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ABSTRACT

Generating independent samples from a Boltzmann distribution is a highly relevant
problem in scientific research, e.g. in molecular dynamics, where one has initial
access to the underlying energy function but not to samples from the Boltzmann
distribution. We address this problem by learning the energies of the convolution
of the Boltzmann distribution with Gaussian noise. These energies are then used
to generate independent samples through a denoising diffusion approach. The
resulting method, NOISED ENERGY MATCHING (NEM), has lower variance and
only slightly higher cost than previous related works. We also improve NEM
through a novel bootstrapping technique called BOOTSTRAP NEM (BNEM) that
further reduces variance while only slightly increasing bias. Experiments on a
collection of problems demonstrate that NEM can outperform previous methods
while being more robust and that BNEM further improves on NEM.

1 INTRODUCTION

A fundamental problem in probabilistic modeling and physical systems simulation is to sample
from a target Boltzmann distribution firee: < exp(—E(x)) specified by an energy function £(x).
A prominent example is protein folding, which can be formalized as sampling from a Boltzmann
distribution (Sledz & Caflisch, 2018) with energies determined by inter-atomic forces (Case et al.,
2021). Having access to efficient methods for solving the sampling problem could significantly speed
up drug discovery (Zheng et al., 2024) and material design (Komanduri et al., 2000).

However, existing methods for sampling from Boltzmann densities have problems scaling to high
dimensions and/or are very time-consuming. As an alternative, Akhound-Sadegh et al. (2024)
proposed Iterated Denoising Energy Matching (iDEM), a neural sampler based on denoising diffusion
models which is not only computationally tractable but also guarantees good coverage of all modes.
iDEM uses a bi-level training scheme that iteratively generates samples from the learned sampler and
then does score matching using only the target energy and its gradient. Nevertheless, iDEM requires
a large number of samples for its Monte Carlo (MC) score estimate to have low variance and a large
number of integration steps even when sampling from simple distributions. Also, its effectiveness
highly depends on the choice of noise schedule and score clipping. These disadvantages demand
careful hyperparameter tuning and raise issues when working with complicated energies.

To further push the boundary of diffusion-based neural samplers, we propose NOISED ENERGY
MATCHING (NEM), which learns a series of noised energy functions instead of the corresponding
score functions. Despite a need to differentiate the energy network when simulating the diffusion
sampler, NEM targets less noisy objectives as compared with iDEM. Additionally, using an energy-
based parametrization enables NEM to use bootstrapping techniques for more efficient training
and Metropolis-Hastings corrections for more accurate simulation. By applying the bootstrapping
technique, we propose a variant of NEM called BOOTSTRAP NEM (BNEM). BNEM estimates high
noise-level energies by bootstrapping from current energy estimates at slightly lower noise levels.
BNEM increases bias but reduces variance in its training target.

We conduct experiments on a 2-dimensional 40 Gaussian Mixture Model (GMM), a 4-particle
double-welling potential (DW-4), a 13-particle Lennard-Jones potential (LJ-13) and a 55-particle
Lennard-Jones potential (LJ-55). We empirically find that our methods lead to state-of-the-art
performance on these tasks. Additionally, we found that targeting energies instead of scores is more
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Figure 1: Both EnDEM and BEnDEM parameterize a time-dependent energy network Fy(z¢,t) to
target the energies of noised data. EnDEM targets an MC energy estimator computed by system
energies; BEnDEM targets a Bootstrap energy estimator computed by learned energies at a slightly
lower noise level. Contours are the ground truth energies at different noise levels; e represents
samples used for computing the MC energy estimator, e represents samples used for computing the
Bootstrap energy estimator, and the white contour line represents the learned energy at time .

robust, requiring fewer Monte Carlo samples during training and fewer integration steps during
sampling. This compensates for the need to differentiate through energy networks to obtain scores.

Our contributions are as follows:

* We introduce NEM in section 3.3, including its methodology and theoretical analysis on
training target variance and bias, which showcases the advantage of targeting noised energies
rather than noised scores.

* We introduce BNEM in section 3.4, where we also theoretically show the Variance-Bias
trade-off implied by the bootstrapping energy estimation.

* We present experiment results on four different tasks in section 5, showcasing the advantage
of BNEM and NEM compared with DEM. We also conduct ablation studies, which show
that NEM is more robust than DEM regarding the number of samples used for training and
the number of integration steps used for sampling.

2 PRELIMINARY

We consider learning a generative model for sampling from the Boltzmann distribution

Hrarget = %Zg(x))’ where Z = /exp(—é’(x))dx, (1)

£ is the energy function and Z is the intractable partition function. Generating accurate samples from
this type of distribution is highly challenging. The recent success of Diffusion Models provides a
promising way to solve this issue.

Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) learn a generative
process that starts from a known and tractable base distribution, a.k.a. denoising process, which
is the inverse of a tractable noising process that starts from the target distribution. Formally, given
samples from the target distribution, g ~ fiareet, the noising process is an SDE towards a known



base distribution p;:
dzy = f(zy,t)dt + g(¢t)dw,, where t € [0,1], )

f (x4, t) is called drift coefficient, g(¢) is the diffusion coefficient and wy is standard Brownian Motion.
Diffusion Models work by approximately solving the following inverse SDE:

dxy = [f(x¢,t) — g*(t)V log ps(24)]dt + g(t)diy 3)
where w0, is again standard Brownian Motion. In the example of the Variance Exploding (VE) noising
process, f(x¢,t) = 0 and the perturbation kernel of the noising process is given by qy|o(x¢|20) =

N (zt;0,0}), where 07 := [ g*(s)ds. Then the learning objective of DMs is obtained by using
Tweedie’s formula (Efron, 2011):

2

1 “

which allows us to approximate the marginal scores V log p;(x;) with a score network sg(x¢, t) that is
parameterized by 6 and that targets the conditional scores V log py|o (2¢|z0) = V1og N (x4; 20, o).

o — Tt
th — Sg(fEt,t)

Lom = Egompo,tnf0,1],z0~a00 [

3 METHODS

In this section, we first provide an overview before presenting the formalization and training paradigm
of simulation-free energy matching. We then discuss the theoretical advantages of our energy match-
ing over score matching. Finally, we describe how bootstrapping is employed to gain improvement.

3.1 OVERVIEW OF NEM FRAMEWORK

This work intends to train a diffusion-based neural sampler that enables diffusion sampling to draw

samples from utarget(:r) = w, where we only have access to the energy function £ without
any known data from the target distribution.

As in Figure 1, our methods apply the iterative training paradigm, where the inner loop updates
the buffer for training the neural sampler, and the outer loop uses the neural sampler to collect new
pseudo data to update the buffer. In the inner loop, our model is trained on varied forms of Monte
Carlo estimation of the energy.

3.2 DENOISING DIFFUSION-BASED BOLTZMANN SAMPLER

We consider training an energy-based diffusion sampler corresponding to a variance exploding (VE)
noising process defined by dz; = g(t)dwy, where ¢t € [0, 1], g(¢) is a function of time and w; is
Brownian motion. The reverse SDE with Brownian motion 1w, is dz; = —g?(t)V log ps(x¢)d; +
g(t)dw,, where p; is the marginal of the diffusion process starting at py := Fearget-

Given the energy & () and the perturbation kernel g, (w¢|z0) = N (x4; 79, 07), where exp(—&(x))
po(x) and 02 := fst g%(s)ds, one can obtain the marginal noised density p; as

pi(xt) o /exp(—é‘(mo))N(xt;xmoff)dxo = Enr(a524,021) [exp(—&(x))]. 5)

Going a step further, the RHS of Eq. 5 defines a Boltzmann distribution over the noise-perturbed
distribution p;. The noised energy is defined as the negative logarithm of this unnormalized density

5t(x) = _logEN(w;wt,a?I) [exp(—é’(ﬂc))], where exp(_gt(xt)) X pt(xt)' (6)
Training on MC estimated targets We can approximate the gradient of log p; by fitting a score

network sg(x¢, t) to the gradient of Monte Carlo (MC) estimates of Eq. 6, leading to iDEM. The MC
score estimator Sk and the training objective can be written as

K
1 i i
Sk, t) : = Vog 7= Y exp(=E(agy).  afjy ~ N(asar, 07D, ™)
=1
Loem(e,t) : = ||Sk (24, t) — sa(ze, 1) ®



Alternatively, we can fit an energy network Ey(x¢,t) to MC estimates of Eq. 6. The gradient of this
energy network w.r.t. input z;, i.e. VEg(x¢,t), can then be used to estimate the score required for
diffusion-based sampling. The MC energy estimator E'x and the training objective can be written as

K
1 i i
Ex(z4,t) : = —log o Zexp(—é’(méli)), xéll ~ N(sc;mt,afl), 9)
i=1
Lnem(ze,t) : = || Ex (24, ) — Eg(, )] (10)

To enable diffusion-based sampling, one is required to differentiate the energy network to obtain
the marginal scores, i.e. V Eg(x¢,t), which doubles the computation of evaluating Ey(x¢,t). Notice
that Sk (z¢,t) = —VEk (x4, 1), regressing the MC energy estimator Ex doesn’t need to compute
the gradient of target energy £ during training but it is required to compute the gradient of the
energy network g during sampling. In other words, it moves the need for differentiation from given
energy function £ to neural networks Ejy, which can be beneficial for training on complicated energy
functions.

Bi-level Iterative Training Scheme To train the diffusion on the estimated targets, we should
obtain noising exact samples from the target. Previous works (Akhound-Sadegh et al., 2024; Midgley
et al., 2023) used data points generated by a current learned denoising procedure.

We follow their approach and use a bi-level iterative training scheme for noised energy matching.
This involves

* An outer loop that simulates the diffusion sampling process to generate more informative
samples. These samples are then used to update a replay buffer 5.

* A simulation-free inner loop that matches the noised energies (NEM) or scores (DEM)
evaluated at noised versions of the samples stored in the replay buffer.

The significance of this iterated training scheme is proven by Akhound-Sadegh et al. (2024). We,
therefore, stick to using it for all relevant samplers’ training. The iterated training procedure of NEM
is illustrated in Algorithm 1, and its training pipeline is visualized in Figure 1.

3.3 ENERGY-BASED LEARNING VS SCORE-BASED LEARNING

Both the MC score estimator Sk and the MC energy estimator Ex are biased estimators, where
the bias of Sk (Eq. 12) is characterized by Akhound-Sadegh et al. (2024) that it can decrease to 0
when the number of MC samples K increases. We first characterize the bias of Ex in the following
Proposition 1, which shows the advantage of NEM in terms of the smaller bias of its regression target.

