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ABSTRACT

The recent advancement of Large Language Models (LLMs) has revolutionized the
algorithm design patterns. A new paradigm, LLM-based Automated Algorithm De-
sign (LLM-AAD), has emerged to generate code implementations for high-quality
algorithms. Unlike the traditional expert-driven algorithm development, in the
LLM-AAD paradigm, ideas behind the algorithm are often implicitly embedded
within the generated code. Therefore, measuring similarity for algorithms may
help identify whether a generated algorithm is innovative or merely a syntactic
refinement of an existing code implementation. However, directly applying exist-
ing code similarity metrics to algorithms raises a critical limitation: they do not
necessarily reflect the similarity between algorithms.

To address this, we introduce a novel perspective that defines algorithm similarity
through the lens of its problem-solving behavior. We represent the problem-solving
trajectory of an algorithm as the sequence of intermediate solutions progressively
generated by the algorithm. The behavioral similarity is calculated by the resem-
blance between two problem-solving trajectories. Our approach focuses on how an
algorithm solves a problem, not just its code implementation or final output. We
demonstrate the utility of our similarity measure in two use cases. (i) Improving
LLM-AAD: Integrating our similarity measure into a search method demonstrates
promising results across two AAD tasks, proving the effectiveness of maintaining
behavioral diversity in the algorithm search. (ii) Algorithm analysis. Our similarity
metric provides a new perspective for analyzing algorithms, revealing distinctions
in their problem-solving behaviors.

1 INTRODUCTION

The recent emergence of a new paradigm, Large Language Model-based Automated Algorithm
Design (LLM-AAD), has drawn increasing attention due to its potential to automatically generate
code implementations for expert-level algorithms. Unlike the traditional expert-driven development
process, where ideas and design logic of algorithms are explicitly proposed before coding, in LLM-
AAD, these ideas are often implicitly embedded within the generated code. Therefore, measuring
algorithm similarity between their code may help identify whether an algorithm is innovative rather
than a syntactic refinement of an existing code implementation.

Traditionally, similarity between code snippets has been extensively studied in software engineering,
with widespread applications in diverse software engineering tasks such as code search (Keivanloo
et al.|[2014), clone detection (Roy et al.|[2009), and evaluation (Dong et al.|[2024). Current methods
for measuing code similarity can be categorized into two primary paradigms. The first class analyzes
programs in a static setting without executing them, calculating similarity based on various code
features. These include token-based metrics (e.g., BLEU(Papineni et al.,2002)), ROUGE (Lin} 2004)),
structure-based metrics (e.g., Abstract Syntax Tree (Ren et al.,|2020)), and embedding-based methods
(e.g., CodeScore (Dong et al.,|2024)). In contrast, execution-based metrics focus on the similarity of
the execution output (Roziere et al.} 2020), which assesses whether generated programs produce the
same outputs as reference implementations on a suite of test cases.

However, simply applying existing code similarity metrics for algorithm similarity raises a critical
gap: they do not necessarily reflect the similarity of algorithms. Figure[T](a) demonstrates an example
in which breadth-first search (BFS) and depth-first search (DFS) are used to perform a binary tree
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Figure 1: Examples demonstrating existing code similarity metrics are not capable of reflecting the
similarity of algorithms. (a) Algorithms with similar code implementation may hold different ideas
and design logic (Code 1 and Code 2), while different code implementations may share consistent
design logic (Code 2 and Code 3). (b) Merely checking the output of two outputs cannot distinguish
between two distinct algorithms.

traversal. The first code snippet (BFS) shares nearly identical implementation to the second code
(Iterative DFS), with a similarity score of 0.79 in AST similarity and 0.82 in token similarity, both
higher than that between the second and the third code snippets. However, the third code snippet
is substantially an implementation variant of DFS, which is supposed to be identical to the second
code in terms of design logic. Similarly, as shown in Figure[I](b), calculating the similarity of the
final outputs fails to distinguish between the insertion sort and the bubble sort algorithm, as their
final outputs are exactly the same. Both examples collectively showcase that existing metrics are not
sufficient for reflecting algorithm similarity.

To address this gap, we introduce BehaveSim, a novel similarity metric from the behavioral perspec-
tive: We define algorithm similarity as the resemblance between two problem-solving trajectories,
where a trajectory consists of the intermediate or partial solutions that are progressively generated
by an iterative algorithm. A brief example is demonstrated in Figure[T](b), where the insertion sort
and the bubble sort exhibit different problem-solving trajectories (according to the sequence of their
intermediate results), reflecting their distinction in problem-solving behavior. This behavioral view
focuses on how an algorithm solves a problem, not just its code implementation or final output.

We demonstrate two direct use cases of BehaveSim in this paper: @ Improving LLM-AAD. Recent
advances have suggested that promoting diversity is crucial for guiding the search toward high-quality
algorithms (Romera-Paredes et al. 2024; Novikov et al.| 2025} [Wang et al., [2024)). BehaveSim
enables direct control over the diversity among generated algorithms. We integrate BehaveSim in a
multi-island-based search method, demonstrating its superiority over existing state-of-the-art methods
across two AAD tasks, proving the effectiveness of maintaining behavioral diversity in algorithm
search. ® Algorithm Analysis. By analyzing generated algorithms from AAD runs, our findings
indicate that BehaveSim can identify algorithms with distinct implementations while presenting
identical behaviors, and algorithms with similar code structure may possess disparate behavior. This
reveals the potential of BehaveSim to discover novel algorithms in problem-solving behavior.

Our primary contributions are:

1. We introduce the concept of algorithm similarity, demonstrating the necessity of measuring
algorithm similarity from the perspective of its problem-solving behavior.

2. We introduce BehaveSim, a tangible way to measure behavior similarity for algorithms.
We conduct extensive empirical studies to validate its effectiveness, showing that it can
distinguish algorithms with disparate behaviors where existing code similarity metrics fail.

3. We demonstrate two direct usages of BehaveSim in LLM-AAD and algorithm analysis.
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Metric: DFG AST Token CodeBLEU Embed.

def select_next_node(
cur_node, destination_node,
unvisited, dist_mat
):
if not unvisited.size:
return destination_node
dist_to_unvisit =\
dist_mat[cur_node, unvisited]
index = np.argmax(dist_to_unvisit)
next_node = unvisited[index]
return next_node

Algorithm 2 Step=5 N Step=15 N Step=25

Figure 2: Problem-solving behaviors on the traveling salesman problem (TSP) for two algorithms
with highly similar code. The only distinction in their implementations lies in the use of argmin ()
vs. argmax (), which leads to profoundly different behaviors. Nevertheless, existing similarity
metrics still assign them a high degree of similarity, failing to reveal their behavioral distinction.

