javier Romero, Dimitrios Tzionas, and Michael J. Black. 2017. Embodied Hands:

Modeling and Capturing Hands and Bodies Together. ACM Transactions on
Graphics, (Proc. SIGGRAPH Asia) 36, 6 (Nov. 2017).

[45] Eun Jeong Ryu, Minhyeok Kim, Joowoo Lee, Soomin Kim, Jiyoung Hong, Jieun

Lee, Minhaeng Cho, and Jinhae Choi. 2016. Designing Smartphone Keyboard for

Elderly Users. In HCI International 2016 – Posters’ Extended Abstracts, Constantine
Stephanidis (Ed.). Springer International Publishing, Cham, 439–444.

[46] Elaheh Samimi and Robert J. Teather. 2022. Multi-Touch Smartphone-Based

Progressive Refinement VR Selection. In 2022 IEEE Conference on Virtual Reality
and 3D User Interfaces Abstracts and Workshops (VRW). 582–583. https://doi.org/

10.1109/VRW55335.2022.00142

[47] Daniel Schneider, Verena Biener, Alexander Otte, Travis Gesslein, Philipp Gagel,

Cuauhtli Campos, Klen Čopič Pucihar, Matjazz Kljun, Eyal Ofek, Michel Pahud,

Per Ola Kristensson, and Jens Grubert. 2021. Accuracy Evaluation of Touch

Tasks in Commodity Virtual and Augmented Reality Head-Mounted Displays. In

Symposium on Spatial User Interaction (Virtual Event, USA) (SUI ’21). Association
for Computing Machinery, New York, NY, USA, Article 7, 11 pages. https:

//doi.org/10.1145/3485279.3485283

[48] Valentin Schwind, Pascal Knierim, Cagri Tasci, Patrick Franczak, Nico Haas,

and Niels Henze. 2017. "These Are Not My Hands!": Effect of Gender on the

Perception of Avatar Hands in Virtual Reality. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (Denver, Colorado, USA)
(CHI ’17). Association for Computing Machinery, New York, NY, USA, 1577–1582.

https://doi.org/10.1145/3025453.3025602

[49] Jeongmin Son, Sunggeun Ahn, Sunbum Kim, and Geehyuk Lee. 2019. Improving

Two-Thumb Touchpad Typing in Virtual Reality. In Extended Abstracts of the
2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI EA ’19). Association for Computing Machinery, New York, NY, USA,

1–6. https://doi.org/10.1145/3290607.3312926

[50] Jie Song, Gábor Sörös, Fabrizio Pece, Sean Ryan Fanello, Shahram Izadi, Cem

Keskin, and Otmar Hilliges. 2014. In-Air Gestures around Unmodified Mobile

Devices. In Proceedings of the 27th Annual ACM Symposium on User Interface
Software and Technology (Honolulu, Hawaii, USA) (UIST ’14). Association for

Computing Machinery, New York, NY, USA, 319–329. https://doi.org/10.1145/

2642918.2647373

[51] Hemant Bhaskar Surale, Aakar Gupta, Mark Hancock, and Daniel Vogel. 2019.

TabletInVR: Exploring the Design Space for Using a Multi-Touch Tablet in Virtual

Reality. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery,

New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300243

14

https://doi.org/10.1145/3386569.3392452
https://doi.org/10.1145/3386569.3392452
https://doi.org/10.1145/2858036.2858095
https://doi.org/10.1145/3267782.3267920
https://doi.org/10.1145/3544548.3580677
https://doi.org/10.1145/3544548.3580677
https://arxiv.org/abs/2006.12057
https://arxiv.org/abs/2006.12057
https://doi.org/10.1109/ICCE.2017.7889285
https://doi.org/10.1145/3173574.3173919
https://doi.org/10.1145/3152832.3152838
https://doi.org/10.1145/3152832.3152838
https://doi.org/10.1145/3013971.3014005
https://doi.org/10.1145/2897824.2925953
https://doi.org/10.1109/VR.2019.8797974
https://doi.org/10.1145/3411764.3445583
https://doi.org/10.1145/3411764.3445583
https://doi.org/10.1145/3544549.3585728
https://doi.org/10.1145/3173574.3173819
https://doi.org/10.1145/3491101.3519867
https://doi.org/10.1145/3290605.3300638
https://doi.org/10.1145/3290605.3300638
https://doi.org/10.1109/3DUI.2014.6798833
https://doi.org/10.1109/3DUI.2014.6798833
https://doi.org/10.1145/2858036.2858580
https://doi.org/10.1145/3332165.3347904
https://doi.org/10.1109/VRW55335.2022.00142
https://doi.org/10.1109/VRW55335.2022.00142
https://doi.org/10.1145/3485279.3485283
https://doi.org/10.1145/3485279.3485283
https://doi.org/10.1145/3025453.3025602
https://doi.org/10.1145/3290607.3312926
https://doi.org/10.1145/2642918.2647373
https://doi.org/10.1145/2642918.2647373
https://doi.org/10.1145/3290605.3300243