Proposition 1 If exp(—& (m(()z‘l)) is sub-Gaussian, then there exists a constant ¢(x) such that with

probability 1 — § over méll)t ~ N (x4, 02), we have

|Exc(20,t) — ()| < W (11)
with c(xy)/é(xy) = 2(1 + || VEL(xy)]|), where
IS, 6) — Su(a)| < SEIVIE WD) 12

B VK '
Proposition | shows that the training target of NEM has a smaller error bound (Eq. 11) than the one
of DEM (Eq. 12), especially in regions with a steep gradient, i.e. large | VE:(z))||. Specifically, the

bias of Ex can be charecterized through the above error bound, which is provided in the following
corollary:

Corollary 1 Ifexp(—& (7:&1)) is sub-Gaussian, then the bias of Ex can be approximated as

__vor(wr)
2m? (xy) K
where my(x) = exp(—E&(x+)) and vor(v¢) = Varyr(ziz, 021 [exp(—Ee(z))].

Bias[F (2+,1)] (13)
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Algorithm 1 Iterated training for Noised Energy Matching

Require: Network Fy, Batch size b, Noise schedule Uf, Base distribution p;, Num. integration steps
L, Replay buffer B, Max Buffer Size |5|, Num. MC samples K

1: while Outer-Loop do
2 A}y ~pilan)
3 {xo}b_; «+ sde.int({z1}t_,,~VEy, L) > Simulate the reverse SDE for sampling
4: B=(BU{ze}_)) > Update Buffer B
5: while Inner-Loop do
6: xo + B.sample() > Uniform sampling from B
7 t~U(0,1),z, ~ N(zg,07)
8: Lxem (e, t) = || Exc (24, t) — Eg(x4,1)|?
9: 0 + Update(@, VH'CNEM)

10: end while

11: end while

Ensure: sy

Algorithm 2 Inner-loop of Bootstrap Noised Energy Matching training

Require: Network Fjy, Batch size b, Noise schedule of, Replay buffer B, Num. MC samples K
1: while Inner-Loop do

2: xo < B.sample() > Uniform sampling from 5
3: t ~U(0,1), 2y ~ N(z0,07)

4: n < arg{i : t € [t;,tiy1]} > Identify the time split range of ¢
5. s~Utp_1,tn), x5 ~ N(x0,02)

6: Is(%5) < | Ex (25, 8) = Eg(xs,5)|?/02

7 U(w) | Exc(wnt) — Eg(wnt)[?/o?

8: a < min(1, I (x) /ls(xs))

9: with probability «,

10: Lenem(Tt,t) = ||Ex (x4, t, s; StopGrad(9)) — Eg(x¢,t)]|?

11: Otherwise, > Use MC estimator if the model is not well trained
12: Lanem (1, 1) = || Exc (21, t) — Bg(w4,1)|?

13: 0 Update(@, VQEBNEM)
14: end while
Ensure: FEj

The complete proofs of Proposition 1 and Corollary 1 are given in Appendix A. Additionally, we
characterize the variances of Si and Ex as follows.

Proposition 2 If exp(—& (méﬁi)) is sub-Gaussian and ||V exp(—& (LL(()L‘)t))H is bounded, the total
variance of the MC score estimator S is consistently larger than that of the MC energy estimator
FEx in regions associated with(low e[zner ies, ﬁ/;’th
tr (Cov[Sk(xy,t 9
=41+ ||VE& . 14
Var[EK(xt,t)] ( + H t(wt)”) ( )
In regions associated with high energies, Var[Ex (x4, t)] < tr(Cov[Sk (z,t)]) holds when the target
energy E(x+) is positively related to at least one element of the score VE(xy).

This shows that the MC energy estimator can provide a less noisy training signal than the score
one, showcasing the theoretical advantage of NEM compared with DEM. One might wonder if the
differentiation of the energy network could amplify errors in NEM. The answer is that, even though
the energy errors are amplified, these errors are typically very small, and therefore the errors in
the differentiated energy are still smaller than the score errors. Our experiments illustrate this by
supporting NEM over DEM. The complete proof for the above results is provided in Appendix B.

3.4 IMPROVEMENT WITH BOOTSTRAPPED ENERGY ESTIMATION

Using an energy network that directly models the noisy energy landscape has additional advantages.
Intuitively, the variances of EFx and Sk explode at high noise levels as a result of the VE noising



process. However, we can reduce variance of the training target in NEM by using the learned noised
energies at just slightly lower noise levels rather than using the target energy at time ¢ = 0. Based
on this, we propose Bootstrap NEM, or BNEM, which uses a novel MC energy estimator at high
noise levels that is bootstrapped from the learned energies at slightly lower noise levels. Suppose that
Ey(-, s) is an energy network that already provides an accurate estimate of the energy at a low noise
level s, we can then construct a bootstrap energy estimator at a higher noise level ¢ > s by using

K
1 i i
Ex(z,t,s;0) : = —log 74 Zexp(—Eg(xiliﬂs)), xgli ~N (:r;xs7 (Ut2 — a?)]) , (15)
i=1

The loss used by BNEM is then
Lenem(ze, t)s) 1 = | Ex (x4, t, s; StopGrad(8)) — Eg(z,1)|?, (16)

where the gradient of (Eq. 15) with respect to 6 is stopped. We show that this bootstrap energy
estimator is trading off variance to bias, as characterized by the following proposition:

Proposition 3 Given a bootstrap trajectory {s;}_, such that o3, — o2
$n = 1l and k > 0 is a small constant. Suppose Ey is incrementally optimized from t € [0,1] as
Sollows: if t € [s;,8i+1], Fo(x,t) targets an energy estimator bootstrapped from Vs € [s;_1, ;]
using Eq. 15. ForV0 < i < nandVs € [s;_1, 8;], the variance of the bootstrap energy estimator is
given by

< Kk, where sqg = 0,

Ust(xt)

Var[Ek (x4,t,;0)] = Var|Ek (x4, t)) (17)
UOt(ﬂUt)
and the bias of Ex (x4,t, s;0) is given by
. vor (4) : vos, (24)
Bias|E t,s;0) = ——— E — 18
o bS50 = G KT 2 o ) as

where m(2:) = exp(—&.(2:)) and vy: (=) = Vary (e, (02—02)1)[exp(=Ey ()] for V0 < y <
z <1

A detailed discussion and proof are given in Appendix C. Proposition 3 demonstrates that the bootstrap
energy estimator, which estimates the noised energies by sampling from a x;-mean Gaussian with
smaller variance, can reduce the variance of the training target while this new target can introduce
accumulated bias. In general, the high variance of training target introduces high bias of the learned
value; Bootstrapping reduces the variance of training target, therefore reduces bias of the learned
value; However, bootstrapping is based on the learned value at a slightly lower noise level, which
can be biased as well, introducing extra bias that can be accumulated; Therefore, bootstrapping
trades the extra accumulated bias to the high bias introduced by the high variance of training target.
Proposition 3 shows that, within proper choice of number of MC samples K and bootstrap trajectory,
the bias of BNEM (Eq. 13) can be smaller than that of NEM (Eq. 18). This provides theoretical
guarantee for improving performance via bootstrapping. In the following paragraph, we define how
we select s and ¢ using a novel variance-controlled bootstrap schedule and training scheme.

Variance-Controlled Bootstrap Schedule BNEM aims to trade the bias of the learning target to
its variance. To ensure that the variance of the Bootstrap energy estimator at ¢ bootstrapped from
s is controlled by a predefined bound 3, i.e. o7 — o2 < f3, we first split the time range [0, 1] with
0=to <t <..<ty=1lsuchthato}  —of < j/2;then we uniformly sample s and ¢ from

adjacent time splits during training for variance control.

Training of BNEM To train BNEM, it is crucial to account for the fact that bootstrap energy
estimation at ¢ can only be accurate when the noised energy at s is well-learned. To favor this, we first
use NEM to obtain an initial energy network and then apply training with the bootstrapped estimator.
We then aim to use bootstrapping only when the energy network is significantly better at time s
than at time ¢. We quantify this by evaluating the NEM losses at times ¢ and s given a clean data
point 2. In particular, we could compare ls(xs) = Lnpar(xs, s) and li(x:) = Ly g (24, t), where
xs ~ N(z0,021) and zy ~ N (z0,071). However, the variance of training targets increases with



time, meaning that a direct comparison of these losses is not reliable. To avoid this, we normalize
these losses according to the noise schedule variance and compare instead I, (75) = Ly g (25, 5) /0>
and ly(x) = Lnpu(xe,t)/o?. We then adopt a rejection training scheme according to the ratio of
these normalized NEM losses:

(a) given s, t and x(, we first noise z to s and ¢ respectively, and compute the normalized
losses defined above, i.e. Is(xs) and I;(z¢);

(b) these losses indicate how well the energy network fits the noised energies at different times;
we then compute v = min(1, ls(xs)/l;(x¢));

(c) with probability «,, we accept targeting an energy estimator at ¢ bootstrapped from s and
otherwise, we stick to targeting the original MC energy estimator.

We provide a full description of the inner-loop of BNEM training in Algorithm 2.

4 RELATED WORKS

Boltzmann Generator. To learn a neural sampler for Boltzmann distribution, unlike data-driven tasks
where a sufficient amount of data is available, simply minimizing the reverse Kullback-Leibler (KL)
divergence, i.e.ming Dy, (ftareer||g0). can lead to mode-seeking behavior. Boltzmann Generator(Noé
et al., 2019) addresses this problem by minimizing the combination of forward and reverse KL
divergence.

PIS, DDS, and FAB. Inspired by the rapid development of deep generative models, e.g. diffusion
models (Song & Ermon, 2019; Ho et al., 2020), pseudo samples could be generated from an arbitrary
prior distribution. Then, we can train the neural samplers by matching these sample trajectories, as in
Path Integral Sampler (PIS)(Zhang & Chen, 2022) and Denoising Diffusion Sampler (DDS) (Vargas
et al., 2023). Midgley et al. (2023) further deploy a replay buffer for the trajectories while proposing
an a-divergence as the objective to avoid mode-seeking. However, these methods require simulation
during training, which still poses challenges for scaling up to higher dimensional tasks.

iDEM. To further boost scalability and mode-coverage, iDEM (Akhound-Sadegh et al., 2024) is
proposed to target an MC score estimator that estimates scores of noised data, enabling the usage
of the efficient diffusion sampling. iDEM is trained with a bi-level scheme: (1) a simulation-free
inner-loop that targets time-involved scores of buffer data; (2) an outer-loop that simulates the learned
diffusion sampler to generate more informative data in the buffer. It achieves previous state-of-the-art
performance on the tasks above.

iEFM. To regress z; directly, one can leverage Flow Matching Lipman et al. (2023). Woo & Ahn
(2024) proposes iEFM, a variant of iDEM that targets the MC estimated vector fields in a Flow
Matching fashion, which is empirically found to outperform iDEM in GMM and DW-4. In fact,
we found that iEFM and iDEM can be linked through Tweedie’s formula (Efron, 2011) shown in
Appendix G with supplementary experiments provided in Appendix I.8.

