
DEQGAN: Learning the Loss Function for PINNs with
Generative Adversarial Networks

Blake Bullwinkel * 1 Dylan Randle * 1 2 Pavlos Protopapas 1 David Sondak 1 3

Abstract
Solutions to differential equations are of sig-
nificant scientific and engineering relevance.
Physics-Informed Neural Networks (PINNs) have
emerged as a promising method for solving differ-
ential equations, but they lack a theoretical justifi-
cation for the use of any particular loss function.
This work presents Differential Equation GAN
(DEQGAN), a novel method for solving differ-
ential equations using generative adversarial net-
works to “learn the loss function” for optimizing
the neural network. Presenting results on a suite
of twelve ordinary and partial differential equa-
tions, including the nonlinear Burgers’, Allen-
Cahn, Hamilton, and modified Einstein’s gravity
equations, we show that DEQGAN1 can obtain
multiple orders of magnitude lower mean squared
errors than PINNs that use L2, L1, and Huber loss
functions. We also show that DEQGAN achieves
solution accuracies that are competitive with pop-
ular numerical methods. Finally, we present two
methods to improve the robustness of DEQGAN
to different hyperparameter settings.

1. Introduction
In fields such as physics, chemistry, biology, engineering,
and economics, differential equations are used to model
important and complex phenomena. While numerical meth-
ods for solving differential equations perform well and the
theory for their stability and convergence is well established,
the recent success of deep learning (Krizhevsky et al., 2012;
Sutskever et al., 2014; Bahdanau et al., 2015; Vaswani et al.,
2017; Mnih et al., 2013; Dabney et al., 2018; Gu et al.,

*Equal contribution 1IACS, Harvard University, Cambridge,
Massachusetts, USA 2Amazon Robotics, North Reading, Mas-
sachusetts, USA 3Dassault Systèmes Simulia Inc., Waltham, Mas-
sachusetts, USA. Correspondence to: Blake Bullwinkel <jbull-
winkel@fas.harvard.edu>.

2nd AI4Science Workshop at the 39 th International Conference on
Machine Learning (ICML), 2022. Copyright 2022 by the author(s).

1We provide our PyTorch code at
https://github.com/dylanrandle/denn

2017; Silver et al., 2018) has inspired researchers to apply
neural networks to solving differential equations, which has
given rise to the growing field of Physics-Informed Neural
Networks (PINNs) (Raissi et al., 2019; Hagge et al., 2017;
Piscopo et al., 2019; Mattheakis et al., 2019; Stevens &
Colonius, 2020; Mattheakis et al., 2020; Han et al., 2018;
Raissi, 2018; Sirignano & Spiliopoulos, 2018).

In contrast to traditional numerical methods, PINNs: pro-
vide solutions that are closed-form (Lagaris et al., 1998),
suffer less from the “curse of dimensionality” (Han et al.,
2018; Raissi, 2018; Sirignano & Spiliopoulos, 2018; Grohs
et al., 2018), provide a more accurate interpolation scheme
(Lagaris et al., 1998), and can leverage transfer learning for
fast discovery of new solutions (Flamant et al., 2020; Desai
et al., 2021). Further, PINNs do not require an underlying
grid and offer a meshless approach to solving differential
equations. This makes it possible to use trained neural net-
works, which typically have small memory footprints, to
generate solutions over arbitrary grids in a single forward
pass.

PINNs have been successfully applied to a wide range of
differential equations, but provide no theoretical justifica-
tion for the use of a particular loss function. In domains
outside of differential equations, data following a known
noise model (e.g. Gaussian) have clear justification for fit-
ting models with specific loss functions (e.g. L2). In the
case of deterministic differential equations, however, there
is no noise model and we lack an equivalent justification.

To address this gap in the theory, we propose generative
adversarial networks (GANs) (Goodfellow et al., 2014) for
solving differential equations in a fully unsupervised man-
ner. Recently, Zeng et al. (2022) showed that adaptively
modifying the loss function throughout training can lead to
improved solution accuracies. The discriminator network
of our GAN-based method, however, can be thought of as
“learning the loss function” for optimizing the generator,
thereby eliminating the need for a pre-specified loss func-
tion and providing even greater flexibility than an adaptive
loss. Beyond the context of differential equations, it has
also been shown that where classical loss functions struggle
to capture complex spatio-temporal dependencies, GANs
may be an effective alternative (Larsen et al., 2015; Ledig

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

et al., 2016; Karras et al., 2018).

Our contributions in this work are summarized as follows:

• We present Differential Equation GAN (DEQGAN), a
novel method for solving differential equations in a fully
unsupervised manner using generative adversarial net-
works.

• We highlight the advantage of “learning the loss func-
tion” with a GAN rather than using a pre-specified loss
function by showing that PINNs trained using L2, L1,
and Huber losses have variable performance and fail to
solve the modified Einstein’s gravity equations (Chan-
tada et al., 2022).

• We present results on a suite of twelve ordinary differen-
tial equations (ODEs) and partial differential equations
(PDEs), including highly nonlinear problems, showing
that our method produces solutions with multiple orders
of magnitude lower mean squared errors than PINNs
that use L2, L1, and Huber loss functions.

• We show that DEQGAN achieves solution accuracies
that are competitive with popular numerical methods, in-
cluding the fourth-order Runge-Kutta and second-order
finite difference methods.

• We present two techniques to improve the training stabil-
ity of DEQGAN that are applicable to other GAN-based
methods and PINN approaches to solving differential
equations.

2. Related Work
A variety of neural network methods have been developed
for solving differential equations. Some of these are super-
vised and learn the dynamics of real-world systems from
data (Raissi et al., 2019; Choudhary et al., 2020; Grey-
danus et al., 2019; Bertalan et al., 2019). Others are semi-
supervised, learning general solutions to a differential equa-
tion and extracting a best fit solution based on observational
data (Paticchio et al., 2020). Our work falls under the cat-
egory of unsupervised neural network methods, which are
trained in a data-free manner that depends solely on the equa-
tion residuals. Unsupervised neural networks have been ap-
plied to a wide range of ODEs (Lagaris et al., 1998; Flamant
et al., 2020; Mattheakis et al., 2020; 2021) and PDEs (Han
et al., 2018; Sirignano & Spiliopoulos, 2018; Raissi, 2018;
Stevens & Colonius, 2020), primarily use feed-forward ar-
chitectures, and require the specification of a particular loss
function computed over the equation residuals.

Goodfellow et al. (2014) introduced the idea of learning
generative models with neural networks and an adversarial
training algorithm, called generative adversarial networks

(GANs). To solve issues of GAN training instability, Ar-
jovsky et al. (2017) introduced a formulation of GANs based
on the Wasserstein distance, and Gulrajani et al. (2017)
added a gradient penalty to approximately enforce a Lips-
chitz constraint on the discriminator. Miyato et al. (2018)
introduced an alternative method for enforcing the Lips-
chitz constraint with a spectral normalization technique that
outperforms the former method on some problems.

Further work has applied GANs to differential equations
with solution data used for supervision. Yang et al. (2018)
apply GANs to stochastic differential equations by using
“snapshots” of ground-truth data for semi-supervised train-
ing. A project by students at Stanford (Subramanian et al.,
2018) employed GANs to perform “turbulence enrichment”
of solution data in a manner akin to that of super-resolution
for images proposed by Ledig et al. (2016). Our work distin-
guishes itself from other GAN-based approaches for solving
differential equations by being fully unsupervised, and re-
moving the dependence on using supervised training data
(i.e. solutions of the equation).

3. Background
3.1. Unsupervised Neural Networks for Differential

Equations

Early work by Dissanayake & Phan-Thien (1994) proposed
solving initial value problems in an unsupervised manner
with neural networks. In this work, we extend their approach
to handle spatial domains and multidimensional problems.
In particular, we consider general differential equations of
the form

F

(
t,x,Ψ(t,x),

dΨ

dt
,
d2Ψ

dt2
,

. . . ,∆Ψ,∆2Ψ, . . .