2  REVISITING CODE SIMILARITY METRIC

This section provides an overview of existing code similarity measures and performs an empirical
study to understand if they are capable of measuring behavioral similarity.

2.1 EXISTING CODE SIMILARITY MEASURE

Measuring code similarity is crucial for diverse software engineering tasks such as code evaluation
(Dong et al.,[2024), code clone detection (Roy et al., |2009; |Svajlenko et al.,[2014; Mou et al., 2015)),
and code search and reuse (Holmes & Murphy), [2005; Keivanloo et al., 2014). A common paradigm
is to directly calculate the similarity between different types of code features. Token-based methods
treat source code as natural language text. Methods such as BLEU (Papineni et al.| 2002) and
ROUGE (Lin, 2004) parse the source code into a sequence of tokens and match their similarity using
N-Gram. In particular, CtystalBLEU (Eghbali & Pradel, [2023)) and CodeBLEU (Ren et al., [2020)
improve N-Gram by emphasizing code programming language-specific tokens. Structural-based
methods calculate the similarity between the Abstract Syntax Tree (AST) structures (Gabel et al.,
2008; Ren et al., 2020) and Data Flow Graph (DFG) (Ren et al., [2020). However, these approaches
are technically incapable of capturing algorithmic similarity, since neither textual resemblance nor
structural overlap can necessarily reflect the behavior of algorithms. As illustrated in Figure[2] even
a minor modification of a function (i.e., np.argmin () v.s. np.argmax () ) leads to substantial
changes in their behavior. Nevertheless, both their DFG and AST similarities are measured as 1.0,
indicating identical structural features in the implementation. This demonstrates that such metrics
fail to capture differences in their behavior.

Other methods aim to capture features at a higher level of abstraction, such as control flow (Zhao &
Huang] 2018)), program dependency graphs (Liu et al.,[2023), and code embeddings (Maveli et al.,
2025} |Giinther et al., 2024)). These approaches typically rely on training-based models to learn code
similarity or to compare code token embeddings (Maveli et al., 2025 Zhou et al.| [2023} Zhang
et al.} 2020). However, understanding the intended behavior of the code without running it is still
challenging, as it requires a deep comprehension of code syntax and static semantic properties (Ding
et al.,|2024)). As shown in Figure |ZL the embedding model (Giinther et al., [2024)) also assigns high
similarity scores to algorithms with textually similar code, indicating that they likewise struggle to
measure underlying behavior for algorithms.

Another line of metrics considers execution-based metrics, which evaluate the similarity of execution
results, such as computational accuracy (Roziere et al.,2020) and unit tests. However, these metrics
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only compare the final outputs, which are too coarse-grained. As an example in Figure [I](b), where
both Bubble Sort and Quick Sort algorithms produce a consistent sorted array, yet their underlying
behaviors are fundamentally different.

2.2 EMPIRICAL STUDY ON MEASURING BEHAVIORAL SIMILARITY

While the preceding discussion and examples highlight
the limitations of existing metrics in reflecting behavior,
these cases are still limited. To this end, we curate a code
similarity dataset to systematically evaluate whether ex-
isting metrics can measure behavioral similarity.

Table 1: Eight theoretical combinations
of algorithm similarity. “v"” indicates the
algorithm is similar in this level, while “X”
indicates not similar.

Code similarity can be examined from three different Code Behavior Result
perspectives: code level, behavior level, and the result

level, with a total of eight theoretical combinations as ; ; ')/(
listed in Table Among them, cases where all three
. . _— . S Type-1 v X v
levels are either entirely similar or entirely dissimilar Tope-2 / X X
(i.e., the first row and the last row) are not of interest. P
. . Type-3 X v v
Moreover, the case where algorithms exhibit similar
. . . . X v X
behaviors but produce different results is considered
. . . Type-4 X X v
infeasible. Therefore, we focus on the remaining four X X X

types (Type-1 to Type-4) for constructing our dataset.

Dataset Setup. Our dataset comprises four types of algorithm pairs, constructed to decouple code
similarity, behavioral similarity, and results similarity. We detail each type with intuition and typical
examples below. Specifications for individual data pairs are demonstrated in Appx. §[A.T]

» Type 1: High Code Similarity, Different Behaviors, Similar Results. These pairs consist
of algorithms that are textually similar but exhibit different behaviors. A typical example
includes variations of matrix multiplication where subtle differences in the order of 1, J, k
lead to divergent internal processes, despite a high degree of code-level overlap.

* Type 2: High Code Similarity, Different Behaviors and Results. These algorithms are similar
in code. But a small and critical change (e.g., a parameter or a conditional statement) not
only alters their behavior but also leads to different final outputs.

* Type 3: Low Code Similarity, Similar Behaviors and Results. This category contains the
same algorithms that are implemented in diverse ways (e.g., an iterative vs. a recursive
implementation of Depth-First Search) but follow the exact same behaviors and results.

* Type 4: Low Code Similarity, Different Behaviors, Similar Results. Algorithms in this type
are distinct not only in code implementation but also in behavior. However, they produce
the same final output. For example, both Quicksort and Bubblesort yield a sorted array, but
their behavior to swap each sub-array is completely different.

Compared Code Similarity Metrics. We compare our proposed BehaveSim against five categories
of existing code similarity metrics: @ Token-level metrics, including ROUGE, BLEU, and Crystal-
BLEU; @ Structure-level metrics, such as AST similarity; @ Hybrid metrics, such as CodeBLEU,
which combines token and structural features via a weighted average; ® Embedding-based metrics,
including CodeBERTScore (Zhou et al.,[2023) and cosine similarity of learned embeddings (Giinther,
et al.,[2024); ® Execution-based metrics, which evaluate whether two algorithms yield identical
results on the same set of inputs.

Results and Analysis. We report the average similarity value on each type of data in Table |2} with
results on individual data pairs within each type listed in Appx. §[A.T} The results provide compelling
evidence for the necessity of our approach. We can conclude from the results that: Code-level
metrics (Token-based, Structure-based, and Embedding-based) consistently yield high similarity
scores for Type-1 and Type-2 data, as these pairs are designed to be similar in their implementation.
However, they fail to measure Type-3 pairs, which have identical behaviors but different code
implementations, revealing that they cannot distinguish between superficial code differences and
fundamental algorithmic behavior.
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Table 2: Average similarity on four types of data calculated by various metrics.