5 EXPERIMENTS

We evaluate our methods and baseline models on 4 potentials. A complete description of all energy
functions, metrics, and experiment setups is in Appendix H. Supplementary experiments can be found

in Appendix I. We provide an anonymous link to our code for implementation reference'.

Datasets. We evaluate all neural samplers on 4 different datasets: a GMM with 40 modes (d = 2),
a 4-particle double-well (DW-4) potential (d = 8), a 13-particle Lennard-Jones (LJ-13) potential
(d = 39) and a 55-particle Lennard-Jones (LJ-55) potential (d = 165). For LJ-n potentials, the energy
can be extreme when particles are too close to each other, creating problems for estimating noised
energies. To overcome this issue, we smooth the Lennard-Jones potential through the cubic spline
interpolation, according to Moore et al. (2024).

Baseline. We compare NEM and BNEM to following recent works: Denoising Diffusion Sampler
(DDS)(Vargas et al., 2023), Path Integral Sampler (PIS)(Zhang & Chen, 2022), Flow Annealed

"https://anonymous.4open.science/r/nem-D664/README.md
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Table 1: Neural sampler performance comparison for 4 different energy functions. We measured the
performance using data Wasserstein-2 distance (x-W,), Energy Wasserstein-2 distance (£-Ws), and
Total Variation (TV). * indicates divergent training. t indicates a large standard deviation of metric
(> 20%) and we report the best value. Each sampler is evaluated with 3 random seeds and we report
the mean value for each metric. Bold indicates the best value and underline indicates the second one.

Energy — GMM-40 (d = 2) DW-4 (d = 8) LJ-13 (d = 39) LJ-55 (d = 165)
Sampler | xWaol  EWsl TVL xWhl EWal TVL x-Wel EWol TVL x-Wal EWnl TV]
DDS 1504 30513 096 082 55879 0.38  * * * * * *
PIS 658 7986 095  * # * # * # * * #
FAB 908 4760 079 062 11270 038  * * * * * *
iDEM 821 6049 082 050 280 016 0.87 6770t 0.06 2.06 17651 0.16

NEM (ours) 5.28 4456 091 048 0.8 014 0.87 501 003 190 118.58  0.10
BNEM (ours)  3.66 1.87 079 049 038 014 0.86 1.02  0.03 187 45.61f 0.09F
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Figure 2: Sampled points from samplers applied to GMM-40 potentials, with the ground truth
represented by contour lines.

Bootstrap (FAB)(Midgley et al., 2023) and Iterated Denoising Energy Matching (iDEM)(Akhound-
Sadegh et al., 2024). Due to the high complexity of DDS and PIS training due to their simulation-based
nature, we limit their integration step when sampling to 100. Also, as iDEM (Akhound-Sadegh et al.,
2024) shows excellent performance of GMM and DW-4, we consider showing its robustness together
with NEM and BNEM by limiting both the integration step and number of MC samples to 100. For
complex tasks, i.e. LJ-13 and LJ-55, we stick to using 1000 steps for reverse SDE integration and
1000 MC samples in the estimators. We train all samplers using an NVIDIA-A100 GPU.

Architecture. We use the same network architecture (MLP for GMM and EGNN for particle systems,
i.e. DW-4, LJ-13, and LJ-55) in DDS, PIS, iDEM, NEM and BNEM. To ensure a similar number of
parameters for each sampler, if the score network is parameterized by sq¢(x,t) = fo(x,t), the energy
network is set to be Eg(x,t) = 17 fy(x,t) + c with a learnable scalar c. Furthermore, this setting
ensures SE(3) invariance for the energy network. However, FAB requires an invertible architecture.
For a fair comparison, we replace the neural network architecture in FAB with a continuous flow
matching, to ensure a similar number of parameters for each sampler.

Metrics. We use data 2-Wasserstein distance (x-Ws), energy 2-Wasserstein distance (€ —Ws), and
Total Variation (TV) as metrics. TV is computed from data in GMM; For equivariant systems, i.e.
DW-4, LJ-13, and LJ-55, TV is based on the interatomic distance. To compute W, and TV, we use
pre-generated samples as datasets: (a) For GMM, we sample from the ground truth distribution; (b)
For DW-4, LJ-13 and LJ-55, we use samples from Klein et al. (2023b).
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Figure 3: Histogram for energies of samples generated by each sampler.
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Figure 4: Histogram for interatomic distance of samples generated by each sampler.

5.1 MAIN RESULTS

We report x-Ws, E—Ws,, and TV for all tasks in Table 1. The table demonstrates that by targeting
less noisy objectives, NEM outperforms DEM on most metrics, particularly for complex tasks such
as LJ-13 and LJ-55. Figure 2 visualizes the generated samples from each sampler in the GMM
benchmark. When the compute budget is constrained—by reducing neural network size for DDS, PIS,
and FAB, and limiting the number of integration steps and MC samples to 100 for all baselines—none
of them achieve high-quality samples with sufficient mode coverage. In particular, iDEM produces
samples that are not concentrated around the modes in this setting. Conversely, NEM generates
samples with far fewer outliers, focusing more on the modes and achieving the best performance on
all metrics. BNEM can further improve on top of NEM, generating data that are most similar to the
ground truth ones.

For the equivariant tasks, i.e. DW-4, LJ-13, and LJ-55, we compute the energies and interatomic
distances for each generated sample. Empirically, we found that smoothing the energy-distance
function by a cubic spline interpolation (Moore et al., 2024) to avoid extreme values (i.e. when the
particles are too close) is a key step when working with the Lennard Jones potential. Furthermore,
this smoothing technique can be applied in a wide range of many-particle systems (Pappu et al., 1998).
Therefore, NEM and BNEM can be applied without significant modeling challenges. We also provide
an ablation study on applying this energy-smoothing technique to score-based iDEM. The results in
Table 4 suggest that it could help to improve the performance of iDEM but NEM still outperforms it.

Figures 3 and 4, show the histograms of the energies and interatomic distances, respectively. It
shows that both NEM and BNEM closely match the ground truth densities, outperforming all other
baselines. Moreover, for the most complex task, LJ-55, NEM demonstrates greater stability during
training, generating more low-energy samples, unlike iDEM, which is more susceptible to instability
and variance from different random seeds.

For £-Wh, it is susceptible to outliers with high energy, especially in complex tasks like LJ-13 and
LJ-55, where an outlier that corresponds to a pair of particles that are close to each other can result in
an extremely large value of this metric. We find that for LJ-n tasks, NEM and BNEM tend to generate
samples with low energies and result in low £-W,, while iDEM can produce high energy outliers and
therefore corresponds to the extremely high values of this metric.
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Figure 5: Barplots comparing DEM, NEM, and BNEM evaluations with 1000 vs. 100 integration
steps and MC samples on the LJ-13 benchmark.

We notice that for LJ-55, NEM is more stable than BNEM, with no divergent training. However,
a well-converged BNEM can be better than NEM as we expected, with generated samples that are
highly similar to the ground truth data, achieving state-of-the-art performance in this task.

5.2 ROBUSTNESS OF DEM, NEM, aAND BNEM

Table | partially shows the better robustness of NEM and BNEM in terms of fewer integration steps
and MC samples, compared with iDEM and other baselines. We further explore the robustness
in a more complex benchmark, LJ-13, to demonstrate the advantage of our energy-based models,
i.e. NEM and BNEM. Figure 5 visualizes the difference of metrics when reducing the integration
steps and number of MC samples from 1000 to 100. A complete comparison between iDEM, NEM,
and BNEM under different computational budgets is provided in Table 5 (Appendix I). It shows
that when limiting the computing budgets, iDEM can degrade significantly in GMM and DW-4
potentials, while NEM is less affected. In LJ-13 potential, both iDEM and NEM can degrade, while
NEM-100 is still better than DEM-100 and even better than DEM-1000 in £-WV, and TV. Furthermore,
BNEM can achieve better performance. BNEM-100 is less affected and matches the performance
of iDEM-1000 in GMM and DW-4, and even outperforms iDEM-1000 in the more complex LJ-13
potential, showcasing its capability.

6 CONCLUSION

In this work, we propose NEM and BNEM, neural samplers for Boltzmann distribution and equi-
librium systems like many-body systems. NEM uses a novel Monte Carlo energy estimator with
reduced bias and variance. BNEM builds on NEM, employing an energy estimator bootstrapped
from lower noise-level data, theoretically trading bias for variance. Empirically, BNEM achieves
state-of-the-art results on 4 different benchmarks, GMM, DW-4, 1.J-13, and LJ-55.

Limitations and future work. Even though NEM can outperform DEM with fewer integration
steps, the requirement of differentiating the neural network w.r.t. the input poses a memory issue for
high-dimensional tasks, and therefore would require further improvement for scalability in terms of
memory in the future; Secondly, though BNEM demonstrates its potential to achieve improvement on
top of NEM, its training process is yet not stable enough. Therefore, improving its training stability
is of interest in the future; Besides, the cubic-spline interpolation technique is applied for the LJ-n
potentials, and therefore a more general learning-based technique that can fix the extreme energy
issue, such as contrastive learning, is more desired; Furthermore, the well-learned noised energies
allow us more possible ways to improve generation quality beyond normal denoising diffusion
approach, such as integrating Metropolis-Hastings correction inside the denoising process to generate
more accurate samples.
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A PROOF OF PROPOSITION 1

Proposition 1 If exp(_g(xé?t
(

probability 1 — § over :I:O?t ~ N (x4, 02), we have

)) is sub-Gaussian, then there exists a constant ¢(x1) such that with

c(zt)y/1og (1/9)

1B (e, t) — Exlay)]| < e (19)
with c(xt)/é(x:) = 2(1 + || VE:(x4)]|), where
1Sk (0, t) — Su(an)| < ZEVI08 (/) 20)

B VK

Proof. We first introduce the error bound of the MC score estimator Sk, where Sy = VFEg,
proposed by Akhound-Sadegh et al. (2024) as follows

20 /log(3)(1 + [[VE (@) ) exp(&s(w1))

1Sk (e, 8) = Sz, 1) < N

21
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which assumes that exp(—& (a:(i‘) )) is sub-Gaussian. Let’s define the following variables

0|t
mi () = exp(—E(t)) (22)
Vst(T) = Varar (s, (02 —02)p) [exp(—E(2))] (23)