)
= 0

(1)

where Ψ(t,x) is the desired solution, dΨ/dt and d2Ψ/dt2

represent the first and second time derivatives, ∆Ψ and ∆2Ψ
are the first and second spatial derivatives, and the system
is subject to certain initial and boundary conditions. The
learning problem can then be formulated as minimizing the
sum of squared residuals (i.e., the squared L2 loss) of the
above equation

min
θ

∑
(t,x)∈D

F

(
t,x,Ψθ(t,x),

dΨθ

dt
,
d2Ψθ

dt2
,

. . . ,∆Ψθ,∆
2Ψθ, . . .

)2
(2)

where Ψθ is a neural network parameterized by θ, D is
the domain of the problem, and derivatives are computed
with automatic differentiation. This allows backpropagation

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

(Hecht-Nielsen, 1992) to be used to train the neural network
to satisfy the differential equation. We apply this formal-
ism to both initial and boundary value problems, including
multidimensional problems, as detailed in Appendix A.2.

3.2. Generative Adversarial Networks

Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are generative models that use two neural networks
to induce a generative distribution p(x) of the data by for-
mulating the inference problem as a two-player, zero-sum
game.

The generative model first samples a latent random variable
z ∼ N (0, 1), which is used as input into the generator G
(e.g., a neural network). A discriminator D is trained to
classify whether its input was sampled from the generator
(i.e., “fake”) or from a reference data set (i.e., “real”).

Informally, the process of training GANs proceeds by opti-
mizing a minimax objective over the generator and discrim-
inator such that the generator attempts to trick the discrim-
inator to classify “fake” samples as “real”. Formally, one
optimizes

min
G

max
D

V (D,G) = min
G

max
D

Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[1− logD(G(z))]
(3)

where x ∼ pdata(x) denotes samples from the empirical
data distribution, and pz ∼ N (0, 1) samples in latent space
(Goodfellow et al., 2014). In practice, the optimization
alternates between gradient ascent and descent steps for D
and G respectively.

3.2.1. TWO TIME-SCALE UPDATE RULE

Heusel et al. (2017) proposed the two time-scale update
rule (TTUR) for training GANs, a method in which the
discriminator and generator are trained with separate learn-
ing rates. They showed that their method led to improved
performance and proved that, in some cases, TTUR ensures
convergence to a stable local Nash equilibrium. One intu-
ition for TTUR comes from the potentially different loss
surfaces of the discriminator and generator. Allowing learn-
ing rates to be tuned to a particular loss surface can enable
more efficient gradient-based optimization. We make use of
TTUR throughout this paper as an instrumental lever when
tuning GANs to reach desired performance.

3.2.2. SPECTRAL NORMALIZATION

Proposed by Miyato et al. (2018), Spectrally Normalized
GAN (SN-GAN) is a method for controlling exploding dis-
criminator gradients when optimizing Equation 3 that lever-
ages a novel weight normalization technique. The key idea
is to control the Lipschitz constant of the discriminator by

constraining the spectral norm of each layer in the discrimi-
nator. Specifically, the authors propose dividing the weight
matrices Wi of each layer i by their spectral norm σ(Wi)

WSN,i =
Wi

σ(Wi)
, (4)

where
σ(Wi) = max

∥hi∥2≤1
∥Wihi∥2 (5)

and hi denotes the input to layer i. The authors prove that
this normalization technique bounds the Lipschitz constant
of the discriminator above by 1, thus strictly enforcing the
1-Lipshcitz constraint on the discriminator. In our experi-
ments, adopting the SN-GAN formulation led to even better
performance than WGAN-GP (Arjovsky et al., 2017; Gulra-
jani et al., 2017).

3.3. Guaranteeing Initial & Boundary Conditions

Lagaris et al. (1998) showed that it is possible to exactly
satisfy initial and boundary conditions by adjusting the
output of the neural network. For example, consider ad-
justing the neural network output Ψθ(t,x) to satisfy the
initial condition Ψθ(t,x)

∣∣
t=t0

= x0. We can apply the
re-parameterization

Ψ̃θ(t,x) = x0 + tΨθ(t,x) (6)

which exactly satisfies the initial condition. Mattheakis et al.
(2020) proposed an augmented re-parameterization

Ψ̃θ(t,x) = Φ (Ψθ(t,x))

= x0 +
(
1− e−(t−t0)

)
Ψθ(t,x)

(7)

that further improved training convergence. Intuitively,
Equation 7 adjusts the output of the neural network Ψθ(t,x)
to be exactly x0 when t = t0, and decays this con-
straint exponentially in t. Chen et al. (2020) provide re-
parameterizations to satisfy a range of other conditions, in-
cluding Dirichlet and Neumann boundary conditions, which
we employ in our experiments and detail in Appendix A.2.

3.4. Residual Connections

He et al. (2015) showed that the addition of residual connec-
tions improves deep neural network training. We employ
residual connections in our networks, as they allow gradi-
ents to flow more easily through the models and thereby
reduce numerical instability. Residual connections augment
a typical activation with the identity operation.

y = F(x,Wi) + x (8)

where F is the activation function, x is the input to the unit,
Wi are the weights and y is the output of the unit. This
acts as a “skip connection”, allowing inputs and gradients
to forego the nonlinear component.

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

Figure 1. Schematic representation of DEQGAN. We pass input points x to a generator G, which produces candidate solutions Ψθ . Then
we analytically adjust these solutions according to Φ and apply automatic differentiation to construct LHS from the differential equation
F . RHS and LHS are passed to a discriminator D, which is trained to classify them as “real” and “fake,” respectively.

4. Differential Equation GAN
In this section, we present our method, Differential Equation
GAN (DEQGAN), which trains a GAN to solve differential
equations in a fully unsupervised manner. To do this, we
rearrange the differential equation so that the left-hand side
(LHS) contains all the terms which depend on the generator
(e.g. Ψ, dΨ/dt, ∆Ψ, etc.) and the right-hand side (RHS)
contains only constants (e.g. zero).

During training, we sample points from the domain (t,x) ∼
D and use them as input to a generator G(x), which pro-
duces candidate solutions Ψθ. We sample points from a
noisy grid that spans D, which we found reduced interpo-
lation error in comparison to sampling points from a fixed
grid. We then adjust Ψθ for initial or boundary conditions to
obtain the re-parameterized output Ψ̃θ, construct the LHS
from the differential equation F using automatic differentia-
tion

LHS = F

(
t,x, Ψ̃θ(t,x),

dΨ̃θ

dt
,
d2Ψ̃θ

dt2
,

. . . ,∆Ψ̃θ,∆
2Ψ̃θ, . . .

) (9)

and set RHS to zero. Note that in our procedure, we add
Gaussian noise to RHS, which we found improves training
of the discriminator, as described in Section 4.1. Training
proceeds in a manner similar to that of traditional GANs. We
update the weights of the generator G and the discriminator
D according to the gradients

gG = ∇θg

1

m

m∑
i=1

log
(
1−D

(
LHS(i)

))
, (10)

gD = ∇θd

1

m

m∑
i=1

[
logD

(
RHS(i)

)
+ log

(
1−D

(
LHS(i)

))] (11)

where LHS(i) is the output of G
(
x(i)

)
after adjusting for

initial or boundary conditions and constructing the LHS
from F . Note that we perform stochastic gradient descent
for G (gradient steps ∝ −gG), and stochastic gradient as-
cent for D (gradient steps ∝ gD). We provide a schematic
representation of DEQGAN in Figure 1 and detail the train-
ing steps in Algorithm 1.