Method Type Method Name Type-1 Type-2 Type-3 Type-4
ROUGE 0.95 0.96 0.7 0.47
Based on Token Match BLEU 0.83 0.94 0.42 0.16
Crystal BLEU 0.97 0.99 0.68 0.51
Based on Structure AST 0.96 1.0 0.76 0.57
Combine Token Match and Structure  CodeBLEU 0.97 0.94 091 0.75

CodeBertScore 0.84 0.97 0.6 0.38

Based on Embedding CodeEmbedding 099 099 09 084
Based on Execution Results - 1.0 0.0 1.0 1.0
Similarity of their behavior (Ours) BehaveSim 0.56 0.73 1.0 0.46

Although the execution-based metric correctly identifies Type-3 and Type-4 pairs as having identical
results, this coarse-grained measure is incapable of distinguishing between Type-1 (different behav-
iors) and Type-4 (different behaviors, but same results), suggesting that simply checking for outputs
is insufficient for evaluating behavioral similarity.

In contrast, our proposed BehaveSim metric demonstrated a correct understanding of behavioral
similarity. BehaveSim reports a score of 1.0 on Type-3 data, correctly identifying algorithms with
similar behavior despite their textual differences. Simultaneously, BehaveSim assigns lower similarity
scores to the other types of data, which are less similar in behavior. These results collectively
underscore the necessity of BehaveSim in identifying behavioral similarity.

Algorithm 1: Generate Problem-solving Trajectory for an Algorithm.

Input: Initial solution sg; Candidate generation function f;

Solution update strategy f2; Maximum number of steps 7'

Output: The problem-solving trajectory 7

// Initialize the current solution and the trajectory

S < So

T < (sg) // The trajectory starts with the initial solution

fort < 1toT do
s’<—f1(8); // fl: 1Internal logic to generate new candidate (s)
s+ fa(s,8'); // £2: Strategy to update the current solution
Append sto7; // Record the new solution in the trajectory

return 7

3 MEASURING BEHAVIORAL SIMILARITY BETWEEN ALGORITHMS

Scope of Algorithms. This work focuses on a class of algorithms that solve problems iteratively.
This scope includes algorithms for sorting, search, and optimization, where the solution is generated
step by step rather than obtained in a single computation. We do not consider machine learning
models, as their training and inference dynamics fall outside the iterative problem-solving paradigm
studied in this work.

Problem-solving Trajectory. Iterative algorithms start from an initial solution and progressively
produce a sequence of intermediate or partial solutions at each step. For example, in convex
optimization, an intermediate solution may be a complete but suboptimal vector; in binary tree
traversal, a partial solution might refer to a subset of nodes that does not yet constitute a full path. We
collect these progressively generated solutions into a sequence, which we refer to as the algorithm’s
problem-solving trajectory. This trajectory reflects the behavioral characteristics of the algorithm.
We summarize the general iterative procedure in Algorithm[I} where f; represents an internal logic
for generating new candidate solution(s), and f> denotes a strategy for updating the current solution.

Pairwise Distance Between Two Solutions. We first define a distance measure between individual
solutions before measuring the distance between two trajectories. The calculation of pairwise distance
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depends on the solution types of the problem. The pairwise distance between different types of
solutions is defined as below.

* Categorical, ordinal, permutation solutions. For these types, we adopt the edit distance
deait (z,y) as the pairwise distance. To ensure comparability across problem instances, the
distance is normalized as: dei ()
edit\ T, Y

d(z,y) = di’

max

where dy,ax 1S the maximum possible edit distance for the given problem.

)

* Discrete and continuous solutions. For these cases, we employ the Euclidean distance
denc(x,y) = ||z — yl|2, normalized by a problem-specific upper bound of distance D (e.g.,
the possible maximum distance in the domain):

2 —yll2
Distance Between Trajectories. Given the pairwise distances between solutions, we define the
distance between two trajectories using the Dynamic Time Warping (DTW) metric (Seninl 2008).
DTW is particularly suitable because it aligns trajectories of potentially different lengths or with
temporal shifts, enabling it to capture local similarities of two trajectories. This property is useful for
comparing their trajectories. For example, in the Traveling Salesman Problem (TSP) (Matai et al.,
2010), two algorithms may produce similar routes with different iteration timings, and DTW can still
recognize such local behavioral similarity. Formally, given two trajectories X = (z1,...,2,,) and
Y = (y1,-..,Yn), the DTW distance is defined as:
DTW(X,Y) = i Z d(zs,5),
(i,)em
where A(m,n) denotes the set of all possible alignment paths between the two trajectories. We
define the AlgoSim score by normalizing the DTW distance by the length of the shorter trajectory:
DTW(X,Y)
xr
where | X | represents the length of the shorter trajectory. We note that alternative methods for
calculating trajectory distance are also feasible in this scenario. For example, we may calculate
the mean pairwise distance for respective solutions. Further discussion on the choices of trajectory
distances is provided in Appx. § [A.2] Moreover, we highlight two additional considerations in the
practical usage of our method: @ Average over multiple starting points. To compare the BehaveSim of
two algorithms robustly, we evaluate the algorithms on multiple starting points (i.e., multiple problem
instances) and compute the average BehaveSim as their final similarity. @ Truncate trajectories. It
is often sufficient to compare only the early stages of trajectories before convergence. This avoids
overemphasizing the convergent region, where trajectories of different algorithms may always be
similar to each other.

BehaveSim(X,Y) =1 —

3.1 VISUALIZATION

Optimizing Rosenbrock Function. We consider the continuous optimization problem of the
Rosenbrock function, where each solution is represented as a continuous vector. Figure (3| (a)
visualizes the problem-solving trajectories of different optimization algorithms (SGD (Fletcher,
1970), BFGS (Shanno, |1970), CG (Hestenes & Stiefel,|1952) on the same problem. For each pair of
algorithms, we report the similarity score averaged over two different starting points. As shown in
the left two plots (SGD vs. BFGS), the trajectories are less similar, leading to lower similarity scores.
In contrast, the right two plots (CG vs. BFGS) show more similar trajectories, which is reflected in
higher similarity scores.