By the sub-Gaussianess assumption, it’s easy to show that the constant term C' in Equation 21 is
C = +/2vg(x4). Notice that E is a logarithm of an unbiased estimator . By the sub-Gaussian
assumption, one can derive that Ex is also sub-Gaussian. Furthermore, it’s mean and variance can
be derived by employing a first-order Taylor expansion:

vot (T+)
EE t) ~ & — 24
K@ t) () + 2m? (xy) K @4
vot (74)
Var[E )~ ———= 25
ar[ K(xta )] m%(mt)K ( )
And one can obtain its concentration inequality by incorporating the sub-Gaussianess

’Uot(l‘t) 2
E t)—EF VIl £ 4/2———==1og = 26
| Exc(o1st) — BlExc(an, )] < \/ S0 26)

By using the above Inequality 26 and the triangle inequality
1Ex (21,8) = Ex(z)|| < ||log Ex (24, t) — E[Ex (24, ][] + |E[Ex (21, 8)] = Ex(z)] - (27)

UOt(ﬂﬁt)

= [|log Ex (w¢,t) — E[Ex (24, t)]]| + 2m2 (1) K (28)
voe(t) 2 voe(2t)
2mt2(xt)K log st 2m?(x) K 29
C+/log 2 exp(&(x
_ s o) (30)

VK

= clz) /18 31)

20+ [VE(o)l) VE

Therefore, we have c(z;) = 2(1 + || VE&(z)||)é(z). It demonstrates a less biased estimator, which,

what’s more, doesn’t require a sub-Gaussianess assumption over ||VE (:c((f‘i) Il O

B PROOF OF PROPOSITION 2

Proposition 2 [f exp(—& (xélli)) is sub-Gaussian and ||V exp(—& (33(()11))“ is bounded, the total
variance of the MC score estimator S is consistently larger than that of the MC energy estimator
FEx in low-energy regions, with

tr (Cov[Sk (x4,t)])

Var|Ek (x4, t)) = 4(1 + ||V5t($t)||) (32)

In high-energy regions, C|Ex (x+,t)] < tr(Cov[Sk (x¢,t)]) holds when the system energy E(x+) is
positively related to at least one element of the score VE(xy).

Proof. We split the proof into two parts: low-energy region and high-energy one. The proof in
the low-energy region requires only the aforementioned sub-Gaussianess and bounded assumptions,
while the one in the high-energy region requires an additional constraint which will be clarified later.
Review that Sk can be expressed as an importance-weighted estimator as follows:

£ 3, Vexp(—£(al))
3K, exp(—£ ()

Sk (e, t) = (33)
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Let |V exp(—g(:c0|t))|\ < M, where M > 0. Since a bounded variable is sub-Gaussian, this
assumption resembles a sub-Gaussianess assumption of ||V exp(—& (%\ +))||. Then each element of

1A exp(—E(xOlt))H i.e. Vexp(— E(xéll)t))[j}, is bounded by M. And therefore V exp(—é’(xé‘i))[j]
are sub-Gaussian.

In low-energy regions. exp(—&(x)) is concentrated away from 0 as £(x) is small. Then, there
(4)

exists a constant c such that exp(—é’(xolt)) > ¢ > 0 and thus for each element j =1, .., d:
20, V exp(—E (ag))) )
. 1=1 p
ISk (@ )l = | 2= i (34)
LK exp(—E(()
K (2)
i—1 Vexp(—&(x J
- [Py (=& ()] < MJe 35)

Ke

therefore, the j th element of Sk, i.e.Sk [7], is bounded by M /c, suggesting it is sub-Gaussian. While
Inequality 21 can be expressed as

4 21/2v0t () log(2) (1 + [|VE(24)])
S Skl D] — Siani)? < mi;t) -

J=1

(36)

We can roughly derive a bound elementwisely

24/ 2001 (1) 1og () (1 + | VE(z4)])
ISk (w4, 1) [5] — St (@) [5]] < O mtg(xi)\/m (37)

which suggests that we can approximate the variance of Sg (x4, t)[j] by leveraging its sub-Gaussianess
voe () (1 + [ VE(4) )

Var(Sk (2, t)[j]) = 2 () Kd (38)
Therefore, according to Equation 25 we can derive that
tr(Cov[Sk (x4, t ZVar [Sk(x¢, t)[J]] (39)
4U0t(xt)(1 + [ VE(zo)])?
= 4
m2(z¢) K “0)
=4(1+ || V& (zy)||)* Var[Ek (¢, )] (41)

In high-energy region. we assume that there exists a direction with a large norm pointing to low
energy regions, i.e. 3 such that £(x) are positively related to VE(z)[4]. According to Section 9.2 in
Owen (2023), the asymptotic variance of a self-normalized importance sampling estimator is given
by:

n= Eq[f(X)] (42)

K
fig = Zz}llwwf 43)
Var(fiq) =~ %Eq[w(x)]_QEq[w(X)Q(f(X) —p)?] (44)

By substituting ji, = Sk (z¢,t)[j], f(X) = —=VEX)[j], w(X) = exp(—E(X)), ¢ = N(x; x4, 0%),
E,[w(X)] = me(z¢) and Eq[w?(X)] = vor(ws) + mi(x:), as well as using w(X) and f(X) are
positive related, we have:

Var[Sk (24, 1)[5]] > %Eq[w(X)]szq[wQ(X)]Eq[(f(X) - )’ (45)
v () + m%(xt) .

= ol ) v v o) ] (46)

47)



Therefore, if we further have a large variance over the system score at this region, i.e.
Var,[VE(x)[j]] > 1, then we have

. vot (T4)
Var[S t ————— = Var|F t 48
ar[ K(xt’ )[.]]] > m%(xt)K ar[ K(xh )] (48)
and thus tr(Cov[Sk (x¢,t])) > Var[Ek (z,t)] holds. O
C PROOF OF PROPOSITION 3
Proposition 3 Given a bootstrap trajectory {s;}"_, such that o2 — Ui_ . < K, where sg = 0,

sp, = 1 and k > 0 is a small constant. Suppose Fy is mcrementally optimized from t € [0, 1] as
Jollows: if t € [s;, siy1), Eo(at,t) targets an energy estimator bootstrapped from Vs € [s;_1, 8;]
using Eq. 15. For¥0 < i < n andVs € [s;_1, 8;], the variance of the bootstrap energy estimator is
given by

Var|Eg (x4,t,8;0)] = Z;Eiﬁ Var|Ex (24, 1)] (49)

and the bias of Ex (xy,t, s;0) is given by
vot () o, (w0)
Bias|E t,s;0 _— — 50
ias[Eg (24, t, 5;0)] = T2 (e T T ; 22 () K (50)

where m(2.) = exp(—&.(2.)) and vy: (=) = Vary sz, (o2—02)1) [exp(—Ey ()] for V0 < y <
z <1

Proof. The variance of Ex (x4,t, s;6) can be simply derived by leveraging the variance of a sub-
Gaussian random variable similar to Equation 25. While the entire proof for bias of Ex (x4, t, s;0) is
organized as follows:

1. we first show the bias of Bootstrap(1) estimator, which is bootstrapped from the system
energy

2. we then show the bias of Bootstrap(n) estimator, which is bootstrapped from a lower level
noise convolved energy recursively, by induction.

C.1 BOOTSTRAP(1) ESTIMATOR

The Sequential estimator and Bootstrap(l) estimator are defined by:

B (et >.:—1og—zexp (—Ex(),9), al) ~ N(@ap, (07 —0D)I) (1)
i=1
= —log — 72 ZZexp aco‘t ), xé’li) ~ N (z; 26, 02) (52)
i=1 j=1
1 & . .
B (@, t,5:0) 1 = ~log 2= > exp(=Ep(al)},s)),  al) ~ N(wiae, (of —o2))  (53)
i=1

The mean and variance of a Sequential estimator can be derived by considering it as the MC estimator
with K2 samples:

E[ESS (2, 1)] = € ) g Var(BS (g, ) = ) sy
[ K (Z‘t, )] t(xt) + 2mgt(xt)K2 an ar( ('rh )) mOt( )K2 ( )
While an optimal network obtained by targeting the original MC energy estimator 9 at s is 2 :
Vos (xa)

Ep (x4, 5) = E[EK(m& S)] = —logms(xs) + (55)

2m2(xs) K

*We consider minimizing the Lo-norm, i.e. 6% = argming Ey, ¢[||Ee(¢,t) — Ex (¢,t)||?]. Since the
target, Fx, is noisy, the optimal outputs are given by the expectation, i.e. Fy = E[Fk].
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Then the optimal Bootstrap(1) estimator can be expressed as:

@)
(i) vos (Z,12)

s\t) + (4)

B(1) N
E (2, t,8,0%) = log— exp | — | —logms(z
K Z 2m2( |t)K

(56)

Before linking the Bootstrap estimator and the Sequential one, we prov1de the following approxima-
tion which is useful. Let a, b two random variables and {a; }X |, {b;} £, are corresponding samples.

Assume that {b;}£ | are close to 0 and concentrated at m;,, while {a;} X, are concentrated at m,,
then
K K K
1 1 > i1 exp(—(ai + b))
log = » exp(—(a; +b;)) =log — { exp(—a;) l =1 (57)
2= "\ S expl0)

T op(la b)) g
Zi:l exp(—a;)
S exp(—a;)(1 — by)
Zfil exp(—a;)

K K
= log % Z exp(—a;) + log <1 - Lz exp(—ai)bi> (60)

K
i=1 > i1 exp(—ai)

K K
1 > i1 exp(—ai)b;
~log — Y exp(—a;) — = (61)
K i=1 Zf; exp(—a;)

1
= log e ; exp(—a;) + log

(59)

K
1
~ log 7 ; exp(—a;) + log

1
~ log 7 ; exp(—a;) — my (62)
where Approximation applies a first order Taylor expansion of e ~ 1 4 z around x = 0 since
{b;} K, are close to 0; while Approximation uses log(1 + z) ~  under the same assumption. Notice
Vos (x(:&)

ﬁ} K | are close to 0 and concentrated at
2m2(a)) K

that when K is large and 02 — 02 < k is small , {
vos ()

(e K - Therefore, by plugging them into Equation 62 Equation 56 can be approximated by

EEZD (g,t,5,0") ~ — log — o L os(@) 63
it o5 Zm LRy < (©3)
(@)

When K is large and o2 is small, the bias and variance of EK(a:sl .

s) are small, then we have

log—ZmS S‘t log—ZEK s|t’ Eseq(xht) (64)

Therefore, the optimal Bootstrap estimator can be appr0x1mated as follows:

B(1) L%\ o pSeq V0s (:Ct)
EK (l’t,t,S,G ) NEK (xt,t>+W (65)
where its mean and variance depend on those of the Sequential estimator (54):
E EB(l) t s 0% = & UOt(It) Vos (If) 66
[ K (ZEt, 5 S5 )] t(xt) + Qm%(xt)K2 2m§(xt)K ( )
VarlEED (a1, 516%)] = —0t20) 67
ar[ K (xtv ) S5 )] mf(a:t)KQ ( )