Algorithm 1 DEQGAN
Input: Differential equation F , generator G(·; θg), dis-
criminator D(·; θd), grid x of m points with spacing ∆x,
perturbation precision τ , re-parameterization function Φ,
total steps N , learning rates ηG, ηD, Adam optimizer
parameters βG1, βG2, βD1, βD2

for i = 1 to N do
for j = 1 to m do

Perturb j-th point in mesh x
(j)
s = x(j) + ϵ,

ϵ ∼ N (0, ∆x
τ)

Forward pass Ψθ = G(x
(j)
s)

Analytic re-parameterization Ψ̃θ = Φ(Ψθ)
Compute LHS(j) (Equation 9)
Set RHS(j) = 0

end for
Compute gradients gG, gD (Equation 10 & 11)
Update generator
θg ← Adam(θg,−gG, ηG, βG1, βG2)
Update discriminator
θd ← Adam(θd, gD, ηD, βD1, βD2)

end for
Output: G

Informally, our algorithm trains a GAN by setting the “fake”
component to be the LHS (in our formulation, the residuals
of the equation) and the “real” component to be the RHS
of the equation. This results in a GAN that learns to produce
solutions that make LHS indistinguishable from RHS,
thereby approximately solving the differential equation.

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

Table 1. Summary of Experiments

Key Equation Class Order Linear

EXP ẋ(t) + x(t) = 0 ODE 1st Yes
SHO ẍ(t) + x(t) = 0 ODE 2nd Yes
NLO ẍ(t) + 2βẋ(t) + ω2x(t) + ϕx(t)2 + ϵx(t)3 = 0 ODE 2nd No

COO

{
ẋ(t) = −ty
ẏ(t) = tx

ODE 1st Yes

SIR


Ṡ(t) = −βI(t)S(t)/N
İ(t) = βI(t)S(t)/N − γI(t)

Ṙ(t) = γI(t)

ODE 1st No

HAM


ẋ(t) = px

ẏ(t) = py

ṗx(t) = −Vx

ṗy(t) = −Vy

ODE 1st No

EIN



ẋ(z) = 1
z+1 (−Ω− 2v + x+ 4y + xv + x2)

ẏ(z) = −1
z+1 (vxΓ(r)− xy + 4y − 2yv)

v̇(z) = −v
z+1 (xΓ(r) + 4− 2v)

Ω̇(z) = Ω
z+1 (−1 + 2v + x)

ṙ(z) = −rΓ(r)x
z+1

ODE 1st No

POS uxx + uyy = 2x(y − 1)(y − 2x+ xy + 2)ex−y PDE 2nd Yes
HEA ut = κuxx PDE 2nd Yes
WAV utt = c2uxx PDE 2nd Yes
BUR ut + uux − νuxx = 0 PDE 2nd No
ACA ut − ϵuxx − u+ u3 = 0 PDE 2nd No

4.1. Instance Noise

While GANs have achieved state of the art results on a wide
range of generative modeling tasks, they are often difficult
to train. As a result, much recent work on GANs has been
dedicated to improving their sensitivity to hyperparame-
ters and training stability (Salimans et al., 2016; Gulrajani
et al., 2017; Sønderby et al., 2016; Arjovsky & Bottou,
2017; Karnewar et al., 2019; Kodali et al., 2017; Arjovsky
et al., 2017; Berthelot et al., 2017; Mirza & Osindero, 2014;
Miyato et al., 2018). In our experiments, we found that
DEQGAN could also be sensitive to hyperparameters, such
as the Adam optimizer parameters shown in Algorithm 1.

Sønderby et al. (2016) note that the convergence of GANs
relies on the existence of a unique optimal discriminator
that separates the distribution of “fake” samples pfake pro-
duced by the generator, and the distribution of the “real”
data pdata. In practice, however, there may be many near-
optimal discriminators that pass very different gradients to
the generator, depending on their initialization. Arjovsky &
Bottou (2017) proved that this problem will arise when there
is insufficient overlap between the supports of pfake and pdata.
In the DEQGAN training algorithm, setting RHS = 0 con-
strains pdata to the Dirac delta function δ(0), and therefore

the distribution of “real” data to a zero-dimensional mani-
fold. This makes it unlikely that pfake and pdata will share
support in a high-dimensional space.

The solution proposed by (Sønderby et al., 2016; Arjovsky
& Bottou, 2017) is to add “instance noise” to pfake and pdata
to encourage their overlap. This amounts to adding noise
to the LHS and the RHS, respectively, at each iteration
of Algorithm 1. Because this makes the discriminator’s
job more difficult, we add Gaussian noise with standard
deviation equal to the difference between the generator and
discriminator losses, Lg and Ld, i.e.

ε = N (0, σ2), σ = ReLU(Lg − Ld) (12)

As the generator and discriminator reach equilibrium, Equa-
tion 12 will naturally converge to zero. We use the ReLU
function because when Ld > Lg, the generator is already
able to fool the discriminator, suggesting that additional
noise should not be used. In Section 5.2, we conduct an
ablation study and find that this improves the ability of
DEQGAN to produce accurate solutions across a range of
hyperparameter settings.

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

Table 2. Experimental Results

Mean Squared Error

Key L1 L2 Huber DEQGAN Numerical

EXP 3 · 10−3 2 · 10−5 1 · 10−5 3 · 10−16 2 · 10−14 (RK4)
SHO 9 · 10−6 1 · 10−10 6 · 10−11 4 · 10−13 1 · 10−11 (RK4)
NLO 6 · 10−2 1 · 10−9 9 · 10−10 1 · 10−12 4 · 10−11 (RK4)
COO 5 · 10−1 1 · 10−7 1 · 10−7 1 · 10−8 2 · 10−9 (RK4)
SIR 7 · 10−5 3 · 10−9 1 · 10−9 1 · 10−10 5 · 10−13 (RK4)
HAM 1 · 10−1 2 · 10−7 9 · 10−8 1 · 10−10 7 · 10−14 (RK4)
EIN 6 · 10−2 2 · 10−2 1 · 10−2 3 · 10−4 4 · 10−7 (RK4)
POS 4 · 10−6 1 · 10−10 6 · 10−11 4 · 10−13 3 · 10−10 (FD)
HEA 6 · 10−3 3 · 10−5 1 · 10−5 6 · 10−10 4 · 10−7 (FD)
WAV 6 · 10−2 4 · 10−5 6 · 10−4 1 · 10−8 7 · 10−5 (FD)
BUR 4 · 10−3 2 · 10−4 1 · 10−4 4 · 10−6 1 · 10−3 (FD)
ACA 6 · 10−2 9 · 10−3 4 · 10−3 3 · 10−3 2 · 10−4 (FD)

4.2. Residual Monitoring

One of the attractive properties of Algorithm 1 is that the
“fake” LHS vector of equation residuals gives a direct mea-
sure of solution quality at each training iteration. We ob-
serve that when DEQGAN training becomes unstable, the
LHS tends to oscillate wildly, while it decreases steadily
throughout training for successful runs. By monitoring the
L1 norm of the LHS in the first 25% of training iterations,
we are able to easily detect and terminate poor-performing
runs if the variance of these values exceeds some threshold.
We provide further details on this method in Appendix A.6
and experimentally demonstrate that it is able to distinguish
between DEQGAN runs that end in high and low mean
squared errors in Section 5.2.

Table 3. Ablation Study Results

% Runs with High MSE (≥ 10−5)

Original Residual Monitoring

Original 12.4 0.4
Instance Noise 8.0 0.0

5. Experiments
We conducted experiments on a suite of twelve differen-
tial equations (Table 1), including highly nonlinear PDEs
and systems of ODEs, comparing DEQGAN to classical
unsupervised PINNs that use (squared) L2, L1, and Huber
(1964) loss functions. We also report results obtained by
the fourth-order Runge-Kutta (RK4) and second-order finite
difference (FD) numerical methods for initial and bound-
ary value problems, respectively. The numerical solutions
were computed over meshes containing the same number of
points that were used to train the neural network methods.

Details for each experiment, including exact problem spec-
ifications and hyperparameters, are provided in Appendix
A.2 and A.4.