TSP Problem. In the TSP, each solution (or partial solution) corresponds to a permutation of cities
that defines the visiting order. As shown in Figure 3] (b), we compare the problem-solving behavior of
three algorithms and visualize their partial solutions at steps 5, 25, and 50. The starting city is marked
with a red star. We find that the similarity between Algol and Algo3 is higher than that between
Algol and Algo2, as reflected in both similarity results and intuitive observation, indicating that our
approach can handle both continuous and permutation solution types, and it can reflect intuitive
behavioral similarity between algorithms.
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Figure 3: (a) Comparison of the problem-solving behavior for optimization algorithms. Each plot
shows the trajectory of two algorithms on the RosenBrock problem, in which each algorithm is
initialized at two different locations. Behavioral similarity is reported using both mean pairwise
distance and DTW. (b) Comparison of TSP algorithms. Each plot shows the partial solution at
different steps (5, 25, 50). The red star denotes the starting city.

4 USE CASES OF BEHAVESIM

This section demonstrates two direct use cases of BehaveSim in LLM-AAD and algorithm analysis.
BehaveSim enables direct control over the behavioral diversity among generated algorithms, which
can potentially enhance search performance. BehaveSim also provides a behavioral perspective for
algorithm analysis, which may offer new insights beyond traditional code-level analysis.

4.1 INTEGRATION IN LLM-AAD METHOD

Method. BehaveSim can integrate into existing LLM-AAD methods to enhance the behavior
diversity of the candidate algorithm. We demonstrate an example for synergistically integrating
BehaveSim with FunSearch (Romera-Paredes et al.l | 2024). The key idea is to augment the multi-
island database with a behavioral diversity management strategy, leveraging BehaveSim to cluster
algorithms with similar behaviors within the same island. Due to the space limit, the implementation
details are elaborated in Appx. §[A.4]

AAD Tasks and Compared Methods. We evaluate our approach on two AAD tasks, includ-
ing Admissible Set Problem (ASP) (Romera-Paredes et al.l [2024), Traveling Salesman Problem
(TSP) (Matati et al.,|2010). We compare our search method against three state-of-the-art LLM-AAD
methods: FunSearch (Romera-Paredes et al., [2024), EoH (Liu et al., [2024)), and ReEvo (Ye et al.,
2024). We set the maximum number of evaluations to 10,000 for ASP due to its higher complexity.
For TSP, the maximum numbers of evaluations are set to 2,000. Each candidate algorithm is evaluated
with a timeout of 50 seconds, which is sufficient to cover nearly all feasible algorithms observed in our
study. All methods interact with the recent closed-source GPT-5-Nan model via API. More detailed
settings on individual AAD tasks as well as compared methods are provided in Appx. §[A.5.1]

'"https://openai.com/index/introducing—gpt->5/
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Figure 4: Convergence of the top-10 algorithm sets produced by different search methods on three
AAD tasks. The y-axis reports the relative gap to the best-known optimum (lower is better). Markers
denote the mean over three independent runs; shaded regions indicate standard deviation.

Table 3: Performance of the top-1 and top-10 algorithms obtained by each AAD method. Metrics are
the relative gap to the best-known optimum (%), reported as mean =+ standard deviation over three
runs (lower is better). Best results are in bold; second-best are underlined.

ASP Performance TSP Performance

Top-1 Top-10 Top-1 Top-10
FunSearch 5.84.ss 615,059 25221056 27.4611.91
EoH 5~99:t0.20 6.08:‘:0,31 18.86:‘:020 19.68i0_42
ReEvo 7.0910.10 7.0910.10 20.0610.83 20-09i0.82
Ours 5.24:|:1_05 5.28:|:1_01 17.37:|:0_23 18.05:|:0.42

Results  Figure [ presents the convergence curves of the performance of top-10 algorithms obtained
by each method, with markers indicating mean performance aggregated over three independent runs
and shaded regions denoting standard deviations. Complementary results for the top-1 and top-10
performances are reported in Table |3 The performance is calculated by the relative gap to the
best-known optimum, with lower values indicating better performance.

We find that FunSearch+BehaveSim demonstrates superior performance, achieving the best perfor-
mance on both top-1 and top-10 algorithms across these tasks. We note that both EoH and ReEvo are
relatively sophisticated approaches compared to FunSearch, as they either co-evolve thought with
code or incorporate an explicit reflection mechanism. Despite their complexity, our results suggest
that simply encouraging behavioral diversity in algorithm search can yield comparable or even greater
improvements. These results indicate that coupling search methods with the behavioral similarity
improves both sample efficiency and final solution quality in LLM-AAD applications, underscoring
the effectiveness of integrating BehaveSim into LLM-AAD. Due to the space limit, please refer to
Appx. §[A.5]for ablation studies and diversity analysis.

4.2 ALGORITHM ANALYSIS

Our BehaveSim offers a novel behavioral perspective for analyzing algorithms. To illustrate its
effectiveness, we randomly sample 30 algorithms from the final database checkpoint generated by
the FunSearch+BehaveSim method in a single AAD run on the TSP problem. Figure 5] presents the
clustering results obtained with two similarity measures, BehaveSim and CodeBLEU, where a higher
branching point between two algorithms or clusters indicates a lower similarity.

We observe a significant discrepancy in their clustering results. Notably, we find that Code6 and
Code8 have consistent behavior (as indicated by the red circle in the left clustering figure, the branch
linking Code6 and CodeS is at the bottom line), yet they are distinct in code implementation (the
branch linking Code6 and Code8 in the right clustering figure is very high). By visualizing the code
of Code6 and CodeS8, we realize that the reason they are similar in behavior is that they are inherently
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def select_next_node(...):
if len(unvisited_nodes) == 1:
return unvisited_nodes[@]
distances = distance_matrix[current_node, unvisited_nodes]

dest_proximity = distance_matrix[unvisited_nodes, destination_node]

alpha, beta, epsilon = 0.7, 0.3, le-10

normalized_dist=(distances-distances.min())/(distances.max()-distances.min()+epsilon)

normalized_dest = (dest_proximity - dest_proximity.min()) /
(dest_proximity.max() - dest_proximity.min() + epsilon)

scores = (alpha + beta) / (alpha/(normalized_dist + epsilon) +
beta/(normalized_dest + epsilon))

return unvisited_nodes[np.argmin(scores)]

Two algorithms are highly similar in code, with a notable difference in final score calculation.