C.2 BOOTSTRAP(n) ESTIMATOR

Given a bootstrap trajectory {s;}?_, where s = 0 and s,, = s, and Ep is well learned at [0, s]. Let
the energy network be optimal for v < s,, by learning a sequence of Bootstrap(?) energy estimators
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(¢ < m). Then the optimal value of Ey(zs, s) is given by E[Eg(”fl)(ms, s)]. We are going to show

the variance of a Bootstrap(n) estimator by induction. Suppose we have:
E 0* (I’ sy S I s + Z

UOSJ xs

2m2 (xs) K7 (68)

Then for any ¢ € (s, 1], the learning target of Ep (x4, ) is bootstrapped from s,, = s,
K
B 1 . .
EB™ (z,,t) = —log = Z exp(—Eg- (2]}, 5)), 2%} ~ N(@; 24, (0 — o)D) (69)

n

(#)
i UOS'( )
log—Zexp —&( S@) 2]7(9)“ (70)

j=1 27’)7% ( S|t)KJ
Assume that 07 — 02 is small and K is large then we can apply Approximation 62 and have
B(n) - Vos; (xt)
B (@, 1) —10g*ZeXP Es( S\t )‘f’;W (71)

In Bootstrap(n) setting, o2 is not small and we can’t approximate &, (x s‘l) simply by a MC estimator

Fx. However, we can sequentially estimate such energy by bootstrapping through the trajectory
{si}7_,, resembling a Sequential(n) estimator which is equivalent to En+1,

n . Vos;
EZ™ (4,1) zEKn+1<xt7t)+Z 0s, (7 (72)
Jj=

2m3 (z) KI

therefore, the optimal output of the energy network at (x4, t) by learning this Bootstrap(n) estimator
is

B(n) ~ vot (24) "\ s, ()
E[Ex " (x4, 1)] = E(ae) + 2m2 (zy) K" + jz: 2m2 (20) K7 (73)

which suggests that the accumulated bias of a Bootstrap(n) estimator is given by

vot () +i UOSj(xt) 4 (74)
J

2mi(xe) K = 2m2 () KI

D INCORPORATING SYMMETRY USING NEM

We consider applying NEM and BNEM in physical systems with symmetry constraints like n-body
system. We prove that our MC energy estimator E'x is G-invariant under certain conditions, given in
the following Proposition.

Proposition 4 Let G be the product group SE(3) x S,, — O(3n) and pg be a G-invariant density in
R®. Then the Monte Carlo energy estimator of Ex (x4,t) is G-invariant if the sampling distribution
To ~ N (2o T, o?) is G-invariant, i.e.,

N(ﬂfo\t;g OfUuUtQ) = N(g_ll“o\ﬁ%,af)-

Proof. Since py is G-invariant, then £ is G-invariant as well. Let g € G acts on € R? where
gox = gx. Since x((fl)t ~ N (zop; 24, 07) is equivalent to g o x((f‘i ~ N (zop; g © 24, 07). Then we

have

1 f
Exlgownt) =—log g3 jew(-£(ge zg) (75)
log—Zexp xo‘t ) = Ex(z4,t) (76)
2t ~ N (o 2 77
(0]t) O\taxtagt) an
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Therefore, E is invariant to G = SE(3) X S,,. O

Furthermore, Ex (24, t, s; ¢) is obtained by applying a learned energy network, which is G-invariant,
to the analogous process and therefore is G-invariant as well.

E GENERALIZING NEM
This section generalizes NEM in two ways: we first generalize the SDE setting, by considering a

broader family of SDEs applied to sampling from Boltzmann distribution; then we generalize the
MC energy estimator by viewing it as an importance-weighted estimator.

E.1 NEM FOR GENERAL SDEs

Diffusion models can be generalized to any SDEs as dz; = f (x4, t)dt + g(t)dw;, where t > 0 and

wy is a Brownian motion. Particularly, we consider f(x,t) := —a(t)z, i.e.
dxy = —a(t)xedt + g(t)dw, (78)
Then the marginal of the above SDE can be analytically derived as:
t)xo + B(t \// ))2dse, B(t):=e” Jg as)ds (79)

where € ~ N (0, I). For example, when g(t) = \/3(t) and a(t) = 33(t), where 3(t) is a monotonic
function (e.g. linear) increasing from Bmm to ,Brmx, the above SDE resembles a Variance Preserving
(VP) process (Song et al., 2020). In DMs, VP can be a favor since it constrains the magnitude
of noisy data across ¢; while a VE process doesn’t, and the magnitude of data can explode as the
noise explodes. Therefore, we aim to discover whether any SDEs rather than VE can be better by
generalizing NEM and DEM to general SDE:s.

In this work, we provide a solution for general SDEs (78) rather than a VE SDE. For simplification,
we exchangeably use 3(¢) and ;. Given a SDE as Equation 78 for any integrable functions « and g,
we can first derive its marginal as Equation 79, which can be expressed as:

By Yoy = z0 + \// ))2dse (80)

Therefore, by defining y; = Bt x; we have yg = zo and therefore:

Yt = Yo + \// ))2dse (81)

which resembles a VE SDE with noise schedule &2 fo 2d3 ‘We can also derive this
by changing variables:

dyt = (ﬁ_l(t))/l‘tdt + ﬁ_l(t)dl‘t (82)

L) a(t)zedt + BHE) (—a(t)zpdt + g(t)dw;) (83)

)
“H(t)g(t)dw, (84)
which also leads to Equatlon 81. Let p; be the marginal distribution of y; and p; the marginal
distribution of ;, with y(()lli ~ N (y;y:,521) we have

Pe(yt) 0</exp(—g(y))f\/(yt;y,ﬁff)dy (85)
Si(ye) = Vy, log pr(ys) ~ Vy, log Z exp(— y0|t (86)
Exlye) ~ —log Zexp ) (87)

=1
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Therefore, we can learn scores and energies of y; simply by following DEM and NEM for VE SDEs.
Then for sampling, we can simulate the reverse SDE of y; and eventually, we have zg = yo.

Instead, we can also learn energies and scores of x;. By changing the variable, we can have

pe(we) = By Be (B ' we) = B ' Pe(ye) (88)
Si(we) = B Su(B; M) = By Sulw) (89)
which provides us the energy and score estimator for x;:
K
1 ()
E(zy) ~ —log 3; 1? Z; exp(—E&(zg;)) (90)
K .

Si(wy) ~ B ' Va, log Y exp(—E(xf) 1)

i=1
wlih ~ N (s B e, 52 (1)]) (92)

Typically, « is a non-negative function, resulting in 8(t) decreasing from 1 and can be close to 0 when
t is large. Therefore, the above equations realize that even though both the energies and scores for a
general SDE can be estimated, the estimators are not reliable at large ¢ since 3; ' can be extremely
large; while the SDE of y; (84) indicates that this equivalent VE SDE is scaled by 5, ! resulting
that the variance of ¥, at large ¢ can be extremely large and requires much more MC samples for a
reliable estimator. This issue can be a bottleneck of generalizing DEM, NEM, and BNEM to other
SDE settings, therefore developing more reliable estimators for both scores and energies is of interest
in future work.

E.2 MC ENERGY ESTIMATOR AS AN IMPORTANCE-WEIGHTED ESTIMATOR

As for any SDEs, we can convert the modeling task to a VE process by changing variables, we stick to
considering NEM with a VE process. Remember that the MC energy estimator aims to approximate
the noised energy given by Eq. 6, which can be rewritten as:

E(my) = —log/exp(—é’(a:))./\/(xt;a:,UtQI)dx 93)
N (x;2,021)
QOlt(x|xt)
N (x;2,021)

QOlt(x|xt)

— ~log [ exp(~£(x) dop (] da 94)

= logEy (ojen [exp<—8<a:>> %)

The part inside the logarithm of Eq. 95 suggests an Importance Sampling technique for approximation,
by using a proposal go|;(|z;). Notice that when choosing a proposal symmetric to the perturbation
kernal, i.e. qoj(x|2z) = N (2524, 07), Eq. 95 resembles the MC energy estimator we discussed in
Section 3.3. Therefore, this formulation allows us to develop a better estimator by carefully selecting
the proposal qo; (]2:).

However, Owen (2013) shows that to minimize the variance of the IS estimator, the proposal g (|x¢)
should be chosen roughly proportional to f(z)sareec(x), Where f(x) = exp(—&(x)) in our case.
Finding such a proposal is challenging in high-dimension space or with a multimodal figarge. A
potential remedy can be leveraging Annealed Importance Sampling (AIS; Neal (2001)).

F MEMORY-EFFICIENT NEM

Differentiating the energy network to get denoising scores in (B)NEM raises additional computations
compared with iDEM, which usually twices the computation of forwarding a neural network and
can introduce memory overhead due to saving the computational graph. The former issue can be
simply solved by reducing the number of integration steps to a half. To solve the latter memory issue,
we propose a Memory-efficient NEM by revisiting the Tweedie’s formula (Efron, 2011). Given a
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VE noising process, dr; = g(t)dw;, where w; is Brownian motion and ¢? := f;:o g(s)%ds, the
Tweedie’s formula can be written as:
Elzo|zi] — x4

Vlegp(ay) = ———=—— (96)
Oi
Elzo|z:] = /xop(:vo\xt)dazo 97)
- / woPEZPO(0) 4 (98)
pe(wy)
By revisiting Eq. 5, it’s noticable that the noised energy, & (Eq. 0), shares the same partition
function as &, i.e. [exp(—&i(z))dx = [exp(—&(x))dx,VE € [0,1]. Hence, Eq. 98 can be

simplified as follows, which further suggests a MC estimator for the denoising score with no require
of differentiation

N (@; w0, 07T) exp(—E(x0))
Elzo|z:] = / oxp(—E,(20)) dxg (99)
~ exXp (* (5(I0|t Sf $t )) Iolt (100)

where xg;; ~ N (x;34,021). Given learned noised energy, we can approximate this denoiser
estimator as follows:

Dy(x,t) : = exp (— (5($0|t) - Eg(xt,t))) Tl (101)
Dy(1,t) : = exp (— (Eg(wops, 0) — Ep(x1,1)) ) oy (102)

where we can alternatively use Dy or Dy according to the accessability of clean energy &, the relative
computation between &(x) and Ey(z,t), and the accuracy of Ey(x,0).

G TwEEDEM: A MIDDLE POINT BETWEEN DENOISING ENERGY MATCHING
AND ENERGY FLOW MATCHING THROUGH TWEEDIE’S FORMULA

In this supplementary work, we propose TWEEDIE DEM (TweeDEM), by leveraging the Tweedie’s
formula (Efron, 2011) into DEM, i.e. V,log pi(z) = Ep(z)ay) [ 05 "“} Surprisingly, TweeDEM

can be equivalent to the iEFM-VE proposed by Woo & Ahn (2024), which is a variant of iDEM
corresponding to another family of generative model, flow matching.

