
AutoBench: A Dynamic Benchmark for Auditing Scientific Reasoning in Large
Language Models

Shima Imani1* Seungwhan Moon Adel Ahmadyan Lu Zhang
Kirmani Ahmed Babak Damavandi

Meta Reality Lab

Abstract

Rigorous auditing of large language models (LLMs) de-
mands dynamic, controllable evaluations, especially in sci-
entific domains like physics where precise reasoning is
essential. We introduce AutoBench, a novel synthetic
benchmark for experimental auditing of LLM reasoning,
robustness, and failure modes. AutoBench comprises
15K university-level physics problems generated through a
rigourous process, each paired with structured step-by-step
reasoning, symbolic Python code, and final computed an-
swers. The dataset is fully dynamic: each problem is pa-
rameterized, allowing controlled variation of inputs with
automatic solution updates via the associated code. Addi-
tionally, multiple paraphrased variants of each problem en-
able systematic perturbations of linguistic structure. These
features support fine-grained experiments to test general-
ization, diagnose biases, and uncover brittle reasoning be-
haviors—advancing beyond traditional static benchmarks.
In addition, since the dataset is fully dynamic, we can hide
key components and measure hallucination, and how mod-
els behave in uncetainty. We further evaluate a range of
state-of-the-art instruction-tuned LLMs on AutoBench, re-
vealing new insights into their scientific reasoning capabil-
ities and failure patterns. Our work highlights the impor-
tance of dynamic synthetic datasets for principled, experi-
mental auditing of model behavior.

1. Introduction
Effective reasoning, a cornerstone of human intelligence,
enables systematic problem-solving, logical deduction, and
structured decision-making. In science-driven domains
such as physics, accurate reasoning demands the integration
of theoretical principles, rigorous mathematical processes,
and computational verification to ensure both dimensional
and numerical correctness.

Recent advancements in large language models (LLMs)

*Corresponding author: shimaimani@meta.com

have markedly improved their reasoning capabilities. Inno-
vations such as advanced prompting methods (e.g., chain-
of-thought, tree-of-thought, and self-reflection), supervised
fine-tuning on reasoning tasks, direct preference optimiza-
tion (DPO), and reinforcement learning with human feed-
back (RLHF) have all contributed to these gains [9, 12–
14, 18, 19]. Concurrently, a range of benchmarks has
emerged to assess scientific reasoning in LLMs, particularly
in STEM domains [8, 10, 15, 17].

However, existing benchmarks for evaluating scientific
reasoning particularly in physics have several limitations.
Many do not include step-by-step reasoning, do not re-
flect the complexity of university-level problems, lack sys-
tematic variation, and often do not provide executable
Python code. For instance, an example from ScienceQA
dataset [10]:

"question": "Select the solid."
"choices": ["rain", "water in a fishbowl", "

hammer"]
"answer": 2

Similarly, in the SciEval [15] benchmark:

"question": "How can momentum be decreased?
A. Decrease mass or velocity, or transfer

momentum through collision.
B. Keep mass and velocity constant, avoid

collisions.
C. Increase mass and velocity, avoid collisions

.
D. Increase mass, decrease velocity, and avoid

collisions.
Answer: ["A"]

These benchmarks tend to be largely static, with fixed
questions and limited support for controlled variation in in-
put values, reasoning pathways, or linguistic formulations.
This can make it challenging to conduct dynamic and fine-
grained evaluations necessary for assessing model general-
ization, robustness, and reasoning under perturbation.

Figure 1. An example from our AutoBench dataset includes a generalized question, a step-by-step solution, and the corresponding Python
code. The dataset is dynamic, allowing any variable to be modified, providing flexibility for evaluating models across a range of input
variations.

To address these limitations, we introduce AutoBench,
a comprehensive benchmark for physics-based reasoning
that includes 15,000 examples. Our benchmark contributes
along three key dimensions:
• Dynamic Generalization. AutoBench offers systemati-

cally parameterized and extensively paraphrased physics
problems, enabling tests of model robustness and gener-
alization across variable inputs, conditions, and textual
contexts.

