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Abstract

Riemannian symmetric spaces (RSS) such as hyperbolic spaces and symmetric
positive definite (SPD) manifolds have become popular spaces for representation
learning. In this paper, we propose a novel approach for building discriminative
neural networks on Siegel spaces, a family of RSS that is largely unexplored in
machine learning tasks. For classification applications, one focus of recent works
is the construction of multiclass logistic regression (MLR) and fully-connected
(FC) layers for hyperbolic and SPD neural networks. Here we show how to
build such layers for Siegel neural networks. Our approach relies on the quotient
structure of those spaces and the notation of vector-valued distance on RSS. We
demonstrate the relevance of our approach on two applications, i.e., radar clutter
classification and node classification. Our results successfully demonstrate state-of-
the-art performance across all datasets.

1 Introduction

Deep neural networks are generally built upon the assumption that the data or features at hand exhibit
Euclidean latent structure. Unfortunately, this assumption does not hold in many applications [1, 17]
where the data or features lie on a multidimensional curved surface which is locally Euclidean. For
such applications, those models often produce unsatisfactory results because their building blocks
based on Euclidean geometry break the geometric stability principle that plays a crucial role in
geometric deep learning architectures [8]. To deal with this issue, many Riemannian neural networks
have been developed for solving a wide variety of machine learning problems [14, 17, 21, 23, 26, 36].
In this paper, we restrict our attention to discriminative neural networks with manifold-valued output.

Early works focus either on hyperbolic spaces [17, 36] or on matrix manifolds [21, 22, 23]. In
an attempt to develop a unified framework for a more general setting, the authors of [30, 31, 32]
leverage the gyro-structure of certain Riemannian manifolds. However, in the general case, their
methods cannot provide an explicit form for the point-to-hyperplane distance which is at the heart
of their proposed network building blocks [36] since the distance must be derived with respect to
a specific Riemannian metric. The work in [33] alleviates this issue by deriving a closed form for
the point-to-hyperplane distance associated with G-invariant Riemannian metrics on RSS. Although
this work is applicable to Siegel spaces, the construction of the MLR and FC layers [33] from the
derived distance is heavily based on the maximal abelian subspaces of those spaces. This can affect
the ability of the resulting networks to learn rich representations and complex decision boundaries.

In this paper, we propose a novel approach for building neural networks on Siegel spaces. Those are
among the most versatile RSS [28] and have many attractive theoretical properties. The two well-
established models of Siegel spaces, i.e., the Siegel upper space and the Siegel disk [37] generalize
the complex Poincaré upper plane and the complex Poincaré disk [19] to spaces of symmetric
complex matrices [34]. SPD manifolds associated with affine-invariant Riemannian metrics [35]
are also special cases of Siegel spaces associated with Siegel metrics [37]. Despite the potential
of Siegel spaces in capturing rich geometrical structures, they are much less studied in the context
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of deep learning compared to other RSS. Although few recent works [28, 39] use Siegel spaces as
representation spaces, they only focus on learning and visualizing embeddings in natural language
processing and graph tasks. Therefore, an effective framework for building discriminative Siegel
neural networks is still missing. In summary, our contributions are the following:

• We propose a novel formulation of MLR layers for Siegel neural networks based on a
gyrovector approach which has proven effective in building hyperbolic and SPD neural
networks [17, 30, 36]. This formulation is then extended to the product space setting.

• We show that the notion of vector-valued distance [25] which captures the complete G-
congruence invariant of pairs of points on RSS enables another formulation of MLR layers
for Siegel neural networks in a natural way. This formulation leads to more compact MLR
layers than those obtained by the first formulation.

• We introduce two variants of FC layers for Siegel neural networks.
• We build the first discriminative Siegel neural networks and evaluate them on the radar

clutter classification and node classification tasks.

2 Mathematical Background

2.1 Siegel Spaces

The Siegel upper space SHm is defined as
SHm = {x = u+ iv : u ∈ Symm, v ∈ Sym+

m},
where Symm and Sym+

m denote the space of m ×m real symmetric matrices and that of m ×m
SPD matrices, respectively.

Another model for Siegel spaces is the Siegel disk defined by

SDm =
{
w ∈ Symm,C : Im − wwH ∈ H+

m

}
,

where Im is the m × m identity matrix, Symm,C and H+
m denote the space of m × m complex

symmetric matrices and that of m×m Hermitian positive definite (HPD) matrices, respectively, and
wH is the conjugate transpose of w.

One can convert a point x ∈ SHm to SDm using the matrix Cayley transformation defined as
ϕ(x) = (x− iIm)(x+ iIm)−1.