5.1. DEQGAN vs. Classical PINNs

We report the mean squared error of the solution obtained
by each method, computed against known solutions ob-
tained either analytically or with high-quality numerical
solvers (Virtanen et al., 2020; Brunton & Kutz, 2019). We
added residual connections between neighboring layers of
all models, applied spectral normalization to the discrimi-
nator, added instance noise to the pfake and preal, and used
residual monitoring to terminate poor-performing runs in
the first 25% of training iterations. Results were obtained
with hyperparameters tuned for DEQGAN. In Appendix
A.5, we tuned each classical PINN method for comparison,
but did not observe a significant difference.

Table 2 reports the lowest mean squared error obtained by
each method across ten different model weight initializa-
tions. We see that DEQGAN obtains lower mean squared
errors than classical PINNs that use L2, L1, and Huber loss
functions for all twelve problems, often by several orders of
magnitude. DEQGAN also achieves solution accuracies that
are competitive with the RK4 and FD numerical methods.

Figure 2 plots the mean squared error vs. training iteration
for six challenging equations and highlights multiple advan-
tages of using DEQGAN over a pre-specified loss function
(equivalent plots for the other six problems are provided in
Appendix A.3). In particular, there is considerable varia-
tion in the quality of the solutions obtained by the classical
PINNs. For example, while Huber performs better than
L2 on the Allen-Cahn PDE, it is outperformed by L2 on
the wave equation. Furthermore, Figure 2(f) shows that the
L2, L1 and Huber losses all fail to converge to an accurate

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

(a) Damped Nonlinear Oscillator (NLO) (b) Hamilton System (HAM)

(c) Wave Equation (WAV) (d) Burgers’ Equation (BUR)

(e) Allen-Cahn Equation (ACA) (f) Modified Einstein’s Gravity System (EIN)

Figure 2. Mean squared errors vs. iteration for DEQGAN, L2, L1, and Huber loss for six equations. We perform ten randomized trials and
plot the median (bold) and (25, 75) percentile range (shaded). We smooth the values using a simple moving average with window size 50.

solution to the modified Einstein’s gravity equations. Al-
though this system has previously been solved using PINNs,
the networks relied on a custom loss function that incorpo-
rated equation-specific parameters (Chantada et al., 2022).
DEQGAN, however, is able to automatically learn a loss
function that optimizes the generator to produce accurate
solutions. DEQGAN solutions to four example equations
are visualized in Figure 3, and similar plots for the other
experiments are provided in Appendix A.2.

5.2. DEQGAN Training Stability: Ablation Study

In our experiments, we used instance noise to adaptively
improve the training convergence of DEQGAN and em-
ployed residual monitoring to terminate poor-performing
runs early. To quantify the increased robustness offered by

these techniques, we performed an ablation study compar-
ing the percentage of high MSE (≥ 10−5) runs obtained
by 500 randomized DEQGAN runs on the exponential de-
cay equation. This experimental setup is detailed further in
Appendix A.7.

Table 3 compares the percentage of high MSE runs with
and without instance noise and residual monitoring. We
see that adding instance noise decreased the percentage of
runs with high MSE and that residual monitoring is highly
effective at filtering out poor performing runs. When used
together, these techniques eliminated all runs with MSE
≥ 10−5. These results agree with previous works, which
have found that instance noise can improve the convergence
of other GAN training algorithms (Sønderby et al., 2016; Ar-
jovsky & Bottou, 2017). Further, they suggest that residual

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

(a) Damped Nonlinear Oscillator (NLO) (b) Coupled Oscillators (COO)

(c) Burgers’ Equation (BUR) (d) Allen-Cahn Equation (ACA)

Figure 3. Visualization of DEQGAN solutions to four equations. The top left figure plots the phase space of the DEQGAN solutions
(solid color lines) obtained for three initial conditions on the NLO problem, which is solved as a second-order ODE, and known solutions
computed by a numerical integrator (dashed black lines). The figure to the right plots the DEQGAN solution to the COO problem, which
is solved as a system of two first-order ODEs. The second row shows contour plots of the solutions obtained by DEQGAN on the BUR
and ACA problems, both nonlinear PDEs.

monitoring provides a useful performance metric that could
be applied to other PINN methods for solving differential
equations.

6. Conclusion
PINNs offer a promising approach to solving differential
equations and to applying deep learning methods to chal-
lenging problems in science and engineering. Classical
PINNs, however, lack a theoretical justification for the use
of any particular loss function. In this work, we presented
Differential Equation GAN (DEQGAN), a novel method
that leverages GAN-based adversarial training to “learn” the
loss function for solving differential equations with PINNs.
We demonstrated the advantage of this approach in com-
parison to using classical PINNs with pre-specified loss
functions, which showed varied performance and failed to
converge to an accurate solution to the modified Einstein’s
gravity equations. In general, we demonstrated that our
method can obtain multiple orders of magnitude lower mean

squared errors than PINNs that use L2, L1 and Huber loss
functions, including on highly nonlinear PDEs and systems
of ODEs. Further, we showed that DEQGAN achieves so-
lution accuracies that are competitive with the fourth-order
Runge Kutta and second-order finite difference numerical
methods. Finally, we found that instance noise improved
training stability and that residual monitoring provides a
useful performance metric for PINNs. While the equation
residuals are a good measure of solution quality, PINNs lack
the error bounds enjoyed by numerical methods. Formal-
izing these bounds is an interesting avenue for future work
and would enable PINNs to be more safely deployed in real-
world applications. Further, while our results evidence the
advantage of “learning the loss function” with a GAN, un-
derstanding exactly what the discriminator learns is an open
problem. Post-hoc explainability methods, for example,
might provide useful tools for characterizing the differences
between classical losses and the loss functions learned by
DEQGAN, which could deepen our understanding of PINN
optimization more generally.

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

References
Arjovsky, M. and Bottou, L. Towards principled methods

for training generative adversarial networks. In 5th Inter-
national Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=Hk4_qw5xe.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gan,
2017.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate.
In 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-
9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1409.0473.

Bertalan, T., Dietrich, F., Mezić , I., and Kevrekidis, I. G.
On learning hamiltonian systems from data. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 29
(12):121107, dec 2019. doi: 10.1063/1.5128231. URL
https://doi.org/10.1063%2F1.5128231.

Berthelot, D., Schumm, T., and Metz, L. BEGAN: bound-
ary equilibrium generative adversarial networks. CoRR,
abs/1703.10717, 2017. URL http://arxiv.org/
abs/1703.10717.

Brunton, S. L. and Kutz, J. N. Data-Driven Science and
Engineering: Machine Learning, Dynamical Systems,
and Control. Cambridge University Press, 2019. doi:
10.1017/9781108380690.

Chantada, A. T., Landau, S. J., Protopapas, P., Scóccola,
C. G., and Garraffo, C. Cosmological informed neu-
ral networks to solve the background dynamics of the
universe, 2022. URL https://arxiv.org/abs/
2205.02945.

Chen, F., Sondak, D., Protopapas, P., Mattheakis, M., Liu,
S., Agarwal, D., and Di Giovanni, M. Neurodiffeq: A
python package for solving differential equations with
neural networks. Journal of Open Source Software, 5(46):
1931, 2020.

Choudhary, A., Lindner, J., Holliday, E., Miller, S., Sinha,
S., and Ditto, W. Physics-enhanced neural networks learn
order and chaos. Physical Review E, 101, 06 2020. doi:
10.1103/PhysRevE.101.062207.

Dabney, W., Rowland, M., Bellemare, M. G., and Munos,
R. Distributional reinforcement learning with quantile re-
gression. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Desai, S., Mattheakis, M., Joy, H., Protopapas, P., and
Roberts, S. One-shot transfer learning of physics-
informed neural networks, 2021. URL https://
arxiv.org/abs/2110.11286.

Dissanayake, M. and Phan-Thien, N. Neural-network-based
approximations for solving partial differential equations.
Communications in Numerical Methods in Engineering,
10(3):195–201, 1994.

Flamant, C., Protopapas, P., and Sondak, D. Solving dif-
ferential equations using neural network solution bun-
dles, 2020. URL https://arxiv.org/abs/2006.
14372.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks, 2014.