We first derive an MC denoiser estimator, i.e. the expected clean data given a noised data x; at ¢

Elzo|z:] = /xop(mo\xt)dmo (103)
- / 2o 2ZdTORO(0) 4 (104)
pe(2)

_ /xo/\f(mt;xo,af]) exp(—é’(xo))dxo (105)

exp(—&¢(z4))
where the numerator can be estimated by an MC estimator Ey/(,, o212 exp(—&(z))] and the

denominator can be estimated by another similar MC estimator E /(521 [exp(—E&(x))], suggesting
we can approximate this denoiser through self-normalized importance samphng as follows

K exp(—&(z{))

[t (7)
Di(aet): =Y 0 ) (106)
Sy exp(=E@Ei))

K .
=y wlzg@ (107)
i=1
where xéﬁ ~ N (zy,021), w; are the importance weights and D (z¢,t) ~ E[zg|7;]. Then a new

MC score estimator can be constructed by plugging the denoiser estimator D into Tweedie’s formula

.It, E Wi—— —

fL‘ — T
"‘t ! (108)
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Table 2: Comparison between DEM, DDM, and TweeDEM.

Score estimator: Y, w;s;, with w; = So ftmaz(w)]i]

Sampler| Components— Weight Type w; Score Type S;
DEM(Akhound-Sadegh et al., 2024)  System Energy exp(—E(xgi)t)) System Score —VS(I(()?t))
DDM(Karras et al., 2022) Gaussian Density N(x((f‘i, 24,021)  Gaussian Score  V log N(x((f‘i, x4, 021)
TweeDEM System Energy cxp(féf(:téi‘l)) Gaussian Score ~ V log N(T((]Z‘i, x¢,021)

(i)
ot
o? N
vector fields can be seen as scores of Gaussian, i.e. Vlog N (z;z,021), and therefore Sy is
an importance-weighted sum of Gaussian scores while Sk can be expressed as an importance-
weighted sum of system scores —VE. In addition, Karras et al. (2022) demonstrates that in
Denoising Diffusion Models, the optimal scores are an importance-weighted sum of Gaussian
scores, while these importance weights are given by the corresponding Gaussian density, i.e.

Spm(ze,t) = >, wl(xélli — ;) /o? and W; N(asé?t;xt,afl). We summarize these three dif-

ferent score estimators in Table 2.

—a
where

resembles the vector fields v;(z;) in Flow Matching. In another perspective, these

H EXPERIMENTAL DETAILS

H.1 ENERGY FUNCTIONS

GMM. A Gaussian Mixture density in 2-dimensional space with 40 modes, which is proposed by
Midgley et al. (2023). Each mode in this density is evenly weighted, with identical covariances,

40 0
5= (0 40> (109)
and the means {;}49, are uniformly sampled from [—40, 40]?, i.e.

40

1
Pomm (@) = 75 > N (w; i, %) (110)
i=1

Then its energy is defined by the negative-log-likelihood, i.e.
ECMM () = —log pgmm () (111)

For evaluation, we sample 1000 data from this GMM with TORCH.RANDOM.SEED(0) following
Midgley et al. (2023); Akhound-Sadegh et al. (2024) as a test set.

DW-4. First introduced by Kohler et al. (2020), the DW-4 dataset describes a system with 4 particles
in 2-dimensional space, resulting in a task with dimensionality d = 8. The energy of the system is
given by the double-well potential based on pairwise Euclidean distances of the particles,
1
gDW(.I) = Z Z a(dij — do) + b(d” — d0)2 + C(dij - d0)4 (112)
j

where a, b, c and dj are chosen design parameters of the system, 7 the dimensionless temperature
and d;; = ||z; — z;||2 are Euclidean distance between two particles. Following Akhound-Sadegh
etal. (2024),weseta =0,b = —4,c=0.9dy = 4 and 7 = 1, and we use validation and test set
from the MCMC samples in Klein et al. (2023a) as the “Ground truth” samples for evaluating.

LJ-n. This dataset describes a system consisting of n particles in 3-dimensional space, resulting in a
task with dimensionality d = 3n. Following Akhound-Sadegh et al. (2024), the energy of the system
is given by £7°!(z) = ELY(z) + c£°%¢(x) with the Lennard-Jones potential

o=y ((@) - (@))

j
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and the harmonic potential
osc(,.\ __ 1 2
£7%(x) = 5 D lla = zcou| (114)

where d;; = ||z; — x;||2 are Euclidean distance between two particles, r,,, 7 and € are physical
constants, xco s refers to the center of mass of the system and c the oscillator scale. We use r,,, = 1,
7=1,e¢=1and c = 0.5 the same as Akhound-Sadegh et al. (2024). We test our models in LJ-13
and LJ-55, which correspond to d = 65 and d = 165 respectively. And we use the MCMC samples
given by Klein et al. (2023a) as a test set.

H.2 EVALUATION METRICS

2-Wasserstein distance 1V,. Given empirical samples y from the sampler and ground truth samples
v, the 2-Wasserstein distance is defined as:

Wa(u,v) = (infﬂ/ﬂ'(:L',y)dQ(x,y)dxdy)% (115)

where 7 is the transport plan with marginals constrained to 1 and v respectively. Following Akhound-
Sadegh et al. (2024), we use the Hungarian algorithm as implemented in the Python optimal transport
package (POT) (Flamary et al., 2021) to solve this optimization for discrete samples with the
Euclidean distance d(x,y) = || — y||2. * — W is based on the data and £ — W is based on the
corresponding energy.

Total Variation (TV). The total variation measures the dissimilarity between two probability distri-
butions. It quantifies the maximum difference between the probabilities assigned to the same event
by two distributions, thereby providing a sense of how distinguishable the distributions are. Given
two distribution P and @, with densities p and g, over the same sample space (2, the TV distance is
defined as

V(P.Q) = 5 [ Ibfe) — a(wlds (116)

Following Akhound-Sadegh et al. (2024), for low-dimentional datasets like GMM, we use 200 bins
in each dimension. For larger equivariant datasets, the total variation distance is computed over the
distribution of the interatomic distances of the particles.

H.3 EXPERIMENT SETTINGS

We pin the number of reverse SDE integration steps for iDEM, NEM, BNEM and TweeDEM (see
Appendix G) as 1000 and the number of MC samples as 1000 in most experiments, except for the
ablation studies.

GMM-40. For the basic model fy, we use an MLP with sinusoidal and positional embeddings which
has 3 layers of size 128 as well as positional embeddings of size 128. The replay buffer is set to a
maximum length of 10000.

During training, the generated data was in the range [—1, 1] so to calculate the energy it was scaled
appropriately by unnormalizing by a factor of 50. Baseline models are trained with a geometric
noise schedule with 0,50 = le — 5, omax = 1; NEM and BNEM are trained with a cosine noise
schedule with oy, = 0.001 and oy, = 1. We use K = 500 samples for computing the Bootstrap
energy estimator E£. We clip the norm of Sk, sg and V Ey to 70 during training and sampling. The
variance controller for BNEM is set to be 5 = 0.2. All models are trained with a learning rate of
o5e — 4.

DW-4. All models use an EGNN with 3 message-passing layers and a 2-hidden layer MLP of size
128. All models are trained with a geometric noise schedule with o, = le — 5, omax = 3 and a
learning rate of le — 3 for computing Sk and Fx. We use K = 500 samples for computing the
Bootstrap energy estimator EIB;. We clip the norm of Sk, sg, and V Ey to 20 during training and
sampling. The variance controller for BNEM is set to be 8 = 0.2.

LJ-13. All models use an EGNN with 5 hidden layers and hidden layer size 128. Baseline models
are trained with a geometric noise schedule with o,;, = 0.01 and o, = 2; NEM and BNEM are
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Table 3: Neural sampler performance comparison for 4 different energy functions. We measured the
performance using data Wasserstein-2 distance (x-W,), Energy Wasserstein-2 distance (£-Ws), and
Total Variation (TV). * indicates divergent training. Each sampler is evaluated with 3 random seeds
and we report the mean + standard-deviation for each metric.

Energy — GMM-40 (d = 2) DW-4 (d = 8) LJ-13 (d = 39) LJ-55 (d = 165)

Sampler | x-Wa] E-Wal TV] x-Wal EW,l TV] x-Wal EWal TV] x-Wal EWal TV]
DDS 15.0442.07  305.13+186.06  0.96+0.01  0.82+021  558.79+7s7024.86  0.38+0.14 * # #

PIS 6.58+1.68 79.86+7.70  0.95+0.01 * * # * # * * #
FAB 9.08+1.41 47.60+7.24  0.79x0.07  0.62=0.02 112.70+20.33 0.38+0.02 * * * * * *
iDEM 8.2145.43 60.49+7012  0.82+£003  0.500.03 2.80+1.72 0.16£001  0.87+0.00 77515.90+115028.07  0.06x0.01  2.06£0.04  169347.941260160.08  0.16:0.02
NEM (ours) 5.28+0.80 44.56+30.56  0.91+0.02  0.48+0.02 0.85+0.52 0.14+001  0.87+0.01 5.01+3.14 0.03£0.00  1.90+0.01 118.58+106.63 0.10-0.02
BNEM (ours)  3.66-0.30 1.87=1.00 0.79:+0.01  0.49<0.02 0.38:0.00 0.14:001  0.86=0.00 1.02:0.60 0.03:000 187005 821060.12+1307674.81  0.15+0.07

Table 4: Ablation Study on applying energy smoothing based on Cubic Spline for iDEM

Energy — LJ-55 (d = 165)

Sampler | x-Wa] EWsl TV,
iDEM 2.077 £ 0.0238 169347 £ 2601160  0.165 £ 0.0146
iDEM (cubic spline smoothed)  2.086 + 0.0703 12472 + 8520 0.142 £+ 0.0095
NEM (ours) 1.898 £ 0.0097  118.57 + 106.62  0.0991 + 0.0194

trained with a geometric noise schedule with oy,;;, = 0.001 and o,,,,x = 6.0 to ensure the data well
mixed to Gaussian. We use a learning rate of 1le — 3, K = 500 samples for EE, and we clipped Sk,
sg and V Ejy to a max norm of 20 during training and sampling. The variance controller for BNEM is
set to be 8 = 0.5.

LJ-55. All models use an EGNN with 5 hidden layers and hidden layer size 128. All models are
trained with a geometric noise schedule with 0,5, = 0.5 and o, = 4. We use a learning rate
of le — 3, K = 500 samples for EZ. We clipped Sk and sg to a max norm of 20 during training
and sampling. And we clipped V Ejy to a max norm of 1000 during sampling, as our model can
capture better scores and therefore a small clipping norm can be harmful for sampling. The variance
controller for BNEM is set to be 5 = 0.4.