The inverse matrix Cayley transformation that converts a point w ∈ SDm to SHm is given by

ϕ(−1)(w) = i(Im + w)(Im − w)−1.

In the following, we shall focus on the Siegel upper space model.

Quotient Structure Denote by

Sp2m =

{[
a b
c d

]
: abT = baT , cdT = dcT , adT − bcT = Im

}
the real symplectic group. This group acts transitively on SHm by the action s[x] = (ax+ b)(cx+

d)−1, where s =

[
a b
c d

]
∈ Sp2m and x ∈ SHm. The stabilizer group of x = iIm ∈ SHm is the

subgroup of symplectic orthogonal matrices SpO2m defined as:

SpO2m =

{[
a b
−b a

]
: aTa+ bT b = Im, a

T b ∈ Symm

}
= Sp2m ∩O2m,

where O2m is the group of orthogonal matrices. We thus have the identification SHm ∼=
Sp2m / SpO2m. The element in Sp2m that transforms iIm to x = u + iv ∈ SHm via the group
action is given by the map φ(·) in the following identification:

ψ : SHm → Sp2m / SpO2m

x 7→
[
v

1
2 uv−

1
2

0 v−
1
2

]
SpO2m = φ(x) SpO2m .
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Riemannian Metric The Riemannian metric (also referred to as Symplectic metric) for the Siegel
upper space model is given [37] by

ds2
x = 2 Tr(v−1dxv−1dx), (1)

where x = u+ iv ∈ SHm, and Tr(·) is the matrix trace (see Appendix 3.2 for further discussions).
The associated Riemannian distance dSH(x, y) between two points x, y ∈ SHm is given by

dSH(x, y) =

√√√√√ m∑
j=1

log2

1 + r
1
2
j

1− r
1
2
j

,
where rj , j = 1, . . . ,m are the eigenvalues of the cross-ratio R(x, y) defined as

R(x, y) = (x− y)(x− y)−1(x− y)(x− y)−1,

where x denotes the complex conjugate of x.

2.2 Riemannian Symmetric Spaces

This section briefly reviews key concepts from the theory of RSS for our work. We refer the interested
reader to Appendix 3.1 for further discussions.

A symmetric space is a connected Riemannian manifold X with a geodesic-reversing isometry at
each point. In other words, for each point x ∈ X there is an isometry σx of X such that σx(x) = x
and the differential of σx at x is multiplication by −1 [7]. Siegel spaces belong to a family of RSS
referred to as symmetric spaces of noncompact type or noncompact RSS. In the following, we refer
to noncompact RSS as RSS or symmetric spaces. Let G be a connected noncompact semisimple Lie
group with finite center, and let K be a maximal compact subgroup of G. Then a symmetric space X
consists of the left cosets

X := G/K := {x = gK|g ∈ G}.

The action of G on X = G/K is defined as g[x] = g[hK] = ghK for x = hK ∈ X , g, h ∈ G. Let
o be the origin K in X , then the map γ : gK 7→ g[o] is a diffeomorphism of G/K onto X .

Let d(., .) be the distance induced by the Riemannian metric. A geodesic ray in X is a map
δ : [0,∞) → X such that d(δ(t), δ(t′)) = |t − t′|,∀t, t′ ≥ 0. A geodesic line in X is a map
δ : R→ X such that d(δ(t), δ(t′)) = |t− t′|,∀t, t′ ∈ R.

The geometry ofX can be studied through the geometry of its maximal flats [2, 7, 19, 25]. A subspace
F ⊂ X is called a flat of dimension k (or a k-flat) if it is isometric to Rk. The subspace F is called a
maximal flat if it is not contained in any flat of bigger dimension. Since all maximal flats in X are
isometric [19], they can be simultaneously identified with a model (maximal) flat Fmod.

Flats are decomposed into Weyl chambers. A Weyl chamber in a maximal flat F with tip at x ∈ F is
a connected component of the set of points x′ ∈ F \ {x} such that the geodesic line through x and x′
is contained in a unique maximal flat [7]. Since G acts transitively on the set of Weyl chambers in
X [19], they can be simultaneously identified with a Weyl chamber ∆. The subgroup of isometries of
F which are induced by elements of G is isomorphic to a semidirect product Rr oW . W is called
the Weyl group of G and X .

Any symmetric space X is associated with a boundary at infinity ∂X constructed as the set of
equivalence classes of geodesic rays in X . Two rays are considered equivalent if their images are a
bounded distance apart [7]. The equivalence class of a geodesic ray δ is denoted by δ(∞).