• Structured Step-by-Step Reasoning. Every Auto-
Bench instance includes carefully curated, detailed rea-
soning steps that explicitly illustrate the logical deduction
process.

• Integrated Computational Validation. Each prob-
lem instance is accompanied by generalized, executable
Python code that ensures computational correctness, nu-
merical accuracy, and consistent dimensional analysis
based on standard SI units. The code is designed to fa-
cilitate seamless generalization across different units of
measurement while rigorously maintaining unit consis-
tency and dimensional integrity.
Figure 1 illustrates an example demonstrating how Auto-

Bench incorporates dynamically parameterized statements,
structured reasoning steps, and corresponding computa-
tional validation through Python code.

By enabling controlled perturbations of both inputs and
linguistic formulations, AutoBench supports experimental
auditing of LLMs, allowing researchers to probe model
behavior, diagnose biases, and uncover brittle reasoning
patterns. We further benchmark several state-of-the-art
instruction-tuned LLMs on AutoBench, revealing new in-
sights into their scientific reasoning capabilities and expos-
ing critical limitations that traditional static benchmarks fail
to capture.

2. Related Work

Recent advancements in large language models (LLMs)
have significantly expanded their capabilities in structured
reasoning tasks. Pioneering work in methods such as
Chain-of-Thought (CoT) prompting [18], instruction tun-
ing [12], and reinforcement learning from human feed-
back (RLHF) [4, 12] has demonstrated strong performance
across a wide range of tasks. However, despite these ad-

vances, challenges persist in complex, multi-step scientific
reasoning, particularly in domains requiring deep domain
knowledge, such as physics and engineering [8]. These
challenges underscore the need for datasets and tools that
better reflect the nuanced demands of STEM problem-
solving.

In parallel, the field of auditing machine learning models
has emerged as a critical area of research, focusing on un-
derstanding model behavior, performance, biases, and fail-
ure modes. One key area of interest is the use of synthetic
data to provide reliable insights into model behavior. This
approach helps evaluate how models generalize and behave
under various conditions [5, 16]. Despite efforts to develop
synthetic datasets for testing and evaluating machine learn-
ing models, many existing science benchmarks, particularly
in physics, remain static. This static nature limits their abil-
ity to comprehensively probe model behavior and under-
stand the underlying causes of failure modes.

The development of science benchmarks such as Sci-
enceQA [10], SciBench [17], and physics-specific datasets
like PhysBench from MMLU [8] has been instrumental in
advancing the evaluation of LLMs on structured reason-
ing tasks. These benchmarks provide valuable resources
for assessing baseline scientific knowledge and reason-
ing skills. However, their static nature fixed in scope
and content—poses challenges for dynamically evaluating
model behavior across varying conditions and diverse in-
put scenarios. In addition, several benchmarks, particu-
larly in physics such as PhysBench [8],SciEval [15], and
JEEBench [2], predominantly utilize multiple-choice for-
mats. While effective for standardized evaluation, this for-
mat can sometimes constrain a deeper assessment of model
reasoning and generalization capabilities. Moreover, many
existing resources lack detailed, programmatically verifi-
able step-by-step solutions and systematic support for tech-
niques like dimensional analysis or symbolic computation.
Expanding beyond static benchmarks could open new av-
enues for more robustly probing model behavior, diagnos-
ing failure modes, and fostering a deeper understanding of
scientific reasoning in dynamic, real-world contexts.

Our proposed AutoBench builds on these efforts by in-
troducing a dynamic, parameterized benchmark designed
to enable controlled perturbations of input variables. This
flexibility allows for systematic exploration of model be-
havior under a wide range of conditions. Unlike tradi-
tional static benchmarks, AutoBench supports deeper inves-
tigation into model generalization, robustness, and failure
modes by leveraging diverse problem variants coupled with
programmatic validation. The ability to iteratively modify
input scenarios and rigorously verify outputs is crucial for
diagnosing weaknesses, understanding model limitations,
and ultimately improving reliability in real-world scientific
reasoning tasks.

3. AutoBench Dataset Overview

Figure 2. Step-by-step overview of the AutoBench dataset creation
pipeline.