Fingertip Tracking and Hand Representation for a Phone in VR , ,

[52] Xiao Tang, Xiaowei Hu, Chi-Wing Fu, and Daniel Cohen-Or. 2020. GrabAR:

Occlusion-Aware Grabbing Virtual Objects in AR. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology (Virtual

Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY,

USA, 697–708. https://doi.org/10.1145/3379337.3415835

[53] Catherine Taylor, Murray Evans, Eleanor Crellin, Martin Parsons, and Darren

Cosker. 2021. Ego-Interaction: Visual Hand-Object Pose Correction for VR

Experiences. In Motion, Interaction and Games (Virtual Event, Switzerland) (MIG
’21). Association for ComputingMachinery, New York, NY, USA, Article 1, 8 pages.

https://doi.org/10.1145/3487983.3488290

[54] Wen-Jie Tseng, Samuel Huron, Eric Lecolinet, and Jan Gugenheimer. 2021. Fin-

gerMapper: Enabling Arm Interaction in Confined Spaces for Virtual Reality

through Finger Mappings. In Extended Abstracts of the 2021 CHI Conference on
Human Factors in Computing Systems (Yokohama, Japan) (CHI EA ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 194, 4 pages.

https://doi.org/10.1145/3411763.3451573

[55] Michiel Van Veldhuizen and Xubo Yang. 2021. The Effect of Semi-Transparent

and Interpenetrable Hands on Object Manipulation in Virtual Reality. IEEE Access
9 (2021), 17572–17583. https://doi.org/10.1109/ACCESS.2021.3050881

[56] Wei Wang, Alex X. Liu, and Ke Sun. 2016. Device-Free Gesture Tracking Using

Acoustic Signals. In Proceedings of the 22nd Annual International Conference
on Mobile Computing and Networking (New York City, New York) (MobiCom
’16). Association for Computing Machinery, New York, NY, USA, 82–94. https:

//doi.org/10.1145/2973750.2973764

[57] Pui Chung Wong, Hongbo Fu, and Kening Zhu. 2016. Back-Mirror: Back-of-

Device One-Handed Interaction on Smartphones. In SIGGRAPH ASIA 2016 Mobile
Graphics and Interactive Applications (Macau) (SA ’16). Association for Computing

Machinery, New York, NY, USA, Article 13, 2 pages. https://doi.org/10.1145/

2999508.2999512

[58] Min-Yu Wu, Pai-Wen Ting, Ya-Hui Tang, En-Te Chou, and Li-Chen Fu. 2020.

Hand pose estimation in object-interaction based on deep learning for virtual

reality applications. Journal of Visual Communication and Image Representation
70 (2020), 102802. https://doi.org/10.1016/j.jvcir.2020.102802

[59] Xing-Dong Yang, Khalad Hasan, Neil Bruce, and Pourang Irani. 2013. Surround-

See: Enabling Peripheral Vision on Smartphones during Active Use. In Proceedings
of the 26th Annual ACM Symposium on User Interface Software and Technology (St.

Andrews, Scotland, United Kingdom) (UIST ’13). Association for Computing Ma-

chinery, New York, NY, USA, 291–300. https://doi.org/10.1145/2501988.2502049

[60] Boram Yoon, Hyung-il Kim, Seo Young Oh, and Woontack Woo. 2020. Evaluating

Remote Virtual Hands Models on Social Presence in Hand-based 3D Remote

Collaboration. In 2020 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR). 520–532. https://doi.org/10.1109/ISMAR50242.2020.00080

[61] Chun Yu, Xiaoying Wei, Shubh Vachher, Yue Qin, Chen Liang, Yueting Weng,

Yizheng Gu, and Yuanchun Shi. 2019. HandSee: Enabling Full Hand Interaction

on Smartphone with Front Camera-Based Stereo Vision. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–13.

https://doi.org/10.1145/3290605.3300935

[62] Sangki Yun, Yi-Chao Chen, Huihuang Zheng, Lili Qiu, and Wenguang Mao. 2017.