3 Proposed Approach

Our proposed point-to-hyperplane distances based on the quotient structure of Siegel spaces and the
vector-valued distance are presented in Sections 3.1 and 3.2, respectively. In Section 3.3, we present
our MLR models and introduce two variants of FC layers for Siegel neural networks. In our work,
we focus on Siegel spaces but many of our results can also be stated for other RSS. To simplify the
notation, we use the letters X , G, and K (see Section 2.2) to denote the spaces associated with Siegel
spaces (see Section 2.1) unless otherwise stated.
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3.1 Point-to-hyperplane Distances Based on the Quotient Structure of Siegel Spaces

3.1.1 Hyperplanes

We start with a formulation of Euclidean hyperplanes given as

HEa,b = {x ∈ Rm : 〈x, a〉 − b = 0},

where a ∈ Rm \ {0}, b ∈ R, and 〈·, ·〉 is the Euclidean inner product. Hyperplane HEa,b can be
reformulated [17] as

HEa,b = {x ∈ Rm : 〈−p+ x, a〉 = 0}, (2)
where p ∈ Rm and 〈p, a〉 = b.

To generalize Euclidean hyperplanes to our setting, we follow the approach in [31, 32] which relies
on a binary operation, an inverse operation, and an inner product defined on the target space. Let
x = gK, y = hK ∈ X where g, h ∈ G. In the case of SHm, g = φ(x), h = φ(y) where

φ(u+ iv) =

[
v

1
2 uv−

1
2

0 v−
1
2

]
, u+ iv ∈ SHm.

Definition 3.1 ([33]). The binary operation ⊕ and inverse operation 	 are defined as
x⊕ y = ghK, 	x = g−1K.

We propose the following inner product.
Definition 3.2. The inner product 〈·, ·〉S on X is defined as

〈x, y〉S = 〈log(ggT ), log(hhT )〉,
where log(·) denotes the matrix logarithm.

Our proposed inner product is motivated by Proposition 3.3. (see Appendix 4.1 for its proof).
Proposition 3.3. The inner product 〈·, ·〉S agrees with the Riemannian distance, i.e.,

‖ 	 x⊕ y‖S ∝ dSH(x, y),

where x, y ∈ X , and the norm ‖ · ‖S is induced by the inner product 〈·, ·〉S. Furthermore, the inner
product 〈·, ·〉S is invariant under the action of K, i.e., for any k ∈ K,

〈x, y〉S = 〈k[x], k[y]〉S.

Note that both properties in Proposition 3.3 are satisfied by the inner products in [31, 33] and the
second property is also satisfied by the one in [20]. Note also that these properties hold for the more
general case in which G is the general linear group or its subgroup, and K is the group of orthogonal
matrices or its subgroup (see Appendix 4.1). We are now ready to define hyperplanes.
Definition 3.4. Let a, p ∈ X . Then hyperplanes on X are defined as

Ha,p = {x ∈ X : 〈	p⊕ x, a〉S = 0}.

Segments of the form 	p ⊕ x can be regarded as Siegel analogs of Euclidean lines. Thus, Ha,p
has a similar interpretation as a Euclidean hyperplane, i.e., the former contains a fixed point p ∈ X
and any point x ∈ X such that the segment 	p⊕ x is orthogonal to a fixed direction a. Therefore,
hyperplanes as given in Definition 3.4 are natural extensions of Euclidean hyperplanes.

3.1.2 Point-to-hyperplane Distance

The distance d̄(x,Ha,p) between a point x ∈ X and a hyperplaneHa,p given in Definition 3.4 can
be formulated [31] as

d̄(x,Ha,p) = sin(∠xpq̄)d(x, p),

where ∠xpq̄ is the gyroangle [31, 41] (see Appendix 3.4) between 	p ⊕ x and 	p ⊕ q̄, and q̄ is
computed as

q̄ = arg max
q∈Ha,p\{p}

(
〈	p⊕ q,	p⊕ x〉S

‖ 	 p⊕ q‖S‖ 	 p⊕ x‖S

)
,

By convention, sin(∠xpq) = 0 for any x, q ∈ Ha,p. Theorem 3.5 gives a closed form for the
point-to-hyperplane distance on Siegel spaces (see Appendix 4.2 for its proof).
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Theorem 3.5. Let x, a, p ∈ X and letHa,p be a hyperplane as given in Definition 3.4. Then

d̄(x,Ha,p) =
|〈log(φ(p)−1φ(x)φ(x)Tφ(p)−T ), log(φ(a)φ(a)T )〉|

‖ log(φ(a)φ(a)T )‖
,

where ‖ · ‖ denotes the Euclidean norm, and the map φ(·) is given in Section 2.1.