For all datasets. We use clipped scores as targets for iDEM and TweeDEM training for all tasks.
Meanwhile, we also clip scores during sampling in outer-loop of training, when calculating the
reverse SDE integral. These settings are shown to be crucial especially when the energy landscape is
non-smooth and exists extremely large energies or scores, like LJ-13 and LJ-55. In fact, targeting the
clipped scores refers to learning scores of smoothed energies. While we’re learning unadjusted energy
for NEM and BNEM, the training can be unstable, and therefore we often tend to use a slightly larger
Omin. Also, we smooth the Lennard-Jones potential through the cubic spline interpolation, according
to Moore et al. (2024). Besides, we predict per-particle energies for DW-4 and LJ-n datasets, which
can provide more information on the energy system. It shows that this setting can significantly
stabilize training and boost performance.

I SUPPLEMENTARY EXPERIENTS

1.1 MAIN RESULTS

We report a detailed version of the main table 1 in Table 3, which includes the mean and standard
deviation of metrics.

1.2 COMPARING THE ROBUSTNESS OF ENERGY-MATCHING AND SCORE-MATCHING

In this section, we discussed the robustness of the energy-matching model(NEM) with the score-
matching model(DEM) by analyzing the influence of the numbers of MC samples used for estimators
and choice of noise schedule on the sampler’s performance.

Robustness with limited compute budget. We first complete the robustness discussed in Section 5,
by conducting experiments on a more complex benchmark - LJ-13. reports different metrics of each
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Figure 6: Comparison of the Energy Wasserstein-2 distance in DW4 benchmark between DEM and
NEM across varying numbers of MC samples.

Table 5: Neural sampler performance comparison for 3 different energy functions. The number
after the sampler, e.g. NEM-100, represents the number of integration steps and MC samples is
100. We measured the performance using data Wasserstein-2 distance(x-Vs,), Energy Wasserstein-2
distance(£-Ws) and Total Variation(TV).

Energy — GMM-40 (d = 2) DW-4 (d = 8) LJ-13 (d = 39)
Sampler | x-Wh| EWal TV|] x-Wo| EWal TV|] x-Wo| E-Wsl TV|]

iDEM-1000  4.21+0.86 1.63+0.61  0.81+0.03 0.42+0.02 1.89+0.56 0.13+0.01 0.87+0.00 77515.90+115028.07 0.06+0.01
iDEM-100 8.21+543 60.49+70.12  0.82+0.03 0.50+0.03 2.80+1.72 0.16+0.01  0.88+0.00 1190.59+590, 290 0.07+0.00

NEM-1000 2.73+0.55  1.68+0.9s  0.81+0.00 0.46+0.02 0.28+0.0s 0.28+0.13 0.02+0.01 5.01+2.56 0.03+0.00
NEM-100 5.2840.89 44.56+39.56 0.91+0.02 0.48+0.02 0.85+0.52 0.14+0.01 0.88+0.00 13.14+225.45 0.04+0.00
BNEM-1000 2.55+047  0.36+0.12  0.66+0.08 0.49+0.01  0.29+0.05 0.15+0.01  0.86:0.00 0.62+0.01 0.03+0.00
BNEM-100  3.66+0.30  1.87+1.00  0.79+0.04 0.49+0.02 0.38+0.09 0.14+0.01  0.87+0.00 5.93+3.01 0.03+0.00

sampler in different settings, i.e. 1000 integration steps and MC samples v.s. 100 integration steps
and MC samples, and different tasks.

Robustness v.s. Number of MC samples. As in Figure 6, NEM consistently outperforms iDEM
when more than 100 MC samples are used for the estimator. Besides, NEM shows a faster decline
when the number of MC samples increases. Therefore, we can conclude that the low variance of
Energy-matching makes it more beneficial when we boost with more MC samples.

Robustness v.s. Different noise schedules. Then, we evaluate the performance differences when
applying various noise schedules. The following four schedules were tested in the experiment:

* Geometric noise schedule: The noise level decreases geometrically in this schedule. The
noise at step ¢ is given by: o, = aé_t - ot where o9 = 0.0001 is the initial noise level,
01 = 1is the maximum noise level, and ¢ is the time step.

* Cosine noise schedule: The noise level follows a cosine function over time, represented by:
oy = o1 - cos(m/2 1J{igt )2, where § = 0.008 is a hyper-parameter that controls the decay
rate.

* Quadratic noise schedule: The noise level follows a quadratic decay:o, = oot? where oq
is the initial noise level. This schedule applies a slow decay initially, followed by a more
rapid reduction.

* Linear noise schedule: In this case, the noise decreases linearly over time, represented as:
oy = o1t

The experimental results are depicted in Figure 7. It is pretty obvious that for iDEM the performance
varied for different noise schedules. iDEM favors noise schedules that decay more rapidly to O when
t approaches 0. When applying the linear noise schedules, the samples are a lot more noisy than other
schedules. This also proves our theoretical analysis that the variance would make the score network
hard to train. On the contrary, all 4 schedules are able to perform well on NEM. This illustrates that
the reduced variance makes NEM more robust and requires less hyperparameter tuning.
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(¢) Quadratic: 3.95 (d) Linear: 9.87

(a) Geometric: 2.64 (b) Cosine: 2.29 (c) Quadratic: 2.53 (d) Linear: 3.13

Figure 7: Comparison of different sampler (Above: iDEM; Below: NEM) when employing different
noise schedules. The performances of x-V, are listed.

Robustness in terms of Outliers. Based on Figure 3, we set the maximum energy as (GMM-40: 100;
DW-4: 0; LJ-13: 0; LJ-55: —150). We remove outliers based on these thresholds and recomputed
the £-W>5. We report the new values as well as percentage of outliers in Table 6, which shows that
the order of performance (BNEM>NEM>iDEM) still holds in terms of better £-W, value and less
percentage of outliers.

Table 6: £-WW, w/o outliers (outlier%) for different models and datasets. Bold indicates the best value
and underline indicates the second one.

Sampler| Energy— GMM-40(d=2) DW-4(d=38) LJ-13(d=39) LJ-55(d = 165)

iDEM 0.138 (0.0%)  8.658 (0.02%) 88.794 (4.353%) 21255 (0.29%)
NEM (ours) 0.069 (0.0%)  4.715(0.0%) 5.278 (0.119%)  98.206 (0.020%)
BNEM (ours) 0.032 (0.0%) 1.050 (0.0%) 1.241 (0.025%)  11.401 (0.0%)

1.3 EMPIRICAL ANALYSIS OF THE VARIANCE OF Ei AND Sk

To justify the theoretical results for the variance of the MC energy estimator (9) and MC score
estimator (7), we first empirically explore a 2D GMM. For better visualization, the GMM is set to be
evenly weighted by 10 modes located in [—1, 1] with identical variance 1/40 for each component,
resulting in the following density

10
1 1
f = — E iy —1 117
pGMM(x) 10 i:1N (mvﬂ " 40 ) ( )
while the marginal perturbed distribution at ¢ can be analytically derived from Gaussian’s property:
10
1 Z 1
pe(@) = Warrar * N'(0,07))(21) = 35 2N (fﬂ;m, (40 + o?) I) (118)

given a VE noising process.

We empirically estimate the variance for each pair of (z¢, t) by simulating 10 times the MC estimators.
Besides, we estimate the expected variance over x for each time ¢, i.e. E,, ,,)[Var(Ex (2¢,t))] and

Ep, (20 [Var(Sk (1, 1))].
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Figure 8: (a) the ground truth energy of the target GMM from ¢ = 0 to ¢ = 1; (b) the estimation
of expected variance of = from ¢ = 0 to ¢ = 1, computed by a weighted sum over the variance of
estimator at each location with weights equal to the marginal density p;; (c) the variance of MC score
estimator and MC energy estimator, and their difference (Var[score]-Var[energy]) for ¢ from 0.9 to 1,
we ignore the plots from ¢ € [0, 0.9] since the variance of both estimators are small. The colormap
ranges from blue (low) to red (high), where blues are negative and reds are positive.

Figure 8a shows that, the variance of both MC energy estimator and MC score estimator increase
as time increases. In contrast, the variance of Fx can be smaller than that of Sx in most areas,
especially when the energies are low (see Figure 8c), aligning our Proposition 2. Figure 8b shows
that in expectation over true data distribution, the variance of E is always smaller than that of Sk
across t € [0, 1].

1.4 EMPIRICAL ANALYSIS OF THE BIAS OF BOOTSTRAPPING

To show the improvement gained by bootstrapping, we deliver an empirical study on the GMM-40
energy in this section. As illustrated in Section H.3, the modes of GMM-40 are located between
[—40, 40]? with small variance. Therefore, the sub-Gaussianess assumption is natural. According
to Proposition A and Proposition B, the analytical bias of the MC energy estimator (Eq. 9) and
Bootstrapped energy estimator (Eq. 49) can be computed by Eq. 24 and Eq. ??, respectively. We
provide these two bias terms here for reference,

Bias(Ex (21,1)) = % (119)
" wps. (T
Bias(Ex (21,1, 5:0)) = 2m”(°;f;3;()n —+ z; ngét;;{j (120)
= J
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Given a Mixture of Gaussian with K components, po(z) = Y, N (z; g, Xx) and E(x) =
—log po(x), m(x) and vy can be calculated as follows:

my(xy) = exp(—E&(z4)) (121)
= /N(Jct;x,atzl) exp(—&(z))dz (122)
= /N(xt;x,afl)po(x)dx (123)
= Yo [ Nari ot DAz, Bi)da (124)
k
= > mN (@ i, 07T + Si) (125)
k
UOt(‘Tt) = Var]\/(z;zt,o‘fl) (eXp(*g(X))) (126)
= / N(zy; 2,07 )po(x)*da — mf () (127)
= Z?‘(‘jﬂ’k //\/'(xt;x, of DN (z; e, S )N (5 g, X5 )da — m3 (xy) (128)
ik
_ Nz 27 N (2 Y.)C |Ejk|1/2 d 2
_Zﬂ-jﬂ—k (.’Et,l',O't ) (x,Mjka jk) Jk (27r)d/2|2'|1/2|2k|1/2 l'_mt(xt)
ik J
(129)
|21/ > >
=S mmC; ik 02T+ Ng) — 130
Jzkjﬁﬂkcjk (27r)d/2|2j|1/2\Ek\1/2N(It’”Jk’at + Bj) = my (1) (130)
where
ik = (57 + 5T (131)
pik = Sk (S5 iy + S ) (132)
1 _ _ _ _ _ _
Cjr = exp (-2 (] 5 g 4 gl B e — (55 g+ 35 ) T8k (55 s + S 1!%)])

(133)

In our GMM-40 case, the covariance for each component are identical and diagonal, i.e. ¥ =¥ =
vI. By plugging it into the equations, we can simplify the m;(x;) and vg; () terms as follows

1
mt(a:t) = Z ?N(th;ﬂk, (O'tQ + U)I) (134)
2
1 — (g — o) T (g — 1
von(zn) = > ﬁexp( 1o (U\j/é(;l:l)}) (14 Hk))/\/ (mt; i(uj + px), (02 + v/2)I> —m?2(xzy)
' (135)

We computed the analytical bias terms and visualize in Figure 9. Figure 9a visualizes the bias of
the both NEM and BNEM over the entire space. It shows that (1) bootstrapped energy estimator
can have less bias (contributed by bias of EK and variance of training target); (2) If Ex is already
bias, i.e. the “red” regions in the first row of Figure 9a when ¢ = 0.1, bootstrapping can not gain
any improvement, which is reasonable; (3) However, if Ex has low bias, i.e. the “blue” regions
when ¢ = 0.1, the Bootstrapped energy estimator can result in lower bias estimation, superioring MC
energy estimator; (4) In low energy region, both MC energy estimator and Bootstrapped one result
in accurate estimation. However, in a bi-level iterated training fashion, we always probably explore
high energy at the beginning. Therefore, due to the less biasedness of Bootstrapped estimator at high
energy regions, we're more likely to have more informative pseudo data which can further improve
the model iteratively.