Clustering Using Our Behavioral Similarity

Codell  def select_next_node(...): Codel2
if lenCunvisited) == 1:
return unvisited[0]
scores = []
for node in unvisited:
proximity = 1 / dist_mat[cur_node, node]
remaining = unvisited[unvisited != node]
if len(remaining) > 0:
min_next_dist = np.min(dist_mat[node, remaining])
strategic_value = 1 / min_next_dist
else:
strategic_value = @
final_score = 0.7 * proximity + 0.3 * strategic_value
scores.append(final_score)
return unvisited[np.argmax(scores)]

Clustering Using CodeBLEU
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def select_next_node(...): Codeb

if len(unvisited_nodes) == 1:
return unvisited_nodes[0]
current_distances=distance_matrix[current_node,unvisited_nodes]
future_potentials = np.min(distance_matrix[unvisited_nodes] \
[:, np.append(unvisited_nodes, destination_node)], axis=1)
norm_current = current_distances / np.max(current_distances)
norm_future = future_potentials / np.max(future_potentials)
scores = 0.7 * norm_current + @.3 * norm_future
return unvisited_nodes[np.argmin(scores)]

This is always an all-zero array (bug code generated by the LLM).
Therefore, the algorithm always selects the nearest neighbor.

The algorithm always assigns a big weight to the current_weight, with
which the algorithm always selects the nearest neighbor in this instance.

def select_next_node(...): Code8

if len(unvisited_nodes) == 1:

return unvisited_nodes[0]
current_distances = distance_matrix[current_node, unvisited_nodes]
destination_distances = distance_matrix[destination_node, unvisited_nodes]
min_current, max_current = np.min(current_distances), np.max(current_distances)
min_dest, max_dest = np.min(destination_distances), np.max(destination_distances)
if max_current > min_current:

normalized_current = (current_distances-min_current) / (max_current-min_current)
else:; normalized_current = np.zeros_like(current_distances)
if max_dest > min_dest:

normalized_dest = (destination_distances - min_dest) / (max_dest - min_dest)
else:; normalized_dest = np.zeros_like(destination_distances)
remaining_nodes = len(unvisited_nodes)
current_weight = 0.7+0.3*(remaining_nodes/len(distance_matrix))
combined_score = current_weight * normalized_current +

(1 - current_weight) * normalized_dest
return unvisited_nodes[np.argmin(combined_score)]

Figure 5: Clustering results based on two similarity measures. (i) Codell and Codel?2 are clustered
together by CodeBLEU, yet they exhibit distinct behaviors due to differences in their logic for
computing the final score. (ii) Code6 and CodeS differ in code structure but display consistent
behaviors. This is because a bug in Code6 sets the “future_potentials” field to an all-zero
array, making its score solely determined by the distance to neighbors. Similarly, Code8 assigns a
dominant weight to the distance term, which overrides other factors. As a result, both Code6 and
Code8 essentially follow the strategy of selecting the nearest unvisited neighbor.

selecting the nearest node. We also observe Codell and Codel?2 share high CodeBLEU similarity
(shown in the black circle in the right clustering figure), while being different in their behavior. The
difference lies in their logic for calculating the final scores, which leads to the difference in behavior.

These observations highlight the contributions of analyzing algorithms from a behavioral perspective:
It may help reveal which parts of the code lead to critical changes in their behavior, and discover
similar design logic through finding similar behavior.

5 CONCLUSION

This paper introduces BehaveSim, a novel metric measuring algorithm similarity from a behavioral
perspective. Through empirical comparisons with existing metrics, we conclude that BehaveSim can
distinguish algorithms with disparate behaviors, whereas existing methods cannot. Two use cases of
BehaveSim are demonstrated, showcasing the effectiveness of maintaining behavioral diversity in the
algorithm search and its application in analyzing algorithm behaviors.

Limitations: First, our BehaveSim is currently designed for iterative algorithms and may not be
directly applicable to other types of algorithms, such as machine learning algorithms. Future work
could explore extending the concept of behavioral similarity to a wider range of algorithms. Second,
the definitions of the problem-solving trajectory and the pairwise distance between solutions need to
be customized specifically. Automating this process for arbitrary tasks remains an open challenge.
Finally, algorithm similarity and novelty can be assessed along multiple dimensions beyond problem-
solving behavior, such as computational complexity (e.g., time complexity, space complexity, etc.) or
implementation structure. These perspectives are also crucial for AAD. In this work, we focus solely
on behavioral similarity, leaving other dimensions for future exploration.
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A APPENDIX

A.1 DETAILED RESULTS ON ALGORITHM SIMILARITY DATASET

We provided similarity results on individual data pairs for each type of data. Please refer to Table[d]
Table 5] Table[6] Table[7} and Table[8]for detailed data pair specifications and results.

Table 4: Comparison of similarity metrics on Type 1 cases, where code is syntactically similar, but
execution paths are different while yielding similar final results. Case 1: Two matrix multiplication
algorithms with different loop orders (ijk vs. jik). Case 2: Two BFS binary tree traversal algorithms,
one expanding the left child first, the other expanding the right. Case 3: Two DFS binary tree traversal
algorithms, one expanding the left child first, the other expanding the right.

Method Casel Case2 Case3
ROUGE 0.89 0.98 0.98
BLEU 0.65 0.93 0.92
CrystalBLEU 0.92 0.98 1.00
AST 0.88 1.00 1.00

CodeBertScore 0.61 0.96 0.96
CodeEmbedding  0.97 0.99 1.00
CodeBLEU 0.96 0.96 0.99

BehaveSim 0.32 0.69 0.68

A.2  CHOICE OF TRAJECTORY DISTANCE MEASURES
This experiment investigates the effect of different trajectory similarity measures on assessing

behavioral similarity. We consider four measures: mean pairwise distance, Dynamic Time Warping
(DTW) distance, Edit Distance with Real Penalty (ERP), and the average cosine similarity between
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Table 5: Comparison of similarity metrics on Type 2 cases, where code is syntactically similar, but
both execution paths and final results are different. Case 1: Two graph traversal algorithms differing
only by ‘min()‘ vs. ‘max()‘ to select the next node (nearest vs. farthest). Case 2: Two online bin
packing algorithms with slight hyperparameter variations. Case 3: Another pair of online bin packing
algorithms with slight hyperparameter variations.

Method Casel Case2 Case3
ROUGE 0.95 0.97 0.97
BLEU 0.92 0.95 0.95
CrystalBLEU 0.99 0.99 0.99
AST 1.00 1.00 1.00

CodeBertScore 0.96 0.98 0.96
CodeEmbedding  0.99 1.00 0.99
CodeBLEU 0.88 0.97 0.97

BehaveSim 0.70 0.90 0.59

Table 6: Comparison of similarity metrics on Type 3 cases, where code is syntactically dissimilar, but
execution paths and final results are similar. Case 1: Recursive vs. iterative BFS. Case 2: Recursive
vs. iterative Bubble Sort. Case 3: Recursive vs. iterative Insertion Sort. Case 4: Two implementations
of Merge Sort. Case 5: Two equivalent implementations of First Fit for bin packing. Case 6: Two
equivalent implementations of Best Fit for bin packing.