3.1.3 Product Spaces

We now extend the above method to the product space setting. Let X be defined as the Cartesian
product X = X1 × . . . × XL, where Xj = Gj/Kj , j = 1, . . . , L are RSS, Gj is a connected
noncompact semisimple Lie group with finite center, Kj is a maximal compact subgroup of Gj .
Here we focus on the Cartesian product of SPD and Siegel spaces. Each point x ∈ X can be
described through its coordinates x = (x1, . . . , xL), xj ∈ Xj , j = 1, . . . , L. In this setting, one
has simple decompositions of the tangent space, the exponential map, and the squared Riemannian
distance [16, 18, 40]. WhenXj is an SPD space,Gj is the general linear group andKj is the group of
orthogonal matrices (see Appendix 3.3). Thus one can define the binary operation, inverse operation,
and inner product on Xj as in Definitions 3.1 and 3.2, and the results in Proposition 3.3 still hold. By
abuse of notation, we shall use the same notations for those operations as in Section 3.1.1.
Definition 3.6. Let x = (x1, . . . , xL), y = (y1, . . . , yL) ∈ X,xj , yj ∈ Xj , j = 1, . . . , L. The
binary operation ⊕ and inverse operation 	 on X are defined as

x⊕ y = (x1 ⊕ y1, . . . , xL ⊕ yL), 	x = (	x1, . . . ,	xL).

Definition 3.7. The inner product 〈·, ·〉S on X is defined as

〈x, y〉S =

L∑
j=1

〈xj , yj〉S.

The following theorem (see Appendix 4.3 for its proof) extends Theorem 3.5 to the considered setting.
Theorem 3.8. Let Ha,p be a hyperplane as given in Definition 3.4, where a = (a1, . . . , aL), p =
(p1, . . . , pL), aj = wjKj , pj = hjKj ∈ Xj , wj , hj ∈ Gj , j = 1, . . . , L, and let x =
(x1, . . . , xL) ∈ X where xj = gjKj ∈ Xj , gj ∈ Gj . Then

d̄(x,Ha,p) =
|
∑L
j=1〈log(h−1

j gjg
T
j h
−T
j ), log(wjw

T
j )〉|√∑L

j=1 ‖ log(wjwTj )‖2
.

3.2 Point-to-hyperplane Distances Based on Vector-Valued Distances

As shown in [36], the formulation of Euclidean hyperplanes in Eq. (2) has an over-parameterization
issue, i.e., it increases the number of parameters from m+ 1 to 2m in each class. Our formulation of
hyperplanes in Section 3.1.1 (see Definition 3.4) follows that formulation and thus suffers from a
similar issue. In this section, we propose another method for constructing the point-to-hyperplane
distance which results in more compact MLR layers for Siegel neural networks.

3.2.1 Hyperplanes

We start with a similar formulation of Euclidean hyperplanes in Eq. (2) but use a different parameteri-
zation. Given p ∈ Rm and ξ ∈ ∂Rm, the Euclidean hyperplaneHEξ,p parameterized by p and ξ can
be defined [33] by

HEξ,p = {x ∈ Rm : 〈p− x, a〉 = 0} = {x ∈ Rm : 〈vec(x, p), a〉 = 0},

where ξ is the equivalence class of the geodesic ray δ(t) = t a
‖a‖ , a ∈ Rm \ {0}, and the function

vec(x, p) = p− x denotes the translation carrying x to p.

In a symmetric space, a natural analog of the function vec(·, ·) is the vector-valued distance func-
tion [24, 25]. Given two points x, y ∈ X , one computes a G-invariant distance by first transforming
(via the G-action) x and y to x′ and y′ on the model flat Fmod, respectively, and then identifying the

5



Figure 1: The distance between a point x ∈ Rm and a Euclidean hyperplaneHEξ,p.

translation modulo the action of the Weyl group carrying x′ to y′. Note that in Rm, the projections of
x and p on a maximal flat are precisely x and p, respectively. The domain of the resulting distance
function, which is a fundamental domain for the action of the Weyl group on the translations, can
be canonically identified with the Weyl chamber ∆. The above observation motivates the following
definition.
Definition 3.9. Let d∆(·, ·) : X × X → ∆ be the vector-valued distance function on X . Let
p ∈ X , ξ ∈ ∂X , and let aξ ∈ ∆ be such that ξ is the equivalent class of the geodesic ray
δ(t) = k exp(taξ)K, k ∈ K. Then hyperplaneHξ,p is defined as

Hξ,p = {x ∈ X : 〈d∆(x, p), aξ〉 = 0}.

A hyperplane given in Definition 3.9 has a clear interpretation, i.e., it contains a fixed point p ∈ X
and any point x ∈ X such that the vector-valued distance between x and p is orthogonal to a fixed
direction aξ. We note that the notion of vector-valued distance has been employed in [28, 29] for
learning and visualizing embeddings in natural language processing and graph tasks. However, none
of those works reveals the analogies discussed above for defining Siegel hyperplanes.