On the other hand, we ablate different settings of Num. of MC samples and the variance-control (VC)
parameter. We visualize the results in Figure 9b. The results show that, with proper VC, bootstrapping
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Table 7: Time complexity of different neural samplers.

Sampler| Phase— Inner-loop Outer-loop (or Sampling)
iDEM O (L(2KT¢(B) + 2T'yn(B))) O (ITnn(B))
NEM (ours) O (L(KTg(B) + 2I'nn(B))) O (2TTxN(B))
BNEM (ours) O (L(KT'xn(B) + 2I'nn(B))) O (2ITxn(B))

Table 8: Time comparison (in seconds) of different samplers for both inner-loop and outer-loop across
different energies.

Energy — GMM-40 (d = 2) DW-4 (d = 8) LJ-13 (d = 39) LJ-55 (d = 165)
Sampler | Inner-loop Outer-loop Inner-loop Outer-loop Inner-loop Outer-loop Inner-loop Outer-loop
iDEM 1.657 1.159 6.783 2.421 21.857 21.994 36.158 47.477
NEM (ours) 1.658 2.252 5.217 8.517 14.646 52.563 17.171 114.601
BNEM (ours) 1.141 2.304 25.552 7.547 68.217 52.396 113.641 115.640

allows us to reduce the bias with less MC samples, which is desirable in high-dimensional and more

() m' | 'r’i"? :
o ] ] o ] -

Difference
(NEM - BNEM)

10! 10? 10° 10*
Num. of MC samples

(a) Bias with VC=0.1 (b) Bias with different VC and Num. MC samples.

Figure 9: Empirical analysis on bias with bootstrapping, on GMM-40.

1.5 COMPLEXITY ANALYSIS

To compare the time complexity between iDEM, NEM and BNEM, we let: (1) In the outer-loop
of training, we have T integration steps and batch size B; (2) In the inner-loop, we have L epochs
and batch size B. Let I'nn(B) be the time complexity of evaluating a neural network w.r.t. B data
points, I'¢ (B) be the time complexity of evaluating the clean energy w.r.t. B data points, and K be
the number of MC samples used. Since differentiating a function f using the chain rule requires
approximately twice the computation as evaluating f, we summurise the time complexity of iDEM,
NEM, and BNEM in Table 7. It shows that in principle, in the inner-loop, NEM can be slightly faster
than iDEM, while BNEM depends on the relativity between complexity of evaluating the neural
network and evaluating the clean energy function.

Table 8 reports the time usage per inner-loop and outer-loop. It shows that due to the need for
differentiation, the sampling time, i.e. outer-loop, of BNEM/NEM is approximately twice that of
iDEM. In contrast, the inner-loop time of NEM is slightly faster than that of iDEM, matching the
theoretical time complexity, and the difference becomes more pronounced for more complex systems
such as LJ-13 and LJ-55. For BNEM, the sampling time is comparable to NEM, but the inner-loop
time depends on the relative complexity of evaluating the clean energy function versus the neural
network, which can be relatively higher.
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Table 9: Comparison between iDEM, NEM, and BNEM, with similar computational budget.

Energy — LJ-13 (d = 39) LJ-55 (d = 165)
Sampler | x-Wal EWhL|l TV] xWh] EW,|l TV]
iDEM 0.870 6670  0.0600 2.060 17651  0.160

NEM-500 (ours) 0.870  31.877 0.0377 1.896 11018 0.0955
BNEM-500 (ours) 0.866  2.242  0.0329 1.890 25277 0.113

Table 10: Performance comparison between NEM and ME-NEM.

Energy — GMM-40 (d = 2) DW-4 (d = 8) LJ-13 (d = 39) LJ-55 (d = 165)
Sampler | x-Wal EWsl TV] xWh] EWhL|l TV] xW,] EWo|l TV] xWh|l EW,] TV]
NEM (ours) 1.808  0.846 0.838 0479 2956 0.14 0.866 27.362 0.0369

ME-NEM (ours)  2.431 0.107 0813 0514 1.649 0.164  0.88 20.161  0.0338

1.6 PERFORMANCE GAIN UNDER THE SAME COMPUTATIONAL BUDGET

It’s noticable that computing the scores by differentiating the energy network outputs, i.e.
V., Eo(24, 1), requires twice of computation compared with iDEM which computes sg(x;, t) by one
neural network evaluation. In this section, we limit the computational budget during sampling of both
NEM and BNEM by reducing their integration steps to half. We conduct experiment on LJ-13 and
LJ-55, where we reduce the reverse SDE integration steps in both NEM and BNEM from 1000 to
500. Metrics are reported in Table 9. It shows that with similar computation, NEM and BNEM can
still outperform iDEM.

1.7 EXPERIMENTS FOR MEMORY-EFFICIENT NEM

In this section, we conduct experiments on the proposed Memory-Efficient NEM (ME-NEM). The
number of integration steps and MC samples are all set to 1000. ME-NEM is proposed to reduce
the memory overhead caused by differentiating the energy network in NEM, which leverages the
Tweedie’s formula to establish a 1-sample MC estimator for the denoising score. In principle,
ME-NEM doesn’t require neural network differentiation, avoiding saving the computational graph.
Though it still requires evaluating the neural network twice (see Eq. 102), this only requires double
memory usage of iDEM and can be computed parallelly, resulting in a similar speed of sampling with
iDEM. In this section, we simply show a proof-of-concept experiment on ME-NEM, while leaving
more detailed experiments as our future work.

Table 10 reports the performance of NEM and ME-NEM, showcasing that ME-NEM can achieve
similar results even though it leverages another MC estimator during sampling.

1.8 EXPERIMENTS FOR TWEEDEM

In Appendix G, we propose TweeDEM, a variant of DEM by leveraging Tweedie’s formula (Efron,
2011), which theoretically links iDEM and iEFM-VE and suggests that we can simply replace the
score estimator S (7) with S i (108) to reconstruct a iEFM-VE. We conduct experiments for this
variant with the aforementioned GMM and DW-4 potential functions.

Setting. We follow the ones aforementioned, but setting the steps for reverse SDE integration 1000,
the number of MC samples 500 for GMM and 1000 for DW-4. We set a quadratic noise schedule
ranging from 0 to 3 for TweeDEM in DW-4.

To compare the two score estimators Sk and Sk fundamentally, we first conduct experiments
using these ground truth estimations for reverse SDE integration, i.e. samplers without learning.
In addition, we consider using a neural network to approximate these estimators, i.e. iDEM and
TweeDEM.

Table 11 reports x-Ws, E—W,, and TV for GMM and DW-4 potentials. Table 11 shows that when
using the ground truth estimators for sampling, there’s no significant evidence demonstrating the
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(a) Sk (ours) (b) Sk (c) TweeDEM (ours) (d) DEM

Figure 10: Sampled points from samplers applied to GMM-40 potentials, with the ground truth

represented by contour lines. Sy and Sk represent using these ground truth estimators for reverse
SDE integration.

Table 11: Sampler performance comparison for GMM-40 and DW-4 energy function. we measured
the performance using data Wasserstein-2 distance(x-Ws), Energy Wasserstein-2 distance(E-Ws),
and Total Variation(TV). 1 We compare the optimal number reported by Woo & Ahn (2024) and
Akhound-Sadegh et al. (2024). . - indicates metric non-reported.

Energy — GMM-40 (d = 2) DW-4 (d = 8)
Sampler | Wl EWsl TVL xWhl EWnl TV]
Sk 2864  0.010 0.812 1.841  0.040 0.092
Sy (ours) 2506  0.124 0826 1.835 0.145 0.087
iDEMt 3.98 - 081  2.09 - 0.09
iDEM (rerun) 6406 4690 0.859 1.862  0.030 0.093
iEFM-VE{ 431 - - 221 - -

iEFM-OT# 421 - - 2.07 - -

TweeDEM (ours)  3.182 1.753 0815 1910 0.217 0.120

privilege between Sx and Sx. However, when training a neural sampler, TweeDEM can significantly
outperform iDEM (rerun), iEFM-VE, and iEFM-OT for GMM potential. While for DW4, TweeDEM
outperforms iEFM-OT and iEFM-VE in terms of z — s, but are not as good as our rerun iDEM.

Figure 10 visualizes the generated samples from ground truth samplers, i.e. Sk and Sk, and neural
samplers, i.e. TweeDEM and iDEM. It shows that the ground truth samplers can generate well mode-
concentrated samples, as well as TweeDEM, while samples generated by iDEM are not concentrated
on the modes and therefore result in the high value of W, based metrics. Also, this phenomenon
aligns with the one reported by Woo & Ahn (2024), where the iEFM-OT and iEFM-VE can generate
samples more concentrated on the modes than iDEM.

Above all, simply replacing the score estimator S with Sk can improve generated data quality and
outperform iEFM in GMM and DW-4 potentials. Though TweeDEM can outperform the previous
state-of-the-art sampler iDEM on GMM, it is still not as capable as iDEM on DW-4. Except scaling
up and conducting experiments on larger datasets like LJ-13, combing S and Sk is of interest in
the future, which balances the system scores and Gaussian ones and can possibly provide more useful
and less noisy training signals. In addition, we are considering implementing a denoiser network for
TweeDEM as our future work, which might stabilize the training process.
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