Workshop track - ICLR 2018

SHARE OR SPLIT : WHICH IS MORE EFFICIENT?

Yinpeng Chen, Zicheng Liu, Lijuan Wang & Zhengyou Zhang
Microsoft Research
Redmond, WA 98052, USA

{yiche, zliu, lijuanw, zhang}@microsoft.com

ABSTRACT

In this paper, we investigate two different feature representations in convolutional
neural networks (CNN): (a) Share - all classes share the same feature space, and a
fully connected layer is used to decode class activation, and (b) Split - each class
has its own feature space and a class is activated if its corresponding feature vector
has a large norm. This is inspired by Capsules (Sabour et al.[(2017)) which splits
the feature space. We compare these two representations on a transformed MNIST
dataset, which adds random scales and translations on the original digits. The
experimental results show that Split has better performance when data is limited,
while Share is better when data is big.

1 INTRODUCTION

fc 10
shared backbone layers Classification
Ky Share
fc 30
Kn BBox Regression
5 —> - ——
fc fc fc
56x56 512 1024 56x56x10
ox9 max ox8 max Reconstruction
conv pool cenv pool
256 /2 256 f2 Split
fc 3
Ko BBox Regression

512 1024 56x56

o]
5—>—>—>—>_> 1] fc fc fc

56X55 Reconstruction

1c (10K;)

Figure 1: Networks for both share and split on transformed MNIST dataset.

In the recently published Capsules (Sabour et al.|(2017))), each class has its own vector representation
(named capsule) that is connected to low level capsules by dynamic routing. Hence, different classes
do not share feature space. This is very different from the existing CNN based image classification
(LeCun et al.| (1998a), Krizhevsky et al.| (2012), Simonyan & Zisserman| (2015), Szegedy et al.
(2015), He et al.| (2016)) or object detection (Girshickl (2015), Ren et al.| (2015), |Redmon et al.
(2016), [He et al.| (2017)), in which all classes share the same feature space. The class label and
bounding box are decoded from the feature vector by a fully connect layer. Sharing or Splitting the
feature space, which is more efficient under what circumstances?

In this paper, we focus on comparing the two representations, Sharing or Splitting the feature space,
within the scope of CNN. Although this is inspired by capsules, this paper does not compare capsules
with CNNs. The comparison between Share and Split is performed on both single task (classifica-
tion alone) and multi-tasks (classification and bounding box regression) on a transformed MNIST
dataset. We found that (a) on classification task alone, Share is better when we have enough data,
while Split is more effective when data is limited, (b) Share outperforms Split on joint classification
and detection.

Workshop track - ICLR 2018

2 SHARING OR SPLITTING FEATURES

The neural networks for classification can be viewed as a process of encoding and decoding. An
input image « is encoded to a feature vector f = E(x), and then decoded to probabilities over
N classes y = [y1,...,yn] = D(f). This paper focuses on the feature representation f and the
decoder D(f). We compare two different representations: sharing features and splitting features.

Sharing features: most of the CNNs (LeCun et al.|(1998al), Krizhevsky et al.|(2012)),|Simonyan &
Zisserman|(2015)),[Szegedy et al.[(2015)), He et al.|(2016)) for classification are in the share category.
A fully connected layer is used as a decoder D(f) to predict the class label. Let us denote the length
of the feature vector f as Kj. All classes share the K} feature channels, which is efficient to
encode class contexture information. However, it introduces complexity on the decoding side - a
fully connected layer is needed to decode the class label.

Splitting features: in the recent published Capsules (Sabour et al.|(2017)), each class locks its own
feature channels (named capsule), which are not shared with other classes. Thus, the feature can
be represented as f = [f,..., fx], where f, is the sub-feature vector for the k*" class. All sub
feature vectors have equal length K,. The decoder for the splitting features is simple: the probability
of each class is proportional to the norm of its corresponding feature vector (yy, o || f|]). Although
the splitting feature representation is less efficient since classes may share common feature channels,
its decoder is simpler with zero parameters.

Which one is better? Sharing and Splitting have different tradeoffs between compression and
complexity. Sharing is efficient on compressing features with a complex decoder, while Splitting
has redundant representation but a simple decoder. Our conjecture is the preference is related to
the size of training data. Sharing may leverage the power of big data to learn the parameters in the
decoder, while Splitting is more effective when data is limited due to its simple decoder. The results
are shown in the next section.

Figure [1| shows an example of sharing features and splitting features on hand written digit classifi-
cation (10 classes). Both networks share the same backbone layers (two convolution and two max
pooling layers). The Sharing network generates the feature vector by a fully connected layer with
K, outputs and then decodes class labels and bounding box. Since the bounding box is square for
MNIST, it is represented by three parameters (one for scale and two for translation). The Splitting
network generates the feature vector by a fully connected layer with 10K, outputs, and then splits
it to 10 sub vectors with length K, for their corresponding digits. Each sub vector is normalized by
using squash in (Sabour et al.| (2017)). We use the same reconstruction structure in (Sabour et al.
(2017))) as regularization. In the Sharing network, we combine cross entropy classification loss,
Ly bounding box regression loss and Ly reconstruction loss. In the Splitting network, we follow
(Sabour et al.|(2017)) to use marginal classification loss, Lo bounding box regression loss and Lo
reconstruction loss. The weight for reconstruction loss is set to 0.0005.