We constructed the AutoBench dataset through a rigor-
ous, multi-stage pipeline designed to ensure scientific pre-
cision, generalization robustness, and computational ver-
ifiability. The process encompasses the extraction, gen-
eralization, paraphrasing, code generation, and validation
of physics problems along with their reasoning steps and
executable solutions. The following section outlines the
methodology behind this pipeline, detailing each stage that
contributes to the creation of the benchmark.

Methodology

Figure 2 provides an overview of the methodology used to
create AutoBench, a comprehensive physics-based reason-
ing benchmark. This pipeline is designed to be scalable and
adaptable to a variety of scientific domains, ensuring that
the benchmark can evolve and be applied across different
fields. Below, we detail each stage of the pipeline that con-
tributes to the creation of the benchmark.

3.1. OCR and Problem Extraction
We begin by applying OCR techniques coupled with
domain-specific heuristics to extract relevant physics prob-
lems from a variety of sources.

3.2. Image-to-Text Conversion
Next, we use the Llama-3.2-90B-Vision-Instruct model [7]
selected for its proven reliability in prior benchmarks to
convert the extracted problem into structured text. This out-
put includes the problem statement and step-by-step reason-
ing steps in textual form.

3.3. Structured Information Extraction
Next, we employ the Llama-3.3-70B-Instruct [7] text-based
language model to extract structured representations from
the textual problem. The model is prompted to output in-
formation in a standardized format:
1. Input variables with numerical values and physical

units (e.g., "v1": [2, "m/s"]).
2. Output variables with their expected final values and

units (e.g., "v a prime": [-3, "m/s"]).
3. Relevant constants, such as gravitational acceleration

("g": [9.8, "m/s2"]).
This structured format serves as a foundation for gener-

ating parameterized code and enables systematic variation
across problem instances.

3.4. Dynamic Generalization
We then apply carefully designed templates to generalize
each extracted problem. These templates emphasize:

1. The core physics concepts involved.
2. Known versus unknown quantities.
3. Selection and application of appropriate equations.
4. Logical step-by-step solution derivation.

Each generalized instance is used to generate multiple
paraphrased variants, preserving physical integrity while
enhancing dataset diversity and model robustness.

3.5. Python Code via Custom Scaffolding
Using the structured information and paraphrased prob-
lems, we prompt the Llama-3.3-70B-Instruct model to gen-
erate executable Python code. To ensure generalizability:
• Input variables and physical constants are passed as struc-

tured inputs.
• Output variables are initialized as placeholders and com-

puted symbolically.
• Final answers are returned in a standardized dictionary

format for consistent evaluation.

Use of Standard Libraries. To ensure correctness and di-
mensional consistency, all code utilizes:

• Pint: Enforces unit consistency across all numerical op-
erations.

• SymPy: Enables symbolic algebra, equation solving, and
analytical manipulation.

3.6. Computational Validation and Feedback

To ensure reliability, each generated Python script under-
goes a two-stage validation process:

1. Dimensional validation: Verifies that all quantities con-
form to correct physical units using Pint.

2. Numerical validation: Confirms computed values
match expected outputs using the original input values.

In case of discrepancies, the failure cases are automati-
cally fed back into the model for iterative correction.

Final Dataset Construction

Once validated, each problem template is instantiated with
randomized numerical values (within physically meaning-
ful bounds) to generate diverse variants. For example, con-
straints are applied to prevent values that violate physical
laws (e.g., speeds exceeding the speed of light). Each prob-
lem instance is accompanied by:
• A paraphrased textual problem.
• A structured reasoning explanation.
• Executable Python code with symbolic and numerical

output.
• The generated input variables, constants, and the final an-

swer computed through Python code.
AutoBench ultimately comprises over 15,000 rigorously

validated physics problems, forming a dynamic and exe-
cutable benchmark that tests model reasoning across both
symbolic and computational dimensions.

Table 1 presents the distribution of our dataset across var-
ious physics topics.

Figure 1 provides a representative sample from the
benchmark. Additional examples can be found in the Ap-
pendix (see Section 8).