3.2.2 Point-to-hyperplane Distance

Let p ∈ Rm and ξ ∈ ∂Rm. The distance d̄(x,HEξ,p) between a point x ∈ Rm and hyperplaneHEξ,p
can be computed (see Fig. 1) as

d̄(x,HEξ,p) = d(x, p) cos(β),

where β is the angle between the segments [x, p] and [x, q], and q is the projection of x onHEξ,p. By
convention, d̄(x,HEξ,p) = 0,∀x ∈ HEξ,p. The above equation can be rewritten as

d̄(x,HEξ,p) = d(x, p) cos∠x(p, ξ),

where ∠x(p, ξ) denotes the angle at x between the geodesic segment [x, p] and the geodesic ray
which issues from x and is in the class ξ. We generalize the above equation to our setting.
Definition 3.10. Let p ∈ X , ξ ∈ ∂X , and letHξ,p be a hyperplane in X . Then the (signed) distance
d̄(x,Hξ,p) between a point x ∈ X and hyperplaneHξ,p is defined as

d̄(x,Hξ,p) = d(x, p) cos∠x(p, ξ).

Deriving a closed form of the point-to-hyperplane distance for applications from Definition 3.10 is
not trivial. However, one can obtain an upper bound of this distance which is given in Proposition 3.11
(see Appendix 4.4 for its proof).
Proposition 3.11. Let x, p ∈ X , ξ ∈ ∂X , and let aξ ∈ ∆ be such that ξ is the equivalent class of
the geodesic ray δ(t) = k exp(taξ)K, where k ∈ K and exp(·) is the matrix exponential. Then

d̄(x,Hξ,p) ≤ 〈d∆(x, p), aξ〉 .

Note that the point-to-hyperplane distance in Section 3.1 as well as those in [17, 31, 32] are obtained
by solving an optimization problem in Euclidean spaces. This is different from our method in this
section which estimates an upper bound of the point-to-hyperplane distance on the target spaces.
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3.3 Neural Networks on Siegel Spaces

In this section, we show how to construct MLR layers for Siegel neural networks using the tools
introduced in Sections 3.1 and 3.2. We also propose two types of FC layers which are crucial building
blocks in the context of deep neural networks.

3.3.1 MLR Layers

We follow the approach in [17, 27] for building Riemannian MLR. Given M classes, (Euclidean)
MLR computes the probability of each of the output classes as

p(y = j|x) =
exp(aTj x− bj)∑M
j=1 exp(aTj x− bj)

∝ exp(aTj x− bj), (3)

where x is an input sample, bj ∈ R, x, aj ∈ Rm, j = 1, . . . ,M , and exp(·) is the ordinary
exponential function (by abuse of notation). As shown in [27], Eq. (3) can be rewritten as

p(y = j|x) ∝ exp(sign(aTj x− bj)‖aj‖d̄(x,HEaj ,bj )),

where d̄(x,HEaj ,bj ) is the distance from point x to hyperplaneHEaj ,bj (see Section 3.1.1). In our case,
a hyperplane can be parameterized by two elements in X (see Definition 3.4), or by an element in X
and an element in ∆ (see Definition 3.9). We replace the expression in the argument of the function
exp(·) by the distances in Theorems 3.5 and 3.8 as well as the upper bound of the point-to-hyperplane
distance in Proposition 3.11. The final formulations of our MLR layers are given in Appendix 1.

3.3.2 FC Layers

The FC layer with group action (AFC) Let a+ ib ∈ SHm. Then the element in Sp2m mapping
iIm to a+ ib via the group action (see Section 2.1) is given by

φ(a+ ib) =

[
b

1
2 ab−

1
2

0 b−
1
2

]
.

Given an input x ∈ SHm, the output of the AFC layer is obtained by taking the group action
φ(a+ ib)[x]. This leads us to the following construction.
Definition 3.12. Let x = u+ iv ∈ SHm be the input of the AFC layer. Then the output of the AFC
layer is given by:

t = (b
1
2ub

1
2 + a) + ib

1
2 vb

1
2 ,

where a ∈ Symm and b ∈ Sym+
m are the parameters of the layer.

We have that b
1
2ub

1
2 + a ∈ Symm and b

1
2 vb

1
2 ∈ Sym+

m by construction. Hence, the AFC layer
always outputs points on SHm. The transformation performed by the AFC layer can be interpreted as
a translation of the input x by a+ ib (see Section 3.1.1).

