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Abstract

Long Short-Term Memory network(LSTM) has attracted much attention on se-
quence modeling tasks, because of its ability to preserve longer term information
in a sequence, compared to ordinary Recurrent Neural Networks(RNN’s). The
basic LSTM structure assumes a chain structure of the input sequence. However,
audio streams often show a trend of combining phonemes into meaningful units,
which could be words in speech processing task, or a certain type of noise in signal
and noise separation task. We introduce Seq2Tree network, a modification of the
LSTM network which constructs a tree structure from an input sequence. Experi-
ments show that Seq2Tree network outperforms the state-of-the-art Bidirectional
LSTM(BLSTM) model on the signal and noise separation task, namely CHiME
Speech Separation and Recognition Challenge.

1 Introduction

Recent RNN based approaches are achieving high performance in speech processing tasks, including
but are not limited to signal and noise separation task (Erdogan et al. (2015); Zhu and Vogel-Heuser
(2014); Wu et al. (2015); Barker et al. (2015)). The underlying hypothesis is that the energy in each
frequency bin over a period of time is continuous and predictable. However, in real life scenes noises
can break in at any time and intertwine with the sound signal with no predictable pattern, which
undermines these models’ ability in predicting the distribution of noise over frequency bins.

To address the problem of finding correct boundaries of noises, some variants of the original LSTM
network are used. The current state-of-the-art system on this task applies BLSTM, which tries to
bound noises by foreseeing future information (Erdogan et al. (2015); Weninger et al. (2015); Grais
et al. (2014)). Nevertheless information from the future contains also further away sound signals,
which does not solve the signal superposition problem. Furthermore, we believe the future for speech
processing should be dominated by real-time speech processing techniques, which BLSTM models
are not able to handle.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



What’s more important, phonemes in sound signals make no sense if not combined to be “words",
neither are those in noise signals. So the sound waveforms should not be understood as a chain of
phonemes but on “word" level. This leads to a natural choice of tree structured modeling of the
waveforms.

In this paper we introduce a novel architecture which extends LSTM networks to be able to parse
sequential input into tree structure and show its superiority in decomposing sound and noise signals.
We call our new RNN architecture Seq2Tree. Our architecture differs from the standard LSTM since
each node inherits the hidden state not from the previous state in time sequence but from its parent in
the tree structure, based on its position predicted by the network itself.

Our evaluation demonstrates the advancement of our Seq2Tree network compared with the BLSTM
baseline on the signal and noise separation task (Barker et al. (2015)). Experiments shows that our
system shows comparable performance to the BLSTM implementation, while outperforming it in
more complex scenarios. Further optimization and adjustment to this task will follow.

2 LSTM Network

RNN’s have the advantage of processing input sequences regardless of their lengths. The sequence
and elements can be of arbitrary types, for example phonemes in a piece of sound, when it comes to
the task of speech processing. However RNN’s are easily trapped by the explosively growth or rapid
vanishment of the gradient over long distances (Hochreiter (1998); Hochreiter et al. (2001)). This
makes it difficult for RNN’s to represent long-term information.

LSTM network is introduced to deal with this problem (Hochreiter (1998); Hochreiter et al. (2001);
Zaremba and Sutskever (2014); Zaremba et al. (2014)). Different from directly passing the previous
state and the current input to the transition function on which the gradient is calculated, LSTM uses a
memory cell to preserve the longer-term information. Using the settings in (Zaremba and Sutskever
(2014); Zaremba et al. (2014)), the LSTM transition functions are as follows:

it = σ(W (i)xt + U (i)ht−1 + b(i),

ft = σ(W (f)xt + U (f)ht−1 + b(f),

ot = σ(W (o)xt + U (o)ht−1 + b(o), (1)

ut = tanh(W (u)xt + U (u)ht−1 + b(u),

ct = it � ut + ft � ct−1,

ht = ut � tanh(ct)

where it, ft, ot, ct are the input gate, forget gate, output gate and the memory cell respectively, and �
refers to element-wise multiplication. As is shown in the equations, the input gate decides how much
information from the new input will be added to the memory cell. Similarly, the forget gate f controls
how much information to forget from the previous states, and the output gate limits the amount of
information to expose. By balancing the incoming and outgoing information amount, LSTM is able
to prevent the gradient vanishment and explosion problems.

Ordinary LSTM is based on chain structured sequences. There exists two common variants of LSTM
networks on structure, namely BLSTM and Multilayer LSTM, which combines multiple LSTM
networks together to provide additional information in the prediction at each time step. Tree LSTM
(Tai et al. (2015)) could be regarded as one variation of Multilayer LSTM with the dependency
relation reversed.

3 Seq2Tree Network

The LSTM architectures described in the previous section all have limits in discovering tree structure
from sequential input. Though Multilayer LSTM and Tree LSTM networks are able to maintain
multilevel dependencies, Multilayer LSTM exposes children cells to all the other units, and Tree
LSTM requires tree structured input. These characteristics limit their use in speech processing tasks
where no reliable parser exists, especially in the case of online speech processing. Here we propose
two variants to LSTM network - Single Level Seq2Tree and Multilayer Seq2Tree architectures. Both
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Figure 1: Seq2Tree Network Architecture

variants are able to find dependencies from adjacent signals, while Multilayer Seq2Tree architecture
catches deeper, weaklier bounded correlations.