Greydanus, S., Dzamba, M., and Yosinski, J. Hamiltonian
neural networks, 2019. URL https://arxiv.org/
abs/1906.01563.

Grohs, P., Hornung, F., Jentzen, A., and von Wurstemberger,
P. A proof that artificial neural networks overcome the
curse of dimensionality in the numerical approximation
of black-scholes partial differential equations, 2018. URL
https://arxiv.org/abs/1809.02362.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. Deep rein-
forcement learning for robotic manipulation with asyn-
chronous off-policy updates. In 2017 IEEE international
conference on robotics and automation (ICRA), pp. 3389–
3396. IEEE, 2017.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. Improved training of wasserstein gans,
2017.

Hagge, T., Stinis, P., Yeung, E., and Tartakovsky, A. M.
Solving differential equations with unknown constitutive
relations as recurrent neural networks, 2017.

Han, J., Jentzen, A., and E, W. Solving high-dimensional
partial differential equations using deep learning. Pro-
ceedings of the National Academy of Sciences, 115(34):
8505–8510, 2018. ISSN 0027-8424. doi: 10.1073/
pnas.1718942115. URL https://www.pnas.org/
content/115/34/8505.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.
URL http://arxiv.org/abs/1512.03385.

Hecht-Nielsen, R. Theory of the backpropagation neural
network. In Neural networks for perception, pp. 65–93.
Elsevier, 1992.

https://openreview.net/forum?id=Hk4_qw5xe
https://openreview.net/forum?id=Hk4_qw5xe
http://arxiv.org/abs/1409.0473
https://doi.org/10.1063%2F1.5128231
http://arxiv.org/abs/1703.10717
http://arxiv.org/abs/1703.10717
https://arxiv.org/abs/2205.02945
https://arxiv.org/abs/2205.02945
https://arxiv.org/abs/2110.11286
https://arxiv.org/abs/2110.11286
https://arxiv.org/abs/2006.14372
https://arxiv.org/abs/2006.14372
https://arxiv.org/abs/1906.01563
https://arxiv.org/abs/1906.01563
https://arxiv.org/abs/1809.02362
https://www.pnas.org/content/115/34/8505
https://www.pnas.org/content/115/34/8505
http://arxiv.org/abs/1512.03385

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B.,
Klambauer, G., and Hochreiter, S. Gans trained by
a two time-scale update rule converge to a nash equi-
librium. CoRR, abs/1706.08500, 2017. URL http:
//arxiv.org/abs/1706.08500.

Huber, P. J. Robust estimation of a location parameter.
Ann. Math. Statist., 35(1):73–101, 03 1964. doi: 10.
1214/aoms/1177703732. URL https://doi.org/
10.1214/aoms/1177703732.

Karnewar, A., Wang, O., and Iyengar, R. S. MSG-GAN:
multi-scale gradient GAN for stable image synthesis.
CoRR, abs/1903.06048, 2019. URL http://arxiv.
org/abs/1903.06048.

Karras, T., Laine, S., and Aila, T. A style-based generator
architecture for generative adversarial networks. CoRR,
abs/1812.04948, 2018. URL http://arxiv.org/
abs/1812.04948.

Kodali, N., Abernethy, J. D., Hays, J., and Kira, Z. How
to train your DRAGAN. CoRR, abs/1705.07215, 2017.
URL http://arxiv.org/abs/1705.07215.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks. In
Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger,
K. Q. (eds.), Advances in Neural Information Process-
ing Systems 25, pp. 1097–1105. Curran Associates, Inc.,
2012.

Lagaris, I., Likas, A., and Fotiadis, D. Artificial neu-
ral networks for solving ordinary and partial differ-
ential equations. IEEE Transactions on Neural Net-
works, 9(5):987–1000, 1998. ISSN 1045-9227. doi:
10.1109/72.712178. URL http://dx.doi.org/10.
1109/72.712178.

Larsen, A. B. L., Sønderby, S. K., and Winther, O. Autoen-
coding beyond pixels using a learned similarity metric.
CoRR, abs/1512.09300, 2015. URL http://arxiv.
org/abs/1512.09300.

Ledig, C., Theis, L., Huszar, F., Caballero, J., Aitken, A. P.,
Tejani, A., Totz, J., Wang, Z., and Shi, W. Photo-realistic
single image super-resolution using a generative adver-
sarial network. CoRR, abs/1609.04802, 2016. URL
http://arxiv.org/abs/1609.04802.

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonza-
lez, J. E., and Stoica, I. Tune: A research platform
for distributed model selection and training. CoRR,
abs/1807.05118, 2018. URL http://arxiv.org/
abs/1807.05118.

Mattheakis, M., Protopapas, P., Sondak, D., Giovanni,
M. D., and Kaxiras, E. Physical symmetries embedded
in neural networks, 2019.

Mattheakis, M., Sondak, D., Dogra, A. S., and Protopapas,
P. Hamiltonian neural networks for solving differential
equations, 2020.

Mattheakis, M., Joy, H., and Protopapas, P. Unsuper-
vised reservoir computing for solving ordinary differ-
ential equations, 2021. URL https://arxiv.org/
abs/2108.11417.

Mirza, M. and Osindero, S. Conditional generative adver-
sarial nets, 2014.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y.
Spectral normalization for generative adversarial net-
works. CoRR, abs/1802.05957, 2018. URL http:
//arxiv.org/abs/1802.05957.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Paticchio, A., Scarlatti, T., Mattheakis, M., Protopapas, P.,
and Brambilla, M. Semi-supervised neural networks
solve an inverse problem for modeling covid-19 spread.
2020. doi: 10.48550/ARXIV.2010.05074. URL https:
//arxiv.org/abs/2010.05074.

Piscopo, M. L., Spannowsky, M., and Waite, P. Solving
differential equations with neural networks: Applications
to the calculation of cosmological phase transitions. Phys.
Rev. D, 100:016002, Jul 2019. doi: 10.1103/PhysRevD.
100.016002. URL https://link.aps.org/doi/
10.1103/PhysRevD.100.016002.

Raissi, M. Forward-backward stochastic neural networks:
Deep learning of high-dimensional partial differential
equations. arXiv preprint arXiv:1804.07010, 2018.

Raissi, M., Perdikaris, P., and Karniadakis, G. Physics-
informed neural networks: A deep learning frame-
work for solving forward and inverse problems involv-
ing nonlinear partial differential equations. Journal of
Computational Physics, 378:686 – 707, 2019. ISSN
0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.10.
045. URL http://www.sciencedirect.com/
science/article/pii/S0021999118307125.

Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A.,
Diercks, A., Garnavich, P. M., Gilliland, R. L., Hogan,
C. J., Jha, S., Kirshner, R. P., Leibundgut, B., Phillips,
M. M., Reiss, D., Schmidt, B. P., Schommer, R. A., Smith,
R. C., Spyromilio, J., Stubbs, C., Suntzeff, N. B., and
Tonry, J. Observational evidence from supernovae for
an accelerating universe and a cosmological constant.
The Astronomical Journal, 116(3):1009–1038, sep 1998.
doi: 10.1086/300499. URL https://doi.org/10.
1086%2F300499.

http://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1706.08500
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1214/aoms/1177703732
http://arxiv.org/abs/1903.06048
http://arxiv.org/abs/1903.06048
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1705.07215
http://dx.doi.org/10.1109/72.712178
http://dx.doi.org/10.1109/72.712178
http://arxiv.org/abs/1512.09300
http://arxiv.org/abs/1512.09300
http://arxiv.org/abs/1609.04802
http://arxiv.org/abs/1807.05118
http://arxiv.org/abs/1807.05118
https://arxiv.org/abs/2108.11417
https://arxiv.org/abs/2108.11417
http://arxiv.org/abs/1802.05957
http://arxiv.org/abs/1802.05957
https://arxiv.org/abs/2010.05074
https://arxiv.org/abs/2010.05074
https://link.aps.org/doi/10.1103/PhysRevD.100.016002
https://link.aps.org/doi/10.1103/PhysRevD.100.016002
http://www.sciencedirect.com/science/article/pii/S0021999118307125
http://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/10.1086%2F300499
https://doi.org/10.1086%2F300499

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. Improved techniques for
training gans. CoRR, abs/1606.03498, 2016. URL http:
//arxiv.org/abs/1606.03498.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Sci-
ence, 362(6419):1140–1144, 2018.