Physics Topic Percentage (%) Number of Instances

Mechanics 33.56 5049
Electricity and Magnetism 21.35 3213
Modern Physics 11.53 1734
Thermodynamics 8.14 1224
Waves and Oscillations 10.16 1530
Fluid Mechanics 10.17 1530
Waves and Optics 5.09 765

Total 100.00 15045

Table 1. Distribution of dataset instances by physics topics in Au-
toBench. Percentages are rounded to two decimal places.

4. Experimental Results and Insights Beyond
Accuracy

We evaluate a range of state-of-the-art instruction-tuned
LLMs on AutoBench to assess their scientific reasoning
capabilities under dynamic and perturbed conditions. To
ensure an unbiased evaluation, we exclude LLaMA-based
models from testing, as the dataset was partially generated
using a LLaMA model. To this end, we measure several key
metrics:
• Exact Match Accuracy: The proportion of problems for

which the model produces a completely correct end-to-
end solution.

Exact Match Accuracy =
fully correct solutions

total problems

A substantial portion of the problems in our dataset con-
sists of multiple subproblems (e.g., parts a, b, c, etc.). To
compute exact match accuracy, we evaluate whether the
model provides correct solutions for all parts of the prob-
lem. Given that many problems are composed of multiple
sub-steps, we also introduce Partial Accuracy as a metric.
This measures the fraction of sub-steps that the model an-
swers correctly, providing a more granular assessment of
performance. Partial accuracy captures cases where the
model demonstrates progress by solving individual sub-
steps correctly, even if it does not fully solve the entire
problem. This metric is particularly useful for identify-
ing areas where the model excels in certain aspects of a
problem but requires further improvement in others.

• Partial Accuracy: The fraction of individual sub-steps
within a structured solution that the model answers cor-
rectly.

Partial Accuracy =
correct sub-steps
total sub-steps

Beyond accuracy, we also measure additional perfor-
mance metrics:

• Consistency Score: The proportion of problem groups
where the model consistently provides the correct answer
across all perturbed variants, reflecting the stability and
reliability of the model’s performance. A high consis-
tency score indicates that the model can reliably solve
problems even with slight variations, showcasing its gen-
eralization ability.

Consistency Score =
groups with all correct variants

total problem groups

To further assess the model’s performance under uncer-
tainty, we also compute the following metric:

• Balance Score: The Balance Score indicates the frac-
tion of problem groups where the model’s accuracy across
variants is around 40%-60%, reflecting uncertainty in the
model’s reasoning. It provides insight into situations

where the model may be guessing or uncertain about the
correct approach.

Balance Score =
groups with ∼50% accuracy

total problem groups
• Negative Consistency Score: This metric tracks the

proportion of problem groups where the model answers
all variants incorrectly. A high Negative Consistency
Score indicates areas of consistent failure, providing valu-
able diagnostic information for improving model perfor-
mance.

Negative Consistency Score =
groups with all incorrect variants

total problem groups

Table 2 provides a comprehensive evaluation of large
language models on AutoBench, employing five crucial
metrics: Partial Accuracy, Exact Match Accuracy, Con-
sistency Score, Negative Consistency Score, and Balance
Score. Notably, Anthropic Sonnet-3.7 and Gemini-2.0-
Flash [1, 6] exhibit the strongest overall performance,
achieving Exact Match Accuracy exceeding 64% along-
side high Partial Accuracy, indicative of reliable step-by-
step reasoning. Sonnet-3.7 stands out with the highest
Consistency Score (42.42%), demonstrating exceptional ro-
bustness to paraphrased and perturbed variants of identi-
cal questions. The Balance Score, quantifying the propor-
tion of problem groups where model accuracy across vari-
ants hovers around 50%, reflects the model’s uncertainty
in its reasoning; stronger models like Sonnet-3.7 display
a lower Balance Score. While Qwen2.5-72B-Instruct [3]
particularly in Partial Accuracy, they encounter challenges
in maintaining consistency. In contrast, GPT-4-Turbo [11]
presents solid overall metrics but underperforms in consis-
tency compared to Sonnet-3.7 and Gemini. The significant
disparity between the 7B and 72B versions of Qwen2.5 un-
derscores the pivotal role of model scale in achieving robust
physics reasoning. Ultimately, these results emphasize the
critical necessity of evaluating not only accuracy but also
consistency and robustness in reasoning tasks—qualities of-
ten neglected by traditional metrics yet paramount for real-
world reliability in multimodal scientific problem-solving.