The most significant difference between original LSTM and Seq2Tree model is that instead of taking
the previous state as the preceding state, Seq2Tree networks use one additional direction gate dt to
choose the direction to go at time step t. The path selection gate is implemented differently in Single
Level Seq2Tree and Multilayer Seq2Tree architectures.

When the network gets a new input at each step, there exists 3 possible directions to go: up, right and
down. Before moving, the previous hidden state ht−1 is added to the parent state list and is set to
be active. The strategy is that if the predicted direction to go is “up", the parent node of the current
active state becomes the parent state. If the direction is “down" then the network chooses ht−1 as the
parent node. Otherwise the new unit becomes the child of the parent state of the current active node.
Since signal patterns can overlap with each other, multiple jumps towards the root in one time step is
also allowed. Moreover, at each jump an update gate is used to control the amount of change on the
parent layer, and the remainder is passed to even higher states in the tree if there are further jumps.

After processing each state its parent node’s information is updated. The forget gate of the child state
ft controls the amount of change to give its parent state. This mechanism is inspired by the Tree
LSTM networks. The transition functions of the Seq2Tree network are as follows:

dt = σ(W (d)xt + U (d)ht−1 + b(d)),

hparent = dt(hparent ∪ ht−1),

it = σ(W (i)xt + U (i)hparent + b(i)),

ft = σ(W (f)xt + U (f)(dt(hparent)) + b(f)),

ot = σ(W (o)xt + U (o)hparent + b(o)),

ut = tanh(W (u)xt + U (u)hparent + b(u)), (2)
ct = it � ut + ft � cparent,
ht = ut � tanh(ct),

∆ft = σ(W (f)xt + U (f)ht + b(f)),

cparent = cparent + ∆ft � ct,
hparent = oparent � tanh(cparent).

where dt is a selection gate which chooses an h from the recorded hparent with the largest dt gate
value, σ represents sigmoid function, and � means element-wise multiplication.

4 Task and Model

4.1 Signal and Noise Separation Task

We test our Seq2Tree architecture on the signal and noise separation task, the goal of which is to
predict a mask which weakens the energy of noise when applied to the input sound. The task is
defined in the Second CHiME Speech Separation and Recognition Challenge (Vincent et al. (2013)).
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4.2 Tree2Seq Signal Masking Model

For this task, at each time step t we want to predict a mask over all frequency bins. We achieve this
by training a softmax regression matrix which takes the current hidden state:

mask = softmax(U (R)h)

where U (R) is the regression matrix.

We train our signal masking model in two stages using two different loss calculations, as is suggested
in Weninger et al. (2014); Erdogan et al. (2015). The two losses we applied are:

J1(t) = −1

c

c∑
i=1

(maski − labeli)2

J2(t) = −1

c

c∑
i=1

(‖xt‖(maski − labeli))2

where c is the number of frequency bins, maski is the predicted mask at time t for bin i and labeli is
the labeled mask on bin i at time t.

5 Experiments

We evaluate our Seq2Tree architecture on the signal and noise separation task. The data is a fraction
of 1500 audio files from CHiME dataset (Vincent et al. (2016)), in which 10% is used for test and the
rest for training. Each input file is Fourier Transformed and fed to the models. Every model predicts
a mask given the input matrix. The quality of the mask is evaluated in terms of Overall Perceptual
Score(OPS) by applying the mask onto the source waveform, given the noise-removed audio gold
standard (Emiya et al. (2011)). In our experiment the shape of training data is 50× 513, representing
the energy at 50 time steps in 513 frequency bins. The test data has variable length over time steps,
taking advantage of LSTM models’ ability to deal with variable length inputs.

We compare the results generated by our Seq2Tree model with those output by the BLSTM baseline.
The hidden layer size for our Seq2Tree network is set to 256, and we list the results with different
numbers of iterations. The BLSTM baseline applies also 256 hidden layer size. Both models are
trained for 100 epochs. Best and worst scores of our model are also included.

Implementation OPS(dB)
BLSTM 25.01
Seq2Tree 24.41
Seq2Tree(Worst Case) 24.23
Seq2Tree(Best Case) 25.75

Table 1: Evaluation Results.

As is shown in the results table, our Seq2Tree model has comparable performance as the BLSTM
implementation. More importantly, when looked into the specific wav files, in more complex cases
where noises overlap with each other, the Seq2Tree model largely outperformed the BLSTM models,
which agrees with our estimation. The Seq2Tree model shows advantage in both stability and the
ability to deal with more complex situations. We could foresee the growth in performance of our
Seq2Tree architecture if it is trained thoroughly, and when more challenging cases are imported.
Further experiments are on going to demonstrate the effectiveness of the Seq2Tree architecture on
the noise separation task and many other fields.

6 Conclusion

In this paper, we introduced a tree-structured LSTM network architecture. The Seq2Tree architec-
ture can be applied to arbitrary sequential input with potential local dependencies among nodes.
We demonstrated its effectiveness by evaluating a Seq2Tree based model on the signal and noise
separation task. Experiments show that our Seq2Tree model outperforms the baseline since it cor-
rectly represented a large portion of the CHiME data. Further evaluations will be done to prove the
correctness and advancement of our Seq2Tree architecture in more general cases.
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