Method Casel Case2 Case3 Cased Case5 Case6
ROUGE 0.74 0.61 0.57 0.51 0.88 0.91
BLEU 0.55 0.23 0.23 0.14 0.72 0.65
CrystalBLEU 0.75 0.57 0.58 0.62 0.88 0.70
AST 0.80 0.67 0.76 0.55 0.85 0.92

CodeBertScore 0.71 043 0.51 0.30 0.79 0.87
CodeEmbedding 091 0.88 0.89 0.82 0.96 0.95
CodeBLEU 0.85 0.87 0.88 0.89 0.98 0.99

BehaveSim 1.00 1.00 1.00 1.00 1.00 1.00

Table 7: Comparison of similarity metrics on Type 4 cases where code and execution paths are dis-
similar, but final results are similar (Part 1 of 2, Cases 1-9). Cases 1-14 involve pairwise comparisons
of 6 different sorting algorithms.

Method 1 2 3 4 5 6 7 8 9

ROUGE 054 048 056 049 055 048 0.65 041 0.54
BLEU 0.12 022 0.17 020 021 0.0 031 0.12 0.18
CrystalBLEU 038 0.70 056 0.68 0.62 040 0.68 037 0.51
AST 0.64 0.60 070 057 056 0.66 064 050 0.69

CodeBertScore 031 052 037 032 035 049 046 031 043
CodeEmbedding 0.65 0.83 0.88 0.65 0.86 0.83 090 0.81 0.88
CodeBLEU 074 0.79 088 073 072 0.76 0.75 0.69 0.71

BehaveSim 0.64 049 079 069 044 042 046 045 0.64

trajectory segments. Figure [0]illustrates the similarities among trajectories computed using these
methods.

We observe that while mean pairwise distance, DTW, and ERP suggest that CG and NelderMead-
Adaptive are more similar, cosine similarity instead indicates that CG and Newton-CG exhibit greater
similarity. This implies that different trajectory similarity measures capture different aspects of the
trajectories.
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Table 8: Comparison of similarity metrics on Type 4 cases (Part 2 of 2, Cases 10-18, continued).
Cases 10-14 involve sorting algorithms. Cases 15-18 involve shortest path algorithms.

Method 10 11 12 13 14 15 16 17 18

ROUGE 044 037 038 047 052 042 065 029 0.25
BLEU 0.07 0.08 009 0.14 022 0.14 038 0.07 0.05
CrystalBLEU 044 058 061 046 054 048 053 025 0.39
AST 045 039 048 065 0.64 050 073 049 042

CodeBertScore 040 039 042 025 044 028 049 030 024
CodeEmbedding 0.81 0.80 0.83 085 0.83 0.88 0.88 0.78 0.76
CodeBLEU 073 0.72 079 068 0.66 0.75 085 0.77 0.77

BehaveSim 044 051 036 078 029 037 035 0.00 0.05
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Figure 6: Demonstration of problem-solving trajectories on RosenBrock function.

Specifically, we evaluate the problem-solving trajectories of eight algorithms on the Rosenbrock
function: CG, Newton-CG, SGD, Adam, BFGS, L-BFGS-B, NelderMead, and NelderMead-Adaptive.
For each pair of algorithms, we compute their trajectory similarity using the four measures, then we
report Kendall’s Tau (KTau) and Spearman’s rank correlation coefficient to quantify their correlations.
The correlation matrix is shown in Figure[7}

The results show that mean pairwise distance, DTW, and ERP exhibit high correlations with one
another, while their correlations with cosine similarity are comparatively low. This suggests that
mean pairwise distance, DTW, and ERP can serve as interchangeable alternatives, whereas cosine
similarity primarily captures the directional consistency of trajectory segments and may therefore be
particularly relevant in certain application scenarios.

A.3 RELATED WORK ON LLM-AAD

The integration between large language models (LLMs) with serach methods has become a pravailing
paradimg in automated algorithm design (AAD) (Liu et al., 2024} |Zhang et al., 2024)), leading to
notable advances across a spectrum of AAD applications, including mathematiacal discovery (Romera+
Paredes et al., 2024), combinatorial optimization (Liu et al.| [2024f Ye et al., 2024), Bayesian
optimization (Yao et al., [2024), black-box optimization (van Stein & Back, [2024), and science
discovery (Shojaee et al.,2025).

Notably, recent advances have emphasized the importance of diversity in algorithm search (Romera-
Paredes et al.,[2024; [Novikov et al.,2025). For example, methods such as FunSearch (Romera-Paredes
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Figure 7: Rank correlations of the similarities calculated by four trajectory similarity measures.

2024)and LLM-SR (Shojaee et al.} 2025) adopt a multiple-island-based programs database to

enhance diversity. AlphaEvolve (Novikov et al[2025) combines the multiple-islands-based model
with MAP elite (Mouret & Clunel 2015) to futhur improve diversity. PlanSearch
performs search in idea and pseudo code spaces to increase diversity. Other methods incorporate
certain algorithm similarity metrics in the search process. For instance, MEoH [2025)
embeds AST distances into multi-objective algorithm search, (2024) clusters algorithms
within sub-populations according to their embedding distance. In this paper, we introduce combining
behavioral similarity with a search method to enhance the diversity and search performance.

A.4 IMPLEMENTATION DETAILS OF OUR SEARCH METHOD

Our search pipeline begins with a pre-defined “template algorithm” (detailed in Appx. § [AT7),
which provides task information for LLMs, including input/output for the designed algorithm, task
descriptions, and argument formats. To initialize the database, Nj,;; randomly generated algorithms
are clustered based on behavioral similarity and subsequently allocated to different islands. The
search process then proceeds iteratively: algorithms are selected from a database to serve as examples
for the LLM to generate new algorithms. These new algorithms are evaluated to determine their
fitness score and behavioral trajectory, and are then registered back into the appropriate island in the
database. The search terminates after a fixed number of N, evaluations.