5. Measuring Hallucination
A key strength of our benchmark is its ability to systemat-
ically induce and detect hallucinations in LLM model re-
sponses by dynamically altering or concealing critical com-
ponents of a physics problem, such as input variables or
domain-specific constants. This functionality enables con-
trolled testing of model behavior under uncertainty. When
confronted with incomplete information: Does the model
seek clarification? Does it make reasonable assumptions
and state them explicitly? Does it hallucinate values and
proceed as if the input were fully specified? Our benchmark

Table 2. Performance Metrics across LLMs on AutoBench. Includes Partial Accuracy, Exact Match Accuracy, Consistency Score, Negative
Consistency Score, and Balance Score.

Model Partial Accuracy Exact Match Accuracy Consistency Score Negative Consistency Score Balance Score

Qwen2.5-7B-Instruct 24.26% 16.44% 5.66% 41.51% 15.09%
Qwen2.5-72B-Instruct 66.57% 61.69% 37.74% 15.09% 11.32%
OpenAI GPT (gpt-4-turbo) 60.59% 53.73% 33.33% 18.18% 12.12%
Gemini-2.0-Flash 71.43% 64.49% 34.38% 9.38% 12.50%
Anthropic Sonnet-3.7 70.81% 65.48% 42.42% 18.18% 6.06%

is uniquely designed to probe these behaviors, allowing us
to quantify reasoning integrity in under-specified scenarios
and assess the robustness of models under challenging con-
ditions.

We illustrate this with a representative example:

Example of Hallucination

Question: Determine the average time required for
a glucose molecule to diffuse a distance of 0.00991
m in water.

This question omits the diffusion coefficient D, a nec-
essary constant for computing the answer via the physi-
cal equation t = x2

2D . However, when prompted with this
version, Gemini does not request the missing value or flag
the input as incomplete. Instead, the model fabricates a re-
sponse by assuming an image is provided, stating: ‘Based
on the image,’ and then extrapolates from a hallucinated ex-
ample involving diffusion over 0.010 m in 7.5 × 104 sec-
onds. It uses the proportionality t ∝ x2 to calculate:

t2 = t1 ·
(
x2
2

x2
1

)
,

with t1 = 7.5× 104 s, x1 = 0.010m, x2 = 0.00991m,

leading to an incorrect answer.
This response reflects a hallucinated reasoning chain. In-

stead of applying the correct physics or querying for D, the
model infers a scenario that was never presented. Such be-
havior can be quantitatively evaluated in our benchmark by
selectively omitting critical variables and analyzing how of-
ten models hallucinate versus recognize under-specified in-
puts.

In future work, we plan to formalize this capability and
systematically benchmark hallucination rates across model
families. This expands the scope of our dataset beyond cor-
rectness and robustness, making it a valuable tool for study-
ing reasoning integrity under partial or ambiguous inputs.

6. Example-Level Insights
While aggregate metrics provide a high-level view of model
performance, deeper insights emerge when examining spe-

cific examples and their variations. In this section, we an-
alyze representative cases that highlight recurring success
patterns, consistent failure modes, and surprising behaviors
across paraphrased or perturbed inputs.

These quantitative and qualitative observations shed
light on the limitations of current models in terms of ro-
bustness, generalization, and interpretability.

Case Study: Thermodynamics Question on Kinetic En-
ergy and RMS Speed We analyze three semantically
equivalent versions of a physics question requiring sym-
bolic reasoning and precise numerical calculation. The first
part of the task is to compute the average kinetic energy of
a gas molecule nitrogen molecules at a given temperature.
Constants are explicitly provided.

Version 1

Question: Determine the average kinetic energy of
a gas molecule at a temperature of 182.0 K. Addi-
tionally, calculate the root mean square (rms) speed
of a nitrogen molecule (N2).
Constants: Boltzmann constant = 1.38 × 10−23

J/K; Mass of N2 molecule = 4.65× 10−26 kg

LLM Response (Qwen2.5-7B):

Step 1: KE = 3
2kBT = 3

2 × 1.38 × 10−23 ×
182.0 = 8.06× 10−20 J
Final Answer: KE = 2.54 J (incorrect by several
orders of magnitude)

Ground Truth: 3.7674× 10−21 J
Error: The model produces an answer that is several or-

ders of magnitude incorrect, suggesting a fundamental error
in the solution process.