Sirignano, J. and Spiliopoulos, K. Dgm: A deep learning al-
gorithm for solving partial differential equations. Journal
of Computational Physics, 375:1339–1364, 2018.

Sønderby, C. K., Caballero, J., Theis, L., Shi, W., and
Huszár, F. Amortised MAP inference for image super-
resolution. CoRR, abs/1610.04490, 2016. URL http:
//arxiv.org/abs/1610.04490.

Stevens, B. and Colonius, T. Finitenet: A fully convolutional
lstm network architecture for time-dependent partial dif-
ferential equations, 2020.

Subramanian, A., Wong, M.-L., Borker, R., and
Nimmagadda, S. Turbulence enrichment using
generative adversarial networks, 2018. URL
http://cs230.stanford.edu/files_
winter_2018/projects/6939636.pdf.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence
to sequence learning with neural networks. CoRR,
abs/1409.3215, 2014. URL http://arxiv.org/
abs/1409.3215.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C., Po-
lat, İ., Feng, Y., Moore, E. W., Vand erPlas, J., Laxalde,
D., Perktold, J., Cimrman, R., Henriksen, I., Quintero,
E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H.,
Pedregosa, F., van Mulbregt, P., and Contributors, S. . .
SciPy 1.0: Fundamental Algorithms for Scientific Com-
puting in Python. Nature Methods, 17:261–272, 2020.
doi: https://doi.org/10.1038/s41592-019-0686-2.

Wang, C., Horby, P. W., Hayden, F. G., and Gao, G. F. A
novel coronavirus outbreak of global health concern. The
Lancet, 395(10223):470–473, 2020.

Yang, L., Zhang, D., and Karniadakis, G. E. Physics-
informed generative adversarial networks for stochastic
differential equations, 2018.

Zeng, S., Zhang, Z., and Zou, Q. Adaptive deep
neural networks methods for high-dimensional
partial differential equations. Journal of Compu-
tational Physics, pp. 111232, 2022. ISSN 0021-
9991. doi: https://doi.org/10.1016/j.jcp.2022.111232.
URL https://www.sciencedirect.com/
science/article/pii/S0021999122002947.

http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1610.04490
http://arxiv.org/abs/1610.04490
http://cs230.stanford.edu/files_winter_2018/projects/6939636.pdf
http://cs230.stanford.edu/files_winter_2018/projects/6939636.pdf
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1706.03762
https://www.sciencedirect.com/science/article/pii/S0021999122002947
https://www.sciencedirect.com/science/article/pii/S0021999122002947

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

A. Appendix
A.1. Classical Loss Functions

A plot of the various classical loss functions is provided in Figure 4.

Figure 4. Comparison of L2, L1, and Huber loss functions. The Huber loss is equal to L2 for e ≤ 1 and to L1 for e > 1.

A.2. Description of Experiments

A.2.1. EXPONENTIAL DECAY (EXP)

Consider a model for population decay x(t) given by the exponential differential equation

ẋ(t) + x(t) = 0, (13)

with x(0) = 1 and t ∈ [0, 10]. The ground truth solution x(t) = e−t can be obtained analytically, which we use to calculate
the mean squared error of the predicted solution.

To set up the problem for DEQGAN, we define LHS = ẋ+ x and RHS = 0. Figure 5 presents the results from training
DEQGAN on this equation.

Figure 5. Visualization of DEQGAN training for the exponential decay problem. The left-most figure plots the mean squared error vs.
iteration. To the right, we plot the value of the generator (G) and discriminator (D) losses at each iteration. Right of this we plot the
prediction of the generator x̂ and the true analytic solution x as functions of time t. The right-most figure plots the absolute value of the
residual of the predicted solution F̂ .

A.2.2. SIMPLE HARMONIC OSCILLATOR (SHO)

Consider the motion of an oscillating body x(t), which can be modeled by the simple harmonic oscillator differential
equation

ẍ(t) + x(t) = 0, (14)

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

with x(0) = 0, ẋ(0) = 1, and t ∈ [0, 2π]. This differential equation can be solved analytically and has an exact solution
x(t) = sin t.

Here we set LHS = ẍ+ x and RHS = 0. Figure 6 plots the results of training DEQGAN on this problem.

Figure 6. Visualization of DEQGAN training for the simple harmonic oscillator problem.

A.2.3. DAMPED NONLINEAR OSCILLATOR (NLO)

Further increasing the complexity of the differential equations being considered, consider a less idealized oscillating body
subject to additional forces, whose motion x(t) we can described by the nonlinear oscillator differential equation

ẍ(t) + 2βẋ(t) + ω2x(t) + ϕx(t)2 + ϵx(t)3 = 0, (15)

with β = 0.1, ω = 1, ϕ = 1, ϵ = 0.1, x(0) = 0, ẋ(0) = 0.5, and t ∈ [0, 4π]. This equation does not admit an analytical
solution. Instead, we use the high-quality solver provided by SciPy’s solve_ivp (Virtanen et al., 2020).

We set LHS = ẍ+2βẋ+ω2x+ϕx2+ϵx3 = 0 and RHS = 0. Figure 7 plots the results obtained from training DEQGAN
on this equation.

Figure 7. Visualization of DEQGAN training for the nonlinear oscillator problem.

A.2.4. COUPLED OSCILLATORS (COO)

Consider the system of ordinary differential equations given by

{
ẋ(t) = −ty
ẏ(t) = tx

(16)

with x(0) = 1, y(0) = 0, and t ∈ [0, 2π]. This equation has an exact analytical solution given by

solve_ivp

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks


x = cos

(
t2

2

)
y = sin

(
t2

2

) (17)

Here we set

LHS =

[
dx

dt
+ ty,

dy

dt
− xy

]T
(18)

and RHS = [0, 0]
T . Figure 8 plots the result of training DEQGAN on this problem.

Figure 8. Visualization of DEQGAN training for the coupled oscillators system of equations. In the third figure, we plot the predictions of
the generator x̂, ŷ and the true analytic solutions x, y as functions of time t. The right-most figure plots the absolute value of the residuals
of the predicted solution F̂j for each equation j.

A.2.5. SIR EPIDEMIOLOGICAL MODEL (SIR)

Given the ongoing pandemic of novel coronavirus (COVID-19) (Wang et al., 2020), we consider an epidemiological model
of infectious disease spread given by a system of ordinary differential equations. Specifically, consider the Susceptible S(t),
Infected I(t), Recovered R(t) model for the spread of an infectious disease over time t. The model is defined by a system
of three ordinary differential equations


Ṡ(t) = −β IS

N

İ(t) = β
IS

N
− γI

Ṙ(t) = γI

(19)

where β = 3, γ = 1 are given constants related to the infectiousness of the disease, N = S + I +R is the (constant) total
population, S(0) = 0.99, I(0) = 0.01, R(0) = 0, and t ∈ [0, 10]. As this system has no analytical solution, we use SciPy’s
solve_ivp solver (Virtanen et al., 2020) to obtain ground truth solutions.

We set LHS to be the vector

LHS =

[
dS

dt
+ β

IS

N
,
dI

dt
− β

IS

N
+ γI,

dR

dt
− γI

]T
(20)

and RHS = [0, 0, 0]
T . We present the results of training DEQGAN to solve this system of differential equations in Figure

9.

solve_ivp

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

Figure 9. Visualization of DEQGAN training for the SIR system of equations.