3 EXPERIMENTAL RESULTS

In this section, we discuss the experimental results for both Share and Split on a transformed MNIST
dataset, which transformed the original MNIST dataset (LeCun et al.| (1998b)) by adding random
scales and translations.

3.1 TRANSFORMED MNIST DATASET

We generate two Transformed MNIST training datasets and one test dataset. All transformed images
have bigger size 56 x 56. A transformed image is generated by three steps: (a) choose an image
from MNIST, (b) scale it by a random factor between 0.5 to 2.0, and (c) randomly place it within
the 56 x 56 bounding box.

The test dataset has 5000 test images, transformed from 5000 MNIST test images. The first training
dataset (referred to Train55K) has 55000 images by transforming each MNIST training image once.
The second training dataset (referred to Train4.4M) has 4.4M images, by transforming each MNIST
training image 80 times with different scales and translations. Train4.4M can be considered as data
augmentation.

Workshop track - ICLR 2018

Classification alone Classification and BBox Regression
55K 4.4M Cls-55K CIs-4.4M | BBox-55K BBox-4.4M
Share K, =40 | 98.15 99.35 98.05 99.31 85.47 82.54
Share Kj, =80 || 98.12 99.24 98.11 99.34 87.02 83.24
Share K;, = 120 || 97.97 99.33 98.12 99.35 86.16 83.40
Share K;, = 160 || 97.98 99.33 98.12 99.30 86.02 83.92
Split K, =8 98.41 99.11 98.16 99.16 77.61 80.94
Split K, = 16 98.36 99.11 98.11 99.26 78.95 81.94
Split K, = 24 98.11 99.06 98.15 99.23 79.76 82.83
Split K, = 32 98.06 99.16 98.23 99.17 80.10 82.66

Table 1: Classification accuracy and bounding box IoU of Share and Split networks on the Trans-
formed MNST dataset

3.2 IMPLEMENTATION DETAILS

The Sharing network and the Splitting network are shown in Figure [Each network is trained
on both Train55K and Train4.4M and tested on 5000 transformed test images. We perform the
experiment on the Sharing network with four different feature lengths: K; = 40, 80, 120, 160 and
on the Splitting network with four different sub-feature lengths: K, = 8,16, 24, 32. The weight for
reconstruction is set to 0.0005. The mini-batch size is set to 64. We use an Adam optimizer with an
initial learning rate of 10~3. When training on Train55K, we shrink the learning rate by a factor of
0.1 at 60 epochs and finish the training after 80 epochs. Training on Train4.4M only has one epoch,
which has the same number of mini-batches as TrainS5K. The learning rate is reduced by a factor of
0.1 after training 3.3M images.

3.3 RESULTS

We run experiments on two tasks: (a) classification alone, and (b) classification and bounding box
regression. For classification alone, the bound box regression branch is removed from Figure[I} All
experimental results are shown in Table

Classification Alone: The results validate our conjecture. The Split network performs better on
TrainS5K, while the Share network is more accurate on Train4.4M. This is because that the simpler
decoder is helpful to prevent overfitting. We observe overfitting on both Share and Split, since the
accuracy decreases as the feature dimension increases.

Classification and Bounding Box Regression: We have two major observations as follows:

Observation 1: On Train55K, Share is slightly behind Split on classification accuracy, but its bound-
ing box IoU outperforms Split by a big margin. On Training4.4M, Share is better on both classifica-
tion and bounding box regression. This is because the bounding box regression is highly correlated
across different digits and this correlation is not leveraged when feature is split per class.

Observation 2: From TrainS5K to Train4.4M, Split has better performance on both classification
and bounding box regression due to the power of data augmentation. However, even though Share
has better classification results on Train4.4M, its bounding box IoU drops about 3 points compared
to Train55K. The different trend between Share and Split may be due to two reasons. Firstly, on
Train55K, the bounding box regression is not well trained for Split, but is well trained for Share.
When splitting the feature, each digit learns its own way to regress bounding boxes and the relation-
ship between digit pixels and bounding box across different digits is ignored. Secondly, fitting the
classification on Train4.4M is significantly harder than Train55K, which may sacrifice the perfor-
mance of bounding box regression. We conjecture that the combination of these two factors causes
performance gain on bounding box IoU for Split and performance loss on bounding box for Share.

Take Home Messages: our experimental results recommend using Split on classification task alone
when data is limited and using Share when big data is available. When dealing with joint classifica-
tion and detection, Share is recommended.

Workshop track - ICLR 2018

REFERENCES

Ross Girshick. Fast r-cnn. In Proceedings of the International Conference on Computer Vision
(ICCV), 2015.

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In Proceedings of the
International Conference on Computer Vision (ICCV), 2017.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In NIPS 2012, 2012.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, volume 86, pp. 2278-2324, 1998a.

Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten digits.
Technical report, 1998b.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In CVPR, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time object
detection with region proposal networks. In Neural Information Processing Systems (NIPS), 2015.

S. Sabour, N. Frosst, and G. E. Hinton. Dynamic routing between capsules. In NIPS, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

	Introduction
	Sharing or Splitting Features
	Experimental Results
	Transformed MNIST Dataset
	Implementation Details
	Results