Strata: Fine-Grained Acoustic-Based Device-Free Tracking. In Proceedings of
the 15th Annual International Conference on Mobile Systems, Applications, and
Services (Niagara Falls, New York, USA) (MobiSys ’17). Association for Computing

Machinery, New York, NY, USA, 15–28. https://doi.org/10.1145/3081333.3081356

[63] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. 2018.

mixup: Beyond Empirical RiskMinimization. International Conference on Learning
Representations (2018). https://openreview.net/forum?id=r1Ddp1-Rb

[64] Li Zhang, Weiping He, Huidong Bai, Qianyuan Zou, Shuxia Wang, and Mark

Billinghurst. 2022. A hybrid 2D–3D tangible interface combining a smartphone

and controller for virtual reality. Virtual Reality (2022), 1–19.

[65] Chen Zhao, Ke-Yu Chen, Md Tanvir Islam Aumi, Shwetak Patel, and Matthew S.

Reynolds. 2014. SideSwipe: Detecting in-Air Gestures around Mobile Devices

Using Actual GSM Signal (UIST ’14). Association for Computing Machinery, New

York, NY, USA, 527–534. https://doi.org/10.1145/2642918.2647380

[66] Fengyuan Zhu and Tovi Grossman. 2020. BISHARE: Exploring Bidirectional

Interactions Between Smartphones and Head-Mounted Augmented Reality. In

Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York,

NY, USA, 1–14. https://doi.org/10.1145/3313831.3376233

[67] Fengyuan Zhu, Zhuoyue Lyu, Mauricio Sousa, and Tovi Grossman. 2022. Touch-

ing The Droid: Understanding and Improving Touch Precision With Mobile

Devices in Virtual Reality. In 2022 IEEE International Symposium on Mixed and
Augmented Reality (ISMAR). 807–816. https://doi.org/10.1109/ISMAR55827.2022.

00099

15

https://doi.org/10.1145/3379337.3415835
https://doi.org/10.1145/3487983.3488290
https://doi.org/10.1145/3411763.3451573
https://doi.org/10.1109/ACCESS.2021.3050881
https://doi.org/10.1145/2973750.2973764
https://doi.org/10.1145/2973750.2973764
https://doi.org/10.1145/2999508.2999512
https://doi.org/10.1145/2999508.2999512
https://doi.org/10.1016/j.jvcir.2020.102802
https://doi.org/10.1145/2501988.2502049
https://doi.org/10.1109/ISMAR50242.2020.00080
https://doi.org/10.1145/3290605.3300935
https://doi.org/10.1145/3081333.3081356
https://openreview.net/forum?id=r1Ddp1-Rb
https://doi.org/10.1145/2642918.2647380
https://doi.org/10.1145/3313831.3376233
https://doi.org/10.1109/ISMAR55827.2022.00099
https://doi.org/10.1109/ISMAR55827.2022.00099

	Abstract
	1 Introduction
	2 Related Work
	2.1 Around-Device Interaction Outside of VR
	2.2 Smartphones as VR Controllers
	2.3 Hand-Object Pose Estimation
	2.4 Hand Representation in VR

	3 Self-Supervised 3D Fingertip Detection
	3.1 Two-Mirror System
	3.2 Data Creation
	3.3 3D Pose And Location Estimation
	3.4 End-To-End Model

	4 VR Client
	4.1 Generating Hand Representations
	4.2 Determining the Touch Point
	4.3 Enabling System
	4.4 3D Tracking Precision Evaluation

	5 Touch Input Experiment
	5.1 Hand Representations
	5.2 Protocol
	5.3 Results

	6 Discussion
	6.1 Limitations

	7 Applications
	7.1 Object Control with Finger-Differentiated Actions
	7.2 Interacting with Above-Screen Objects
	7.3 Use as Head-Up Display
	7.4 Double Raycasting
	7.5 Touch/Drag Navigation + Mid-Air Interaction

	8 Conclusion
	References