Version 2

Question: a) Determine the average kinetic energy
of a gas molecule at 202.0 K. b) Calculate the RMS
speed of N2. Same constants provided.

LLM Response (Qwen2.5-7B):

Answer: KE: 4.786× 10−21 J

Ground Truth: 4.1814× 10−21 J
Observation: Despite minor numerical discrepancy, this
response is approximately correct, indicating higher accu-
racy under this paraphrase.

Version 3

Question: Determine the average kinetic energy of
a gas molecule at 270.0 K and the RMS speed of
N2. Same constants provided.

LLM Response (Qwen2.5-7B):

Answer: KE: 2.127× 10−20 J

Ground Truth: 5.589× 10−21 J
Error: Kinetic energy is overestimated by more than 3×,
possibly due to arithmetic mistakes or symbolic misinter-
pretation.

Similar errors in Larger Models
Our observation is not limited to smaller models like

Qwen2.5-7B. Even Qwen2.5-72B, despite using the correct
physics formula and providing step-by-step reasoning, of-
ten produces numerically inconsistent results.

Consider the following example:

Qwen2.5-72B: Incorrect Electric Field Calculatio

Question: Determine the magnitude of the electric
field E generated by a point charge of 2.09×10−9 C
at a distance of 0.00567m. Use Coulomb’s constant
k = 8.99× 109 N · m2/C2.

Qwen2.5-72B Answer: Applies E = kq
r2 , com-

putes E ≈ 587.5N/C.

Ground Truth: E ≈ 584,440N/C

The model uses the correct formula and walks through inter-
mediate steps, but its final numeric output is off by nearly
three orders of magnitude. This suggests that the issue is
not conceptual misunderstanding but internal instability in
arithmetic or symbolic execution. Similar inconsistencies
were observed across other problems with slight input per-
turbations.

Implicit Simplification Bias: Another class of error arises
in problems requiring more advanced topics. For exam-
ple in question related to relativistic mechanics even when
the scenario clearly demands relativistic treatment, the
Qwen2.5-72B frequently defaults to oversimplified Newto-
nian expressions, for example using a = F

m or a = F
γm

without accounting for the orientation of the force rela-
tive to velocity. We call this behavior implicit simplifica-
tion bias where the model superficially identifies relevant
physical variables but fails to apply the correct governing

equations when deeper conceptual distinctions are required.
This suggests that such biases are not merely a consequence
of model size but rather reflect fundamental gaps in their
understanding of domain-specific complexities, highlight-
ing the need for explicit training in these advanced areas.

7. Conclusion and Future Work
We introduced AutoBench, a benchmark designed to rigor-
ously evaluate the scientific reasoning capabilities of large
language models within the domain of physics. Each prob-
lem instance includes structured, step-by-step reasoning
and is paired with executable Python code to ensure nu-
merical accuracy and dimensional consistency, promoting
scientific rigor and interpretability.

A key contribution of AutoBench is its emphasis on gen-
eralization. By incorporating diverse variations of each core
problem, the benchmark assesses the robustness of model
reasoning across different inputs and contexts. In addition
to standard accuracy, we propose new evaluation metrics
such as consistency, which captures output stability across
paraphrased or perturbed inputs, and the balance score,
which reflects uncertainty in model predictions to enable a
more comprehensive analysis of model behavior.

In future work, we plan to expand AutoBench in several
directions. Future iterations will incorporate multimodal
reasoning tasks that require the integration of textual, vi-
sual, and symbolic information. We also aim to extend the
benchmark to interdisciplinary STEM domains, supporting
the evaluation of models capable of complex, cross-domain
scientific reasoning. Through these efforts, we hope to ad-
vance the development of AI systems with robust, transpar-
ent, and reliable scientific reasoning capabilities.