Algorithms Database. The algorithms database preserves a population of diverse algorithms
obtained in the search phase. Inspired by prior works such as FunSearch (Romera-Paredes et al.|
[2024)) and AlphaEvolve (Novikov et al.,[2025)), our database adopts a multiple-island-based popula-
tion (Tanese}, [1989}; [Cantd-Paz et al., to promote diversity. As shown in Figure[8{a), the database
consists of a fixed size of Vjq islands, each of which groups algorithms with similar problem-solving
behaviors as measured by our BehaveSim. Within each island, algorithms are further grouped into
several clusters, where each cluster contains algorithms with an identical fitness score.

For the initialization of the database, instead of cloning a single seed algorithm to each island (like in
FunSearch), we first sample a set of N = 100 algorithms. We then perform clustering based on
their BehaveSim similarity and register these initial algorithms into the Vi islands.

Algorithm Selection. The algorithm selection phase selects two different algorithms from the
algorithm database as few-shot examples. We propose two selection strategies, S1 and S2, specifically:

 Inter-island Selection (S1): To ensure the communication of two distinct islands, S1

strategy choosees two distinct islands in the algorithms database. We subsequently obtain
an algorithm from each of them.
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Figure 8: Overview of the Proposed Algorithm Search Method. (a) We utilize a multi-island algorithm
database, where each island contains clusters of algorithms grouped by identical scores. (b) In the
selection phase, an island is chosen from the database. Within the selected island, clusters are
prioritized by score, with preference given to higher scores. Once a cluster is selected, an algorithm
is chosen, favoring shorter implementations to promote conciseness. (¢) The selected algorithms are
used to create a prompt, which guides the LLM to generate a new algorithm. (d) The newly generated
algorithm is evaluated to determine its fitness score and problem-solving trajectory. (e) Finally, the
evaluated algorithm is assigned to the island with the highest behavioral similarity and placed into
the appropriate cluster.

* Intra-island Selection (S2): As adopted in FunSearch, we randomly choose one island,
and select two distinct algorithms within it.

To balance the utility of two strategies S1 and S2, we set a hyperparameter ps;, which determines the
probability of adopting the S1 strategy in the selection phase.

As shown in Figure[§](b), the selection of an algorithm from a given island is a two-step process. First,
we select a cluster within the island, giving preference to clusters with higher fitness scores. Second,
within the chosen cluster, we select an algorithm prioritizing those with a shorter implementation
(e.g., fewer lines of code) to promote conciseness and simplicity.

Sampling and Evaluation. As depicted in Figure || once two algorithms are selected, they
are formatted into a prompt for the LLM. Following a two-shot prompting approach inspired by
FunSearch, we sort the examples by their fitness scores in ascending order. The prompt demonstrates
that the second algorithm performs better than the first, and then instructs the LLM to generate a
potentially better algorithm. We perform two queries to the LLM for each prompt to obtain two new
candidate algorithms. Due to the constraint of spaces, the elaborated prompt contents are shown in

Appx. §[A.6]

Algorithms sampled from the LLM are sent to a sandbox (implemented as a separate process isolated
from the main process) for secure evaluation, in which we record a fitness score s representing
its performance of solving the specific problem, and a trajectory ¢ indicating its problem-solving
behavior. We discard infeasible algorithms that either raise errors through evaluation or exceed
timeout restrictions during evaluation.

Register Algorithms into Algorithm Database. After evaluation, feasible algorithms are registered
in the database. A key distinction from previous methods is that we do not simply register the new
algorithm back to its source island. Instead, we use BehaveSim to place it on the most similar island

16



Under review as a conference paper at ICLR 2026

in the database. Given a newly evaluated algorithm with trajectory ¢ and a database of Ny islands,
where ¢ is the trajectory of the j-th algorithm in island I;, the target island is determined by:

1 .
target_island = argmin | — Z BehaveSim(t, t)
1€[1,Nig] |I73

t;’.eli

This equation calculates the average BehaveSim between the new algorithm’s trajectory and all
trajectories within each island and selects the island with the highest average similarity. The new
algorithm is then placed in the appropriate cluster within the target island, or a new cluster is initialized
if none exists for its fitness score.

Restarting Islands. To prevent the search from getting stuck in local optima and to manage the
database size, we periodically restart a portion of the islands. Every two hours, we identify the
Nis1/2 islands with the lowest-scoring best algorithms. We discard all algorithms within these islands
and re-initialize them by randomly importing the best algorithms from the surviving Ny /2 islands.
This mechanism ensures a continuous influx of new ideas and prevents the database from becoming
over-bloated with suboptimal solutions.

A.5 EXPERIMENT DETAILS AND ANALYSIS

A.5.1 SETTINGS FOR AAD TASKS AND METHODS

Admissible Set Problem (ASP). ASP aims to maximize the size of the set while fulfilling the
criteria below: (1) The elements of the set are vectors belonging to {0, 1, 2}™. (2) Each vector has the
same number w of non-zero elements but a unique support. (3) For any three distinct vectors, there is
a coordinate in which their three respective values are {0, 1, 2}, {0, 1, 2}, {0, 1, 2}. Following prior
works (Romera-Paredes et al., 2024), we set n = 15 and w = 10 in this work.

Partial Solutions in ASP. The objective is to design a priority function that scores candidate
vectors. At each step, the highest-scoring vector is added to the set, forming a partial solution. The
distance between two partial solutions is defined as the edit distance between their current sets.

Traveling Salesman Problem (TSP). TSP aims to find a route that minimizes the total traveling
distance for a salesman required to visit each city exactly once before returning to the starting point.
We investigate the constructive heuristic design for TSP (Matai et al.,|2010). Specifically, we adopt an
iteratively constructive framework to start from one node and iteratively select the next node until all
nodes have been selected, and return to the start node. The task is to design a heuristic for choosing
the next node to minimize the route length. We generate five TSP instances, each comprising 50
cities, for training.

Partial Solutions in TSP. At each step, the algorithm selects the next city, yielding a progressively
constructed route. A partial solution is defined as the ordered list of visited cities. The distance
between two solutions is the edit distance between their routes, with similarity aggregated across five
instances.

Settings for LLM-AAD Methods. For FunSearch, we use 10 islands for the database. Each prompt
presents two reference algorithms, and we sample two algorithms per prompt. For EoH and ReEvo,
the population size is set to 20. To ensure fairness, EoH is terminated based on the total evaluation
budget instead of the maximum number of generations. All methods are evaluated under identical
evaluation budgets and stopping criteria for a fair comparison.