The FC layer for dimensionality reduction (DFC) Based on the definition of the AFC layer,
another type of FC layers for Siegel neural networks can also be built using a method similar to [21].
Definition 3.13. Let Stm,m2 be the space of m × m2 real matrices (m > m2) with mutually
orthogonal columns of unit length (the compact Stiefel manifold), and let x = u+ iv ∈ SHm be the
input of the DFC layer. Then the output of the DFC layer is given by:

t = (bTub+ a) + ibT vb,

where a ∈ Symm2
and b ∈ Stm,m2

are the parameters of the layer.

Our FC layers generalize some FC layers in previous works. Specifically, when u = 0 and a = 0, the
imaginary part b

1
2 vb

1
2 of the output of the AFC layer corresponds to the transformation performed

by the affine-invariant translation layer [31], and the imaginary part bT vb of the output of the DFC
layer corresponds to the transformation performed by the well-known Bimap layer [21]. In [38], the
authors also proposed FC layers for neural networks on RSS. However, these layers are different
from our FC layers in some aspects. First, the former include activation functions which are not used
in the latter. Second, the former do not output points on the considered spaces, as opposed to the
latter which always output points on these spaces.
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Method
Dataset 1 Dataset 2 Dataset 3 Dataset 4

(3, 600, 3600) (4, 100, 2000) (5, 80, 1600) (6, 50, 500)

kNN [11] 76.22±0.0 93.00±0.0 76.75±0.0 73.20±0.0
SPDNet [21] 63.44±0.11 41.50±0.12 45.88±0.15 66.80±0.04
SPDNetBN [9] 62.67±0.10 45.10±0.08 45.75±0.15 68.40±0.04
MLR-AI [31] 65.61±0.15 47.40±0.12 46.12±0.17 67.60±0.04
GyroSpd++ [32] 62.24±0.16 46.20±0.14 48.25±0.19 67.80±0.08
SiegelNet-DFC-QMLRSym+

m×SHq−1
m

(Ours) 40.78±0.23 82.70±0.18 74.88±0.21 71.20±0.08
SiegelNet-AFC-QMLRSym+

m×SHq−1
m

(Ours) 80.94±0.14 96.50±0.12 91.00±0.18 85.60±0.06

Table 1: Results (mean accuracy ± standard deviation) computed over 10 runs for radar clutter
classification. The tuple (m,M, s) below each dataset indicates the signal dimension m, the number
of classes M , and the size of the dataset s.

4 Related Work

Existing MLR models on Riemannian manifolds are generally built on either SPD manifolds [13, 31]
and their low-rank counterparts [32] or hyperbolic spaces [5, 17, 27, 36]. Many of them [17, 31,
32, 36] leverage the gyro-structures of the Poincaré ball and SPD manifolds. The work in [33]
proposes MLR and FC layers for neural network on RSS which rely on the construction of Busemann
functions. The work in [38] analyzes some existing hyperbolic and SPD neural networks from the
perspective of harmonic analysis on RSS. It mainly concerns with a constructive proof of the universal
approximation property of finite neural networks on RSS. Our method in Section 3.1 is inspired by
the works in [17, 31, 32] and focuses on Siegel spaces. Our method in Sections 3.2 explores the
connection between the point-to-hyperplane distance and the vector-valued distance which has not
been investigated in previous works.

5 Experiments

This section reports results of our experiments on the radar clutter classification and node classification
tasks. For further details, please refer to Appendix 1 in which we present more experimental results
on human action recognition and Riemannian generative modeling.

5.1 Radar Clutter Classification

Radar clutter classification aims at recognizing different types of radar clutter which is the information
recorded by a radar related to seas, forests, fields, cities and other environmental elements surrounding
the radar [10]. Due to the scarcity of publicly available radar datasets for the task, our experiments
are performed using simulated radar signals1 which are commonly assumed to be stationary centered
autoregressive (AR) Gaussian time series [3, 4, 6, 10]. The AR model is given by

un +

q∑
j=1

cjun−j = vn,

where q (q > 1) is the order of the AR model, un ∈ Cm is the vector of signals at time n, cj ∈
Cm×m, j = 1, . . . , q are the prediction coefficients (AR parameters), and vn ∈ Cm is the prediction
error at time n which is assumed to be a multidimensional Gaussian random variable (detailed
descriptions of the construction of our datasets are provided in Appendix 1.1). To compute an input
data for our networks from a time series, we parameterize the time series as (p0, w1, . . . , wq−1) ∈
H+
m × SDq−1

m , where p0 ∈ H+
m and w1, . . . , wq−1 ∈ SDm (see Appendix 1.1). We note that

methods dealing with data that lie on these product spaces have already been studied in previous
works [4, 10, 11]. These representation spaces are endowed with a natural metric inspired by
information geometry [4, 10]. We discard the imaginary part of the component p0 and map it to
an SPD matrix p̃0 (see Appendix 1.1). Each component wi is converted to zi ∈ SHm using the
inverse matrix Cayley transformation (see Section 2.1). The input data is thus represented by point
(p̃0, z1, . . . , zq−1) ∈ Sym+

m×SH
q−1
m .