References
[1] Anthropic. Claude (sonnet). https : / / www .

anthropic.com/claude/sonnet. 5
[2] Daman Arora, Himanshu Gaurav Singh, et al. Have llms ad-

vanced enough? a challenging problem solving benchmark
for large language models. arXiv preprint arXiv:2305.15074,
2023. 3

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. Qwen technical report. arXiv preprint
arXiv:2309.16609, 2023. 5

[4] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic,
Shane Legg, and Dario Amodei. Deep reinforcement learn-
ing from human preferences. Advances in neural information
processing systems, 30, 2017. 2

[5] Frances Ding, Moritz Hardt, John Miller, and Ludwig
Schmidt. Retiring adult: New datasets for fair machine learn-
ing. Advances in neural information processing systems, 34:
6478–6490, 2021. 3

[6] Google DeepMind. Gemini. https://gemini.
google.com/. 5

https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/claude/sonnet
https://gemini.google.com/
https://gemini.google.com/

[7] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Ab-
hinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Alex Vaughan,
et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024. 4

[8] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob
Steinhardt. Measuring mathematical problem solving with
the math dataset. arXiv preprint arXiv:2103.03874, 2021. 1,
3

[9] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka
Matsuo, and Yusuke Iwasawa. Large language models are
zero-shot reasoners. Advances in neural information pro-
cessing systems, 35:22199–22213, 2022. 1

[10] Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei
Chang, Song-Chun Zhu, Oyvind Tafjord, Peter Clark, and
Ashwin Kalyan. Learn to explain: Multimodal reasoning via
thought chains for science question answering. Advances
in Neural Information Processing Systems, 35:2507–2521,
2022. 1, 3

[11] OpenAI. Chatgpt plugins, 2023. Accessed: 2025-03-18. 5
[12] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Car-

roll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. Ad-
vances in neural information processing systems, 35:27730–
27744, 2022. 1, 2

[13] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn. Direct
preference optimization: Your language model is secretly a
reward model. Advances in Neural Information Processing
Systems, 36:53728–53741, 2023.

[14] Matthew Renze and Erhan Guven. Self-reflection in llm
agents: Effects on problem-solving performance. arXiv
preprint arXiv:2405.06682, 2024. 1

[15] Liangtai Sun, Yang Han, Zihan Zhao, Da Ma, Zhennan Shen,
Baocai Chen, Lu Chen, and Kai Yu. Scieval: A multi-level
large language model evaluation benchmark for scientific re-
search. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 19053–19061, 2024. 1, 3

[16] Angelina Wang, Aaron Hertzmann, and Olga Russakovsky.
Benchmark suites instead of leaderboards for evaluating ai
fairness. Patterns, 5(11), 2024. 3

[17] Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu
Zhang, Satyen Subramaniam, Arjun R Loomba, Shichang
Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating
college-level scientific problem-solving abilities of large lan-
guage models. arXiv preprint arXiv:2307.10635, 2023. 1, 3

[18] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large lan-
guage models. Advances in neural information processing
systems, 35:24824–24837, 2022. 1, 2

[19] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large lan-
guage models, 2023. URL https://arxiv. org/abs/2305.10601,
3, 2023. 1

AutoBench: A Dynamic Benchmark for Auditing Scientific Reasoning in Large
Language Models

Supplementary Material

8. Examples from AutoBench
Here are some examples from AutoBench, where each
question is shown along with step-by-step reasoning and the
corresponding Python code. We populate the problems with
numerical values, and the relevant variables are generated as
part of the pipeline.

8.1. Example A
Question

In a simplified atomic model, the most probable distance between
the nucleus and an electron is r = 3.33e − 11m. The nucleus
contains 1.3 protons. Determine the electric field due to the nucleus
at the electron’s position.
Here are constants:

Permittivity of free space = 8.85× 10−12 C2

N · m2

Elementary charge = 1.6× 10−19 C

Solution
Identify Relevant Concepts
• The electric field due to a point charge is given by

E⃗ =
1

4πϵ0

q

r2
r̂

where ϵ0 is the permittivity of free space, q is the charge, and r is
the distance from the charge.