A.5.2 ANALYSIS OF DIVERSITY

Motivations. A core challenge in the search process is to balance exploration across diverse solution
spaces with exploitation within promising regions. We hypothesize that our method with an optimized
algorithms database can achieve a more effective balance compared to FunSearch. To verify this, we
analyze the behavioral diversity of algorithms within and across islands. We compare our method
against FunSearch under an identical multi-island database setup, where the only difference is the
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Figure 9: Comparison of intra- and inter-island distances for FunSearch and our method. Each box
shows the distribution of intra-island distances across 10 islands per checkpoint, while the curves
track average inter-island distances. Lower distances indicate similar problem-solving behaviors;
higher distances indicate more diverse behaviors.

population management strategy. At each database checkpoint, we sample N = 50 algorithms from
each of the 10 islands as the prototypes.

Intra-island distance. This metric quantifies the behavioral coherence within an island, reflecting
local exploitation. For a set of representative trajectories Py, = {t¢1,...,ty} from an island k, the
distance is:

1
Dinea(Pr) = 5 Y (1 —BehaveSim(t;,1;)), t;,t; € P (1
(2) 1<i<j<N

Inter-island distance. This metric measures the behavioral separation between islands, indicating
global exploration. For two distinct islands k and [, the distance is:

1 .
Dinter( Py, P) = N2 Z Z (1 — BehaveSim(¢;,¢;)) 2)
t,€EP, t;€P

Figurevisualizes these metrics, where boxes show the distribution of intra-island distances over all
islands, and the curves track the average inter-island distance. We observe that:

* Our method yields consistently lower intra-island distances (red boxes vs. green). This
indicates that each island maintains a more behaviorally coherent population, enabling
focused exploitation.

» Simultaneously, our method achieves higher inter-island distances (red curves vs. green).
This demonstrates that the islands are more behaviorally distinct, promoting global explo-
ration across diverse problem-solving strategies.

These results reveal that our method demonstrates a superior balance between exploitation and
exploration, which is crucial for the robust discovery of novel, high-performing algorithms.

A.5.3 ABLATION STUDY

To better understand the contribution of each component in our framework, we conduct ablation
studies on the ASP task. We focus on two factors: (i) the probability ps; of adopting the inter-island
selection strategy (S1) versus the intra-island strategy (S2), and (ii) the effect of clustering within
islands during algorithm database construction. The results are shown in Figure 10|
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Figure 10: Ablation study on ASP. We evaluate the effect of inter-island selection probability py; and
the clustering operation in the initialization of the algorithm database.

Effect of Inter-Island Selection (ps;). We vary pg; from 0 to 0.5. When ps; = 0 (purely intra-island
selection), the method degenerates into a variant similar to FunSearch, which restricts algorithm mix-
ing to within a single island. Increasing ps; consistently improves performance, with the best results
obtained at p;; = 0.5. This demonstrates the importance of promoting cross-island communication:
algorithms from different islands capture diverse problem-solving behaviors, and combining them
enhances exploration of the search space.

Effect of Clustering. We also evaluate a variant without clustering during database initialization.
As shown in Figure [10] the absence of clustering significantly degrades performance, even when
inter-island selection is enabled (ps; = 0.5).

A.6 PROMPT CONTENT

The prompt content used in FunSearch+BehaveSim is shown below. The following prompt is used
when we are initializing the algorithm database, or when there is only one algorithm on a certain
island. where the field template_algorithm will be replaced by the template algorithm provided
in the individual AAD task.

Prompt Content with Single Example Algorithm

Please help me design a novel Python algorithm function. Here is
an example algorithm function implementation:

[Version 1]
{template_algorithm}

Please generate an improved version of the algorithm. Think
outside the box. Do not modify the function signature (i.e.,
function name, args, ...). Please generate your algorithm in
‘““'‘python ...''" block. Only output the code and do not give
additional outputs.

The following prompt is used to generate new candidate algorithms. The fields algorithm_v1 and
algorithm_v2 will be replaced by two algorithms selected from the database. The algorithms are
sorted according to their fitness score, with the lower one replacing the algorithm_v1 and the
higher one replacing algorithm_v2.
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Prompt Content with Two Example Algorithms

Please help me design an novel Python algorithm function. Here is
an example algorithm function implementation:

[Version 1]
{algorithm_wv1l}

We find that the below version outperforms [Version 1].

[Version 2]
{algorithm_v2}

Please generate an improved version of the algorithm. Think
outside the box. Do not modify the function signature (i.e.,
function name, args, ...). Please generate your algorithm in
‘“'‘python ...''' block. Only output the code and do not give
additional outputs.

A.7 TEMPLATE ALGORITHM

We initialize all methods except for EoH with identical template algorithms to ensure fairness. The
template algorithms employed in the ASP and TSP tasks are shown in the following listings.

Template Algorithm for ASP

import math
import numpy as np

def priority(el: tuple[int, ...], n: int, w: int) -> float:
"""Returns the priority with which we want to add ‘el to the
set.
Args:
el: the unique vector has the same number w of non-zero
elements.
n : length of the vector.
w : number of non-zero elements.
nmwn
return 0.

Seed Algorithm for TSP

import numpy as np

def select_next_node(
current_node: int,
destination_node: int,
unvisited_nodes: np.ndarray,
distance_matrix: np.ndarray
) —> int:
"""Design a novel algorithm to select the next node in each
step.
Args:
current_node: ID of the current node.
destination_node: ID of the destination node.
unvisited_nodes: Array of IDs of unvisited nodes.
distance_matrix: Distance matrix of nodes.
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Return:

ID of the next node to visit.
nmmwn
next_node = unvisited_nodes[0]
return next_node

B USE OF LARGE LANGUAGE MODELS

Large Language Models are employed in two ways in this work. (i) We use LLMs to aid or polish
writing in this paper. (ii) This work investigates LLM-based automated algorithm design. Therefore,
LLMs are used in the experiments.

21



	Introduction
	Revisiting Code Similarity Metric
	Existing Code Similarity Measure
	Empirical Study on Measuring Behavioral Similarity

	Measuring Behavioral Similarity between Algorithms
	Visualization

	Use Cases of BehaveSim
	Integration in LLM-AAD Method
	Algorithm Analysis

	Conclusion
	Appendix
	Detailed Results on Algorithm Similarity Dataset
	Choice of Trajectory Distance Measures
	Related Work on LLM-AAD
	Implementation Details of Our Search Method
	Experiment Details and Analysis
	Settings for AAD Tasks and Methods
	Analysis of Diversity
	Ablation Study

	Prompt Content
	Template Algorithm

	Use of Large Language Models