A.2.6. HAMILTONIAN SYSTEM (HAM)

Consider a particle moving through a potential V , the trajectory of which is described by the system of ordinary differential
equations


ẋ(t) = px

ẏ(t) = py

ṗx(t) = −Vx

ṗy(t) = −Vy

(21)

with x(0) = 0, y(0) = 0.3, px(0) = 1, py(0) = 0, and t ∈ [0, 1]. Vx and Vy are the x and y derivatives of the potential V ,
which we construct by summing ten random bivariate Gaussians

V = − A

2πσ2

10∑
i=1

exp

(
− 1

2σ2
||x(t)− µi||22

)
(22)

where x(t) = [x(t), y(t)]
T
, A = 0.1, σ = 0.1, and each µi is sampled from [0, 1]× [0, 1] uniformly at random. As before,

we use SciPy to obtain ground-truth solutions.

We set LHS to be the vector

LHS =

[
dx

dt
− px,

dy

dt
− py,

dpx
dt

+ Vx,
dpy
dt

+ Vy

]T
(23)

and RHS = [0, 0, 0, 0]
T . We present the results of training DEQGAN to solve this system of differential equations in

Figure 10.

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

Figure 10. Visualization of DEQGAN training for the Hamiltonian system of equations. For ease of visualization, we plot the predictions
and residuals for each equation separately.

A.2.7. MODIFIED EINSTEIN’S GRAVITY SYSTEM (EIN)

The most challenging system of ODEs we consider comes from Einstein’s theory of general relativity. Following observations
from type Ia supernovae in 1998 (Riess et al., 1998), several cosmological models have been proposed to explain the
accelerated expansion of the universe. Some of these rely on the existence of unobserved forms such as dark energy and
dark matter, while others directly modify Einstein’s theory.

Hu-Sawicky f(R) gravity is one model that falls under this category. Chantada et al. (2022) show how the following system
of five ODEs can be derived from the modified field equations implied by this model.



ẋ(z) =
1

z + 1
(−Ω− 2v + x+ 4y + xv + x2)

ẏ(z) =
−1
z + 1

(vxΓ(r)− xy + 4y − 2yv)

v̇(z) =
−v
z + 1

(xΓ(r) + 4− 2v)

Ω̇(z) =
Ω

z + 1
(−1 + 2v + x)

ṙ(z) =
−rΓ(r)x
z + 1

(24)

where

Γ(r) =
(r + b)

[
(r + b)2 − 2b

]
4br

. (25)

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

The initial conditions are given by 

x0 = 0

y0 =
Ωm,0(1 + z0)

3 + 2(1− Ωm,0)

2 [Ωm,0(1 + z0)3 + (1− Ωm,0)]

v0 =
Ωm,0(1 + z0)

3 + 4(1− Ωm,0)

2 [Ωm,0(1 + z0)3 + (1− Ωm,0)]

Ω0 =
Ωm,0(1 + z0)

3

Ωm,0(1 + z0)3 + (1− Ωm,0)

r0 =
Ωm,0(1 + z0)

3 + 4(1− Ωm,0)

(1− Ωm,0)

(26)

where z0 = 10,Ωm,0 = 0.15, b = 5 and we solve the system for z ∈ [0, z0]. While the physical interpretation of the various
parameters is beyond the scope of this paper, we note that Equations 24 and 25 exhibit a high degree of non-linearity.
Ground truth solutions are again obtained using SciPy, and the results obtained by DEQGAN are shown in Figure 11.

Figure 11. Visualization of DEQGAN training for the modified Einstein’s gravity system of equations. For ease of visualization, we plot
the predictions and residuals for each equation separately.

A.2.8. POISSON EQUATION (POS)

Consider the Poisson partial differential equation (PDE) given by

∂2u

∂x2
+

∂2u

∂y2
= 2x(y − 1)(y − 2x+ xy + 2)ex−y (27)

where (x, y) ∈ [0, 1]× [0, 1]. The equation is subject to Dirichlet boundary conditions on the edges of the unit square

u(x, y)

∣∣∣∣
x=0

= 0

u(x, y)

∣∣∣∣
x=1

= 0

u(x, y)

∣∣∣∣
y=0

= 0

u(x, y)

∣∣∣∣
y=1

= 0.

(28)

The analytical solution is
u(x, y) = x(1− x)y(1− y)ex−y. (29)

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

We use the two-dimensional Dirichlet boundary adjustment formulae provided in Chen et al. (2020). To set up the problem
for DEQGAN we let

LHS =
∂2u

∂x2
+

∂2u

∂y2
− 2x(y − 1)(y − 2x+ xy + 2)ex−y (30)

and RHS = 0. We present the results of training DEQGAN on this problem in Figure 12.

Figure 12. Visualization of DEQGAN training for the Poisson equation. In the third figure, we plot the prediction of the generator û as a
function of position (x, y). The right-most figure plots the absolute value of the residual F̂ , as a function of (x, y).

A.2.9. HEAT EQUATION (HEA)

We consider the time-dependent heat (diffusion) equation given by

∂u

∂t
= κ

∂2u

∂x2
(31)

where κ = 1 and (x, t) ∈ [0, 1]× [0, 0.2]. The equation is subject to an initial condition and Dirichlet boundary conditions
given by

u(x, y)

∣∣∣∣
t=0

= sin(πx)

u(x, y)

∣∣∣∣
x=0

= 0

u(x, y)

∣∣∣∣
x=1

= 0

(32)

and has an analytical solution
u(x, y) = e−κπ2t sin(πx). (33)

The results obtained by DEQGAN on this problem are shown in Figure 13.

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

Figure 13. Visualization of DEQGAN training for the heat equation. In the third figure, we plot the prediction of the generator û as a
function of position (x, t). The right-most figure plots the absolute value of the residual F̂ , as a function of (x, t).

A.2.10. WAVE EQUATION (WAV)

Consider the time-dependent wave equation given by

∂2u

∂t2
= c2

∂2u

∂x2
(34)

where c = 1 and (x, t) ∈ [0, 1]× [0, 1]. This formulation is very similar to the heat equation but involves a second order
derivative with respect to time. We subject the equation to the same initial condition and boundary conditions as 32 but
require an added Neumann condition due to the equation’s second time derivative.

u(x, y)

∣∣∣∣
t=0

= sin(πx)

ut(x, y)

∣∣∣∣
t=0

= 0

u(x, y)

∣∣∣∣
x=0

= 0

u(x, y)

∣∣∣∣
x=1

= 0

(35)

This yields the analytical solution
u(x, y) = cos(cπt) sin(πx). (36)

The results of training DEQGAN on this problem are shown in Figure 13.

Figure 14. Visualization of DEQGAN training for the wave equation.

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

A.2.11. BUGERS’ EQUATION (BUR)

Moving to non-linear PDEs, we consider the viscous Burgers’ equation given by

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(37)

where ν = 0.001 and (x, t) ∈ [−5, 5]× [0, 2.5]. To specify the equation, we use the following initial condition and Dirichlet
boundary conditions:

u(x, y)

∣∣∣∣
t=0

=
1

cosh(x)

u(x, y)

∣∣∣∣
x=−5

= 0

u(x, y)

∣∣∣∣
x=5

= 0

(38)

As this equation has no analytical solution, we use the fast Fourier transform (FFT) method (Brunton & Kutz, 2019) to
obtain ground truth solutions. The results obtained by DEQGAN are summarized by Figure 15. As time progresses, we see
the formation of a “shock wave” that becomes increasingly steep but remains smooth due to the regularizing diffusive term
νuxx.

Figure 15. Visualization of DEQGAN training for Bugers’ equation. The plots in the second row show “snapshots” of the 1D wave at
different points along the time domain.

A.2.12. ALLEN-CAHN EQUATION (ACA)

Finally, we consider the Allen-Cahn PDE, a well-known reaction-diffusion equation given by

∂u

∂t
− ϵ

∂2u

∂x2
− u+ u3 = 0 (39)

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

where ϵ = 0.001 and (x, t) ∈ [0, 2π] × [0, 5]. We subject the equation to an initial condition and Dirichlet boundary
conditions given by

u(x, y)

∣∣∣∣
t=0

=
1

4
sin(x)

u(x, y)

∣∣∣∣
x=0

= 0

u(x, y)

∣∣∣∣
x=2π

= 0

(40)

The results are shown in Figure 16. We see that as time progresses, the sinusoidal initial condition transforms into a square
wave, becoming very steep at the turning points of the solution.