1https://github.com/nguyenxuanson10/synthetic-data
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Method Glass Iris Zoo
kNN [11] 29.65±0.0 31.66±0.0 33.33±0.0
LogEig classifier [28] 41.54±4.22 34.33±3.46 51.04±3.53
SiegelNet-BFC-BMLR [33] 41.12±3.86 37.26±2.53 48.12±3.08
SiegelNet-AFC-VMLR (Ours) 42.06±4.23 36.94±3.68 50.86±3.26
SiegelNet-AFC-QMLRSHm

(Ours) 45.79±4.66 38.20±3.03 53.37±4.23

Table 2: Results (mean accuracy± standard deviation) computed over 10 runs for node classification.

Method Glass Iris Zoo
SiegelNet-BMLR [33] 40.55±3.50 36.94±2.09 46.43±3.64
SiegelNet-VMLR (Ours) 41.78±4.11 36.89±3.73 50.38±3.47
SiegelNet-QMLRSHm

(Ours) 42.61±3.26 37.52±2.54 52.00±4.78

Table 3: Comparison (mean accuracy ± standard deviation) of MLR models on Siegel spaces.

Each of our networks consists of an FC (AFC or DFC) layer and a MLR layer built on the distance
in Theorem 3.8. The sizes of the parameter b in the DFC layer are set to 3 × 2, 4 × 3, 5 × 3, and
6 × 4 for the experiments on datasets 1, 2, 3, and 4, respectively. We compare our approach to
the following methods: (1) k-Nearest Neighbors (kNN) based on the Kähler distance [11] which
is among the very few works for supervised classification in the product space H+

m × SDq−1
m ; and

(2) state-of-the-art SPD neural networks [9, 21, 31, 32] which use the real parts of the covariance
matrices estimated from the time series as input data (the real parts are mapped to SPD matrices
as above). We use default settings for SPD models as in the original papers (see Appendix 1.1).
Results in Tab. 1 show that SiegelNet-AFC-QMLRSym+

m×SHq−1
m

yields the best performance in terms
of mean accuracy across all the datasets. It is able to improve upon kNN, the second best method, by
a margin of 4.71%, 3.5%, 14.25%, and 12.39% on datasets 1, 2, 3, and 4, respectively. There are
large gaps in the performance of our models, yet in most cases, our worst model still outperforms
SPD models by large margins. The results of our networks and kNN demonstrate the representation
power of Siegel spaces in the considered application. This is also confirmed by our experiments (see
Appendix 1.1) in which the performance of SiegelNet-AFC-QMLRSym+

m×SHq−1
m

drops drastically
when the coordinates associated with the product space SHq−1

m (i.e., z1, . . . , zq−1) are removed from
the input data.

5.2 Node Classification

We perform node classification experiments on Glass, Iris, and Zoo datasets from the UCI Machine
Learning Repository [15]2. Like [28], our main aim is to demonstrate the applicability of our approach
on Siegel spaces, and we do not necessarily seek state-of-the-art results for the target task.

To create input data which are graph node embeddings on Siegel spaces, we optimize a distance-based
loss function [18, 28]. Given the distances {dG(j1, j2)}Mj1,j2=1 between all pairs of connected nodes
j1 and j2, the loss function is given by:

L(x) =

M∑
j1,j2=1

∣∣∣∣∣
(
dSH(xj1 , xj2)

dG(j1, j2)

)2

− 1

∣∣∣∣∣ ,
where xj1 and xj2 are the node representations on the embedding space of nodes j1 and j2, respec-
tively, and dSH(·, ·) is the distance function given in Section 2.1. This loss function captures the
average distortion. We use the cosine distance to compute a complete input distance graph from the
original features of the data points [12, 28]. After the node embeddings3 are learned, they are used as
input features for all methods. In our experiments, the embedding dimension is set to 6.