• The goal is to calculate the electric field at the electron’s position.
Set Up the Problem
• The electric field at a distance r from a point charge is given by

the formula above.
• The direction of the electric field is radially outward from the

nucleus.
Execute the Solution
• Substituting the given values into the formula
Evaluate Your Answer
• The electric field is expected to be radially outward from the nu-

cleus due to its positive charge.
• If r were very small, the electric field would be very large, and

if r were large, the electric field would approach zero, which is
physically reasonable.

Python code:
import sympy as sp
from pint import UnitRegistry
ureg = UnitRegistry()
Q_ = ureg.Quantity

def electric_field_at_electron(r, e, number_of_protons,
epsilon_0):

Convert inputs to Pint quantities
r = Q_(r).to(ureg.meter) # Ensure meters
e = Q_(e).to(ureg.coulomb) # Ensure coulombs
number_of_protons = Q_(number_of_protons).to(ureg.

dimensionless)
epsilon_0 = Q_(epsilon_0).to(ureg.farad / ureg.meter)

Ensure F/m

r = r.magnitude
e = e.magnitude
number_of_protons = number_of_protons.magnitude
epsilon_0 = epsilon_0.magnitude

Define symbolic variables
q = e * number_of_protons
E = sp.Symbol(’E’, real=True, positive=True)

Calculate the electric field
E = (1 / (4 * sp.pi * epsilon_0)) * (q / r**2)

return {
’E’: E.evalf()

}

8.2. Example B
Question

Consider a solid metal cube with an edge length of L = 0.0237m.
(a) Determine the lowest energy level for an electron within this
metal.
(b) Calculate the energy difference between this level and the next
higher energy level.
Here are constants:

Reduced Planck’s constant ℏ = 1.05× 10−34 J · s

Electron mass me = 9.11× 10−31 kg
Ground state quantum numbers: nx = ny = nz = 1

Next state quantum numbers: nx = 2, ny = 1, nz = 1

Solution
Identify Relevant Concepts
• Model the electron as a particle in a 3D box.
• Energy levels are given by:

E(nx, ny , nz) =
π2ℏ2

2meL2
(n2

x + n2
y + n2

z)

Set Up the Problem
• Ground state: nx = ny = nz = 1
• Next higher level: nx = 2, ny = 1, nz = 1
Execute the Solution
• Compute:

E1 =
π2ℏ2

2meL2
(12 + 12 + 12)

E2 =
π2ℏ2

2meL2
(22 + 12 + 12)

• Energy difference:
∆E = E2 − E1

Evaluate Your Answer
• Positive energy difference is expected since next level is higher.
• Larger cube size would reduce energy spacing, consistent with

quantum model.

Python code:
import sympy as sp
from pint import UnitRegistry
ureg = UnitRegistry()
Q_ = ureg.Quantity

def electron_energy_levels(L, h_bar, m_e, n_x, n_y, n_z,
n_x_next, n_y_next, n_z_next):

L = Q_(L).to(ureg.meter)
h_bar = Q_(h_bar).to(ureg.joule * ureg.second)
m_e = Q_(m_e).to(ureg.kilogram)

L = L.magnitude
h_bar = h_bar.magnitude
m_e = m_e.magnitude

pi = sp.pi

def energy(n_x, n_y, n_z, L, h_bar, m_e):
return (pi**2 * h_bar**2 / (2 * m_e * L**2)) * (

n_x**2 + n_y**2 + n_z**2)

E1 = energy(n_x, n_y, n_z, L, h_bar, m_e)
E2 = energy(n_x_next, n_y_next, n_z_next, L, h_bar,

m_e)
DeltaE = E2 - E1

return {
’E1’: E1.evalf(),
’E2’: E2.evalf(),
’DeltaE’: DeltaE.evalf()

}

	Introduction
	Related Work
	AutoBench Dataset Overview
	OCR and Problem Extraction
	Image-to-Text Conversion
	Structured Information Extraction
	Dynamic Generalization
	Python Code via Custom Scaffolding
	Computational Validation and Feedback

	Experimental Results and Insights Beyond Accuracy
	Measuring Hallucination
	Example-Level Insights
	Conclusion and Future Work
	Examples from AutoBench
	Example A
	Example B