Figure 16. Visualization of DEQGAN training for the Allen-Cahn equation. The plots in the second row show “snapshots” of the 1D wave
at different points along the time domain.

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

A.3. Method Comparison for Other Experiments

Figure 17 visualizes the training results achieved by DEQGAN and the alternative unsupervised neural networks that use
L2, L1 and Huber loss functions for the remaining six problems.

(a) Exponential Decay (EXP) (b) Simple Harmonic Oscillator (SHO)

(c) Coupled Oscillators (COO) (d) SIR Disease Model (SIR)

(e) Poisson Equation (POS) (f) Heat Equation (HEA)

Figure 17. Mean squared errors vs. iteration for DEQGAN, L2, L1, and Huber loss for various equations. We perform ten randomized
trials and plot the median (bold) and (25, 75) percentile range (shaded). We smooth the values using a simple moving average with
window size 50.

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

A.4. DEQGAN Hyperparameters

We used Ray Tune (Liaw et al., 2018) to tune DEQGAN hyperparameters for each differential equation. Tables 4 and 5
summarize these hyperparameter values for the ODE and PDE problems, respectively. The experiments and hyperparameter
tuning conducted for this research totaled 13,272 hours of compute performed on Intel Cascade Lake CPU cores belonging
to an internal cluster.

Table 4. Hyperparameter Settings for DEQGAN (ODEs)
HYPERPARAMETER EXP SHO NLO COO SIR HAM EIN

NUM. ITERATIONS 1200 12000 12000 70000 20000 12500 50000
NUM. GRID POINTS 100 400 400 800 800 400 1000
G UNITS/LAYER 40 40 40 40 50 40 40
G NUM. LAYERS 2 3 4 5 4 5 4
D UNITS/LAYER 20 50 20 40 50 50 30
D NUM. LAYERS 4 3 2 2 4 2 2
ACTIVATIONS tanh tanh tanh tanh tanh tanh tanh
G LEARNING RATE 0.094 0.005 0.010 0.004 0.006 0.017 0.011
D LEARNING RATE 0.012 0.0004 0.021 0.082 0.012 0.019 0.006
G β1 (ADAM) 0.491 0.363 0.225 0.603 0.278 0.252 0.202
G β2 (ADAM) 0.319 0.752 0.331 0.614 0.777 0.931 0.975
D β1 (ADAM) 0.542 0.584 0.362 0.412 0.018 0.105 0.154
D β2 (ADAM) 0.264 0.453 0.551 0.110 0.908 0.869 0.797
EXPONENTIAL LR DECAY (γ) 0.978 0.980 0.999 0.992 0.9996 0.985 0.996
DECAY STEP SIZE 3 19 15 16 11 13 17

Table 5. Hyperparameter Settings for DEQGAN (PDEs)
HYPERPARAMETER POS HEA WAV BUR ACA

NUM. ITERATIONS 3000 2000 5000 3000 10000
NUM. GRID POINTS 32× 32 32× 32 32× 32 64× 64 64× 64
G UNITS/LAYER 50 40 50 50 50
G NUM. LAYERS 4 4 4 3 2
D UNITS/LAYER 30 30 50 20 30
D NUM. LAYERS 2 2 2 5 2
ACTIVATIONS tanh tanh tanh tanh tanh
G LEARNING RATE 0.019 0.010 0.012 0.012 0.020
D LEARNING RATE 0.021 0.001 0.088 0.005 0.013
G β1 (ADAM) 0.139 0.230 0.295 0.185 0.436
G β2 (ADAM) 0.369 0.657 0.358 0.594 0.910
D β1 (ADAM) 0.745 0.120 0.575 0.093 0.484
D β2 (ADAM) 0.759 0.251 0.133 0.184 0.297
EXPONENTIAL LR DECAY (γ) 0.957 0.950 0.953 0.954 0.983
DECAY STEP SIZE 3 10 18 20 15

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

A.5. Non-GAN Hyperparameter Tuning

Table 6 presents the minimum mean squared errors obtained after tuning hyperparameters for the alternative unsupervised
neural network methods that use L1, L2 and Huber loss functions.

Table 6. Experimental Results With Non-GAN Hyperparameter Tuning

Mean Squared Error

Key L1 L2 Huber DEQGAN Traditional

EXP 1 · 10−4 4 · 10−8 2 · 10−8 3 · 10−16 2 · 10−14 (RK4)
SHO 1 · 10−5 1 · 10−9 5 · 10−10 4 · 10−13 1 · 10−11 (RK4)
NLO 1 · 10−4 3 · 10−10 1 · 10−10 1 · 10−12 4 · 10−11 (RK4)
COO 5 · 10−1 2 · 10−7 3 · 10−7 1 · 10−8 2 · 10−9 (RK4)
SIR 9 · 10−6 1 · 10−10 1 · 10−10 1 · 10−10 5 · 10−13 (RK4)
HAM 4 · 10−5 1 · 10−8 6 · 10−9 1 · 10−10 7 · 10−14 (RK4)
EIN 5 · 10−2 2 · 10−2 1 · 10−2 4 · 10−4 4 · 10−7 (RK4)
POS 9 · 10−6 1 · 10−10 1 · 10−10 4 · 10−13 3 · 10−10 (FD)
HEA 1 · 10−4 4 · 10−8 2 · 10−8 6 · 10−10 4 · 10−7 (FD)
WAV 4 · 10−4 6 · 10−7 2 · 10−7 1 · 10−8 7 · 10−5 (FD)
BUR 1 · 10−3 1 · 10−4 9 · 10−5 4 · 10−6 1 · 10−3 (FD)
ACA 5 · 10−2 1 · 10−2 3 · 10−3 5 · 10−3 2 · 10−4 (FD)

A.6. Residual Monitoring

Figure 18 shows several examples of how we detect bad training runs by monitoring the variance of the L1 norm of the
LHS (vector of equation residuals) in the first 25% of training iterations. Because the LHS may oscillate initially even for
successful runs, we use a patience window in the first 15% of iterations. In all three equations below, we terminate runs if
the variance of the residual L1 norm over 20 iterations exceeds 0.01.

Figure 18. Equation residuals in the first 25% of training runs that ended with high (red) and low (blue) mean squared error for the
exponential decay (EXP), non-linear oscillator (NLO) and coupled oscillators (COO) problems. The black crosses show the point at
which the high MSE runs were terminated early.

A.7. Ablation Study

To quantify the increased robustness offered by instance noise and residual monitoring, we performed an ablation study
comparing the percentage of high MSE (≥ 10−5) runs obtained by 500 randomized DEQGAN runs for the exponential
decay equation with and without using these techniques.

Figure 19 plots the results of these 500 DEQGAN experiments with instance noise added. For each experiment, we
uniformly selected a random seed controlling model weight initialization as an integer from the range [0, 9], as well as

DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial Networks

separate learning rates for the discriminator and generator in the range [0.01, 0.1]. We then recorded the final mean squared
error after running DEQGAN training for 1000 iterations. The red lines represent runs which would be terminated early by
our residual monitoring method, while the blue lines represent those which would be run to completion.

Figure 19 shows that the large majority of hyperparameter settings tested with the addition of instance noise resulted in low
mean squared errors. Further, residual monitoring was able to detect all runs with MSE ≥ 10−5 within the first 25% of
training iterations. Approximately half of the MSE runs in [10−8, 10−5] would be terminated, while 96% of runs with MSE
≤ 10−8 would be run to completion.

Figure 19. Parallel plot showing the results of 500 DEQGAN experiments on the exponential decay equation with instance noise. The red
lines represent runs which would be terminated early by monitoring the variance of the equation residuals in the first 25% of training
iterations. The mean squared error is plotted on a log10 scale.