Each of our networks consists of an AFC layer and a MLR (QMLRSHm
or VMLR) layer. The

QMLRSHm
and VMLR layers are built using the distances in Theorem 3.5 and the upper bound of

d̄(x,Hξ,p) in Proposition 3.11, respectively. We compare our networks to the following methods:

2https://archive.ics.uci.edu/datasets
3https://github.com/nguyenxuanson10/synthetic-data
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(1) kNN based on the distance function dSH(·, ·); (2) LogEig classifier [28]; and (3) SiegelNet-
BFC-BMLR which consists of an FC (BFC) layer and a MLR (BMLR) layer based on Busemann
functions [33]. Results in Tab. 2 show that SiegelNet-AFC-QMLRSHm gives the best mean accuracies
across all the datasets. In terms of mean accuracy, SiegelNet-AFC-VMLR surpasses SiegelNet-BFC-
BMLR on Glass and Zoo datasets. SiegelNet-AFC-VMLR also surpasses the LogEig classifier on
Glass and Iris datasets. Tab. 3 reports the results of SiegelNet-BFC-BMLR and our networks without
FC layers. It can be observed that our MLR models achieve higher (mean) accuracies than the BMLR
model. Specifically, SiegelNet-QMLRSHm

improves upon SiegelNet-BMLR by a margin of 2.06%,
0.58%, and 5.57% on Glass, Iris, and Zoo datasets, respectively. SiegelNet-AFC-QMLRSHm

is
able to improve by 3.17%, 0.67%, and 1.36% w.r.t. SiegelNet-QMLRSHm

on Glass, Iris, and Zoo
datasets, respectively, demonstrating the effectiveness of the AFC layer. Although SiegelNet-VMLR
is outperformed by SiegelNet-QMLRSHm , it is important to note that the model size of the former is
about two times smaller than that of the latter (see Appendix 1.2).

6 Limitation of Our Approach

A limitation of our method in Section 3.1 is that our formulation of Siegel hyperplanes suffers from
an over-parameterization issue. We alleviate this problem by reparameterizing Siegel hyperplanes as
proposed in Section 3.2. However, this new parameterization does not yield competitive performance
compared to the original one.

Our methods rely on operations on Siegel spaces which are generally expensive. Our method in
Section 5.1 suffers from high computational cost in the setting of high-dimensional radar signals.
Similarly, the loss function in Section 5.2 is based on the average distortion, for which the distances
over all pairs of points must be computed during training. Since the computation of the Riemannian
distance between two points on a Siegel space (see Section 2.1) is based on eigenvalue decomposition,
our method in Section 5.2 is computationally expensive when it comes to learning on large graphs.

Like hyperbolic and SPD spaces, Siegel spaces are spaces of non-positive curvature. Therefore, our
method in Section 5.2 does not allow isometric embeddings of graphs with a different curvature
property, e.g., non-negative curvature. Although it can still be applied in this case, the learned
node embedding may not preserve the curvature property of the embedded graph, leading to poor
performance. Furthermore, like other graph embedding approaches, low-dimensional embeddings
on Siegel spaces are not able to capture complex relationships within data which can affect the
performance of our method.

7 Conclusion

We have proposed Riemannian MLR and FC layers which enable the construction of effective Siegel
neural networks. Our MLR layers are built upon the quotient structure of Siegel spaces and the
concept of vector-valued distance on RSS. Our FC layers are based on the action of the real symplectic
group on Siegel spaces. We have provided experimental evaluations demonstrating state-of-the-art
performance of our approach in the radar clutter classification and node classification tasks.

There are several potential improvements and extensions to Siegel neural networks that could be
addressed as future work. Based on our experimental results, it can be observed that the DFC layer
gives inferior performance compared to the AFC layer. It is therefore desirable to develop alternative
layers for the DFC layer which are able to achieve better performance. Also, important building
blocks such as convolutional layers, batch normalization layers, pooling layers, and attention layers
are not studied in our work. Those are crucial to the development of effective deep Siegel neural
networks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state the paper’s scope in the abstract and introduction, and our
contributions at the end of the introduction.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 6.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We clearly state the assumptions for each theoretical result and provide all the
proofs in Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all details needed to reproduce our experimental results in the
main paper and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The datasets used for our experiments will be made available upon acceptance
of the paper. In the main paper and Appendix, we already give details on our experimental
settings and implementation which would be sufficient to reproduce our experimental results.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all details regarding our experiments in the main paper and
Appendix. Those details would be sufficient for the reader to understand and reproduce our
experimental results.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We report mean accuracy and standard deviation over several runs for all
competing methods.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the information about the computer resources used for our experi-
ments. We also provide a complexity analysis (memory and time) in Appendix 1.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We already checked the NeurIPS Code of Ethics and think that our research
conducted in the paper conform with it.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to Appendix 2.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We think this question is not applied to our paper.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite all works and provide all links to codes and data used for our
paper.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not provide any assets in our work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not deal with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not deal with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use LLMs in any process of our work (writing, coding, etc,)
Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.
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